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1. Introduction

1.1. The motivation and the context. This is the fourth paper of our
series on finite-dimensional complex pointed Hopf algebras whose group of
group-likes is isomorphic to a finite simple group of Lie type G. See Part
I [ACGI] for a comprehensive Introduction. For the benefit of the reader
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and prompted by the referee, we sketch the reductions from the original
classification problem to the group-theoretical questions dealt with in this
series.

Let G be a finite group. There is a braided tensor category G
GYD whose

objects–called Yetter-Drinfeld modules–are CG-modulesM with aG-grading
M = ⊕g∈GMg compatible by h ·Mg = Mhgh−1 , for all h, g ∈ G. The map
c ∈ GL(M ⊗M) given by

c(m⊗ m̃) = g · m̃⊗m, m ∈Mg, g ∈ G, m̃ ∈M,

is a solution of the braid equation (which is equivalent to the quantum
Yang-Baxter equation) and is called the braiding of M . The category G

GYD
is semisimple and its simple objects up to isomorphism are parametrized
by pairs (O, ρ) where O is a conjugacy class of G and ρ is an irreducible
representation of the centralizer of a fixed but arbitrary point in O.

Any M ∈ G
GYD gives rise to a graded algebra B(M) = ⊕n∈N0B

n(M) =
T (M)/J (M), where J (M) = ⊕n≥2J n(M) is a homogeneous ideal. Thus
B(M) is generated by B1(M) = M . Besides, B(M) is characterized uniquely
by two facts: it is a (graded) Hopf algebra in G

GYD, and all primitive ele-
ments are in degree one. The algebra B(M) is called the Nichols algebra
associated with M . Beware that there is no general method to compute
B(M). See e.g. the survey [A] for more information on Nichols algebras.

Let H be a Hopf algebra with group of grouplike elements G(H) ' G.
Assume that H is pointed, i.e. all its simple subcoalgebras have dimension
one. A fundamental invariant of H is a Nichols algebra B(M) that satisfies

dimH ≥ |G|dimB(M).

We omit the details and also the discussion of the methods to recover H from
G and B(M). We just emphasize that for the initial question of classifying
finite-dimensional Hopf algebras with group of group-likes ' G, we need
to address the determination of all M ∈ G

GYD such that dimB(M) < ∞
and the presentation of the latter. If G is abelian, then these two problems
have been solved by Heckenberger and Angiono respectively, see [AA] for
an exposition and references. Assume that G is non-abelian. This problem
splits in two sub-problems, depending on whether M is simple or not; the
second one has been essentially solved in [HV].

We discuss the first sub-problem. So we are in the following setting: G is
a finite non-abelian group and M = M(O, ρ) is the simple Yetter-Drinfeld
module corresponding to (O, ρ). We say that the support of M , or by abuse
of terminology of B(M), is O. An easy but crucial observation is that the
algebra and coalgebra structures of B(M) depend just on the braiding c, that
is to say on O (as a rack, i.e. with the operation h.g = hgh−1) and a suitable
(rack) cocycle q : O×O → GLn(C), where n is the dimension of ρ (actually
q is determined up to a coboundary). This has the advantage that the same
pair (O, q) may appear when dealing with different groups. In short, we may
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write B(M) = B(O, q). To sum up, to classify finite-dimensional pointed
Hopf algebras with group G we need to determine for every conjugacy class
O and q arising from a representation of the centralizer as mentioned, when
dimB(O, q) <∞. But we could also look at all racks arising from conjugacy
classes of finite groups, compute the cohomology groups H2(O, GLn(C)) and
then try to compute the Nichols algebras B(O, q); this is more economical,
as at the end, we would just need to check which racks appear as conjugacy
classes of our G.

Surprisingly there are three group-theoretical criteria allowing to conclude
that for a given rack O, dimB(O, q) =∞ for any cocycle q. Thus, if any of
the criteria applies to O, then we are dispensed from computing the various
H2(O, GLn(C)). These criteria were developed in [AFGV, ACGI, ACGIII]
and are recalled in §2.1. The verification of any of these criteria in a conju-

gacy class might be difficult. Here is another remarkable property: if Õ → O
is a surjective morphism of racks and O satisfies one of the criteria, then Õ
also does. This observation leads to consider simple racks O (i.e. without
projections onto a rack with more than one element), whose classification
is known. In particular, non-trivial conjugacy classes of finite simple non-
abelian groups are simple racks. In this series of papers we deal with finite
simple groups of Lie type; see [AFGV, AFGV2] for alternating and sporadic
simple groups. We point out that in the series we are not proceeding group-
by-group but analyzing different sorts of conjugacy classes–and the groups
PSLn that could be treated by linear algebra. In the present paper we con-
clude the unipotent classes and in [ACGV], the mixed ones. The semisimple
classes, apparently the most difficult ones, will be treated next.

The three criteria are based on the existence of suitable subracks of the
rack in question–this is another instance of the flexibility of the notion of
rack. Let us say that a rack is kthulhu if neither of the three criteria applies.
One may wonder whether there exists a fourth criterium that may dispose
of (at least some) kthulhu racks. However frequently kthulhu racks possess
very few subracks (see §2.1.6 for precise formulations) making it hopeless the
search of such a fourth criterium. If a conjugacy class is kthulhu, then there
is still another weapon at our disposal, which is to analyze abelian subracks;
since they span a so-called braided vector space of diagonal type, then one
may decide from the classification of Heckenberger that the dimension of
B(M) is infinite (this depends on the cocycle). But even this technique
might not apply.

1.2. The main result and its place in the series. As explained, the
primary task is to study Nichols algebras overG with support in a conjugacy
class O of G.

Let p be a prime number, m ∈ N, q = pm, Fq the field with q elements

and k := Fq. There are three families of finite simple groups of Lie type
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(according to the shape of the Steinberg endomorphism): Chevalley, Stein-
berg and Suzuki-Ree groups; see the list in [ACGI, p. 38] and [MT, 22.5]
for details. Here are the contents of the previous papers:

� In [ACGI] we dealt with unipotent conjugacy classes in PSLn(q), and
as a consequence with the non-semisimple ones (since the centralizers of
semisimple elements are products of groups with root system A`).
� The paper [ACGII] was devoted to unipotent conjugacy classes in PSp2n(q).
� The subject of [ACGIII] was the semisimple conjugacy classes in PSLn(q).

But we also introduced the criterion of type C, and applied it to some of
the classes not reached with previous criteria in [ACGI, ACGII].

In this paper we consider unipotent conjugacy classes in Chevalley and
Steinberg groups, different from PSLn(q) and PSp2n(q). Concretely, these
are the groups in Table 1. Notice that PSU3(2) is not simple but needed
for recursive arguments.

Table 1. Finite groups considered in this paper; q odd for

PΩ2n+1(q); q ≥ 3 for G2(q)

Chevalley Steinberg
G Root system G Root system

PΩ2n+1(q) Bn, n ≥ 3 PSUn(q) An−1, n ≥ 3
PΩ+

2n(q) Dn, n ≥ 4 PΩ−2n(q) Dn, n ≥ 4
G2(q) G2

3D4(q) D4

F4(q) F4
2E6(q) E6

Ej(q) E6, E7, E8

As in [AFGV, 2.2], we say that a conjugacy class O of a finite group
G collapses if the Nichols algebra B(O,q) has infinite dimension for every
finite faithful 2-cocycle q. Our main result says:

Main Theorem. Let G be as in Table 1. Let O be a non-trivial unipotent

conjugacy class in G. Then either O collapses, or else G = PSUn(q) with

q even and (2, 1, . . . , 1) is the partition corresponding to O.

In the terminology of §2.1, the classes not collapsing in the Main Theorem
are austere, see Lemma 5.2. This means that the group-theoretical criteria
do not apply for it; however, we ignore whether these classes collapse by
other reasons. The classes in PSLn(q) or PSp2n(q) not collapsing (by these
methods) are listed in Table 3.

1.3. The scheme of the proof and organization of the paper. Let
G be a finite simple group of Lie type. Then there is q as above, a simple
simply connected algebraic group Gsc defined over Fq and a Steinberg endo-
morphism F of Gsc such that G = GF

sc/Z(GF
sc). We refer to [MT, Chapter

21] for details. Conversely, G = GF
sc/Z(GF

sc) is a simple group, out of a short
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list of exceptions, see [MT, Theorem 24.17]. For our inductive arguments,
it is convenient to denote by G the quotient GF

sc/Z(GF
sc) even when it is

not simple. Often there is a simple algebraic group G with a projection
π : Gsc → G such that F descends to G and [GF ,GF ]/π(Z(GF

sc)) ' G.
The proof of the Main Theorem is by application of the criteria of type C,

D or F (see §2.1), that hold by a recursive argument on the semisimple rank
of Gsc. The first step of the induction is given by the results on unipotent
classes of PSLn(q) and PSp2n(q), while the recursive step is a reduction to
Levi subgroups. Then we proceed group by group and class by class. The
experience suggests that a general argument is not possible. There are some
exceptions in low rank for which Levi subgroups are too small and we need
the representatives of the classes to apply ad-hoc arguments.

Here is the organization of the paper: We recall some notations and facts
in §2, where we also state the needed notation for groups of Lie type. In §3
we describe the reduction to Levi subgroups and collect the known results
on unipotent classes of PSLn(q) and PSp2n(q).

Let O be a non-trivial unipotent class in a group G listed in Table 1.
The proof that O collapses (with the exception stated above) is given in §4,
respectively §5, when G is a Chevalley, respectively Steinberg, group.

Indeed, if G = PΩ2n+1(q), n ≥ 3, and q odd, the claim is Proposition
4.3. If G = PΩ+

2n(q), n ≥ 4, E6(q), E7(q), or E8(q), then the claim is
Proposition 4.2. If G = F4(q), the result follows from Lemmata 4.4 and 4.5;
and if G = G2(q), q ≥ 3, the assertion follows from Lemmata 4.6, 4.7, 4.8,
4.10, 4.11 and 4.12.

In turn, PSUn(q) is settled in Proposition 5.1; PΩ−2n(q) in Proposition
5.6; 2E6(q) in Proposition 5.8; and 3D4(q) in Proposition 5.9.

In this way, the Theorem is proved.

1.4. Applications and perspectives. The results in this paper will be ap-
plied to settle the non-semisimple classes in Chevalley and Steinberg groups.

Next we will deal with unipotent and non-semisimple classes in Suzuki-
Ree groups. These are too small to apply the recursive arguments introduced
in this paper.

The semisimple conjugacy classes in G different from PSLn(q) are more
challenging. We expect that classes represented by elements in tori different
from the Coxeter ones would collapse while those represented only by ele-
ments in tori corresponding to Coxeter classes would be kthulhu, as is the
case for PSL2(q) and PSL3(q) (with some exceptions). Both cases require
a deeper understanding of the classes, and in addition the irreducible case
seems to need an inductive argument on the maximal subgroups.

Acknowledgements. At different stages of this project, Mauro Costantini,
Paolo Papi and Jay Taylor, helped us with interesting conversations and
precise references. We thank them a lot. We thank also the referee for
his/her suggestions.
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2. Preliminaries

If a ≤ b ∈ N, then Ia,b denotes {a, a + 1, . . . , b}; for simplicity we write
Ia = I1,a. For a set Y , the group of permutations of Y is denoted by SY .

2.1. Glossary of racks. See [ACGIII] for details and more information.

2.1.1. A rack is a finite set X 6= ∅ with a self-distributive operation . :
X ×X → X such that x . is bijective for every x ∈ X. The archetypical
example is the conjugacy class OGz of an element z in a group G with the
operation x . y = xyx−1, x, y ∈ OGz . A rack X is abelian if x . y = y, for all
x, y ∈ X. In this paper we are only concerned with racks that are conjugacy
classes in a finite group; one advantage of the rack language is that it could
be realized as a conjugacy class in many groups.

Recall that a decomposition of a rack Y is an expression Y = R
∐
S

where R and S are subracks. Since x . is bijective for x ∈ R, it follows
that R . S = S, and also S . R = R.

2.1.2. [AFGV, Definition 3.5] A rack X is of type D if it has a decomposable
subrack Y = R

∐
S with elements r ∈ R, s ∈ S such that r . (s. (r .s)) 6= s.

If X = O is a finite conjugacy class in a group G, then this is equivalent

to the existence of r, s ∈ O such that O〈r,s〉r 6= O〈r,s〉s and (rs)2 6= (sr)2.

Lemma 2.1. [ACGI, Lemma 2.10] Let X and Y be racks, y1 6= y2 ∈ Y ,

x1 6= x2 ∈ X such that x1 . (x2 . (x1 . x2)) 6= x2, y1 . y2 = y2. Then X × Y
is of type D. �

Remark 2.2. One of the hypothesis of Lemma 2.1 holds in the following

setting. Let O be a real conjugacy class, i.e. O = O−1, with no involutions.

Then y1 6= y2 = y−1
1 , that obviously commute.

2.1.3. [ACGI, Definition 2.4] A rack X is of type F if it has a family of
subracks (Ra)a∈I4 and elements ra ∈ Ra, a ∈ I4, such that Ra .Rb = Rb, for
a, b ∈ I4, and Ra ∩Rb = ∅, ra . rb 6= rb for a 6= b ∈ I4.

In case X = O is a finite conjugacy class in a group G, then this is

equivalent to the existence of ra ∈ O, a ∈ I4, such thatO〈ra:a∈I4〉
ra 6= O〈ra:a∈I4〉

rb

and rarb 6= rbra, for a 6= b ∈ I4.

2.1.4. [ACGIII, Definition 2.3] A rack X is of type C when there are a
decomposable subrack Y = R

∐
S and elements r ∈ R, s ∈ S such that

r . s 6= s, and

R = OInnY
r , S = OInnY

s , min{|R|, |S|} > 2 or max{|R|, |S|} > 4.

Here InnY is the subgroup of SY generated by y . , y ∈ Y .
The criterium of type C in group-theoretical terms reads as follows, see

[ACGIII, Lemma 2.8]: A conjugacy class O in a finite group G is of type
C if and only if there are a subgroup H of G and elements r, s ∈ H ∩ O
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such that rs 6= sr; OHr 6= OHs ; H = 〈OHr ,OHs 〉 and min{|OHr |, |OHs |} > 2 or
max{|OHr |, |OHs |} > 4.

Here is a new formulation suitable for later applications.

Lemma 2.3. Let O be a conjugacy class in a group H. If there are r, s ∈ O
such that r2s 6= sr2, s2r 6= rs2 and O〈r,s〉r 6= O〈r,s〉s , then O is of type C.

Proof. We check that the conditions in [ACGIII, Lemma 2.8] hold with

H = 〈r, s〉 = 〈O〈r,s〉r ,O〈r,s〉s 〉. By hypothesis, rs 6= sr and O〈r,s〉r 6= O〈r,s〉s .

Now r, s.r, s2 .r are all distinct, so |O〈r,s〉r | > 2, and similarly for O〈r,s〉s . �

2.1.5. The utility of the above criteria becomes clear in the following theo-
rem.

Theorem 2.4. [AFGV, Theorem 3.6], [ACGI, Theorem 2.8], [ACGIII, The-

orem 2.9]. A rack X of type D, F or C collapses.

The proof rests on results from [CH, HS, HV].

2.1.6. A rack is

◦ kthulhu if it is neither of type C, D nor F;
◦ sober if every subrack is either abelian or indecomposable;
◦ austere if every subrack generated by two elements is either abelian or

indecomposable.

Clearly, sober implies austere and austere implies kthulhu.
The criteria of type C, D, F are very flexible:

Lemma 2.5. [AFGV, ACGI, ACGIII] Let Y be either a subrack or a quo-

tient rack of a rack X. If Y is not kthulhu, then X is not kthulhu. �

2.2. Conjugacy classes.

2.2.1. Let q = pm be as above. We fix a simple algebraic group G defined
over Fq, a maximal torus T, with root system denoted by Φ, and a Borel
subgroup B containing T. We denote by U the unipotent radical of B and
by ∆ ⊂ Φ+ the corresponding sets of simple and positive roots. Also U−
is the unipotent radical of the opposite Borel subgroup B− corresponding
to Φ−. We shall use the realisation of the associated root system and the
numbering of simple roots in [B]. The coroot system of G is denoted by

Φ∨ = {β∨ | β ∈ Φ} ⊂ X∗(T), where 〈α, β∨〉 = 2(α,β)
(β,β) , for all α ∈ Φ. Hence

α(β∨(ζ)) = ζ
2(α,β)
(β,β) , α, β ∈ Φ, ζ ∈ F×q .

We denote by Gsc the simply connected group covering G.
For Π ⊂ ∆, we denote by ΦΠ the root subsystem with base Π and ΨΠ :=

Φ+ − ΦΠ. For α ∈ Φ, we write sα ∈ W = NG(T)/T for the reflection
with respect to α. Also, si = sαi , if αi is a simple root with the alluded
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numeration. Also, there is a monomorphism of abelian groups xα : k → U;
the image Uα of xα is called a root subgroup. We adopt the normalization
of xα and the notation for the elements in T from [Sp, 8.1.4]. We recall the
commutation rule: t . xα(a) = txα(a)t−1 = xα(α(t)a), for t ∈ T and α ∈ Φ.
In particular, if t = β∨(ξ) for some ξ ∈ k×, then t.xα(a) = xα(α(β∨(ξ))a) =

xα(ξ
2(α,β)
(β,β) a).

We denote by P a standard parabolic subgroup of G, with standard Levi
subgroup L and unipotent radical V. Thus there exists Π ⊂ ∆ such that
L = 〈T,U±γ | γ ∈ Π〉.

If u ∈ U then for every ordering of Φ+, there exist unique cα ∈ k such
that u =

∏
α∈Φ+ xα(cα). We define suppu = {α ∈ Φ+ | cα 6= 0}. In general

the support depends on the chosen ordering of Φ+. However, if u ∈ V as
above, then suppu ⊂ ΨΠ for every ordering of Φ+.

2.2.2. In this paper we deal with Chevalley and Steinberg groups. Let F
be a Steinberg endomorphism of G; it is the composition of the split en-
domorphism Frq (the q-Frobenius map) with an automorphism induced by
a Dynkin diagram automorphism ϑ. So, Chevalley groups correspond to
ϑ = id. We assume that T and B are F-stable. Let WF = NGF (T)/TF .
Thus WF ' W for Chevalley groups. For each w ∈ WF , there is a rep-
resentative ẇ of w in NGF (T), cf. [MT, Proposition 23.2]. Notice that
ẇ . (Uα) = Uw(α) for all α ∈ Φ. Hence, if F is Chevalley and α, β ∈ Φ have

the same length, then UFα and UFβ are conjugated by an element in NGF (T)

by [HuLA, Lemma 10.4 C].

2.2.3. We shall often use the Chevalley’s commutator formula (2.1), see [St,
pp. 22 and 24]. Let α, β ∈ Φ. If α + β is not a root, then Uα and Uβ
commute. Assume that α + β ∈ Φ. Fix a total order in the set Γ of pairs

(i, j) ∈ N2 such that iα+ jβ ∈ Φ. Then there exist cαβij ∈ Fq such that

xα(ξ)xβ(η)xα(ξ)−1xβ(η)−1 =
∏

(i,j)∈Γ

xiα+jβ(cαβij ξ
iηj), ∀ξ, η ∈ k.(2.1)

Let G = [GF ,GF ]/Z(GF ).

Definition 2.6. [ACGII, Definition 3.3] Let α, β ∈ Φ+ such that α+β ∈ Φ

but the pair α, β does not appear in Table 2. We fix an ordering of Φ+.

A unipotent conjugacy class O in G has the αβ-property if there exists

u ∈ O∩UF such that α, β ∈ suppu and for any expression α+β =
∑

1≤i≤r γi,

with r > 1 and γi ∈ suppu, necessarily r = 2 and {γ1, γ2} = {α, β}.

Let α, β ∈ Φ+. The scalar cα,β1,1 6= 0 in (2.1) if α+β ∈ Φ and the pair does
not appear in Table 2.
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Table 2

p = 3
Φ α β

G2 α1 2α1 + α2

2α1 + α2 α1

α1 + α2 2α1 + α2

2α1 + α2 α1 + α2

p = 2
Φ α β

Bn, Cn, F4 orthogonal to each other
G2 α1 α1 + α2

α1 + α2 α1

Proposition 2.7. [ACGII, Proposition 3.5] Let G be a finite simple group

of Lie type, with q odd. Assume O has the αβ-property, for some α, β ∈ Φ+

such that q > 3 when (α, β) = 0. Then O is of type D. �

Remark 2.8. Assume u satisfies the conditions in Definition 2.6. Then it is

never an involution. Indeed if q is odd this is never the case. If q is even

then the argument in the proof of [ACGII, Proposition 3.5] shows that the

coefficient of xα+β in the expression of u2 is nonzero.

2.2.4. Let us choose an ordering of the positive roots and let w ∈ W and
u ∈ U be such that Σ := w(suppu) ⊂ Φ+. Then, ẇ . u ∈ U and there is
an ordering of the positive roots for which Σ is the support of ẇ . u. If,
in addition, wΣ 6⊂ ΨΠ for some Π ⊂ ∆, then by the discussion in 2.2.1,
ẇ . u ∈ U− V.

2.2.5. We shall need a fact on root systems. Recall that there is a partial
ordering � on the root lattice ZΦ given by α � β if β − α ∈ N0Φ+ = N0∆.

Lemma 2.9. Let γ, β ∈ Φ+ with β � γ. Then there exists a sequence

αi1 , . . . , αik ∈ ∆ such that

(1) ∀j ∈ Ik we have γj := β + αi1 + · · ·+ αij ∈ Φ+;

(2) γ = γk.

If, in addition, Φ is simply-laced, then γj = sij · · · si1β for every j ∈ Ik.

Proof. (1) and (2) are consequences of [So, Lemma 3.2], with α1 = β, and

the αj being simple. Assume that Φ is simply-laced. Clearly, it is enough

to prove it for a pair of roots. If α, δ ∈ Φ and α+ δ ∈ Φ, then Φ∩ (Zα+Zδ)
is a root system of type A2, so sα(δ) = α+ δ. The last claim follows. �

3. Unipotent classes in finite groups of Lie type

3.1. Reduction to Levi subgroups. We start by Lemma 3.2, that is be-
hind the inductive step in most proofs below. We consider the following
setting and notation, that we will use throughout the paper:
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P1, . . . ,Pk are standard F -stable parabolic subgroups of G;
Pi = Li nVi are Levi decompositions, with Li F -stable;
Ui := (U ∩ Li)F , U−i := (U− ∩ Li)F , P i := (Pi)F , Li := LFi , Vi := VFi ;
πi : P i → Li is the natural projection;
Mi = 〈Ui, U−i 〉 ≤ Li; for i ∈ Ik.

Remark 3.1. Assume that G = Gsc. If Li is standard, then Mi = [Li,Li]F .

Proof. Since G is simply connected, so is [Li,Li] (Borel-Tits, see [SpSt,

Corollary 5.4]). Then [MT, Theorem 24.15] applies. �

Lemma 3.2. Let u ∈ UF ; so in particular πi(u) ∈Mi for all i ∈ Ik.

(a) Assume that OMi

πi(u) is not kthulhu for some i ∈ Ik. Then neither of

OLiπi(u), OP iu , OGF
u

is kthulhu.

(b) Assume that

No non-trivial unipotent class in Mi is kthulhu, ∀i ∈ Ik.(3.1)

If u /∈ ∩i∈IkVi, then OGF
u is not kthulhu.

(c) Assume that (3.1) holds. Let O be a unipotent conjugacy class in GF .

If O ∩ UF 6⊂ ∩i∈IkVi, then O is not kthulhu, hence collapses.

Proof. Since U ≤ Pi, it follows that u = u1u2 with u1 ∈ Li and u2 ∈ Vi ≤ U.

Hence u1 ∈ Li∩U. Since clearly u1 and u2 are F -invariant, u1 = πi(u) ∈Mi.

Now (a) follows from Lemma 2.5 and implies (b), since πj(u) 6= 1 for some

j ∈ Ik. (c) follows from (b) and Theorem 2.4 because O ∩ UF 6= ∅. �

3.2. Unipotent classes in PSLn(q) and PSp2n(q). We recall now results
in the previous papers of the series that constitute the basis of the induction
argument. We will also need some of the non-simple groups of Lie type of
small rank and small characteristic listed in [ACGII, 3.2.1].

The following Theorem collects information from [ACGI, Table 2], [ACGII,
Lemma 3.12 & Tables 3, 4, 5] and [ACGIII, Tables 2 & 3].

Theorem 3.3. Let G be either PSLn(q) or PSp2n(q) and let O 6= {e} be a

unipotent conjugacy class in G, not listed in Table 3. Then it is not kthulhu.

We explain the notation of Table 3, see [ACGI, ACGII] for further details:

(i) Unipotent classes in PSLn(k) are parametrized by partitions of n; i.e.
λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ . . . and

∑
j λj = n. Thus, (n) is the

regular unipotent class of PSLn(k). Unipotent classes in PSLn(q)
with the same partition are isomorphic as racks.
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Table 3. Kthulhu classes in PSLn(q) and PSp2n(q)

G class q
PSL2(q) (2) even, or 9, or odd not a square
PSL3(2) (3) 2

PSp2n(q), n ≥ 2 W (1)n−1 ⊕ V (2) even
PSp2n(q), n ≥ 2 (2, 12n−2) 9, or odd not a square

PSp4(q) W (2) even

(ii) Unipotent classes in PSp2n(k), for q odd, are also parametrized by
suitable partitions.

(iii) Unipotent classes in PSp2n(k), for q even, are parametrized by their
label, which is the decomposition of the standard representation as a
module for the action of an element in the conjugacy class:

V =
k⊕
i=1

W (mi)
ai ⊕

r⊕
j=1

V (2kj)
bj , 0 < ai, 0 < bj ≤ 2,(3.2)

for mi, kj ≥ 1. The block W (mi) corresponds to a unipotent class
with partition (mi,mi), whereas the block V (2kj) corresponds to a
unipotent class with partition (2kj).

(iv) The unipotent class in PSp4(k) with label W (2), respectively, in
PSp2n(k) with label W (1)n−1 ⊕ V (2) contains a unique unipotent
class in PSp4(q), respectively, PSp2n(q).

Remark 3.4. Assume q is even. IfO is a unipotent conjugacy class in Sp2n(q)

enjoying the αβ-property, for some α and β, then O is of type C, D, or F.

Indeed, by Theorem 3.3 the kthulhu unipotent classes in Sp2n(q) for q even

consists of involutions. Remark 2.8 applies.

Remark 3.5. The conjugacy class O of involutions in PSL2(7) is of type

C, so line 1 of [ACGIII, Table 1] and the statement about involutions for

q = 7 in [ACGIII, Corollary 3.5] are not correct. Indeed, this follows from

[ACGIII, Lemma 2.12] because PSL2(7) ' PSL3(2) and O is the class of

involutions therein.

The proof of [ACGIII, Corollary 3.5] overlooks the possibility that Y =

S4∩O, which is the union of all involutions in K = S4 and it is decomposable.

3.3. Further remarks. If a product X = X1×X2 of racks has a factor X1

that is not kthulhu, then neither is X. Indeed, pick x ∈ X2 ; then X1×{x}
is a subrack of X and Lemma 2.5 applies (here as usual X2 can be realized
as a subrack of a group, so that x . x = x). The following results will be
needed in order to deal with products of possibly kthulhu racks.

Lemma 3.6. Let O be a unipotent conjugacy class in Table 3.
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(a) There exist x1, x2 ∈ O such that (x1x2)2 6= (x2x1)2.

(b) If G 6= PSL2(2),PSL2(3), then there exist y1, y2 ∈ O such that y1 6= y2

and y1y2 = y2y1.

Proof. By the isogeny argument [ACGI, Lemma 1.2], we may reduce to

classes in SLn(q) or Sp2n(q). Also, the classes in PSp4(q) with label W (2)

and W (1)⊕V (2) are isomorphic as racks, [ACGII, Lemma 4.26], so we need

not to deal with the last row in Table 3.

If O is the class in SL3(2), then x1 = id +e1,2 + e2,3 and x2 = σ . x1,

where σ = e1,2 + e2,1 + e3,3, do the job for (a). For (b), take y1 = x1 and

y2 = x3
1 = x−1

1 , that belongs to O by [ACGI, Lemma 3.3].

If O is the class in SL2(q), then x1 = id +e1,2 ∈ O and x2 = σ .x1, where

σ = e1,2 − e2,1 do the job for (a); while y1 = x1, and y2 = id +a2e1,2, for

a ∈ Fq, a2 6= 0, 1, are as needed in (b) when q > 3.

Finally, let O be one of the classes in Sp2n(q), cf. Table 3. Then x1 =

id +e1,2n ∈ O and x2 = σ . x1, where σ = e1,2n − e2n,1 +
∑

j 6=1,2n ejj do

the job for (a). Let τ be the block-diagonal matrix τ = diag(J2, id2n−2, J2),

with J2 = ( 0 1
1 0 ). Then τ ∈ Sp2n(q) and y1 := x1, y2 := τ . y1 fulfil (b). �

Here are results on regular unipotent classes that will be needed later.
Let Gsc be a simply connected simple algebraic group and F a Steinberg
endomorphism. Let G = GF

sc/Z(GF
sc); here we do not assume that G is

simple.

Proposition 3.7. [ACGII, 3.7, 3.8, 3.11] Let O be a regular unipotent class

in G. If any of the conditions below is satisfied, then O is of type D, or F.

(1) G 6= PSL2(q) is Chevalley and q 6= 2, 4;

(2) G = PSU3(q), with q 6= 2, 8;

(3) G = PSU4(q), with q 6= 2, 4;

(4) G = PSUn(q), with n ≥ 5 and q 6= 2;

In addition, every regular unipotent class in GUn(q), where 1 < n is odd

and q = 22h+1, h ∈ N0, is of type D. �

Finally, we quote [ACGII, Lemma 4.8]:

Lemma 3.8. Let O be a regular unipotent class in either SLn(q), SUn(q)

or Sp2n(q), q even. Then there are x1, x2 ∈ O such that (x1x2)2 6= (x2x1)2.

4. Unipotent classes in Chevalley groups

In this Section we deal with unipotent conjugacy classes in a finite sim-
ple Chevalley group G = GF

sc/Z(GF
sc), different to PSLn(q) and PSp2n(q),
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treated in [ACGI, ACGII], see §3.2. For convenience, we shall work in GF
sc,

cf. [ACGI, Lemma 1.2]. For β ∈ Φ, set

(4.1) Ψ(β) = {γ ∈ Φ | β � γ}.

Let u ∈ U and β ∈ Φ+. Then the support suppu depends on a fixed
ordering of Φ+, but the assertion suppu ⊂ Ψ(β) does not. Indeed, pass-
ing from one order to another boils down to successive applications of the
Chevalley formula (2.1), that do not affect the claim.

We denote by O a non-trivial unipotent conjugacy class in G.

4.1. Unipotent classes in PΩ+
2n(q), n ≥ 4; E6(q), E7(q) and E8(q). We

first deal with the case when Φ simply-laced, i.e. G is one of PΩ+
2n(q),

n ≥ 4; E6(q), E7(q) and E8(q).

Lemma 4.1. Given β ∈ Φ+ −∆, there is x ∈ O ∩UF with suppx 6⊂ Ψ(β).

Proof. Let u ∈ O ∩ UF . If suppu 6⊂ Ψ(β), then we are done. Assume that

suppu ⊂ Ψ(β). We claim that there is τ ∈ NGFsc(T) such that

x := τ . u ∈ O ∩ UF and suppx 6⊂ Ψ(β).

For every γ ∈ Ψ(β) there is a unique k such that γ = β + αi1 + · · · + αik
as in Lemma 2.9. Let m be the minimum k for γ ∈ suppu. We call m

the bound of u. We will prove the claim by induction on the bound m. If

m = 0 then β ∈ suppu and since β 6∈ ∆, there is a simple reflection si

such that siβ = β − αi ∈ Φ+ − Ψ(β). Also, siγ ∈ Φ+ for every γ ∈ suppu

because si(Φ
+ − {αi}) = Φ+ − {αi}. In this case we take τ = ṡi to be any

representative of si in NGFsc(T).

Let now m > 0 and assume that the statement is proved for unipotent

elements with bound m − 1. Let γ ∈ suppu reach the minimum, i.e., be

such that γ = β+αi1 + · · ·+αim for some αij ∈ ∆ chosen as in Lemma 2.9.

Then γ′ = simγ = β + αi1 + · · · + αim−1 ∈ Ψ(β), and simα ∈ Φ+ for every

α ∈ Ψ(β) by construction. Let ṡim be a representative of sim in NGFsc(T).

Then u′ = ṡim . u ∈ O ∩ UF and either suppu′ 6⊂ Ψ(β), or suppu′ ⊂ Ψ(β),

with bound at most m− 1. In the first case, we conclude by setting x = u′.

In the second case, we use the inductive hypothesis. �

Proposition 4.2. O is not kthulhu.

Proof. The basic idea of the proof is to apply Lemma 3.2 (c) to a series of

standard F -stable parabolic subgroups Pi of Gsc for which (3.1) holds. We

show that for every O and for every G, we have O∩UF 6⊂ ∩iVi. This follows

from Lemma 4.1 by observing that in each case ∩iVi is a product of root
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subgroups corresponding to roots in Ψ(β) for some β ∈ Φ+−∆. We analyze

the different cases according to Φ.

Dn, n ≥ 4. We consider the parabolic subgroups P1 and P2 such that L1 and

L2 have root systems An−1, generated respectively by ∆−αn−1 and ∆−αn.

Since n ≥ 4, (3.1) holds by Theorem 3.3. Let u ∈ V1 ∩ V2. Then α ∈ suppu

if and only if α contains αn−1 and αn in its expression, i.e. α ∈ Ψ(β) for

β = αn−2 + αn−1 + αn. By Lemma 4.1, O ∩ UF 6⊂ ∩iVi.

E6. We consider the parabolic subgroups P1, P2 and P3 such that L1, L2

and L3 have root systems D5, D5 and A5, generated respectively by ∆−α1,

∆−α6 and ∆−α2. By Theorem 3.3 and the result for Dn, (3.1) holds. Let

u ∈ V1 ∩ V2 ∩ V3. Then α ∈ suppu if and only if α ∈ Ψ(β) for β =
∑6

i=1 αi.

By Lemma 4.1, O ∩ UF 6⊂ ∩iVi.

E7. We consider the parabolic subgroups P1, P2 and P3 such that L1, L2

and L3 have root systems D6, E6 and A6, generated respectively by ∆−α1,

∆ − α7 and ∆ − α2. By Theorem 3.3 and the results for Dn and E6, (3.1)

holds. Let u ∈ V1 ∩ V2 ∩ V3. Then α ∈ suppu if and only if α ∈ Ψ(β) for

β =
∑7

i=1 αi. By Lemma 4.1, O ∩ UF 6⊂ ∩iVi.

E8. We consider the parabolic subgroups P1, P2 and P3 such that L1, L2

and L3 have root systems D7, E7 and A7, generated respectively by ∆−α1,

∆ − α8 and ∆ − α2. By Theorem 3.3 and the results for Dn and E7, (3.1)

holds. Let u ∈ V1 ∩ V2 ∩ V3. Then α ∈ suppu if and only if α ∈ Ψ(β) for

β =
∑8

i=1 αi. By Lemma 4.1, O ∩ UF 6⊂ ∩iVi. �

4.2. Unipotent classes in PΩ2n+1(q). Here we deal with PΩ2n+1(q), i.e.
Φ is of type Bn, n ≥ 3. In this case, q is always odd.

Proposition 4.3. O is not kthulhu.

Proof. We consider the standard F -stable parabolic subgroups P1 and P2

such that L1 and L2 have root systems An−1 and C2, generated respectively

by Π1 := ∆ − αn and Π2 = {αn−1, αn}. By Lemma 3.2 (a) and Theorem

3.3, if O∩UF 6⊂ V1 then O is not kthulhu. Let us thus consider u ∈ O∩ V1.

Then suppu ⊂ ΨΠ1 = {εi, εj + εl | i, j, l ∈ In, j < l}, since it must contain

αn. We will apply the argument in 2.2.4.

Assume first that suppu ⊂ {εj + εl | j, l ∈ In, j < l}. Let ` be the

maximum l such that εj+εl ∈ suppu for some j ∈ In−1. Then sε`(suppu) ⊂
Φ+. Let ṡε` be a representative of sε` in NGFsc(T). Then ṡε` . u ∈ O ∩ UF
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and εj − ε` ∈ supp(ṡε` . u) for every j such that εj + ε` ∈ suppu. Hence

ṡε` . u ∈ O ∩ UF − V1. By the previous argument, O is not kthulhu.

Assume next that there is some i such that εi ∈ suppu. We can always

assume i = n. Indeed, if εn 6∈ suppu, we may replace u by ṡεi−εn.u ∈ O∩UF ,

where ṡεi−εn is a representative of sεi−εn in NGFsc(T). Then π2(u) ∈M2 lies

in a non-trivial unipotent conjugacy class in a group isomorphic to Sp4(q)

and the short simple root lies in the support. A direct computation shows

that a representative of this class in Sp4(q) is as follows:(
1 a ∗ ∗
0 1 0 ∗
0 0 1 −a
0 0 0 1

)
, a 6= 0.

Thus, its Jordan form has partition (2, 2) and this class is not kthulhu by

Theorem 3.3 (recall that q is odd). Then Lemma 3.2 applies. �

4.3. Unipotent classes in F4(q). Here we deal with unipotent classes in
F4(q). In this case the approach in Section 4.1 is not effective. Indeed,
in characteristic 2, (3.1) does not hold for any of the standard parabolic
subgroups. For this reason we shall use explicit representatives of unipotent
classes and apply results from Theorem 3.3 and Proposition 4.3 for B3,
where q is assumed to be odd.

We use the list of representatives of unipotent classes in F4(q) in [Sho,
Tables 5,6] for q odd, see Table 4, respectively in [Shi, Theorem 2.1] for q
even, see Table 5. We indicate the roots as in [Shi]: εi is indicated by i,
εi−εj is indicated by i−j, and 1

2(ε1±ε2±ε3±ε4) is indicated by 1±2±3±4.
Thus the simple roots are α1 = 2−3, α2 = 3−4, α3 = 4, α4 = 1−2−3−4.
If q is odd, then the possible representatives are xi, i ∈ I25, for p 6= 3, with
two additional representatives x26, x27 when p = 3.

Lemma 4.4. If q is odd, then O is not kthulhu.

Proof. A direct verification shows that all representatives for i ≥ 7 enjoy

the αβ-property with (α, β) 6= 0; we list in Table 6 the roots α and β for

each representative. By Proposition 2.7, O is of type D.

We next consider the representative x1, that equals xγ(1) for a long root

γ. By the discussion in §2.2.2, Ox1 contains an element in UFα1
, that lies in

the subgroup of type A2 generated by U±α1 ,U±α2 . Theorem 3.3 applies.

Finally, we deal with the xi’s, i = 2, 3, 4, 5, 6. Let L1 be the standard

Levi subgroup (of type B3) generated by the root subgroups Uγ , for γ =

±α1, ±α2, ±α3. We claim that all xi, i = 2, 3, 4, 5, 6, are conjugated to

elements in M1; then the result follows by Proposition 4.3. Indeed, x2, x3

lie in UF1−2UF1+2; thus conjugating by s1−3s2−4, we get a representative in
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Table 4. Representatives of unipotent classes in F4(q) in

odd characteristic; η, ξ and ζ are suitable elements in F×q

x1 = x1+2(1)
x2 = x1−2(1)x1+2(−1)
x3 = x1−2(1)x1+2(−η)
x4 = x2(1)x3+4(1)
x5 = x2−3(1)x4(1)x2+3(1)
x6 = x2−3(1)x4(1)x2+3(η)
x7 = x2(1)x1−2+3+4(1)
x8 = x2−3(1)x4(1)x1−2(1)
x9 = x2−3(1)x3−4(1)x3+4(−1)
x10 = x2−3(1)x3−4(1)x3+4(−η)
x11 = x2+3(1)x1+2−3−4(1)x1−2+3+4(1)
x12 = x2−3(1)x4(1)x1−4(1)
x13 = x2−3(1)x4(1)x1−4(η)
x14 = x2−4(1)x3+4(1)x1−2(−1)x1−3(−1)
x15 = x2−4(1)x3+4(1)x1−2(−η)x1−3(−1)
x16 = x2−4(1)x2+4(−η)x1−2+3+4(1)x1−3(−1)
x17 = x2−4(1)x3+4(1)x1−2−3+4(1)x1−2(−η)x1−3(ξ)
x18 = x2(1)x3+4(1)x1−2+3−4(1)x1−2(−1)x1−3(ζ)
x19 = x2−3(1)x3−4(1)x4(1)
x20 = x2(1)x3+4(1)x1−2−3−4(1)
x21 = x2−4(1)x3(1)x2+4(1)x1−2−3+4(1)
x22 = x2−4(1)x3(1)x2+4(η)x1−2−3+4(1)
x23 = x2−3(1)x3−4(1)x4(1)x1−2(1)
x24 = x2−3(1)x3−4(1)x4(1)x1−2(η)
x25 = x2−3(1)x3−4(1)x4(1)x1−2−3−4(1)
x26 = x2−3(1)x3−4(1)x4(1)x1−2−3−4(1)x1−2+3+4(ζ)
x27 = x2−3(1)x3−4(1)x4(1)x1−2−3−4(1)x1−2+3+4(−ζ)

UF3−4UF3+4. Also x5, x6 lie in UF2−3UF2+3UF4 , and x4 = x2(1)x3+4(1), so they

all lie in M1. �

Lemma 4.5. If q is even, then O is not kthulhu.

Proof. The representative x1, respectively x2, is equal to xγ(1) for a short,

respectively long, root γ. By the discussion in §2.2.2, Ox1 intersects UFα3

and Ox2 intersects UFα1
. Let M = 〈UF±α3

,UF±α4
〉 and M ′ = 〈UF±α1

,UF±α2
〉,

both of type A2. Then Ox1 ∩M , respectively Ox2 ∩M ′, is a unipotent class

corresponding to the partition (2, 1) in M , respectively M ′. By Theorem

3.3, these classes are not kthulhu.
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Table 5. Representatives of unipotent classes in F4(q) in

even characteristic; η and ζ are suitable elements in F×q

x1 = x1(1)
x2 = x1+2(1)
x3 = x1(1)x1+2(1)
x4 = x2+3(1)x1(1)
x5 = x2(1)x2+3(1)x1−3(1)
x6 = x2(1)x2+3(1)x1−3(1)x1+3(η)
x7 = x2(1)x2+3(1)x1−2+3+4(1)
x8 = x2(1)x2+3(1)x1−2+3+4(1)x1+4(η)
x9 = x2(1)x1−2(1)
x10 = x2(1)x1−2(1)x1+2(η)
x11 = x2(1)x3+4(1)x1−4(1)
x12 = x2(1)x1−2+3+4(1)x1−4(1)
x13 = x2(1)x2+3(1)x1−2(1)
x14 = x2(1)x3+4(1)x1−2(1)
x15 = x2(1)x2+3(1)x1−2+3+4(1)x1−3(1)
x16 = x2(1)x2+3(1)x1−2+3+4(1)x1−2(1)
x17 = x2(1)x2+3(1)x1−2−3+4(1)x1−2(1)
x18 = x2(1)x2+3(1)x1−2−3+4(1)x1−2(1)x1−4(η)
x19 = x2(1)x3+4(1)x1−2+3−4(1)x1−2(1)x1−3(ζ)
x20 = x1−2(1)x2−3(1)x3(1)
x21 = x1−2(1)x2−3(1)x3(1)x2+3(η)
x22 = x4(1)x2−4(1)x1−2+3−4(1)
x23 = x4(1)x2−4(1)x2+4(η)x1−2+3−4(1)
x24 = x2−4(1)x3+4(1)x1−2−3−4(1)x1−2−3+4(1)
x25 = x2−4(1)x3+4(1)x1−2−3−4(1)x1−2−3+4(1)x1−2(η)
x26 = x2−4(1)x3+4(1)x1−2−3−4(1)x1−2−3+4(1)x1−2(η)x1−3(η)
x27 = x2−4(1)x3(1)x3+4(1)x2+4(η)x1−2−3+4(1)
x28 = x2−4(1)x3(1)x3+4(1)x2+4(η)x1−2−3+4(1)x1−2(η)
x29 = x1−2(1)x2−3(1)x3−4(1)x4(1)
x30 = x1−2(1)x2−3(1)x3−4(1)x4(1)x3+4(η)
x31 = x2−3(1)x3−4(1)x4(1)x1−2−3−4(1)
x32 = x2−3(1)x3−4(1)x4(1)x1−2−3−4(1)x3+4(η)
x33 = x2−3(1)x3−4(1)x4(1)x1−2−3−4(1)x1−2(η)
x34 = x2−3(1)x3−4(1)x4(1)x1−2−3−4(1)x3+4(η)x1−2(η)

We consider now the classes labelled by i ∈ I20,34. Let P1 be the standard

parabolic subgroup with standard Levi L1 as in the proof of Lemma 4.4. Set

yi = π1(xi). Then the class OM1
yi satisfies the αβ-property; we list in Table 7

the roots α and β for each representative. Since ΦΠ1 is of type B3, the group
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Table 6. Oxi with the αβ-property

i α β

7 2 1-2+3+4

8 1-2 2-3

9,10 2-3 3-4

11 1+2-3-4 1-2+3+4

12,13 4 1-4

14,15 2-4 1-2

16 2-4 1-2+3+4

17,21,22 2-4 1-2-3+4

18 2 1-2

19,23,24,25,(26,27) 2-3 3-4

20 2 1-2-3-4

[L1,L1] is isogenous to Sp6(k). By Remark 3.4, OM1
yi is not kthulhu, hence

neither is O.

Table 7. OM1
yi with the αβ-property.

i α β

i ∈ I20,21 α1 α2 + α3

i ∈ I22,23 α3 α1 + α2

i ∈ I24,28 α1 + α2 α2 + 2α3

i ∈ I29,34 α1 α2

We consider now the classes labelled by i ∈ I′ = {3, 4, 7, 8, 12} ∪ I14,19.

Let P2 be the standard parabolic subgroup with standard Levi L2 (of type

C3) associated with Π2 = {α2, α3, α4}; here Φ+
Π2

consists of the roots 1− 2,

3, 4, 3 ± 4, 1 − 2 ± 3 ± 4. Let β1 = α4, β2 = α3, β3 = α2 be the simple

roots of Φ+
Π2

. Set zi = π2(xi). Now OM2
zi is a unipotent class in Sp6(q). Let

I′′ = I′ − {3, 4}. Table 8 lists the index i ∈ I′′, the support of zi and the

partition associated to OM2
zi , obtained from the Jordan form of zi in Sp6(k).

Since the partition is always different from (2, 14), the label of the class

in Sp6(q) is never W (1) ⊕ V (2), whence OM2
zi is not kthulhu by Theorem

3.3. The remaining classes in I′ are represented by x3 = x1(1)x1+2(1) and

x4 = x2+3(1)x1(1). Let x = (ṡ1−3ṡ2−4) . x3 ∈ OG
x3 and y = (ṡ2−3ṡ1−2ṡ3) .
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x4 ∈ OG
x4 . Then x ∈ U3U3+4, so x ∈ UFβ2+β3

UF2β2+β3
⊂ M2, y ∈ U1−2U3, so

y ∈ UF2β1+2β2+β3
UFβ2+β3

⊂ M2. The partition associated to x, respectively

y, as unipotent element in Sp6(q) is (2, 2, 1, 1), respectively (2, 2, 2). Hence,

neither OG
x3 nor OG

x4 is kthulhu by Theorem 3.3.

Table 8. supp zi and its partition

i supp zi partition

7,8,12,15 β1 + 2β2 + β3 (2, 2, 1, 1)

14 2β1 + 2β2 + β3, 2β2 + β3, (2, 2, 1, 1)

16 2β1 + 2β2 + β3, β1 + 2β2 + β3, (2, 2, 1, 1)

17,18 2β1 + 2β2 + β3, β1 + β2, (2, 2, 1, 1)

19 2β1 + 2β2 + β3, 2β2 + β3, β1 + β2 + β3 (2, 2, 2)

The xi’s for i ∈ I′′′ = {5, 6, 9, 10, 11, 13} lie in the subgroup K of type

B4 generated by the subgroups U±α, α ∈ {1 − 2, 2 − 3, 3 − 4, 4}. If i ∈ I′′′,
OKF
xi has the αβ-property, see Table 9. Since SO9(k) is isogenous to Sp8(k),

Remark 3.4 applies.

Table 9. OKF
xi with the αβ-property, i ∈ I′′ = {5, 6, 9, 10, 11, 13}.

xi α β

5, 6 2+3 1-3

9, 10, 13 2 1-2

11 1-4 3+4

�

4.4. Unipotent classes in G2(q). Here we deal with unipotent classes in
G = G2(q), q > 2. As for F4(q), we shall use explicit representatives of the
classes, the parabolics being too small. The list of representatives can be
found in [C] when p > 3 and in [E] otherwise; see (4.2), (4.3), (4.4). We
show that all classes are not kthulhu. We split the proof in several cases,
depending on q and the representatives on each class. We first prove the
result for q odd, where we study the cases q > 3 and q = 3 separately. Then
we proceed to deal with q even, where we treat first two conjugacy classes.
For the remaining ones we split the proof for the cases q > 4 and q = 4.
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4.4.1. Unipotent classes in G2(q) for q odd.

Lemma 4.6. If q > 3 is odd, then O is not kthulhu.

Proof. By [C, Theorems 3.1, 3.2, 3.9] every non-trivial class of p-elements

in G = G2(q) is either regular or can be represented by an element of the

following form, for suitable a, b, c ∈ F×q :

xα2(1), xα2(1)x3α1+α2(b), xα2(1)x2α1+α2(−1)x3α1+α2(c),

xα1+α2(1), xα2(1)x2α1+α2(a).
(4.2)

The regular classes are covered by Proposition 3.7 (1). We treat the

remaining classes separately.

The elements xα2(1) and xα2(1)x3α1+α2(b) lie in the subgroup of type A2

generated by UF±α2
and UF±(3α2+α2) and we apply Theorem 3.3. The classes

represented by xα2(1)x2α1+α2(−1)x3α1+α2(c) enjoy the αβ-property, so we

invoke Proposition 2.7. We prove now that the class of r = xα1+α2(1) is of

type D. First, we observe that there is an element σ = ṡα2 ∈ G∩NG(T) such

that s := σ.r = xα1(ξ), ξ ∈ F×q . Then sr 6= rs by the Chevalley commutator

formula (2.1) and, as rs, sr ∈ UF and p is odd, we have (rs)2 6= (sr)2. In

addition, r, s ∈ PF1 , for P1 the standard parabolic subgroup with Levi L1

associated with α1. Since r lies in the unipotent radical V1 of P1 and s lies

in L1, we have O〈r,s〉s 6= O〈r,s〉r .

Let r = xα2(1)x2α1+α2(a); it lies in 〈UF±α2
〉 × 〈UF±(2α1+α2)〉. We argue as

in §3.3. As q > 3, Lemmata 3.6 and 2.1 apply whence Or is of type D. �

Lemma 4.7. If q = 3, then O is not kthulhu.

Proof. By [E, 6.4] the non-trivial classes of p-elements inG are either regular

or are represented by an element of the following form:

x3α1+2α2(1), xα1+α2(1)x3α1+α2(a),

x2α1+α2(1)x3α1+2α2(1), x2α1+α2(1),
(4.3)

for suitable a ∈ F×q . The regular classes are covered by Proposition 3.7 (1).

The element x3α1+2α2(1) lies in the subgroup of type A2 generated by UF±α2

and UF±(3α1+2α2) and Theorem 3.3 applies.

Next we show that if r = xα1+α2(1)x3α1+α2(a) ∈ O, then it is of type D.

Indeed, let s := ṡα2 . r ∈ UFα1
UF3α1+2α2

. Then sr 6= rs; since sr, rs ∈ UF , we

have (sr)2 6= (rs)2. Moreover, r, s ∈ PF1 with s ∈ L1, r ∈ V1, with notation

as for p > 3. Thus, O〈r,s〉s 6= O〈r,s〉r and O is of type D.

Assume that u = x2α1+α2(1)x3α1+2α2(1) ∈ O. Conjugating by suitable

elements in NG(T) we find r ∈ O ∩ Uα1U3α1+α2 ⊂ P1, r 6∈ V1 and s ∈
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O ∩ Uα1+α2Uα2 ⊂ V1. By repeated use of (2.1), we see that the coefficient

of xα1+α2 in srs−1 is 6= 0, hence rs 6= sr, (rs)2 6= (sr)2 and O is of type D.

Assume finally that u = x2α1+α2(1) ∈ O. Let r = ṡα1 . u ∈ OG
u ∩ Uα1+α2

and s = ṡα1+α2 . u ∈ OG
u ∩ Uα1 . Then rs, sr ∈ U, (rs)2 6= (sr)2, and

O〈r,s〉s 6= O〈r,s〉r , as s ∈ L1 and r ∈ V1, so O is of type D. �

4.4.2. Unipotent classes in G2(q) for q even. By [E, 2.6] all non-trivial
classes of 2-elements in G2(q) can be represented by an element of the fol-
lowing form, for suitable a, b, c ∈ Fq with c 6= 0:

x2α1+α2(1), x3α1+2α2(1), xα1(1)xα2(1)x2α1+α2(a),

xα1+α2(1)x2α1+α2(1)x3α1+α2(b), xα2(1)x2α1+α2(1)x3α1+α2(c).
(4.4)

We begin by studing the conjugacy classes corresponding to the first two
representatives.

Lemma 4.8. If x = x2α1+α2(1) or x = x3α1+2α2(1), then OG
x is not kthulhu.

Proof. Let O = OG
x and write r = x2α1+α2(1). It is enough to prove that

O is of type C for G2(2), which is a non-simple subgroup of G2(q). We

consider ṡα1+α2 . r = xα1(1) ∈ O and s := x−α1(1) . xα1(1) = ṡα1 ∈ O
G2(2)
r .

Let H := 〈r, s, z = xα1+α2(1)〉 ≤ P1 (the parabolic subgroup associated with

α1), with r ∈ V1, s ∈ L1. Hence, OHr 6= OHs . By a direct computation,

s . r = xα1+α2(1) = z 6= r, z . r = rx3α1+2α2(1),

r . s = szr, z . (szr) = sx3α1+2α2(1).

So H ≤ 〈OHr ,OHs 〉 ≤ H; {r, z, z . r} ⊂ OHr and {s, szr, sx3α1+2α2(1)} ⊂ OHs
hence OG2(2)

r is of type C by [ACGIII, Lemma 2.8].

Assume that r = x3α1+2α2(1) ∈ O. Now r ∈ M = 〈U±α2 ,U±(3α1+α2)〉,
which is of type A2. Since OM

r has partition (2, 1), O is not kthulhu by

Theorem 3.3 and [MT, Theorem 24.15]. �

Now we deal with the remaining cases, dividing the proof for the cases
q > 4 and q = 4. Thus, for the rest of the subsection we assume that x
is either one of the following representatives, for suitable a, b, c ∈ Fq with
c 6= 0:

xα1(1)xα2(1)x2α1+α2(a), xα1+α2(1)x2α1+α2(1)x3α1+α2(b),

xα2(1)x2α1+α2(1)x3α1+α2(c).

Lemma 4.9. If q > 4 is even, then OG
x is not kthulhu.

Proof. The classes represented by the elements xα1(1)xα2(1)x2α1+α2(a) for

a ∈ Fq are regular, thus they are not kthulhu by Proposition 3.7. The classes
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of xα1+α2(1)x2α1+α2(1)x3α1+α2(b) and xα2(1)x2α1+α2(1)x3α1+α2(c) enjoy the

αβ-property. By [ACGII, Proposition 3.6], these classes are of type F. �

In order to deal with the remaining classes in G = G2(4) we will need
a precise version of (2.1) for all pairs of positive roots. We shall use the
relations from [E, II.2], that we rewrite for convenience. They hold in general
for q even, and we shall use them recalling that a3 = 1 for every a ∈ F×4 .

xα1(a)xα2(b) = xα2(b)xα1(a)xα1+α2(ab)x2α1+α2(a2b)x3α1+α2(a3b)(4.5)

xα1(a)xα1+α2(b) = xα1+α2(b)xα1(a)x3α1+α2(a2b)x3α1+2α2(ab2)(4.6)

xα1(a)x2α1+α2(b) = x2α1+α2(b)xα1(a)x3α1+α2(ab)(4.7)

xα2(a)x3α1+α2(b) = x3α1+α2(b)xα2(a)x3α1+2α2(ab)(4.8)

xα1+α2(a)x2α1+α2(b) = x2α1+α2(b)xα1+α2(a)x3α1+2α2(ab)(4.9)

For all other pairs of positive roots the corresponding subgroups commute.
Fix ζ a generator of F×4 , so ζ2 + ζ + 1 = 0 and ζ3 = 1.

Lemma 4.10. Let x = xα1(1)xα2(1)x2α1+α2(a) with a ∈ F4. Then OG
x is

not kthulhu.

Proof. By [E] there are 2 regular unipotent classes, one represented by

xα1(1)xα2(1) and the other by xα1(1)xα2(1)x2α1+α2(ζ). We shall apply

Lemma 2.3 in order to show that these classes are of type C. For this, we

need the following formula which can be retrieved applying (4.5) and (4.8).

xα1(a)xα2(b)xα1(c)xα2(d) = xα1(a+ c)xα2(b+ d)

×x3α1+α2(b)x3α1+2α2(bd)x2α1+α2(c2b)xα1+α2(bc),
(4.10)

a, b, c, d ∈ Fq. Let r = xα1(1)xα2(1), t := α∨1 (ζ), s := t .r = xα1(ζ2)xα2(1) ∈
OG
r . By direct computation using (4.10) we see that

r2 = x3α1+α2(1)x3α1+2α2(1)x2α1+α2(1)xα1+α2(1)

s2 = x3α1+α2(1)x3α1+2α2(1)x2α1+α2(ζ)xα1+α2(ζ2).

Using (4.9) and that ξ2 6= ξ, we see r2s2 6= s2r2, hence r2s 6= sr2 and

s2r 6= rs2. In addition, 〈r, s〉 ⊆ UF and UF . r ⊂ r〈Uγ | γ ∈ Φ+ −∆〉 and

UF . s ⊂ s〈Uγ | γ ∈ Φ+ −∆〉, so O〈r,s〉r 6= O〈r,s〉s , whence OG
r is of type C.

Similarly, we consider now r = xα1(1)xα2(1)x2α1+α2(ζ), t := α∨1 (ζ) and

s := t . r = xα1(ζ2)xα2(1)x2α1+α2(ζ2) ∈ OG
r . In this case

r2 = x3α1+α2(ζ2)x3α1+2α2(ζ2)x2α1+α2(1)xα1+α2(1)

s2 = x3α1+α2(ζ2)x3α1+2α2(ζ2)x2α1+α2(ζ)xα1+α2(ζ2).
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As above we verify that r2s 6= s2r and s2r 6= r2s and that O〈r,s〉r 6= O〈r,s〉s so

OG
r is of type C. �

Lemma 4.11. If x = xα1+α2(1)x2α1+α2(1)x3α1+α2(b) with b ∈ F4, then OG
x

is not kthulhu.

Proof. Assume first that x = xα1+α2(1)x2α1+α2(1)x3α1+α2(b) ∈ O, with b 6=
0. By [E, Proposition 2.6, page 499], if q = 4 we can take b = ζ. We prove

that this class is of type C. Set rα := xα(1)x−α(1)xα(1) = ṡα, α ∈ Φ+, see

[St, Lemma 19]. The elements

s = rα1 . x = x2α1+α2(1)xα1+α2(1)xα2(ζ)

= xα1+α2(1)x2α1+α2(1)xα2(ζ)x3α1+2α2(1),

r = rα2rα1 . s = xα1(1)x2α1+α2(1)x3α1+2α2(ζ)

belong to O. We claim that O〈r,s〉r 6= O〈r,s〉s . Indeed, r, s ∈ P1 with r 6∈ V1,

s ∈ V1. A direct calculation shows that r2 = x3α1+α2(1),

r . s = xα1+α2(1 + ζ)x2α1+α2(1 + ζ)xα2(ζ)x3α1+α2(ζ),

r2 . s = sx3α1+2α2(ζ),

r3 . s = r . (r2 . s) = r . (sx3α1+2α2(ζ)) = (r . s)x3α1+2α2(ζ),

s . (r . s) = xα1+α2(1 + ζ)x2α1+α2(1 + ζ)xα2(ζ)x3α1+α2(ζ)x3α1+2α2(1 + ζ).

We see that all these are distinct, and different from s, by looking at the

unique expression as a product of elements in root subgroups in the order:

α1 < α1 + α2 < 2α1 + α2 < α2 < 3α1 + α2 < 3α1 + 2α2.

Hence, |O〈r,s〉r | ≥ 5 and O is of type C, by [ACGIII, Lemma 2.8], with

H = 〈r, s〉.
Assume now that x = xα1+α2(1)x2α1+α2(1). Let t2 := α∨1 (ζ)α∨2 (ζ), t3 :=

α∨2 (ζ), t4 := α∨1 (ζ)α∨2 (ζ2) and set

x1 = rα2 . x = xα1(1)x2α1+α2(1) ∈ Ox;

x2 = t2 . x1 = xα1(ζ)x2α1+α2(ζ),

x3 = t3 . x1 = xα1(ζ2)x2α1+α2(1),

x4 = t4 . x1 = xα1(1)x2α1+α2(ζ).
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Let Yi = UF . xi, i ∈ I4. A direct computation shows that

Y1 =
⋃

f,`∈F4

xα1(1)xα1+α2(`)x2α1+α2(`+ 1)x3α1+2α2(f2 + f)UF3α1+α2
,

Y2 =
⋃

f,`∈F4

xα1(ζ)xα1+α2(`ζ)x2α1+α2(`ζ2 + ζ)x3α1+2α2(f2ζ + fζ)UF3α1+α2
,

Y3 =
⋃

f,`∈F4

xα1(ζ2)xα1+α2(`2ζ)x2α1+α2(`ζ + 1)x3α1+2α2(f2ζ2 + f)UF3α1+α2
,

Y4 =
⋃

f,`∈F4

xα1(1)xα1+α2(`)x2α1+α2(`+ ζ)x3α1+2α2(f2 + fζ)UF3α1+α2
.

The union Y =
⋃
i∈I4 Yi is disjoint and a subrack of Ox. We take

r1 = x1,

r2 = xα1(ζ)xα1+α2(ζ)x2α1+α2(1) ∈ UF . x2, (` = 1, f = 0),

r3 := xα1(ζ2)x2α1+α2(1) ∈ UF . x3, (` = f = 0),

r4 := xα1(1)xα1+α2(1)x2α1+α2(ζ2) ∈ UF . x4, (` = 1, f = 0).

We claim that xα1(a)xα1+α2(b)x2α1+α2(c) and xα1(ã)xα1+α2 (̃b)x2α1+α2(c̃) do

not commute, for a, b, c, ã, b̃, c̃ ∈ Fq such that cã+ã2b 6= c̃a+a2b̃. This follows

from the formula:

xα1(a)xα1+α2(b)x2α1+α2(c)xα1(ã)xα1+α2 (̃b)x2α1+α2(c̃) =

xα1(a+ ã)xα1+α2(b+ b̃)x2α1+α2(c+ c̃)x3α1+α2(cã+ ã2b)x3α1+2α2(b2ã+ cb̃).

Hence, rirj 6= rjri for i 6= j, i, j ∈ I4 and the class Ox is of type F. �

Lemma 4.12. If x = xα2(1)x2α1+α2(1)x3α1+α2(c) with c 6= 0, then OG
x is

not kthulhu.

Proof. We show that this class is of type F . By [E], this class can be

represented by any of

r1 = xα2(1)x2α1+α2(1)x3α1+α2(ζ),

r2 = rα1 . r1 = xα2(ζ)xα1+α2(1)x3α1+α2(1)x3α1+2α2(ζ).

Let t := α∨1 (ζ)α∨2 (ζ2) and

x := t . r1 = xα2(ζ)x2α1+α2(ζ)x3α1+α2(ζ2),

y := t . r2 = xα2(ζ2)xα1+α2(ζ)x3α1+α2(ζ)x3α1+2α2(1).

It is easier now to work with a different ordering of the positive roots:

α1 < α2 < 2α1 + α2 < α1 + α2 < 3α1 + α2 < 3α1 + 2α2.
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Let Yi = UF . ri, i = 1, 2, Y3 = UF . x, Y4 = UF . y. A direct computation

shows that

Y1 =
⋃
`∈F4

xα2(1)x2α1+α2(1 + `2)xα1+α2(`)x3α1+α2(ζ + `3 + `)UF3α1+2α2
,

Y2 =
⋃
`∈F4

xα2(ζ)x2α1+α2(`2ζ)xα1+α2(1 + `ζ)x3α1+α2(`2 + `3ζ + 1)UF3α1+2α2
,

Y3 =
⋃
`∈F4

xα2(ζ)x2α1+α2(ζ + `2ζ)xα1+α2(`ζ)x3α1+α2(`3ζ + `ζ + ζ2)UF3α1+2α2
,

Y4 =
⋃
`∈F4

xα2(ζ2)x2α1+α2(`2ζ2)xα1+α2(`ζ2 + ζ)x3α1+α2(`3ζ2 + `2ζ + ζ)UF3α1+2α2
.

The union Y =
⋃
i∈I4 Yi is disjoint and a subrack of O. We take

r3 := xα2(ζ)x2α1+α2(1)xα1+α2(1) ∈ Y3, (` = ζ2),

r4 := xα2(ζ2)x2α1+α2(ζ2)xα1+α2(1)x3α1+α2(ζ2) ∈ Y4, (` = 1).

By looking at the coefficient of x3α1+2α2 in the expression of each product,

we verify that ri . rj 6= rj . ri if i 6= j, hence O is of type F. �

5. Unipotent classes in Steinberg groups

In this Section we deal with unipotent classes in Steinberg groups, i.e.
PSUn(q), n ≥ 3 ; PΩ−2n(q), n ≥ 4; 3D4(q) and 2E6(q). In order to apply
inductive arguments as in Section 4, we first need information about the
unitary groups PSUn(q), including the non-simple group PSU3(2).

5.1. Unipotent classes in unitary groups. Here G = PSUn(q), G =
SUn(q), n ≥ 3 and G = SLn(k), for n ≥ 2. For a clearer visibility of the
behaviour of the conjugacy classes in small rank, we use the language of
matrices and partitions. Here we choose B, U, as the subgroups of upper
triangular, respectively unipotent upper triangular, matrices. We start by
some notation and basic facts.

� Jn =

(
1

. .
.

1

)
= J−1

n ∈ GLn(k).

� Frq is the Frobenius endomorphism of GLn(k) raising all entries of the
matrix to the q-th power.

� F : GLn(k)→ GLn(k), F (X) = Jn
t(Frq(X))−1Jn, X ∈ GLn(k).

� GUn(q) = GLn(k)F , SUn(q) = SLn(k)F ≤ SLn(q2), [MT, 21.14(2),
23.10(2)].

� To every unipotent class in SUn(q) we assign the partition of n corre-
sponding to the class in GLn(q) it is embedded into.

� Every unipotent class in GLn(k) meets GUn(q) in exactly one class, since
CGLn(k)(x) is connected for every x [HuCC, 8.5], [SpSt, I.3.5]. In other
words, every partition comes from a class in SUn(q).
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� By construction, SUn(q) ≤ SUn(q1+2h) for every h ≥ 0, so for any parti-
tion λ of n, there is a unipotent class in SUn(q1+2h) corresponding to λ
and represented by an element in SUn(q).

� Since SUn(q) is normal in GUn(q), [ACGI, Remark 2.1] says that all
unipotent classes in SUn(q) with the same partition are isomorphic as
racks.
� In the spirit of Subsection 3 from which we adopt notation, we consider

the standard parabolic subgroups P1 associated with the simple roots
∆−{αd, αd+1} if n = 2d+1 and ∆−{αd} if n = 2d, so M1 ' SLd(q

2); and
P2 associated with the simple roots ∆ − {α1, αn−1}, so M2 ' SUn−2(q).
More precisely, M1 and M2, respectively, consists of matrices of diagonal
block form diag(A, idn−2d, J

tAJ), for A ∈ SLd(q
2) and diag(1, B, 1), for

B ∈ SUn−2(q). Observe that for d > 2 no unipotent class in M1 is
kthulhu.

� We denote by M ≤ G the subgroup of matrices
(
A B

idn−2c

C D

)
for
(
A B
C D

)
∈

SL2c(k), where c = d − 1 if n = 2d and c = d if n = 2d + 1. It is the
semisimple part of an F -stable non-standard Levi subgroup. Let M =
MF . We have: M ' SUn−2(q) for n even and M ' SUn−1(q) for n odd.
The group M contains T and its root system has basis

∆ ∪ {−(α1 + · · ·+ αn−1)} − {αd−1, αd, αd+1} if n = 2d,

∆ ∪ {−(α1 + · · ·+ αn−1)} − {αd, αd+1} if n = 2d+ 1.

� If q is odd, then GFrq = SOn(q). If q and n are even, then GFrq = Spn(q).

Here is the main result of this Subsection:

Proposition 5.1. Let O 6= {e} be a unipotent class in G = PSUn(q) with

partition λ. Then, O is kthulhu if and only if λ = (2, 1, . . .) and q is even.

Proof. First, we reduce our analysis to G = SUn(q) by the isogeny argument
[ACGI, Lemma 1.2]. Thus, from now on O is a unipotent class in G. We
first deal with the classes associated with the partition (2, 1, . . .) when q is
even.

Lemma 5.2. If q is even and λ = (2, 1a) for a ≥ 1, then O is austere, hence

kthulhu.

Proof. We show that any subrack generated by two elements is either abelian

or indecomposable. Let r, s ∈ O, rs
?
6= sr. We may assume r = idn +ae1,n =

xβ(a) where β = α1 + · · ·+αn−1, the highest positive root in Φ and a ∈ F×q .

Let g ∈ G be such that s = grg−1. By [MT, 24.1] there are u, v ∈ UF , and

σ ∈ G ∩N(T) such that g = uσv. As F (σ) = σ, the coset σ = σT ∈W lies

in WF ' SFn which is the centralizer of the permutation

(1, n)(2, n− 1) · · · ([n
2

], n+ 1− [
n

2
]);
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hence, either σ({1, n}) = {1, n} or σ({1, n}) ∩ {1, n} = ∅. Since r is central

in UF , s = uσrσ−1u−1 = uxσ(β)(a
′)u−1 for some a′ ∈ Fq. Since ru = ur

and rv = vr, ? holds if and only if σβ + β ∈ Φ ∪ {0}. Thus, σ(1) = n and

σ(n) = 1, so σ is of the form

σ =

(
0 0 ξ
0 A 0
ξ−q 0 0

)
, where A ∈ GUn−2(q), ξ ∈ F×q , ξq−1 = detA.

Then σrσ−1 = idn +aξ−1−qen,1, so

H := 〈r, s〉 ' 〈( 1 a
0 1 ) ,

(
1 0

ξ−q−1a 1

)
〉 ⊂ SL2(q).

Since the non-trivial unipotent class in SL2(q) is sober [ACGI, 3.5], OHr =

OHs . �

We now prove Proposition 5.1 by induction in a series of Lemmata, dealing
with the cases of n = 3, 4, 5 separately. The reader should be alert that
sometimes we use formulas or matrices that are independent of the parity
of q, with the understanding that −1 should be treated as 1 when q is even.

Lemma 5.3. The statement of Proposition 5.1 holds for n = 3.

Proof. There are, up to isomorphism, two nontrivial unipotent conjugacy

classes, corresponding to the partitions (3) and (2, 1). If λ = (3), then O
is regular. For q 6= 2, 8 this situation is covered by Proposition 3.7. We

show that regular unipotent classes in SU3(22h+1), h ∈ N0, are of type D.

It suffices to prove the claim for G = SU3(2). Let ω be a generator of

F×4 . Consider the class O represented by r =
(

1 1 ω
0 1 1
0 0 1

)
. Let t =

(
0 0 1
0 1 ω2

1 ω ω

)
∈

SU3(2) and s := t . r =
(

1 0 0
1 1 0
ω2 1 1

)
∈ O. By direct verification, (rs)2 6= (rs)2.

A computation with GAP shows that O〈r,s〉s 6= O〈r,s〉r .

Let now λ = (2, 1) for q > 3 odd. Let r =
(

1 0 a
1 0

1

)
∈ O with a ∈ F×

q2
,

aq = −a. As F×q = {ξq+1|ξ ∈ F×
q2
} and q > 3, we may pick ξ ∈ F×

q2
such

that −a2ξq+1 ∈ F×q − ({2} ∪ (F×q )2). Let t ∈ G be the diagonal matrix

(ξ, ξq−1, ξ−q), σ =
(

0 0 1
0 −1 0
1 0 0

)
∈ G and

s := (σt) . r =
( 1

0 1
aξ1+q 0 1

)
∈ O.

Since 2 6= −a2ξq+1, (rs)2 6= (sr)2. Let η ∈ k be such that η2 = a−1.

Conjugating by the diagonal matrix (η, η−1) we have

H := 〈r, s〉 '
〈

( 1 a
0 1 ) ,

(
1 0

aξq+1 1

) 〉
'
〈(

1 1
0 1

)
,
(

1 0
a2ξq+1 1

) 〉
.

By [Su, Theorem 6.21, page 409], H ' SL2(q). Since −a2ξq+1 is not a

square, OHr 6= OHs . Thus O is of type D.
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Finally, let λ = (2, 1) and q = 3. We will show that O is of type C. Let

F×9 = 〈ζ〉. Without loss of generality we may assume that

r =
(

1 ζ2

1
1

)
= id3 +ζ2e1,3 ∈ O.

We consider the following elements of SU3(3):

σ :=

(
0 0 ζ
0 −ζ2 0
ζ−3 0 0

)
,

s := σ . r =
( 1

1
ζ−2 1

)
= id3 +ζ−2e3,1 ∈ O.

Then rs 6= sr. Let

H := 〈r, s〉 ' 〈
(

1 ζ2

0 1

)
,
(

1 0
ζ−2 1

)
〉.

Conjugation by diag(ζ−1, ζ) and [Su, Theorem 6.21, page 409] give H '
〈( 1 1

0 1 ) , ( 1 0
1 1 )〉 ' SL2(3), so OHr 6= OHs . We conclude by [ACGIII, Lemma

2.7]. �

Lemma 5.4. The statement of Proposition 5.1 holds for n = 4.

Proof. Here we need to consider the classes associated with the partitions

(4), (3, 1), (2, 2) for all q and (2, 1, 1) for q odd. If λ = (4), then O is regular

so for q 6= 2, 4 it is covered by Proposition 3.7. For the remaining cases we

observe that by the Jordan form theory, O is represented by an element of

a regular class in Sp4(q) = SU4(q)Frq , so O is not kthulhu by Theorem 3.3.

Let λ = (3, 1) and q > 3 odd. Then, by the Jordan form theory, O has

a representative which is regular in SO4(q) = SU4(q)Frq . Now SO4(k) is

isogenous to H = SL2(k)×SL2(k) and the class OHu is isomorphic as a rack

to the product X ×X for X the non-trivial unipotent class in SL2(q). By

Lemma 2.1, OHu is of type D.

Let λ = (3, 1) and q = 3. We show that O is of type D. Let ζ be a

generator of F×9 . We may assume that r :=

(
1 ζ ζ 1
0 1 0 ζ7

0 0 1 ζ7

0 0 0 1

)
∈ O. Let t := 2 ζ6 ζ2 ζ

2 ζ5 0 0
0 ζ2 2 ζ5

0 ζ6 1 ζ7

 ∈ SU4(3) and s = t.r =

(
0 1 0 1
2 2 1 2
0 0 0 2
0 0 1 2

)
∈ O. A direct computation

shows that (rs)2 6= (sr)2. Clearly H = 〈r, s〉 ⊂ {
(
A B
0 D

)
| A,D ∈ SL2(9)}.

If s ∈ OHr , then ( 0 1
2 2 ) and

(
1 ζ7

0 1

)
would be conjugate in SL2(9). But

( 1 0
2 1 ) . ( 0 1

2 2 ) = ( 1 1
0 1 ) which is not conjugate to

(
1 ζ7

0 1

)
because ζ7 is not a

square. Hence, OHr 6= OHs and O is of type D.
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Let λ = (3, 1) and q even. Here, either SUn(2) ≤ SUn(q) or SUn(4) ≤
SUn(q), so it is enough to prove the statement for q = 2, 4.

Let q = 2 and let ω be a generator of F×4 . We may assume that r =(
1 1 ω ω
0 1 0 ω2

0 0 1 1
0 0 0 1

)
∈ O. Let t =

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 1 0

)
∈ SU4(2) and s := t . r =

(
1 1 0 0
0 1 0 0
ω2 ω 1 1
0 ω 0 1

)
.

Then (rs)2 6= (rs)2. By GAP we see that O〈r,s〉s 6= O〈r,s〉r so O is of type D.

Let now q = 4 and let η be a generator of F×16. We may assume that

r =

(
1 1 η η
0 1 0 η4

0 0 1 1
0 0 0 1

)
∈ O. Let t =

 η11 η2 η5 η14

η11 η2 η8 η2

0 η14 η9 η11

0 η14 η9 η6

 ∈ SU4(4) and s := t . r =(
0 1 0 η12

1 0 η3 η10

0 0 0 1
0 0 1 0

)
∈ O. We check at once that (rs)2 6= (rs)2, and with GAP that

O〈r,s〉s 6= O〈r,s〉r , so O is of type D.

Assume q > 3 is odd and λ = (2, 2) or (2, 1, 1). We take r =

(
1 0 0 a

1 b 0
1 0

1

)
∈

O for a, b ∈ Fq2 satisfying aq = −a and bq = −b, a 6= 0 always and b = 0 if

and only if λ = (2, 1, 1). Let t ∈ G be the diagonal matrix (ξ, ξ−1, ξq, ξ−q)

for ξ ∈ F×
q2

, such that −a2ξq+1 ∈ F×q is not a square in F×q , and let σ =(
0 0 0 1
0 ζ 0 0
0 0 ζ−q 0
1 0 0 0

)
∈ G with ζ ∈ F×

q2
such that ζq = −ζ. We consider

s := (σt) . r =

(
1 0 0 0
0 1 bζq+1ξ−1−q 0
0 0 1 0

aξ1+q 0 0 1

)
∈ O.

We observe that H = 〈r, s〉 is contained in the subgroup of matrices of the

form
( a11 0 a12

0 B 0
a21 0 a22

)
, where B ∈ SU2(q) and ( a11 a12a21 a22 ) ∈ 〈( 1 a

0 1 ) ,
(

1 0
aξ1+q 1

)
〉. We

proceed then as we did for n = 3 and λ = (2, 1).

Assume now q = 3 and λ = (2, 2). We show that O is of type D. Let ζ

be a generator of F×9 . Let

r =

(
1 ζ 0 0

1 0 0
1 −ζ3

1

)
∈ O, σ =

(
ζ2 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ζ2

)
∈ G, s = σ . r =

(
1 0 ζ3 0

1 0 −ζ
1 0

1

)
.

It is easy to see that (rs)2 6= (sr)2. In addition, 〈r, s〉 ⊂ UF and OUF
r 6= OUF

s ,

whence the statement.

Let q = 3 and λ = (2, 1, 1). We show that O is of type C. Let F×9 = 〈ζ〉.

We take r =

(
1 0 ζ2

id2 0
1

)
= id4 +ζ2e1,4 ∈ O. We consider the following
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elements of SU4(3):

τ :=

( 0 0 0 ζ
0 ζ 0 0
0 0 ζ−3 0
ζ−3 0 0 0

)
,

s := τ . r =

(
1
0 id2

ζ−2 0 1

)
= id4 +ζ−2e4,1 ∈ O

and we proceed as we did for q = 3, n = 3, λ = (2, 1).

Let λ = (2, 2) for q even. Such a class is represented by an element u of

a unipotent class with label V (2)⊕ V (2) in Sp4(q) = SU4(q)Frq ≤ SU4(q).

By Theorem 3.3, OSp4(q)
u is not kthulhu. �

The above Lemmata are the basis of our induction for n odd or even.
However, we need to deal with PSU5(q) separately because of the presence
of kthulhu unipotent classes in M1 for n = 5.

Lemma 5.5. The statement of Proposition 5.1 holds for n = 5.

Proof. In this case M2 ' SU3(q), M ' SU4(q) and the partitions to

be considered are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1) and (2, 1, 1, 1). The

regular class, corresponding to (5), is represented by u ∈ UF ⊂ P2 with

u =
∏
α∈Φ+ xα(ξα) in some order, with ξα 6= 0 for α ∈ ∆. Thus, π2(u) is

regular in M2 and the statement follows from Lemma 5.3. If λ = (4, 1),

then O is represented by an element of the form u =

(
1 a 0 g f

1 0 e h
1 0 0

1 b
1

)
for

a, b, e, f, g, h ∈ Fq2 , aq = −b, bq = −a, eq = −e, gq = eb − g, hq = ae − h
and f q = −f − abe+ bh+ ga and abe 6= 0. Then u ∈M and it corresponds

to the partition (4) therein. Hence, O is not kthulhu.

If λ = (3, 2) or (3, 1, 1), then O is represented by an element of the

form u =

(
1 0 0 0 f

1 a e 0
1 b 0

1 0
1

)
∈ UF ⊂ P2 for a, b, e, f ∈ Fq2 , aq = −b, bq = −a,

(ba − e)q = e, f q = −f , ba 6= 0 and f 6= 0 for (3, 2) and f = 0 for (3, 1, 1).

Then π2(u) corresponds to the partition (3) for SU3(q) and we have the

statement.

If λ = (2, 2, 1) or (2, 1, 1, 1), then O is represented by an element of the

form u =

(
1 0 0 0 f

1 0 e 0
1 0 0

1 0
1

)
for f, e ∈ Fq2 , eq = −e, f q = −f , e 6= 0 always

and f 6= 0 for (2, 2, 1) whereas f = 0 for (2, 1, 1, 1). Then u ∈ M and it

corresponds to the partition (2, 2) when f 6= 0 and (2, 1, 1) when f = 0.

Hence, it is not kthulhu unless λ = (2, 1, 1, 1) and q is even. This case is

covered by Lemma 5.2. �
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Proof of Proposition 5.1. Assume first that q is odd. We show by induction
on n ≥ 3 that no nontrivial class is kthulhu, the basis of the induction
being Lemmata 5.3 and 5.4. Observe that n = 5 is dealt with in Lemma
5.5, so here n ≥ 6 and by induction no nontrivial class in M1 ' SLd(q

2)
and M2 ' SUn−2(q) is kthulhu. By Lemma 3.2, it is enough to show that
O ∩ UF 6⊂ V1 ∩ V2. Assume u ∈ V1 ∩ V2 ∩ O. With notation as in (4.1),

supp u ⊂ (Ψ(α1) ∪Ψ(αn−1)) ∩Ψ(αd) if n = 2d,

supp u ⊂ (Ψ(α1) ∪Ψ(αn−1)) ∩ ((Ψ(αd) ∪Ψ(αd+1)) if n = 2d+ 1.

For any representative σ of s1sn−1 ∈ NGF (T), we have v = σ . u ∈ V1 ∩
O ⊂ UF ∩ O. Also, the only possible roots in supp u that can be mapped
by s1sn−1 to Ψ(α1) ∪ Ψ(αn−1) are α1 + · · · + αn−2 and α2 + · · · + αn−1.
Therefore, either v 6∈ V1 ∩ V2, so we are done, or else or supp u ⊂ {α1 +
· · ·+ αn−2, α2 + · · ·+ αn−1}. In this case invariance of u with respect to F
forces supp u = {α1 + · · · + αn−2, α2 + · · · + αn−1}. Thus, u ∈ M and it is
nontrivial therein. If n is even, then M ' SUn−2(q) and the proof follows
by induction for all even n ≥ 4. If n is odd, then M ' SUn−1(q) and the
proof follows by induction and the case of n even.

Assume now that q is even. The proof is once more by induction on
n ≥ 3, where the cases n = 3, 4, 5 have been settled, so we assume n ≥ 6.
Thus, no nontrivial class in M1 ' SLd(q

2) is kthulhu and the only kthulhu
classes in M2 and M are those corresponding to the partition (2, 1, 1, ...).
Let u ∈ UF ∩ O and assume O is kthulhu. Then, u ∈ V1 ⊂ UF ⊂ P 2 by
Lemma 3.2. The projection π2 corresponds to removing the first and last
rows and columns and OM2

π2(u) is kthulhu because O is so. Therefore u is

conjugate by an element of M2 to some u′ = idn +ξe2,n−1 +
∑n−1

j=d+1 ξje1,j +∑n−d
l=2 ζlel,n + ζe1,n, for suitable ξ, ξj , ζl, ζ ∈ Fq2 . For any representative σ

of s1sn−1 ∈ NGF (T), we have

v = σ . u′

= idn +ξ′e1,n +
n−2∑
j=d+1

ξ′je2,j + ξ′n−1e2,n + ζ ′2e1,n−1 +
n−d∑
l=3

ζ ′lel,n−1 + ζ ′e2,n−1

for ξ′, ζ ′, ξ′j , ζ
′
l ∈ Fq2 . Now, v ∈ O∩UF ⊂ P 2 and π2(v) represents a kthulhu

class in M2 only if ξ′j = 0 for d+ 1 ≤ j ≤ n− 2 and ζ ′l = 0 for 3 ≤ l ≤ n− d,

so v = idn +ξ′e1,n + ξ′n−1e2,n + ζ ′2e1,n−1 + ζ ′e2,n−1 ∈ M . By induction, OMv
is kthulhu only if ξ′ζ ′ = 0, ζ ′2 = 0, ξ′n−1 = 0, i.e., only if the partition
associated with O is (2, 1, . . .). �

5.2. Unipotent classes in PΩ−2n(q), n ≥ 4. In this subsection G =
PΩ−2n(q), n ≥ 4. We shall use the knowledge of unipotent conjugacy classes
in PSLn(q) and PSUn(q) and apply inductive arguments.

Here G is assumed simply connected. The root system of G is of type
Dn, and the Dynkin diagram automorphism ϑ interchanges αn−1 and αn;
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it fixes the basis vectors εj for j ∈ In−1, and maps εn to −εn. Here is the
main result of this Subsection:

Proposition 5.6. Let O be a non-trivial unipotent class in PΩ−2n(q) with

n ≥ 4. Then O is not kthulhu.

We split the proof for q odd in §5.2.1 and for q even in §5.2.2.

5.2.1. Proof of Proposition 5.6 when q is odd.

Proof. Let P1 and P2 be the standard F -stable parabolic subgroups with

F -stable Levi factors L1 and L2 associated respectively with Π1 := ∆ −
{αn−1, αn} (of type An−2), and Π2 := {αn−2, αn−1, αn} (of type A3). Then

Φ+
Π1

= {εi − εj | i < j ∈ In−1}, Φ+
Π2

= {εi ± εj | i < j ∈ In−2,n},

ΨΠ1 = Φ+ r Φ+
Π1

= {εi + εj , εk − εn | i < j ∈ In, k ∈ In−1},

ΨΠ2 = {εi ± εj | i < j, i ∈ In−3, j ∈ In}.

By Lemma 3.2, Theorem 3.3 and Proposition 5.1, it is enough to show that

O ∩ UF 6⊂ V1 ∩ V2. Assume that there is u ∈ O ∩ V1 ∩ V2; then

suppu ⊂ ΨΠ1 ∩ΨΠ2 = {εi + εj , εi − εn | i < j, i ∈ In−3, j ∈ In}.

We consider various different cases.

(i) εi − εn ∈ suppu for some i ∈ In−3.

Then sεi−εn−2(suppu) ⊆ Φ+. Since sεi−εn−2 ∈ WF , it has a represen-

tative ṡεi−εn−2 ∈ NGF (T); hence ṡεi−εn−2 . u ∈ O ∩ UF and εn−2 − εn ∈
supp(ṡεi−εn−2 . u). Thus ṡεi−εn−2 . u ∈ UF ∩ O − V2.

(ii) εi − εn 6∈ suppu for all i ∈ In−3.

Then there exist k ∈ In−3 and j such that εk + εj ∈ suppu. Let

` = max{j | εk + εj ∈ suppu for some k}.

If ` = n, then pick a representative σ ∈ NGF (T) ∩ L2 of sεn−1−εnsεn−1+εn ∈
WF . Thus σ . u ∈ O ∩ V2 and εk − εn ∈ supp(σ . u) for all k such that

εk + εn ∈ suppu. Therefore, either supp(σ . u) 6⊂ V1, and we are done, or

supp(σ . u) ⊂ V1 and εk − εn ∈ supp(σ . u), and we fall in (i).

If ` = n− 1, then pick a representative σ ∈ NGF (T) ∩ L2 of sεn−2+εn−1 ∈
WF . As above, σ . u ∈ O ∩ V2, and εi − εn−2 ∈ supp(σ . u) ∩ ΦΠ1 for some

i < n− 2. That is, supp(σ . u) 6⊂ V1.

Finally, if ` < n−1, then we pick a representative σ ∈ NGF (T) of sε`−εn−1 .

Then suppσ . u ⊂ V1 ∩ V2, and we fall in the case ` = n− 1. �
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5.2.2. Proof of Proposition 5.6, q even. Here Lemma 3.2 does not apply in
its full strength because of the existence of kthulhu classes in PSU4(q), q
even, and in PSL3(2). We proceed by induction on n. The case n = 4,
Lemma 5.7 below, requires a special treatment.

Lemma 5.7. If G = PΩ−8 (q) with q even, then O is not kthulhu.

Proof. Let us consider the F -stable standard parabolic subgroups P1, P2

with standard Levi subgroups L1 and L2 associated with the sets Π1 =

{α1, α2} and Π2 = {α2, α3, α4}, respectively. Let u ∈ O ∩ UF . We anal-

yse different situations, according to ∆ ∩ suppu. Recall that, u being F -

invariant, the simple root α3 ∈ suppu if and only if α4 ∈ suppu.

(i) α2, α3, α4 ∈ suppu.

The projection π2(u) ∈ L2 is regular, thus OM2

π2(u) is isomorphic as a rack to

a unipotent class in SU4(q) of partition (4) and Proposition 5.1 applies.

(ii) ∆ ∩ suppu = {α1, α3, α4} or ∆ ∩ suppu = {α3, α4}.
Then OM2

π2(u) has partition (2, 2) or (3, 1) and Proposition 5.1 applies.

(iii) ∆ ∩ suppu = {α1} or ∆ ∩ suppu = {α2}.
Here π1(u) ∈ L1 is not regular, hence OM1

π1(u) is isomorphic as a rack to a

unipotent class in SL3(q) with partition 6= (3); Theorem 3.3 applies.

(iv) ∆ ∩ suppu = {α1, α2}: either α2 + α3 + α4 ∈ suppu or not.

We may assume that α2 + α3 6∈ suppu, by conjugating with a suitable

element in (Uα3Uα4)F and using (2.1). If α2 + α3 + α4 ∈ suppu, then

OM2

π2(u) ' O
SU4(q)
v , where rk(v − id) = 2 and (v − id)2 = 0, which is not

kthulhu since its partition is (2, 2). If α2 + α3 + α4 6∈ suppu, then pick

a representative σ ∈ NGF (T) of s3s4 ∈ W . Then σ . u ∈ O ∩ UF and

∆ ∩ supp(σ . u) = {α1} so we reduce to (iii).

(v) ∆ ∩ suppu = ∅ and α1 + α2 ∈ suppu or α2 + α3 ∈ suppu.

In the first case, OM1

π1(u) has type (2, 1), and Theorem 3.3 applies. In the

second, also α2 + α4 ∈ suppu and OM2

π2(u) has type (2, 2). Indeed, OM2

π2(u) '

OSU4(q)
v , where rk(v− id) = 2 and (v− id)2 = 0. We invoke Proposition 5.1.

(vi) (∆ ∪ {α1 + α2, α2 + α3, α2 + α4}) ∩ suppu = ∅.
Let ṡi ∈ NGF (T) be a representative of si, i = 1, 2. If α1+α2+α3 ∈ suppu,

then also α1 +α2 +α4 ∈ suppu. Now ṡ1 . u ∈ UF ∩O, ∆∩ supp(ṡ1 . u) = ∅
and α2 + α3 ∈ supp(ṡ1 . u), so we fall in (v). Let σ be as in (iv). If

α2 + α3 + α4 ∈ suppu, then σ . u ∈ O ∩ UF and α2 ∈ supp(σ . u) and we

are in case (iii).
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(vii) suppu ⊂ {α1 + α2 + α3 + α4, α1 + 2α2 + α3 + α4}.

If α1 + α2 + α3 + α4 ∈ suppu, then ṡ1 . u is as in case (vi); while if

suppu = {α1 + 2α2 +α3 +α4}, then supp(ṡ2 .u) = {α1 +α2 +α3 +α4}. �

We now proceed with the recursive step and assume that all non-trivial
unipotent classes in a twisted group with root system Dn−1 are not kthulhu.

Let P1 and P2 be the standard parabolic subgroups with F -stable standard
Levi subgroups L1 and L2 associated with the sets Π1 = {αi | i ∈ In−2} and
Π2 = {αi | i ∈ I2,n}, of type An−2 and Dn−1 respectively. By Lemma 3.2 in
order to prove the inductive step, it is enough to show that no non-trivial
unipotent class O in GF satisfies O ∩ UF ⊂ V1 ∩ V2. As usual let

ΦΠ1 = {εi − εj | i < j ∈ In−1}, ΦΠ2 = {εi ± εj | i < j ∈ I2,n},
ΨΠ1 = {εi − εn, εj + εk | i ∈ In−1, j < k ∈ In}, ΨΠ2 = {ε1 ± εj | j ∈ I2,n}.

Let u ∈ O∩V1∩V2. Then suppu ⊂ ΨΠ1 ∩ΨΠ2 = {ε1−εn, ε1 +εj | j ∈ I2,n}.
Let ṡi ∈ NGF (T) be a representative of si ∈ WF , i = 1, 2. If suppu 6=
{ε1 + ε2} then ṡ1 . u ∈ O ∩ UF , but ṡ1 . u 6∈ V2 (look at its support). If,
instead, suppu = {ε1 +ε2} then ṡ1ṡ2 .u ∈ O∩UF ∩Uε2+ε3 , so ṡ1ṡ2 .u 6∈ V2.

This finishes the proof for q even and Proposition 5.6 is now proved. �

5.3. Unipotent classes in 2E6(q). We deal now with the group 2E6(q).
Here the Dynkin diagram automorphism ϑ interchanges α1 with α6 and α3

with α5. Here is the main result of this Subsection:

Proposition 5.8. Let O 6= {e} be a unipotent class in 2E6(q). Then O is

not kthulhu.

We give the proof for q odd in §5.3.1 and for q even in §5.3.2. Let P1

and P2 be the F -stable standard parabolic subgroups with standard Levi
subgroups L1 and L2 associated with Π1 = ∆ − {α2} (of type A5) and
Π2 = {α2, α3, α4, α5} (of type D4). Then ΨΠ1 , respectively ΨΠ2 , consists of
all positive roots containing α2, respectively at least one of α1 and α6.

5.3.1. Proof of Proposition 5.8, q odd. Here Lemma 3.2 (c) applies directly
to the F -stable parabolic subgroups.

Proof. By Lemma 3.2, Propositions 5.1 and 5.6, it is enough to show that

O ∩ UF 6⊂ V1 ∩ V2. Let β =
∑4

i=1 αi, γ =
∑6

i=1 αi; thus ϑ(β) = α2 + α4 +

α5 + α6. Let u ∈ O ∩ UF lying in V1 ∩ V2. Then

suppu ⊂ ΨΠ1 ∩ΨΠ2 = Ψ(β) ∪Ψ(ϑ(β)) = Σ ∪ ϑ(Σ) ∪Ψ(γ);
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here Σ = {βj | j ∈ I0,3} and Ψ(γ) = {γj | j ∈ I0,6}, where

β0 = β, β1 = s5β0; β2 = s4β1; β3 = s3β2;

γ0 = γ, γ1 = s4γ0; γ2 = s3γ1; γ3 = s5γ1;

γ4 = s5γ2 = s3γ3; γ5 = s4γ4; γ6 = s2γ5.

Let ẇ ∈ NGF (T) be a representative of w ∈ WF . If either βj or ϑ(βj) ∈
suppu for j ∈ I0,3, then ẇj . u ∈ O ∩ UF − V1, where w0 = w1 = s2,

w2 = s2s4, w3 = s2s4s5s3. Thus we may assume that suppu ⊂ Ψ(γ).

If γ0 ∈ suppu, then ṡ2 . u ∈ O ∩ UF , γ − α2 ∈ supp(ṡ2 . u) − ΨΠ1 .

Now we argue inductively. Suppose that γi ∈ suppu for some i ∈ I0,j−1

implies that O is not kthulhu. Assume that γi 6∈ suppu for i ∈ I0,j−1 and

γj ∈ suppu. We claim that there is ωj ∈ WF with ω̇j . u ∈ O ∩ UF and

either supp(ω̇j . u) 6⊂ Ψ(γ) (a case settled above), or γl ∈ supp(ω̇j . u) for

some l ∈ I0,j−1, where the recursive hypothesis applies. The claim holds,

taking ω1 = ω5 = s4, ω2 = ω3 = s1s6, ω4 = s3s5, w6 = s2. �

5.3.2. Proof of Proposition 5.8, q even. Here, the use of Lemma 3.2 is ham-
pered by the presence of kthulhu classes in PSU6(q).

Proof. As we have shown in the odd case, §5.3.1, there is u ∈ O ∩ UF such

that u 6∈ V1 ∩ V2. If u 6∈ V2, then the result follows from Proposition 5.6.

Let us assume that u ∈ V2− V1. In particular, α3, α4, α5, α3 +α4, α4 +α5,

α3 + α4 + α5 6∈ suppu. Then OM1

π1(u) is non-trivial.

If suppu∩ΦΠ1 6= {α1 +α3 +α4 +α5 +α6}, then OM1

π1(u) ' O
SU6(q)
v where

rk(v− id) = 2, hence its associated partition is not (2, 1, 1, 1, 1). By Lemma

5.1, OM1
v and O are not kthulhu.

If suppu ∩ ΦΠ1 = {α1 + α3 + α4 + α5 + α6}, then ẇ . u ∈ O ∩ UF where

w = s1s6 ∈WF . But α3 + α4 + α5 ∈ supp(ẇ . u), hence ẇ . u /∈ V2 and we

are done. �

5.4. Unipotent classes in 3D4(q). We deal now with triality; F arises
from the graph automorphism ϑ of order 3 determined by ϑ(α1) = α3. We
assume that G = Gsc. We fix and ordering of the ϑ-orbits in Φ+. Let

yα(ξ) := xα(ξ)xϑα(ξq)xϑ2α(ξq
2
), α ∈ Φ, ϑ(α) 6= α, ξ ∈ Fq3 .

Every element in UF can be uniquely written as a product of elements yα(ξ),
ϑα 6= α, ξ ∈ Fq3 , and xβ(ζ), ϑβ = β, ζ ∈ Fq. Let

Υ = 〈x±γ(ξ), y±δ(ξ) | ϑ(γ) = γ, ϑ(δ) 6= δ, ξ ∈ F×q 〉 ≤ GF .(5.1)

The generators in (5.1) are the non-trivial elements in the root subgroups
with respect to TF ∩ TFrq . It is known that Υ ' G2(q) ' GFrq .
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Proposition 5.9. Every unipotent class O 6= {e} in 3D4(q) is not kthulhu.

Proof. By the isogeny argument we work in G = GF
sc [ACGI, Lemma 1.2].

We analyse different cases separately, according to q being odd, even and

> 2, or 2.

(i) q is odd.

A list of representatives of the unipotent classes in 3D4(q) appears in [Ge,

Table 3.1]; they all have one of the following forms:

xα1+2α2+α3+α4(1), xα2(1)yα1+α2+α3(−1), u =xα2(1)yα1+α2+α3(ζ),

yα1+α2+α3(1), yα1(1)xα2(1), r =yα1(1)yα1+α2(a),

where ζ ∈ Fq3 is not a square and a ∈ Fq3 − Fq. So all classes but those

of u and r have a representative in Υ ' G2(q), hence they are not kthulhu

by Lemmata 4.6 and 4.7. Now u ∈ H = 〈UF±α2
, y±(α1+α2+α3)(b) | b ∈ F×

q3
〉,

which is isogeneous to SL2(q) × SL2(q3). Since OHu is the product of two

non-trivial racks and q3 > 3, OHu is of type D by Lemmata 2.1 and 3.6.

Assume that r ∈ O. Let ξ be a generator of F×
q3

,

η = ξq−1, t = α∨1 (η)α∨3 (ηq)α∨4 (ηq
2
), s = t . r = yα1(η2)yα1+α2(aη2).

By [Ge, Table 3.2], for every b, c ∈ F×
q3

we have

yα1+α2(b)yα1(c) = yα1(c)yα1+α2(b)yα1+α2+α3(bcq + cbq)

× xα1+α2+α3+α4(−(bcq
2+q + bqcq

2+1 + bq
2
cq+1))

× xα1+2α2+α3+α4(−(cbq
2+q + cqbq

2+1 + cq
2
bq+1)).

(5.2)

Using (5.2) we verify that the coefficient of yα1+α2+α3 in the expression

of rs, respectively sr, equals aη2q + aqη2, respectively aqη2q + aη2. These

coefficients are equal if and only if (aq − a)(η2q − η2) = 0. As η2(q−1) 6= 1

and aq 6= a, we have rs 6= sr, with rs, sr ∈ UF . Thus, (sr)2 6= (rs)2, as q

is odd. Comparing the coefficients of xα1 in the expressions of r and s as

products of elements in root subgroups, we see that

UF . r ⊂ xα1(1)〈Uβ|β ∈ Φ+ − {α1}〉, UF . s ⊂ xα1(η2)〈Uβ|β ∈ Φ+ − {α1}〉.

So O〈r,s〉r 6= O〈r,s〉s , whence Or is of type D.

(ii) q > 2 is even.

The list of representatives of the unipotent classes in G appears in [DM],

see [Hi, Table A2]. For suitable ζ, ζ ′ ∈ Fq, the representatives are of the
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form

u1 = xα1+2α2+α3+α4(1), u2 = xα2(1)xα1+α2+α3+α4(1),

u3 = yα1+α2+α3(1), u4 = yα1+α2(1)yα1+α2+α3(1)xα1+α2+α3+α4(ζ),

u5 = yα1(1)xα2(1), u6 = yα1(1)xα2(1)yα1+α2+α3(ζ ′),

u7 = yα1(1)yα1+α2(a), a ∈ Fq3 − Fq.

All classes except Ou7 are represented by v ∈ Υ ' G2(q); thus, these are

not kthulhu by Lemmata 4.8, 4.9, 4.10, 4.11, 4.12. We deal now with Ou7 ,

we shall show that it is of type F. Let γj =
∑j

i=1 αi for shortness. We use

(5.2) and the following relations from [Ge], cf. [Hi]:

yα1(b)yγ3(c) = yγ3(c)yα1(b)xγ4(cqb+ cq
2
bq + cbq

2
)

yγ2(b)yγ3(c) = yγ3(c)yγ2(b)xα1+2α2+α3+α4(cqb+ cq
2
bq + cbq

2
),

xα2(d)xγ4(e) = xγ4(e)xα2(d)xα1+2α2+α3+α4(de),

yα1(b)xα2(d) = xα2(d)yα1(b)yγ2(bd)yγ3(dbq+1)xγ4(dbq
2+q+1);

here b, c ∈ F×
q3

and d, e ∈ F×q . Let C ≤ F×
q3

be the cyclic subgroup of order

q2+q+1 and D := C∩F×q , a cyclic group of order (q−1, 3). Thus |C/D| ≥ 4.

Let ξi, i ∈ I4, be representatives of 4 distinct cosets in C/D and let

ti : = α1(ξi)α3(ξqi )α4(ξq
2

i ), ri : = ti . u7 = yα1(ξ2
i )yα1+α2(aξ2

i ) ∈ Or ∩ UF .

Since UF .ri ⊂ yα1(ξ2
i )〈Uγ | γ ∈ Φ+−∆〉, we have O〈r1,r2,r3,r4〉ri 6= O〈r1,r2,r3,r4〉rj

for i 6= j. In addition by (5.2) we see that

rirj ∈ yα1(ξ2
i + ξ2

j )yγ2(a(ξ2
i + ξ2

j ))yγ3(aξ2
i ξ

2q
j + aqξ2q

i ξ
2
j )UFγ4U

F
α1+2α2+α3+α4

The coefficients of yγ3 in the expressions of rirj and rjri are equal iff

(a + aq)(ξ2
i ξ

2q
j + ξjξ

2q
i ) = 0, iff (ξiξ

−1
j )2(q−1) = 1 (since a 6∈ Fq), iff i = j by

our choice of the ξi’s. Hence, ri . rj 6= rj for i 6= j and Ou7 is of type F.

(iii) q = 2.

The description of the representatives is the same as in (ii) with ζ = 0

and ζ ′ = 1, see [Hi, §3], so that

u4 = yα1+α2(1)yα1+α2+α3(1), u6 = yα1(1)xα2(1)yα1+α2+α3(1).

We do not have information on the unipotent classes of G2(2) yet, so we have

to argue differently. We proceed case by case. The argument for u7 is exactly

as for q > 2, Thus, Ou7 is of type F. Now u1 ∈ 〈UF±α2
,UF±(α1+2α2+α3+α4)〉, a

subgroup of type A2, but it is not regular there. Hence Ou1 is not kthulhu

by Theorem 3.3 and [MT, Theorem 24.15].
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By [Hi, Tables A.8], we have r := yα1(1)yγ3(1)xα1+2α2+α3+α4(1) ∈ Ou2 .

Let ξ ∈ F×8 such that ξ3 = ξ + 1. Then the roots in F×8 of the polynomial

X4 +X2 +X are ξ, ξ2 and ξ4. Their inverses, together with 1, are the roots

of the polynomial X4 +X2 +X + 1. Let P1 be the parabolic subgroup with

standard Levi subgroup associated with {α1, α3, α4}, and, for i ∈ I4, let

ti := α∨1 (ξi)α∨3 (ξ2i)α∨4 (ξ4i),

ri := ti . r = yα1(ξ2i)yγ3(ξ6i)xα1+2α2+α3+α4(1) ∈ Ou2 , so

UF . ra ⊂ yα1(ξ2i)V1.

Then, O〈r1,r2,r3,r4〉ri 6= O〈r1,r2,r3,r4〉rj for i 6= j. In addition,

rirj = yα1(ξ2i + ξ2j)yγ3(ξ6i + ξ6j)xγ4(ξ4(j−i) + ξ2(j−i) + ξj−i).

Let i 6= j. The coefficient of xγ4 in the expression of rirj is 0 if and only if

ξj−i ∈ {ξ, ξ2, ξ4} if and only if the coefficient of xγ4 in the expression of rjri

is 1. Thus, Ou2 is of type F.

Let now r1 = u3. Let σ and τ in Υ be representatives of s1s3s4, s2 ∈WF ,

respectively. Let P2 be the F -stable parabolic subgroup with standard Levi

subgroup associated with α2. We consider the following elements in O∩V2:

r2 = σ . r1 = yα1+α2(1), r3 = τ . r2 = yα1(1)

r4 = xα2(1) . r3 = yα1(1)yα1+α2(1)yα1+α2+α3(1)xα1+α2+α3+α4(1).

Let Z = 〈Uγ | γ ∈ Φ+ − {α1, α2, α1 + α2}〉. Then

V2 . r1 ⊂ yα1+α2+α3(1)Z, V2 . r2 ⊂ yα1+α2(1)Z,

V2 . r3 ⊂ yα1(1)Z, V2 . r4 ⊂ yα1(1)yα1+α2(1)Z.

Hence, the classes O〈r1,r2,r3,r4〉ri for i ∈ I4 are disjoint. A direct computation

shows that rirj 6= rjri for i 6= j, so Ou3 is of type F.

We deal now with u4. Let ξ, P1 and P2 be as above and let

t1 := α∨1 (ξ3)α∨3 (ξ6)α∨4 (ξ5), t2 := α∨1 (ξ)α∨3 (ξ2)α∨4 (ξ4),

r1 := t1 . u4 = yγ2(ξ6)yγ3(ξ4), r2 := xα2(1)yγ3(1)yγ4(1),

r3 := yα1(1)yγ3(1), r4 := t2 . r3 = yα1(ξ2)yγ3(ξ−1).

Then, ri ∈ Ou4 ∩ UF , [Hi, Tables A.2, A.4, A.8, A.12]. In addition,

UF . r1 ⊂ V1 ∩ V2, UF . r2 ⊂ xα2(1)V1 ∩ V2,

UF . r3 ⊂ yα1(1)V1 ∩ V2, UF . r4 ⊂ yα1(ξ2)V1 ∩ V2.

Hence, for H = 〈ri | i ∈ I4〉 we have OHri 6= O
H
rj for i, j ∈ I4, with i 6= j. A

direct computation shows that rirj 6= rjri, for i 6= j, so Ou4 is of type F.
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Finally, we treat simultaneously the classes of u5 and u6, that are of the

form x = yα1(1)xα2(1)yα1+α2+α3(ε) with ε ∈ {0, 1} respectively. Let C be

as in the odd case and let (ξi)i∈I4 be a family of distinct elements in C. Set

ti : = α∨1 (ξi)α
∨
3 (ξqi )α

∨
4 (ξq

2

i ),

ri : = ti . x = yα1(ξ2
i )xα2(1)yα1+α2+α3(εξ1+q−q2

i ) ∈ Ox ∩ UF .

Let Q = 〈r1, r2, r3, r4〉. Since UF . ri ⊂ yα1(ξ2
i )xα2(1)〈Uγ | γ ∈ Φ+ −∆〉, we

have OQri 6= O
Q
rj for i 6= j. The coefficient of yα1+α2 in the expression of rirj

equals ξ2
i , hence rirj 6= rjri for i 6= j. Hence Ou5 and Ou6 are of type F. �
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