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SUMMARY

We present an efficient technique for the solution of free surface flow problems using level set and a parallel
edge-based finite element method. An unstructured semi-explicit solution scheme is proposed. A custom data
structure, obtained by blending node-based and edge-based approaches is presented so to allow a good par-
allel performance. In addition to standard velocity extrapolation (for the convection of the level set function),
an explicit extrapolation of the pressure field is performed in order to impose both the pressure boundary
condition and the volume conservation. The latter is also improved with a modification of the divergence free
constrain. The method is shown to allow an efficient solution of both simple benchmark cases and complex
industrial examples. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The aim of the current work is to define a method that allows the predictive simulation of free surface
flows on complex domains. Free surface flows are relevant in many different areas of engineering,
and they are particularly crucial in civil engineering where the correct prediction of the free sur-
face is mandatory for the design of hydraulic structures. Over the years, the importance of the topic
motivated a large amount of effort in the development of novel techniques to allow the simulation
of the problem. Two basic trends can be identified in the literature: one related to the develop-
ment of Lagrangian particle-based techniques [1, 2] and a second focusing on the use of Eulerian
approaches complemented by methods to allow an accurate tracking of the free surface [3,4]. Some
recent works attempt blending the two approaches [5]. The particle finite element method (PFEM)
for example was proved satisfactory for the simulation of a wide class of problems; some of which
are very difficult to deal with using any other approach, see for example [6–12]. SPH technique
on the other hand enjoyed a widespread success because of its simplicity and high computa-
tional efficiency [13, 14]. Eulerian approaches are winners in terms of raw computational efficiency
and of robustness, although they are still limited in the range of application compared with their
Lagrangian counterparts.

Despite the maturity of the subject, the development of a robust computational model, which
allows dealing with complex geometries still represents an open challenge with many different
proposals being presented but still no definitive conclusion being reached.
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Level set and to a minor extent the volume of fluid techniques are known to suffer volume conser-
vation problems, which typically manifest in the total volume of a given fluid not being maintained
during long term simulations.

A large number of authors identify the re-initialization of the level set function as a source of this
error. Interesting proposals were made to alleviate such problem by enriching the re-initialization
step with information on the volume to be conserved either at a global or local level [15, 16].

Other works [17] suggest that improving the formulation in order to respect better the discrete
divergence constraint is sufficient to solve the problem.

Following the latter, we also use a level set approach, and we do not make any special effort to
improve our convection and re-initialization steps, which are performed using standard techniques.
Rather, we strive to represent as accurately as possible the divergence constraint at the node level,
taking particular care to the treatment of the free-surface condition, which we consider as the source
of our conservation problems. The results we report in the paper seem to indicate the correctness of
such assumption.

In this work, a single fluid formulation is used. This implies, in principle, imposing Neumann
boundary conditions on the free surface and wetting and drying portions of the control domain. The
standard approach in this context is to extrapolate only the velocity field allowing the convection of
the level set function. In the present work, we also extrapolate the pressure field, and we strive to
use this information to impose both the pressure boundary condition and the volume conservation.

We begin with a presentation of the mathematical model and its discrete counterpart, discussing
its modification so to improve volume conservation properties. Then, we introduce and justify the
use of a semi-explicit time integrator and discuss an efficient edge-based implementation so to allow
the efficient computation of the terms involved. The level set tracking procedure is described next,
providing the necessary details for using it in combination with the proposed method.

This is followed by the description of the parallelization procedure. Finally, we demonstrate
the efficiency of the approach by presenting a number of simple benchmarks followed by some
examples of industrial-grade applications.

Through the whole paper, the use of simplicial meshes is assumed.
The code is implemented inside Kratos multiphysics open source C++ software [18, 19] and is

available on-line at http://kratos.cimne.upc.edu/ .

2. DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS

The first step towards the solution of free-surface problem is the discretization of the Navier-Stokes
equations. Because the flow is expected to be incompressible, the non-conservative form of the
Navier-Stokes equations is chosen and discretized using the standard Galerkin approach. Defin-
ing � � Rd (d D 2, 3) as the fluid domain in a time interval .0,T /, the continuous form of the
Navier-Stokes equations is

@tuC u � ruCrp � 2r � �rsu� bD 0 in�, t 2 .0,T /I

r � uD 0 in�, t 2 .0,T /I
(1)

where u is the velocity, p the pressure, � the viscosity.
In dealing with free surface problems, it is often important to consider the effect of the surface

tension force [20]. The level set function could be used to recover the local curvatures so to evaluate
the effect of such force, nevertheless in the current work, this is not taken into account.

The problem is completed by the definition of the following initial and boundary conditions:

u.x, 0/D u0.x/ in �I

u.x, t /D g.x, t / on @�D , t 2 .0,T /I

n � � .x, t /D t.x, t / on @�N , t 2 .0,T /I

(2)
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where n is the unit normal vector and � D �pI C 2�rsu. �D and �N are the Dirichlet and
Neumann boundary, respectively. The difficulty in modeling the free-surface problem is obviously
related to the changing shape of the fluid domain, which makes difficult to impose the Neumann
conditions on the free surface.

Applying the Galerkin approach to Equation (1) and applying integration by parts of the stress
term, we obtain the following (well-known) variational problem.Z

�

w@tud�C
Z
�

wu � rud��
Z
�

pr �wd�

C2

Z
�

rw W �rsud��
Z
�

wbd��
Z
@�N

wtd� D 0 8w 2 VI
Z
�

qr � ud�D 0 8q 2QI

(3)

For a fixed t 2 .0,T /, u is assumed to belong to the velocity space V 2
�
H1
0.�/

�d
of vector

functions whose components and derivatives are square-integrable and vanish on @�, whereas the
pressure p belongs to the pressure space Q 2 L2 of square-integrable functions. If we let Vh be
a finite element space to approximate V and Qh a finite element approximation to Q, the problem
becomes finding uh 2 Vh and ph 2Qh such thatZ

�

wh@tuhd�C
Z
�

whuh � ruhd��
Z
�

phr�whd�

C2

Z
�

rwh W �r
suhd��

Z
�

whbd��
Z
@�N

whthd� D 0 8wh 2 VhI
Z
�

qhr � uhd�D 0 8qh 2Qh.

(4)

The matricial counterpart of such residuum equations can be defined once the following
definitions are provided:

Gij WD

Z
�

rNiNjd�I

r ij WD

Z
�

NirNjd�I

Dij WD
Z
�

NirN
T
j d�I �! Dij WDGT

ji

Lij WD

Z
�

rNi � rNjd�I

Cij .u/ WD
Z
�

Ni .ug � rNj /d�I

Mij WD ıij
X
j

Z
�

NiNjd�I

(5)

where node j is one of the nodes, which are connected by at least one edge of the finite element
mesh to node i and ug appearing in the convective operator is a velocity evaluated at the integration
point. Note that the Kronecker delta (ıij ) is used in the definition of the mass operator (M ) so to
obtain its lumped form.

On the basis of such operators, our Navier-Stokes problem becomes finding u and p such that

M
@u
@t
D r.u,p/I (6)

and

DuD 0I (7)
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with

r.u,p/ WD F� �Lu�C.u/uCGpI (8)

We shall observe that in writing Equation (8), the Laplacian form of the viscous operator is taken,
which implies a further approximation with respect to Equation (4). This has implications, which
become relevant for highly viscous flows [21] but that are completely acceptable for the range of
problems of interest and was chosen here because it slightly reduces the computational cost.

Equations (6) and (7) define a ‘monolithic’ problem in which velocity and pressure are tightly
coupled. Furthermore, the problem of interest is likely to be convection dominated, which implies
a non-linear dependence upon the velocity. Because our interest is in using low-order simplicial
elements, stabilization is needed for both convection and for the incompressibility constraint. All
the examples presented in the current work were run using Orthogonal Sub-grid Scale stabilization
[22], nevertheless the finite calculus approach [23] was also considered as an alternative. Our choice
was to avoid providing any detail of the particular choice made for the stabilization technique, as
this is unrelated to the algorithm we propose. The different alternatives considered were verified to
provide equivalent results.

The solution of the monolithic problem represented by Equations (6) and (7), represents a com-
putational challenge given the difficulty (and cost) of resolving the resulting linear system. Several
techniques exist to simplify it. We will focus on the use of a fractional step (FS) approach, which
we will modify so to obtain a semi-explicit version which appears to be convenient for the prob-
lem of interest. More specifically we will define an approximate technique for the solution of the
free-surface problem, which is well integrated within the solution framework provided by the FS
approach. In this sense, we will discuss in detail the treatment of the pressure constraint and the
divergence freeness condition of the problem of interest.

2.1. Fractional step solver

Pressure-splitting approaches of the FS type are very convenient because of their high computa-
tional efficiency for flows at high Re and have enjoyed widespread popularity since the original
works of Chorin [24] and Temam [25]. The fundamental idea is to solve the momentum equation
keeping the pressure fixed and later correcting the pressure so to guarantee reproducing correctly
the divergence constraints. An algebraic presentation of the method can be found in [26]. The FS
approach is traditionally presented in an implicit context, typically using a first or second order
backward differentiation formula (BDF1 or BDF2, respectively) algorithm for the time integration
of the momentum equation [27]. In dealing with free-surface problems unfortunately the shape of the
domain, and consequently the boundary conditions, are subjected to frequent and radical changes
which need to be accurately tracked in time in order to allow a satisfactory representation of the
solution. In practice, it is typically observed that even fully implicit schemes are practically limited
to time steps for which the free surface approximately moves one element length per time step. Such
heuristic constraint is equivalent in essence to a restriction on the practical Courant-Friedrichs-Lewy
number to values in the order of the unity. This observation effectively implies that explicit scheme
will be competitive provided that CFL� 1 can be used and that meshes of sufficiently good quality
can be generated. This motivates us to use an explicit form of the FS scheme (see, e.g., [28]) based
on the use of a 4th order Runge Kutta (RK4) method in dealing with the momentum equation.

Before proceeding to the description of our method, we shall observe that the algebraic splitting
proposed by Codina [26] leads naturally to the definition of a ‘Discrete Laplacian’ DM�1G which
in principle does not introduce any additional error in the imposition of the divergence freeness with
respect to the original monolithic scheme.

In practice, however, the use of the ‘Discrete Laplacian’ implies a large computational burden as
the matrix is rather densely populated. In order to overcome such problem, the ‘Discrete Laplacian’
is typically substituted by a continuum Laplacian, which has a much smaller (around six times
smaller in 3D) stencil than the discrete one. This fact has important consequences both on the
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efficiency and on the stability of the numerical scheme (see, e.g., [26]) but in particular has an
important impact on the volume conservation properties of the method [29]. One practical issue is
that although the use of a ‘Discrete Laplacian’ matrix guarantees an invertible matrix, this is not
the case when the continuum form is chosen implying that the pressure needs to be fixed on the
Neumann boundary, that is, pressure is to be imposed ‘strongly’, at least for the solution of the pres-
sure step. This fact implies that, when FS is to be used, the pressure is known beforehand on the
Neumann boundary.

Given such situation, it is convenient to avoid integrating by parts the pressure gradient term,
using the equivalent formula

Z
�

w � rpd�D�
Z
�

pr �wd�C

Z
@�

w � pnd� (9)

This means that the pressure space should be in ŒH1.�/�d which is an additional requirement to
the smoothness of the function. Such modified form has the important advantage that no boundary
integrals need to be computed for the pressure (second integral of the right and side of Equation (9)),
which leads to an easier application of the pressure boundary condition on the free surface as will
be explained in Section 3.4.

This consideration leads us to the following expression of the residual at a given intermediate
time step ˇ (note the use of r instead of G).

rˇ D Fˇ � �Luˇ �C.uˇ /uˇ �rpˇ I (10)

Remark 1
Using Equation (9) implies a point-wise application of the normal force on the Neumann boundary
instead of its weak imposition. This is an approximation that is acceptable for low viscosity flows
for which the term

R
�

n � �rud� is negligible [21].

On the base of such definition, we can now proceed to the time integration. The application of the
RK4 scheme to the first equation gives (symbolically)

M
unC1 � un

�t
D
1

6

h
r.un,pn/C 2r

�
uˇ1,pˇ1

�
C 2r

�
uˇ2,pˇ2

�
C r

�
uˇ3,pˇ3

�i
I (11)

where the intermediate velocities are defined as

uˇ1 D unCM�1
�t

2
r.un,pn/I

uˇ2 D unCM�1
�t

2
r
�

uˇ1,pˇ1
�
I

uˇ3 D unCM�1�t r
�

uˇ2,pˇ2
�
I

(12)

The direct application of such procedure would require knowing the pressure at all of the given
sub-steps, as pressure should adjust instantly so to guarantee the incompressibility of all of the sub-
step velocities. If we instead assume a linear variation of the pressure within the time step, and we
accept that only the end-of-step velocities will be divergence free, we arrive to the definition of a FS
splitting in the form [28]

� STEP 1:

M
Qu� un

�t
D
1

6
Œr.un,pn/C 2r

�
uˇ1,pn

�
C 2r

�
uˇ2,pn

�
C r

�
uˇ3,pn

�
�I (13)

where Qu is the fractional step velocity [26].
� STEP 2: (omitting pressure stabilization)

L.pnC1 � pn/D D Qu (14)
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� STEP 3:

unC1 D QuC
�t

2
M�1r.pnC1 � pn/I (15)

2.1.1. Edge-based approach. Having made the choice of an explicit scheme for the time integra-
tion of the momentum equation, we need to devise a data structure, which is suitable for the fast
calculation of the residuals.

For a comprehensive and detailed comparison between the cost of an element-based and that of an
edge-based approach the consultation of [3] is recommended. The advantage of such technique for
this specific case is that the pre-computation of operators allows a faster computation of the residual
when compared with standard integration rules.

The starting point in our work is the systematic use of the partition-of-unity property of the finite
element shape functions, which provides the relations

X
i

Ni D 1 H) Ni D 1�
X
j¤i

Nj (16)

and (as a consequence)

X
i

rNi D 0 H) rNi D�
X
j¤i

rNj (17)

The ‘edge-based’ approach is obtained by applying such relations for the computation of the dis-
crete operators of interest. In the following, we consider one by one the different terms involved in
the calculation of the residua, by expressing the contributions to the entry corresponding to a given
node i . The j index indicates one of the nodes ‘around’ i which share an edge with it.

2.1.1.1. Gradient term. The gradient term (not integrated by parts) which appears in the momentum
equation, reads

X
j

Z
�

NirNjpjd�D
X
j¤i

Z
�

NirNjpjd�C

Z
�

NirNipid�

D
X
j¤i

Z
�

NirNjpjd��

Z
�

Ni

0
@X
j¤i

rNj

1
Apid�

D
X
j¤i

Z
�

NirNj .pj � pi /d�

D
X
j¤i

r ij .pj � pi /I

(18)

by applying Equation (17), we show how the pressure gradient term can be computed by using the
r ij for any edge ij . Note that the term i i is never needed with the proposed approach.

2.1.1.2. Divergence term. The derivation of the divergence term is basically identical to the previ-
ous one, with the only difference that a scalar product is involved. Following exactly the same steps
as before, it can be readily shown that (taking in account that Dij �GT

ji )

X
j

Dij � uj D
X
j¤i

Dij � .uj � ui /D
X
j¤i

GT
ji � .uj � ui /. (19)
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2.1.1.3. Convection term. The non-linear convection term has to be approximated to fit within the
framework of our edge-based formulation. Several possibilities exist to obtain a suitable form to
be used in the calculations. One could start by considering the conservative form of the convection
operator r � .u˝ u/ .

X
j

Z
�

NirNj � .uj ˝ uj /d�D

D
X
j¤i

Z
�

NirNj � ujujd��
Z
�

Ni

0
@X
j¤i

rNj

1
A � uiuid�

(20)

which shows that the convective term can be estimated asX
j¤i

.r ij � uj /uj �
X
j¤i

.r ij � ui /ui . (21)

Alternatively, one can start with the non-conservative form of the same equation and use a nodal
integration rule as proposed in [30]. This approach estimates the convective term contribution asX

j¤i

.r ij � ui /.uj � ui / (22)

The first approach is ‘globally conservative’ by construction in the sense that the sum over all of the
nodes in the mesh is guaranteed to give zero. This property is only approximately verified by the
second technique, because the integration rule is not exact. In practice, both approaches work effec-
tively, nevertheless, the second approximation appears to be slightly more robust and was the one
chosen in the current work.

2.1.1.4. ‘Weak’ gradient term. The migration from a classical finite element to an edge-based
implementation requires describing the gradient of a scalar function integrated by parts. Because
in the current formulation we made the choice of not integrating by parts the pressure gradient, this
is not strictly needed for the implementation of our method. In any case following [31], we obtain

X
j

Z
�

rNiNjpj D
X
j¤i

Z
�

rNiNjpjd�C

Z
�

rNiNipid�

D
X
j¤i

Z
�

rNiNjpjd��

Z
�

0
@X
j¤i

rNj

1
ANipid�

DGijpj �r ijpi .

(23)

2.1.1.5. Viscous term. The viscous term in the Navier-Stokes equations requires estimating the
scalar Laplacian operator Lij . Although it is possible to store directly on each edge an entry of
the type Lij WD

R
�
rNi � rNjd�, we preferred in our implementation to store a matrix term of

the type

Ldij WD
Z
�

rNi ˝rNjd� (24)

on each edge of our mesh. The scalar gradient can then be obtained as needed by the trace operator as

Lij D T r
�

Ldij
�

(25)

which allows writing the viscous term as
X
i¤j

T r
�

Ldij
�
�.uj � ui / (26)
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2.1.1.6. ‘Special terms’. All the terms needed for the implementation of the Navier-Stokes equa-
tion have already been described. In our presentation of the discrete form, we avoided specifying
the stabilization used, because this is relatively irrelevant for the description of our proposed algo-
rithm. We would like nevertheless to point that storing the matrix Laplacian Ldij instead of its scalar
counterpart, is justified only for the implementation of the stabilization operators and of the shock
capturing terms. A detailed description of the usage in this context can be found in [31] or [32], nev-
ertheless, the need to store such operator can be understood by considering a SUPG-like stabilization
operator. On a given node i , the stabilization operator has a form of the type

X
i¤j

r � .ui ˝ ui /r.uj � ui / (27)

By using the matrix Laplacian operator, this can be approximated as
X
i¤j

�
�

ui �Ldij � ui
�
r.uj � ui / (28)

which requires considering Ldij as the matrix described. Similarly, the matrix form is also useful in
the computation of the sub-scale residuals and for the definition of a cross-wind dissipation term
which is useful in controlling unwanted numerical oscillations.

Remark 2
The common feature of all the terms described is that they can be evaluated for each node i inde-
pendently of all the others. This implies that the calculation of the residuals can be performed in
parallel for each node of the mesh.

Remark 3
All of the terms involved in the calculations can be computed without even considering the diagonal
term, which is consequently not stored.

2.1.2. Improving volume correction. Independently of the time accuracy of the numerical scheme
used for the first step, the overall scheme can not be more than second order accurate because of
pressure-splitting procedure. Furthermore, the use of the continuum Laplacian operator, manda-
tory in the context of a semi-explicit scheme, implies some volume loss mostly concentrated in the
vicinity of the free surface.

The origin of such loss can be traced back to two distinct phenomena:

a. As observed in [29], the pressure is fixed on the Neumann boundary as this is needed to make
the Laplacian resolvable. This implies that it looses the capacity to adapt locally so to attempt
guaranteeing the local volume conservation.

b. Equation (7) is generally evaluated at time step nC 1 implying that the divergence constrain
depends exclusively on the velocity at n C 1. Any error in the fulfillment of the divergence
constraint at the preceding step (Dun D 0 ) is simply discarded and never recovered.

The algorithm we devise for the solution of the free surface problem attempts to minimize the first
issue. The idea, as we shall show in Section 3.4, is that the pressure will be fixed on the nodes
outside the free surface, thus letting some freedom to the nodes in its proximity.

On the other hand, the fulfillment of the divergence free condition at the present time step (nC1)
and at the previous one (n) are combined in order to overcome the drawback stated in point b. The
idea is the following: if no error was made in the past, we shall assume Dun D 0. However, this
assumption is not verified in practice and mass is either created or destructed at a rate of Dun.
Although usually this information is simply discarded, we modify the divergence free condition
(DunC1 D 0) in order to sum up the volume variation lost (or gained) at the previous time (Dun).

In mathematical terms, our proposal is simply to modify the divergence constraint as

DunC1CDun D 0 (29)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:687–716
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As we will show in some of the examples, this simple modification improves the volume
conservation of the overall scheme.

It is interesting to observe how 29 can be written equivalently as

DunC1CDun D 0!
1

2

�
DunC1CDun

�
D 0! DunC

1
2 D 0 (30)

Which corresponds to a different time integration rule for the divergence constraint.

3. THE FREE SURFACE PROBLEM

Because the technique we propose is based on the use of a fixed-grid approach, the solution method
has to be completed by the choice of a tracking method for the free surface and by the choice of
an approach to apply the boundary conditions needed on the free surface. We will next present a
brief description of the standard level set approach and continue with a detailed description of our
approach to impose the boundary conditions on the free surface.

3.1. The level set concept

The Level Set Method was conceived as a methodology to follow moving interfaces. The interface
is implicitly defined as the zero-valued iso-surface of a given smooth function [33, 34].

Let us call �0 �Rd (where d is the space dimension) the global control domain of analysis and
�.t/ � �0 the fluid domain at time step t . The boundary of �.t/ is defined by part of @�0 and by
a moving boundary @�m.t/. The latter is defined as

@�m.t/ WD ¹x j '.x, t /D 0º (31)

From now on �.t/ D �, and �m.t/ D �m and the explicit indication of time will be omitted
for reason of simplicity. Following the same criteria, the fluid domain at a given time step tn is
�.tn/D�n.

As often done, the level set function is defined as a signed distance function, that is

d.x/ WDmin.jx� xi j/ 8xi 2 @�m (32)

The level set function, for a given time instant t is defined as

'.x/D d.x/ if x …�, t 2 .0,T /I

'.x/D d.x/D 0 if x 2 @�m, t 2 .0,T /I

'.x/D�d.x/ if x 2�, t 2 .0,T /I

(33)

As detailed in [34], this function inherits all of the properties of implicit surfaces. Moreover, its
monotonicity across the interface allows its differentiation.

The fundamental idea of using the level set approach can now be understood considering the mass
conservation equation for a variable-density fluid. � being the density this states

d�

dt
C u � r�C �r � uD 0 (34)

The case of interest is that of � ¤ 0 inside the fluid domain and � D 0 outside of the free sur-
face, where we may consider that a regularization function is applied to � to make it differentiable
in space.

Let us split Equation (34) in the following two equations

d�

dt
C u � r�D 0 (35)
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and

�r � uD 0!r � uD 0 (36)

It is easy to understand that if such two equations are verified, then the former one will also be
verified. Now, Equation (35) represents the transport of the density with the mean flow velocity.
Because the density can behaved rather badly as it approximates a jump, it is convenient to replace
it by the transport of a smooth scalar ' (in our case the distance function), which can be used to
recover the density distribution at any moment. The problem is thus transferred to the solution of the
transport problem

@t' C u � r' D 0 in �0, t 2 .0,T /,

' D ' on @�in, t 2 .0,T /,

'.x, 0/D '0.x/ in �0,

(37)

where @�in WD ¹x 2 @�0 j u � n< 0º is the inflow part of @�m.
In principle, such equation can be solved using any numerical scheme at hand. Nevertheless,

because the choice of using an explicit scheme for the momentum equation was made, we prefer
using a RK4 scheme for the solution of the convective system 37 and an Orthogonal Sub-grid Scale
stabilization technique.

3.2. Coupling the level set equation and the Navier-Stokes solver

In order to completely define our approach to the solution of the complete free-surface problem,
we need to describe the coupling between the Navier-Stokes solver and the newly added level set
equation. Conceptually, the velocity obtained from the solution of the Navier-Stokes equation has to
be used in convecting ', whereas the zero iso-surface of the same variables provides the position of
the free surface and is consequently needed in prescribing the pressure condition on the Neumann
boundary. Many different approaches were proposed over the years to perform such coupling, some
based on sub-integration techniques on the cut elements [35] and others based on some form of
regularization for the density function in the vicinity of the free surface. Our proposal rises from
the observation that, once a continuous pressure distribution is assumed, the old pressure appears
only with its gradient in the momentum equation (as we observed before, we prefer not to integrate
by part the pressure term). This implies that the momentum equation can be solved approximately
without knowing exactly the position of the free surface, provided that an estimate of the pressure
gradient is given in any active (or potentially active) area of the fluid domain. On the other hand, the
imposition of the zero traction condition on the Neumann Boundary could be applied instead in the
pressure correction step through the imposition of idoneous boundary conditions at the level of
the pressure Laplacian system.

To complete the algorithm some other ingredients are required as follows:

� An extrapolation function: it defines the values of velocity, pressure and gradient of pressure
on the nodes in the non-fluid area close to the free surface.
� A tool for the calculation of the nodal distance in the whole control domain �0 once the new

free surface has been defined;
� A way to choose the pressure to be applied on the outer nodes so that the pressure is

approximately zero on the free surface.

3.3. The extrapolation procedure

The extrapolation of the velocities and the pressures from the interior of the domain towards the
exterior, represents one of the most critical steps of the calculation process. Our proposal is to
define an auxiliary data structure that contains the different layers in the vicinity of the free surface
as shown in Figure 1.
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Figure 1. Extrapolation layers and calculated nodes in the time interval tn � tnC1.

An extrapolation domain is set and different layers are defined using the following criteria:

� LAYER 0 (L0) is the first layer of nodes of the fluid domain internal the free surface (L0 2�n).
� LAYER k (Lk) (k D 1, 2, : : : ,nl ‡) is the layer of non-fluid nodes neighboring with Lk�1

(Lk …�n)

The fluid velocity and pressure fields on the layers Lk with k 6 1 are known from the previous
time step tn (the black nodes in Figure 1). In our proposal, however, such values are not used in
performing the extrapolation of pressure, velocity and gradient of pressure, but rather velocity is
taken starting from layer L0 and pressure and pressure gradient from the L�1. The rationale of this
choice is that the pressure and pressure gradients in the immediate vicinity of the free surface may
show a certain level of spurious oscillations, because the pressure is imposed strongly on layer L1,
and the effect of a non-smooth pressure boundary condition may be still felt on layer L0. We thus
propose to start the extrapolation of the pressure (and pressure gradient) from the inner layer (L�1),
which guarantees a much smoother behavior of the extrapolation area.

In symbols, we define the pressure gradient on each node i of a given layer k, as the arithmetic
average (avg) of all of its neighbors j which belongs to the layer of lower order

rpki WD avg
�
rpk�1j

�
8k D 0 : : : nl i 2 Lk j 2 Lk�1 (38)

Given such pressure gradients, the pressure is then evaluated on node i so to maintain the
extrapolated pressure gradient, that is

pki WD avg
�
pk�1j C hij � rpk�1j

�
8k D 0 : : : nl i 2 Lk j 2 Lk�1 (39)

where hij WD xj � xi is the vector from i to j .
The extrapolation of the velocity is performed in a very similar way, with the only difference that

the extrapolation starts from layer L0 not from L�1 like in Equations (38) and (39) (see Figure 1
for a graphical representation).

uki WD avg
�
uk�1j

�
8k D 1 : : : nl i 2 Lk j 2 Lk�1 (40)

The extrapolation procedure described provides a prediction of the velocity and pressure field
that is likely to be found outside of the pressure domain. Such extrapolation is performed before
convecting the distance function and should be extended sufficiently far to cover all of the area upon
which the fluid domain is likely to extend during the following time step. We shall remark that the
data structure that contains the different layers should be updated every time the distance function
is convected.

‡nl states for number of extrapolation layers set up by the user.
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We shall also observe that the choice of using the ‘strong’ form of the pressure gradients in
the momentum equation appears at this point to be beneficial. The idea is that, because we made
the choice of not integrating by parts the pressure gradient, no boundary integral of the pressure is
needed on the free surface (in the solution of the momentum equation), and the only thing needed on
any fluid element (including the elements cut by the free surface) is the correct computation of the
pressure gradient, which is automatically available once the pressure is extrapolated as described.

Once the convection operation has been performed by solving Equations (37), the level set
function is no longer the Euclidean distance function presented in Equation (33). To recover its
original nature, a tool to re-evaluate the nodal distance from the new calculated free surface has
been developed.

Because of the dynamic nature of the analyzed problem, a redefinition of the fluid domain
� WD ¹x 2�0j'.x/6 0º is necessary at each time step.

For the calculation of the distance field of the domain�0, numerical methods have to be employed
because the use of analytical solution is not trivial. The method proposed by Elias, Martins and
Coutinho in [36] is taken as reference. It takes its origin from the Fast Marching Method, a tech-
nique, first developed by Sethian (see [37]), for the computation of the arrival time of a front.
Observe that this approach requires the values of ' to be known on L0 and L1 in order to be
initialized. This is performed geometrically by computing the Euclidean distance from the zero of
the level set function.

3.4. Prescription of the boundary condition on the free surface

Despite its advantages, the pressure extrapolation described in the previous section does not impose
in any way the traction-free condition at the free surface. This is done in the second step of the FS
procedure (Equation (14)) by fixing the value of the pressure at the time step nC 1 so that the pres-
sure field is zero at the free surface. Because the free surface cuts the element at arbitrary position,
no nodes are available to directly fix the pressure.

Let us remember that there is no need of computing any boundary integral because we do not
integrate by part the pressure gradient term, like is explained in Section 2.1.

Our approach is to consider that the extrapolated pressure gradient is correct in the vicinity of the
free surface . We will thus fix the pressure values of the nodes inL1 so to guarantee that the pressure
at the free surface is zero, provided that the pressure gradient is kept fixed. Note that in doing so, we
need to recompute the layer L1, because it does not necessarily coincide with the one used in the
extrapolation step.

5
4

3

2
6

Figure 2. Graphical explanation of the evaluation of pressure on the first layer of non-fluid nodes in order
to respect the incompressibility condition.
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In mathematical terms, the component of the pressure gradient of node i (2 L1) in the direction of
the distance (which is the gradient of the level set function) is evaluated. Therefore, the pressure of
node i is calculated setting zero pressure on the free surface, whose distance from node i is known,
and interpolating linearly. Defining as i-patch the cluster of elements whose node i belongs to
(elements 1 � 6 of Figure 2), the pressure on node i is evaluated like the value of the level set
function on node i times its gradient of pressure in the direction of the gradient of the level set
function itself.

p1i Drp
n
i �
r'nC1i��r'nC1i

��'nC1i I (41)

where r'nC1i and
��r'nC1i

�� are the gradient of the level set function on node i and its L2 norm,
respectively, and 'ni is the level set function itself. r'nC1i is calculated considering the contribution
of the gradient of the level set function on each edge concurring on node i . For instance edges ijp
(with p D 1, 2, .., 6) of Figure 2.

Remark 4
It is important to observe that Equation (41) is the only point at which the level set function is actu-
ally required to be a distance. Because its value is only needed onL1, it is convenient to recompute it
as accurately as possible at every time step. This can be done geometrically for the elements crossed
by the zero of the level set function with a minor computational cost.

Remark 5
The correct calculation of the residual of the momentum equation would have required integrating
only on the fluid area of the cut elements. This is impossible within an edge-based formulation
unless one wants to recompute the edges and loose efficiency. We thus accept to integrate on the
whole element area considering that both the body force and the pressure gradient are extrapolated
on the outside of the fluid. This approximation is acceptable under the assumption that the volume of
the cut elements is small compared with the overall fluid volume and exact for the hydrostatic case
where the gradient of pressure and the body force exactly cancel each other (see. Section 5.1 for an
empirical verification). Furthermore, the related error goes to zero as the element size is reduced.

3.5. The algorithm

Collecting all the ideas, we arrive to the algorithm:
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4. PARALLELIZATION

The edge-based approach used in this work is well suited for parallel processing. One can take
advantage of the fact that in each node i , all terms to be calculated are completely independent
from other nodes to parallelize the algorithm in its nodal loop. The parallelization of the level set
algorithm however requires some modifications in the recalculation of the distance function.

At the moment of writing this paper, the solver is parallelized for shared memory machines
using OpenMP. However, the parallel algorithm is also adequate for distributed memory
machines parallelization.

4.1. Parallelization of the fluid solver

The first step is the solution of the momentum equation (Equation (13)), which requires four
evaluations of the residual within each time step.

In the current work, we made the decision of not using the symmetry of the edge data structure,
calculating both edge ij and edge j i as two different edges. This allows computing the residual by
a loop of the type

r[i] = 0
for i in node_indices (-->perfectly parallel loop!)
gather data of node i
for j in "neighbors of i"
edge = gather edge i,j
gather data of node j
r[i] += edge contribution

Although this choice approximately doubles the computational work to be performed for each
node i , it provides the important advantage that the residual on each node can be computed in par-
allel, thus allowing a trivial parallelization. Furthermore, the nodal data relative to node i can be
cached thus allowing its effective reutilization. We shall remark that other authors (see, e.g., [3])
prefer to take advantage of the symmetry and perform the parallelization of the above loop by using
coloring strategies. Such decision is perfectly justified and was proved to provide a very high level
of efficiency. In our work, we preferred the first option so to allow a simpler parallelization and
future developments as described for example in [32].

The solution of the pressure step (Equation (14)) is performed using an iterative solver and is
also trivially parallel as it relies on standard SpMV (Sparse Matrix-Vector product). On the other
hand, step 3 of the FS procedure (Equation (15)) has an equivalent form and was parallelized in the
same way.

4.2. Parallelization of the reinitialization step

As explained in Section 3, the level set algorithm consists of two parts: convection of the level
set function and recalculation of the distance function. Whereas the first part is parallelized using
the same methodology described for the momentum equation (see, e.g., [32] for details of the
formulation), the second requires more considerations to avoid possible conflicts between threads.

The recalculation of the distance function can be decomposed in two parts:

� The calculation of ' on the nodes of the elements crossed by the free surface, performed
geometrically.
� The evaluation of ' on the rest of the domain. This is done using the method presented in [36]

and previously commented. We proceed identifying a group of ‘active’ elements with only a
node with unknown distance that we compute for each of such elements.

In both cases, the value to be assigned to each of the unknown nodes is evaluated independently
(and in parallel) in every ‘active’ element and its final nodal value is obtained by performing an
area-weighted average of the elemental distances just calculated. This is best explained by consid-
ering Figure 3. The level set function of node i , 'i is calculated independently in the two elements
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Figure 3. Graphical explication of the parallel calculation of the level set function '. The distance value is
known on the black nodes and has to be calculated on the white one. In this case, both elements are ‘actives’

having only one node with unknown distance.

node i belongs to (Figure 3(a)). The elemental contributions are afterwards ‘assembled’ using an
area-weighted average (Figure 3(b)).

The operation is parallelized using a semaphore-based approach and implemented using
OpenMP locks.

5. NUMERICAL EXAMPLES

In the next sections, a series of examples are presented to show the good performance of the
proposed method.

The good capability of reproducing an hydrostatic pressure distribution in case of a still water
simulation, without oscillations or loss of volume, is shown in the first example (Section 5.1).

The volume conservation properties are studied in Section 5.2 where two different models are
considered:

� A prismatic vertical channel with an inlet in the bottom face;
� A prismatic vertical channel with a lateral asymmetric inlet;

The improvements in volume conservation explained in sec. 2.1.2 are shown to be crucial in the
case of critical conditions (slow velocity and waves).

A comparison between the performance of the present algorithm and a Lagrangian approach
(using PFEM [9]) is then presented through two challenging models of a 2d flip bucket and a 3d
dambreak.

Finally, an industrial application of a mold-filling process is presented. In this case, the parallel
architecture of the code is shown to be essential.

5.1. Still water example

The first example is a very simple verification of the correct pressure calculation in the case of a
tank half filled with water.

Although monolithic methods are typically capable of providing a seamless solution for this kind
of problem, the use of pressure-splitting technique can be problematic, leading to the appearance
of spurious velocities. The example is stationary, but in order to ensure that no spurious velocities
appear, the simulation time is 10 s and the results are taken from the last step of analysis.

Incompressible water has the following characteristics: kinematic viscosity � D 10�6 m2=s,
density �D 1000 kg=m3, gravity is 9.81 m=s in the vertical direction.

The geometry of the model is detailed in Figure 4 and in the same figure the calculated free sur-
face is plotted. The studied meshes are presented in Figures 5 and 6, and they are detailed in Table I.
They are intentionally chosen in order to have the free surface not coinciding with the edges of
the elements.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:687–716
DOI: 10.1002/fld



702 R. ROSSI ET AL.

Figure 4. Geometry and boundary condition in the still water example. The blue lines indicate zero value of
the level set function '.

(a) Coarse structured mesh. (b) Medium structured mesh. (c) Fine structured mesh.

Figure 5. Structured meshes considered in the calculation.

(a) Coarse unstructured mesh. (b) Medium unstructured mesh. (c) Fine unstructured mesh.

Figure 6. Unstructured meshes considered in the calculation.

The hydrostatic pressure distribution is not provided at the beginning of the calculations, and
as a consequence, the fluid starts from a non-equilibrium configuration and moves slightly before
encountering its equilibrium configuration. This results in the appearance of some spurious veloc-
ities in the examples. Such velocities are relevant only in the case of a coarse mesh and decrease
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Table I. Still water example.

STRUCTURED UNSTRUCTURED

Fine Medium Coarse Fine Medium Coarse

Number of nodes 1301 481 181 1316 482 125
Number of elements 2500 900 324 2498 882 218
Elemental length [m] — — — 0.3 0.5 1.0
Elements per side 25 13 9 — — —

Number of nodes, number of elements, elemental length (unstructured meshes) and number of
elements per edge (structured meshes) of the meshes considered in the analysis.

Table II. Order of magnitude of the maximum spurious velocity appearing for the
different meshes.

STRUCTURED UNSTRUCTURED

Fine Medium Coarse Fine Medium Coarse

o.umax/Œm=s� 1 � 10�4 1 � 10�3 1 � 10�2 1 � 10�4 5 � 10�4 1 � 10�3

Table III. Vertical column example.

STRUCTURED UNSTRUCTURED

Number of nodes 2981 1210
Number of elements 13800 6117
Elemental length [m] — 1
Elements per side 5� 5� 20 —

Number of nodes, number of elements, elemental length (unstructured
meshes) and number of elements per edge (structured mesh) of the meshes
considered in the analysis.

Figure 7. Pressure distribution along the vertical central section in the case of the structured and unstructured
coarse mesh shown in Figures 5(c) and 6(c).

very quickly with the refinement of the same. The order of magnitude of their maximum absolute
value is shown in Table II. As expected no spurious velocities are present if the hydrostatic pressure
distribution is provided.
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The expected pressure on the free surface has to be zero, and the gradient of pressure has to
be constant in the crossed elements and equal to the interior one according to what explained in
Section 3.4 and 3.3. This implies that the first layer of non-fluid nodes are expected to have neg-
ative pressures. The correct behavior of the algorithm can be appreciated in Figure 7 showing the
pressure distribution along a central vertical section in the case of the structured and unstructured
coarse meshes.

The integration of the momentum equation on the whole area in this specific case is correct. Pres-
sure gradient in fact exactly balances the body forces both in the fluid and in the non-fluid part of
the cut elements and the free surface is correctly calculated.

Figure 8. Geometry and mesh taken into account.

Figure 9. Structured mesh. Evolution of the free surface with a 1 m=s bottom incoming velocity. On the
right of each snapshot the expected level is indicated.
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5.2. Vertical column

The second example is a vertical rectangular column with an inlet in the bottom side and an outlet
on the top face. Geometry and conditions of the present examples are taken from [38] (although in
that case, the interaction between two fluids with different specific weight was taken into account).
Nevertheless, the problem presents the same difficulties of maintenance of a flat free surface both in
the transitory and in the stationary regime.

The two mesh studied can be seen in Figure 8: a structured one and an unstructured one. Their
details are summarized in Table III.

Figure 10. Unstructured mesh. Evolution of the free surface with a 1 m=s bottom incoming velocity. On the
right of each snapshot, the expected level is indicated.

Figure 11. Mesh and geometry of the vertical channel with lateral entrance of water.
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Figures 9 and 10 show the evolution of the free surface (identified with the zero of the level set
function (' D 0) during the filling process. Considering that the free surface at time t D 0 is located
at h D 1 m from the bottom, and the velocity inlet is v D 1 m=s a very good accordance with
expected level of the free surface can be noticed at each time step (Figures 9 and 10). In both cases,
the expected level of water at 2 s, 6 s, 10 s, 14 s and 18 s is respected, and it is 3 m, 7 m, 11 m,
15 m and 19 m, respectively. No oscillations are observed neither in the unstructured nor in the
structured mesh.

If we slightly change the geometry considering a lateral entrance of water, and we decrease the
value of inlet velocity to vin D 0.1m=s (see Figure 11 for the details on the geometry and the bound-
ary conditions considered), the improvement of volume conservation explained in Section 2.1.2
plays a relevant role. Two meshes are considered in the calculation: a coarse and a fine one whose
characteristics are summarized in Table IV and shown in Figure 13.

In Figure 12(a), the beneficial effect of the volume correction can be appreciated. The expected
level of water is compared with the one calculated in the case of running the fine mesh model with
and without volume conservation improvements. On the other hand, it is important to observe that,
with the volume correction, no relevant changes are observed when a coarser mesh is employed
(observe Figure 12(b)).

Finally, another important aspect is that the use of the volume correction leads to a flat
free surface reducing the oscillations. This can be observed by comparing Figure 13(a,b) where
the volume correction is used in both the fine and coarse mesh with Figure 13(c) where it is
not used.

Figure 14 shows the speedup of the algorithm as measured on different platforms. The first plat-
form has one Intel i7 Quad-core CPU, and the second one has 2 Quad-core AMD opteron CPUs.
The mesh uses in the benchmark has 115 919 elements and is hence finer than the one shown in

Table IV. Vertical column with lateral entrance example.

Fine Coarse

Number of nodes 12 100 3 050
Number of elements 61 600 14 400

Number of nodes and number of elements of the meshes
considered in the analysis.

(a) With or without the volume correction. Fine mesh. (b) With volume correction. Coarse and fine mesh.

Figure 12. Vertical column with lateral entrance example. Level of water in function of time.
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(a) With volume correction. Fine mesh model

(b) With volume correction. Coarse mesh model

(c) Without volume correction. Fine mesh model

Figure 13. Vertical column with lateral entrance example. Evolution of the free surface at 50 s, 120 s and
230 s.
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Figure 14. The speedup of the solver over different multi-cores machines.

Figure 15. Geometry and boundary condition of the flip bucket example.

Figure 16. Mesh of the flip bucket example.

Figure 17. Sequence of the transitory phase of the jet.

the figure. In both cases, the speedup is less than ideal. The main reason for this is that the com-
putations are bandwidth limited and as verified in [32], the maximum bandwidth can be achieved
without using all the processors.
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The specific case of the vertical column was run using relatively few elements (< 120 000).
This implies that the OpenMP overhead plays an important role. We shall remark how-
ever that a similar speedup is measured for larger examples (see, e.g., the industrial test in
Section 5.5) suggesting that the bandwidth limitation presents a stricter limit than the overheads of
the parallelization.

5.3. Flip bucket

The present example reproduces an experiment carried out by Prof. W. Hager and coworkers whose
results can be found in [39]. The performance of the present level set technique is compared with the
results obtained using PFEM [2, 6, 8] and published in [9]. The geometry data, initial and boundary
conditions can be found in [9]. The case with Froude number 5 is considered. The control volume
and the mesh used can be seen in Figures 15 and 16, respectively.

An entrance of water is imposed in the left side. After a transitory phase shown in Figure 17, the
stationary regime is achieved, and pressure is registered on the bucket as shown in Figure 18(a). The
jet shape is also compared in Figure 18(b) where the darker line is the level set, whereas the lighter
line represents the PFEM results.

(a) Pressure distribution on the bucket. Experimental and numerical
comparison

(b) Jet trajectory. Relative comparison.

Figure 18. Level set and PFEM comparison in the pressure head calculation and the jet development.
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A good accordance with experimental pressure along the bucket can be seen in Figure 18(a). The
black points are the experimental results found in [39], whereas the continuous line and the dotted
line are the level set and the PFEM solutions, respectively.

5.4. 3D dambreak

The present example is a 3D dam break already studied by the authors in [9] using PFEM.

Figure 19. Geometry and boundary condition of the 3D dam break example. On the lower left corner a
zoom on the pressure sensors distribution on the step

Table V. Dam break example.

Mesh A Mesh B

Number of nodes 51 627 392 130
Number of elements 296 157 2 310 984

Number of nodes and number of elements of the two meshes
considered in the analysis.

(a) Mesh A. (b) Mesh B.

Figure 20. The two meshes considered. On the left Mesh A of 296 157 and Mesh B of 2 310 984 tetrahedra.
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(a) Mesh A. (b) Mesh B.

Figure 21. Evolution of the dam break at 0.4 s, 0.6 s and 2.0 s. Comparison between the results obtained
with mesh A and B.

Figure 22. Pressure evolution on pressure sensor P1 (see Figure 19). Level set, PFEM and
experimental comparison.
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Data are taken from the experiments performed at the Maritime Research Institute Netherlands
for breaking dam flows [40]. Several numerical results of this case study are available in literature
for volume of fluid techniques. This is the case of [40] employing Cartesian grids, or [15] using
an edge-based approach. Finally, other level set simulations can also be found. Among others, in
[16, 41], an application of isogeometric analysis is presented.

The water column is left free to fall over a step where pressure sensors are set following the
scheme of Figure 19. The details of geometry can be found in [15].

Two meshes are considered in the present work, their characteristics are detailed in Table V, and
they are shown in Figure 20.

A sequence of the falling of the water column can be seen in Figure 21 where the free surface
evolution is plotted for the two meshes considered.

The pressure evolution in time obtained with the two meshes is compared in Figures 22 and 23
with experimental results and PFEM results taken form [9].

Figure 23. Pressure evolution on pressure sensor P5 (see Figure 19). Level set, PFEM and
experimental comparison.

(a) Geometry (b) Mesh

Figure 24. The geometry of the breaking system part and the mesh of 678 047 tetrahedra used for simulation.
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Table VI. Number of nodes, number of elements and elemental length of
the mesh used for the braking system part filling simulation.

UNSTRUCTURED

Number of nodes 134128
Number of elements 678047
Elemental length [m] 0.0015

(a) detail a. (b) detail b.

Figure 25. The sequence of filling for break part simulation.

A better behavior of the Eulerian approach with respect to PFEM can be appreciated. The refine-
ment of the mesh improves the accuracy of the solution and the capability of catching the second
pressure waves with a correct timing, whereas a clear delay can be noticed in the case of the
coarse mesh.

5.5. Industrial application. Mold filling

This example shows the robustness of the method in dealing with complex industrial geometries.
The geometry shown in Figure 24(a) is a part of vehicles braking system filled with aluminum. The
simulation consists of filling in low velocity (gravity filling) with 57 cm3=s inlet resulting in 8.58 s
filling time. This very low filling velocity is an additional difficulty as described in previous exam-
ples. The Figure 24(b) shows the unstructured mesh used for simulation. The characteristics of the
mesh can be found in Table VI.

Figures 25 and 26 show the results obtained by the simulation. A detail of the free surface can be
seen in Figure 25, whereas a sequence of the filling process is presented in Figure 26.

Finally, Figure 27 shows the speedup of the algorithm over two different platforms: one with
Intel i7 Quad-core CPU and the other with 2 Quad-core AMD opteron CPUs. The tendency follows
the same as the vertical channel. In this example the memory allocation is not optimized for Non-
Uniform Memory Access (NUMA) machines, which leads to an asymptotic behavior over AMD
NUMA machine. This can be improved using OpenMP first touch policy. In this way, OpenMP
would allocate the data touched by each CPU in its local memory preventing poor memory access.

It is interesting to highlight that the same geometry was also used for the simulation a fast filling
process, that is, filled in less than 1 s, and the results were also found to be satisfactory.

6. CONCLUSIONS

The current work presents an efficient level set solver, which allows the solution of complex indus-
trial problems. The main new features of the proposed method are the technique used for the
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(a) 1 Sec. (b) 2 Sec.

(c) 3 Sec. (d) 4 Sec.

(e) 5 Sec. (f) 6 Sec.

Figure 26. The sequence of filling for break part simulation.

imposition of the pressure on the free surface, which is constructed on the top of the FS algo-
rithm, and the proposal of an efficient volume-correction technique, which improves the volume
conservation properties of the algorithm. The excellent volume conservation properties of the pro-
posed approach are proved via a number of benchmarks, whereas its robustness is shown by tackling
the solution of industrial graded mold-filling processes. The results are also compared with a well-
established Lagrangian technique proving an excellent agreement, both to experimental results and
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Figure 27. The speedup of the solver over different multi-cores machines.

the reference solution. The solver is implemented in OpenMP targeting commodity hardware, and
the implementation is benchmarked and discussed.
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