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Abstract

We present an electoral theory on the public provision of local public goods to

an imperfectly informed electorate. We show that electoral incentives lead to greater

spending if the electorate is not well informed. A more informed electorate induces

candidates to target funds only to specific constituencies, which can reduce aggregate

welfare.
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1 Introduction

During electoral campaigns, voters pay only limited attention to candidates’policy proposals.

In particular, they pay more attention to any proposal that directly affects them and their

districts than to other proposals. As a result, voters end up with an information asymmetry:

they are better informed about policy proposals targeted to their own district than about

proposals targeted to other districts. For instance, US survey data shows that voters in

Michigan were better informed about the 2008 bailout of the Michigan auto industry than

voters in other states; similarly, voters in offshore-drilling Louisiana were better informed

about offshore drilling proposals; and voters in states bordering Mexico (TX, NM, AZ and

CA) were better informed about border control policies (see Appendix 5.1 for details).

We study how this information asymmetry affects the policy proposals for targeted spend-

ing that candidates announce during election campaigns and execute once in offi ce. A liter-

ature on government transparency suggests that distortive spending decisions occur because

voters are imperfectly informed, and that ineffi ciencies would be eliminated if voters were

fully informed.1 We show that this conjecture does not hold in the context of a central

government’s targeted spending on local public goods. Given that each local public good

project is effi cient if its social value exceeds the cost of provision, a government may incur

in two types of ineffi ciencies: over-spending, by financing projects that are ineffi cient, or

under-spending, by not financing effi cient projects.2 We show that a society with a more

informed electorate does not resolve these ineffi ciencies.

We present an electoral theory of local public good provision in a society with multiple

districts. Two candidates compete by proposing to provide a local public good to any number

of these districts. The benefits of provision -and hence the effi ciency of provision- can vary

across districts. The candidate who wins the election implements her proposal, and the cost

is paid by common taxation across all districts. Voters observe candidates’proposals for

1See Gavazza and Lizzeri [26], Rogoff and Sibert [48], Rogoff [47], Alt and Lassen [4] and a survey by
Eslava [23].

2A given spending policy can also incur in both types of ineffi ciencies. For instance, relative to the welfare
maximizing optimum, the US Congress under-spends in transportation projects in some districts, while at
the same time it over-spends in other districts (Knight [34]).
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their district, but they only observe proposals for other districts with positive probability π.

Parameter π measures the symmetry of voters’information about proposals for their own

district, and for other districts; if π is low we say that the information asymmetry is large,

and if π is high, we say that the asymmetry is small.

Spending varies with this information asymmetry. If voters’information is very asym-

metric (π < 1
2
), each voter is likely to vote based solely on what politicians propose for her

district. In response, candidates pander to every voter by offering to provide the local public

good everywhere. In contrast, if voters’information is more symmetric (π > 1
2
), voters are

likely to evaluate candidates based on their full slate of proposals, and each voter prefers that

fewer projects outside her own district be funded. Candidates respond by targeting spending

strategically to a subset of districts to carve out winning majority coalitions, regardless of

whether targeting funds to these or any other districts is effi cient or not. In sum, spending

in local public goods is driven by the information asymmetry, not by effi ciency. This finding

is consistent with empirical evidence that effi ciency criteria play only a limited role in the

geographical distribution of government infrastructure investment (Knight [34] and Castells

and Solé-Ollé [13]).

Notably, an increase in voters’ information about other districts —which reduces the

information asymmetry- can decrease social welfare: if providing a local public good to

each district is effi cient, we show that this effi cient policy is implemented if and only if

voters’information is very asymmetric (π < 1/2). Whereas, if voters’information is more

symmetric, candidates propose a policy of ineffi cient austerity, providing the local public

good to fewer districts.3

We fully characterize the equilibrium for the special case with exactly three districts,

allowing local public good provision to be effi cient in some districts and ineffi cient in others.

We identify the (large) range of parameters for which an increase in voters’information about

other districts leads to an equilibrium reduction in spending, and in aggregate welfare.

3Note that a fully informed electorate has perfectly symmetric information. Political activists such as
the 501(c)(4) non-profit Ending Spending argue that such an informed electorate would demand and obtain
a reduction in wasteful targeted spending. According to its mission statement: “information is the best
tool we have to combat the debt crisis and hold politicians accountable.” We show that a rational, informed
electorate neither demands nor obtains an effi cient provision of local public goods.
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1.1 Literature Review

A vast theoretical literature explains targeted redistribution as the equilibrium outcome of an

electoral game and argues that candidates aim to buy the votes of a winning majority.4 This

literature studies how political incentives affect redistributive policies under the assumption

that voters are fully informed about candidates’proposals.

Downs [20] suggests that while a well informed electorate would lead to the implementa-

tion of the correct policy, alternative policies would be implemented if the electorate is not

well informed. Electoral competition with voters who are poorly informed about the state of

the world can lead offi ce-motivated politicians to pander, offering the policy that a decisive

voter expects to be better for her.5

Closer to our work are models in which voters are imperfectly informed about candidates’

actions, rather than incompletely informed about candidates’types or about the state of the

world: Baron [6] and Gul and Pesendorfer [30] assume that some voters are fully informed,

while others are uninformed about policy proposals. Glaeser, Ponzetto and Shapiro [27]

assume that each voter becomes either informed or uninformed about the policy proposal of

each candidate separately, and Boffa, Piolatto and Ponzetto [10] develop a model of political

agency in which voters differ in their ability to monitor rent-seeking politicians. Other papers

assume that voters may fail to observe politicians’effort (Egorov [21], Aidt and Shvets [1])

or preferences (Dhami [18]).

Closest to us, Gavazza and Lizzeri [26] study taxation and targeted transfers, and assume

that voters may fail to observe the campaign promises of transfers to other voters.6 In their

model transfers are always ineffi cient and absent any informational friction, the equilibrium

strategy for candidates is to be completely inactive, to offer zero taxes and zero transfers

to every group. Based on this result, Gavazza and Lizzeri [26] argue that an increase of

4Ferejohn [24], Lindbeck and Weibull [37], Myerson [43], Dixit and Londregan [19], Groseclose and Snyder
[29], Banks [5], Persson and Tabellini [44], Lizzeri and Persico [38], Chari, Jones and Marimon [14], Dal Bo
[15], Roberson [46]; Fernandez and Levy [25], Dekel, Jackson and Wolinsky [16] and [17], Huber and Ting
[32], and Bierbrauer and Boyer [9].

5Heidhues and Lagerlof [31], Laslier and Van der Straeten [36], Kartik, Squintani and Tinn [33], and
Gratton [28].

6See as well subsequent work by Matĕjka and Tabellini [39].
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transparency in public spending is beneficial. Since in their model the government transfers

can do no good, scrutinizing them prevents the government from doing harm. This is, at

best, a limited view of government transfers. Our theory of public targeted spending is more

general —and more upbeat about the role of government—in the sense that we do not assume

that targeted spending is necessarily ineffi cient.

Our advances are twofold. First, we study electoral competition and local public good

provision with voters who are imperfectly informed about candidates’policies, an assumption

that is more consistent with the empirical evidence about voters’ information (Campbell,

Converse, Miller and Stokes [12]; Bartels [7]; and Alvarez [3]). And second, by jointly

considering effi cient and ineffi cient projects in a unified theory, we are able to better explain

the electoral pressures that lead to ineffi cient targeted spending policies than alternative

theories that study only ineffi cient or only effi cient projects in isolation.7

2 Model

Overview. We present an electoral competition model, in which candidates compete by

promising local public good provision to several electoral districts. There are two candidates

A and B, and n voters, one per district. Each candidate chooses a set of districts, and

proposes to provide a local public good to these districts, with costs covered by general

taxation of all districts. A voter learns whether her district is included in each of the

proposals, and votes for one of the candidates, or abstains. The candidate with most votes

wins and implements her proposal.

Players. The set of players is N ≡ C ∪ V, where C ≡ {A,B} is the set of candidates, and

V ≡ {1, ..., n} is the finite set of voters, with n ≥ 3.

Candidates’strategies. For each candidate j ∈ C, the set of pure strategies is S ≡ {0, 1}n,
7Our theory relates as well to other analyses of the role of information over political outcomes. Information

is typically beneficial (Strömberg [51]; Besley and Burgess [8]). However, some kinds of information are
detrimental in specific contexts: public information may induce agents to disregard useful private signals
(Prat [45] and Morris and Shin [41]) or reduce voluntary contributions toward the private provision of a
public good (Teoh [52]). We identify a third instance in which more information can be detrimental for
voters.
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with arbitrary candidate strategy s ≡ (s1, ..., sn). For each i ∈ V, si = 0 denotes no provision

of the local public good to (the district of) voter i, and si = 1 denotes provision to this

district. Let Σ ≡ ∆(S) denote the set of mixed candidate strategies, let σ ∈ Σ denote an

arbitrary mixed candidate strategy, and for each s ∈ S, let σ(s) denote the probability that

σ assigns to s.8 We say that σ ∈ Σ is strictly mixed if |{s ∈ S : σ(s) > 0}| ≥ 2 and that σ

is totally mixed if |{s ∈ S : σ(s) > 0}| = |S|.

For each j ∈ C, let σj ∈ Σ denote the mixed strategy chosen by candidate j, and let

σC ≡ (σA, σB) ∈ Σ2 ≡ Σ× Σ denote the candidates’chosen strategy profile.

For each j ∈ C and each i ∈ V , let pji ∈ {0, 1} denote the realization of the proposal of

candidate j to district i, and let pj ≡ (pj1, ..., p
j
n) ∈ {0, 1}n and pi ≡ (pAi , p

B
i ) ∈ {0, 1}2.

Timing and Information. First, each candidate j ∈ C chooses σj ∈ Σ and pair of

proposals (pA, pB) ∈ ({0, 1}n)2 is realized.9

Second, Nature determines whether or not all information is fully revealed. Information

is fully revealed with probability π ∈ (0, 1]. If information is fully revealed, each voter i ∈ V

observes (pA, pB). If information is not fully revealed, each voter i observes only (pAi , p
B
i ) and

remains uninformed about proposals in any district other than her own.

Third, each voter votes for one of the candidates, or abstains. The candidate with most

votes wins, with ties broken randomly, the proposal of the winning candidate is implemented,

and payoffs accrue.

The assumption that each voter is fully informed about funding in their district is for

ease of exposition: our theory and results generalize if there is some probability that voters

are not informed about any policy proposal.10

Voters’ strategies. If information is fully revealed, each voter’s problem is straightfor-

ward: a voter with full information votes for the candidate whose proposal she prefers. For

8For any finite set X, ∆(X) ≡ {w ∈ [0, 1]|X| :
∑
x∈X

wx = 1} denotes the set of probability distributions

over X, where |X| denotes the size of X and wx denotes the probability attached to element x.
9Note that ∀j ∈ C, ∀s ∈ S, Pr[pj = s] = σj(s).
10Formally, for any πIn ∈ (0, 1), we could assume instead that voters are informed only about funding

in their district with probability (1 − π)πIn, and fully informed with probability (π)πIn, so they are fully
uninformed with probability 1 − πIn. Voters who are completely uninformed do not affect the candidates’
equilibrium strategies (in equilibrium, these voters abstain).
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simplicity, we collapse the branch of the game in which information is fully revealed, directly

imputing to voters the payoffs that accrue (as detailed below) if each voter plays the un-

dominated strategy of voting for the candidate whose proposal she prefers, and abstains if

indifferent. Denote abstention by ∅.

If information is not fully revealed, each voter i ∈ V observes pi ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

A pure strategy for any voter is a mapping z : {(0, 0), (0, 1), (1, 0), (1, 1)} −→ {A,B,∅} and

z(pi) is the vote cast according to z after observing pi. Let Z ≡ {A,B,∅}4 denote each voter’s

strategy set, and let zi ∈ Z be the strategy chosen by voter i.

Payoffs. Candidates are purely offi ce motivated. The payoff for each candidate j ∈ C is

equal to the probability that j wins the election.

Voters care about the local public good in their district, and about the total cost of public

good provision. The cost of providing the local public good to each district is normalized to

one. Each voter i ∈ V enjoys a benefit βi if the local public good is provided to district i,

and receives no benefit from provision to other districts. All districts share the total cost of

public good provision equally. Therefore, if candidate j ∈ C proposes pj ∈ {0, 1}n and wins

the election, then voter i obtains a payoff

βip
j
i −

1

n

∑
h∈V

pjh. (1)

We allow for heterogeneity in βi across districts. We say provision of the local public

good to district i is effi cient if βi > 1, and ineffi cient if βi < 1. We say a policy pj is

effi cient if it provides the local public good to each district in which provision is effi cient

(βi > 1 =⇒ pji = 1), and it does not provide it to any district in which provision is ineffi cient

(βi < 1 =⇒ pji = 0). An effi cient policy maximizes aggregate welfare. We say that a policy

pj under-spends if it does not provide the local public good to a district in which provision

would be effi cient (βi > 1 but pji = 0).

We assume that βi > (n + 1)/2n for each i ∈ V , which rules out ineffi ciencies so severe

that any majority of districts prefers to not provide the local public good to any district,

7



than to provide it only to districts in this majority.11 We also assume that a voter i is not

indifferent between any proposal that funds the local public good in her district, and no

provision to any district, i.e. we assume that for any integer k ∈ ((n+ 1)/2, n] and any

i ∈ V , βi 6= k/n.

Beliefs. If information is not revealed, each voter i ∈ V computes her expected payoff

if j ∈ {A,B} wins based on her observation of pji ∈ {0, 1} and on her conjectures about

candidate j′s play. In an equilibrium in which candidate j plays σj, for each i ∈ V, if pji is

consistent with σj, voter i uses Bayes rule, pji , and σ
j to form expectations over pj. If pji is

not consistent with σj, then we assume that voter i uses Bayes rule, pji and the limit of a

sequence of totally mixed strategies {σjt}∞t=1 that converges to σ
j, to form expectations over

pj.

Solution concept. We assume that candidates are strategic, rational expected utility

maximizers. Voters are sequentially rational (Kreps and Wilson [35]).

To rule out uninteresting equilibria in which no voter is pivotal because all voters vote

for the same candidate, we restrict attention to equilibria in which both candidates play the

same strategy and in which voters, if strategically indifferent, vote for the candidate whose

expected proposal they sincerely prefer, and if again indifferent, they abstain.

Even with these restrictions, we face the challenge of multiplicity of equilibria. Following

Myerson’s ([42]) idea of “properness”, we resolve this challenge by requiring any voter who

observes a deviation by candidate j, to form beliefs consistent with the premise that j is

infinitely more likely to have chosen a deviation that is less costly for j than a costlier one.

We provide a formal definition of the beliefs and the equilibrium notion in the Appendix.

3 Results

We first consider a society in which the provision of the local public good to each district is

effi cient.
11If the benefit of provision is less than (n + 1)/2n in every district, the effi cient policy of no provision

is a Condorcet winner (it is simple majority preferred to any other proposal) and it can be sustained in
equilibrium whether or not the electorate is informed.
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We show that the equilibrium outcome is effi cient if and only if the electorate is unlikely

to become informed. If the electorate is not informed, each district bases its vote on local

information alone, which induces universal provision. Whereas, if the electorate is informed,

then voters also condition their vote on provision to other districts, which they oppose,

driving down overall spending and with it, effi ciency.

Proposition 1 Assume βi > 1 for each i ∈ V . An equilibrium exists.

If π ∈
(
0, 1

2

)
, the equilibrium is pure, unique and effi cient: it provides the local public

good to every district (universal provision).

If π ∈
(

1
2
, 1
]
, all equilibria are in strictly mixed strategies and therefore ineffi cient, under-

spending in expectation on local public goods.

The intuition for the equilibrium with universal provision if the electorate is unlikely to be

informed (π ∈
(
0, 1

2

)
) is as follows. Consider voter’s beliefs such that a voter i who observes

a deviation to pji = 0, believes that the deviating candidate j has proposed provision to n−1

districts, that is, to all districts except i. If information is not revealed, voter i with these

beliefs votes against the deviating candidate j; since information is unlikely to be revealed,

the deviating candidate is likely to lose, making the deviation unprofitable. These beliefs

satisfy the restriction that voters who observe a deviation must believe candidates to have

played the deviation most profitable to the candidate, because offering the local public good

to n− 1 districts is indeed the best deviation for each candidate.

In contrast, if the electorate is likely to be informed (π > 1
2
), the branches of the game in

which information is revealed become determinant. No pure equilibrium holds: if a candidate

uses a pure strategy to provide the local public good to k districts, the other candidate can

deviate to propose provision to only k−1 of these districts, and all voters except the excluded

one prefer the deviation, so the deviator wins if information is revealed, which occurs with

probability π > 1
2
. Since in any equilibrium, both candidates win with equal probability, the

deviation is then profitable. If a candidate proposes to not provide the local public good to

any district, the other candidate can propose to provide it to (n+ 1)/2 districts if n is odd,

or to n/2 + 1 if n is even, and the deviator wins if information is revealed.
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We provide a more detailed exploration of the relation between information and local

public good spending in a society with three districts (n = 3). For this special case, we

relax the assumption that provision to each district is effi cient, allowing provision to be

ineffi cient in an arbitrary subset of districts. We fully characterize the set of equilibria

in this environment. We use the following notation to precisely describe the equilibrium

strategies. Let βmed be the median value of {β1, β2, β3}. Define the voter strategy z∗ ∈ Z

by z∗((0, 0)) = z∗((1, 1)) = ∅, z∗((0, 1)) = B and z∗((1, 0)) = A. For k ∈ {1, 2}, define

Sk ≡
{
s ∈ S :

n∑
i=1

si = k

}
; that is, Sk is the set of strategies that provide the local public

good to exactly k districts. And for each π ∈ (0, 1], define the mixed candidate strategies

σπ ∈ Σ and σ̂π ∈ Σ by the weights in the following table:

s = (0, 0, 0) ∀s ∈ S1 ∀s ∈ S2 s = (1, 1, 1)

σπ(s) 0 2π−1
10π−3

1
10π−3

4π−3
10π−3

σ̂π(s) 4π−3
10π−3

1
10π−3

2π−1
10π−3

0

Proposition 2 Assume n = 3. An equilibrium exists. In all equilibria, each voter i plays

zi = z∗. Let π̂ ≡ (11 +
√

61)/20. The equilibrium is unique for any π ∈ (0, 1] except π = 1
2

and π = π̂.

i) If π ∈
(
0, 1

2

)
, candidates play the pure strategy (1, 1, 1) (universal provision).

ii) If π ∈
(

1
2
, 3

4

]
, candidates play the mixed strategy σ with σ(s) = 1

3
for any s ∈ S2

(provision to two randomly chosen districts).

iii) For any π ∈
(

3
4
, π̂
)
, and for any π ∈ [π̂, 1] if βmed > 1, the equilibrium is unique and

candidates play σπ.

iv) For any π ∈ (π̂, 1] , if βmed < 1, candidates play σ̂π.

v) If π = π̂ and βmed < 1, a strategy profile ((σ, σ), zV ) is an equilibrium if and only if

zi = z∗ for each i ∈ V and σ = λσπ + (1− λ)σ̂π for some λ ∈ [0, 1].

If the electorate is unlikely to be informed (π ∈
(
0, 1

2

)
) and provision is ineffi cient in each

district (βi ∈
(

2
3
, 1
)
for each i ∈ {1, 2, 3}), then solution concepts that allow great freedom to

off-path beliefs, such as Perfect Bayesian equilibrium or Sequential equilibrium (Kreps and

Wilson [35]) offer an indeterminate prediction: a sequential equilibrium with no provision to
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any district, and another with universal provision, both hold, supported by beliefs such that

a voter who observes a deviation believes that the deviator has proposed provision to every

other district.

In contrast, once we refine voters’off-path beliefs as in our solution concept, then we

find that even if provision is ineffi cient in each district, only the equilibrium with universal

provision holds.

In support of this sharper prediction, we note that in a laboratory experiment with

π = 0.25 and βi = 0.9, 94% of observed equilibrium play corresponded to the equilibrium

with universal provision (Eguia, Llorente-Saguer, Morton and Nicolò [22] section 4.3).

From Proposition 2, we obtain the following corollary on the total expenditure on local

public good provision.

Corollary 1 Assume n = 3. In the unique equilibrium, the expected number of districts that

receive the public good is:

i) 3 if π ∈
(
0, 1

2

)
;

ii) 2 if π ∈
(

1
2
, 3

4

]
;

iii) in
[

35
21
, 36

21

]
if π ∈

(
3
4
, π̂
)
, or π ∈ (π̂, 1] and βmed > 1; and

iv) in
[

27
21
, 30

21

]
and strictly decreasing in π if π ∈ (π̂, 1] and βmed < 1.

Figure 1 illustrates the comparative static on aggregate spending as a function of the

probability that the electorate becomes informed, for the case in which the median benefit

for a district βmed is greater than one. A similar figure obtains if βmed < 1 (see Figure 2 in

the Appendix).

If the electorate is not informed, each district bases its vote on local information alone,

which induces universal provision; whereas, if the electorate is informed, then voters also

condition their vote on provision to other districts, which they oppose regardless of effi ciency

considerations, driving down overall spending.

However, there are regions over which spending is locally increasing in information: while

we can partition the range of the information parameter π into three (if βmed > 1) or four

(if βmed < 1) intervals such that total spending decreases as π increases from any interval to

a higher one, an increase of π within the third interval leads to increased spending.
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Figure 1: Expected provision if βmed > 1

The intuition for this local increase for the case βmed > 1 is as follows. For k ∈ {1, 2}, let

σk denote the mixed strategy consisting on provision to k districts, randomizing which ones.

For π ∈
(

1
2
, 3

4

)
, the equilibrium proposal is σ2. The payoff from deviating to σ1 increases in π,

because conditional on information being revealed, j playing σ1 wins against −j playing σ2

with probability 2
3
, (j loses if information is not revealed). At π = 3

4
, there is a discontinuity:

the equilibrium proposal σ2 and the deviation σ1 yield the same expected payoff. For π > 3
4
,

the payoff of deviating to σ1 is higher and the equilibrium breaks down. The new mixed

equilibrium for π ∈
(

3
4
, 1
]
re-attains equality in the expected payoff from playing σ1 or σ2

by introducing a positive weight to playing full provision: σ((1, 1, 1)) > 0. If information

is revealed, full provision defeats any realization of σ1, but it is defeated by any realization

of σ2. So playing full provision lowers the payoff of playing σ1, and increases the payoff

of σ2. The weight of full provision σ((1, 1, 1)) required to equate the payoff of σ1 and σ2

monotonically increases in π from 0 for π = 3
4
to 1

7
for π = 1. As a result, the expected

spending in this mixed equilibrium increases monotonically in the interval π ∈
(

3
4
, 1
]
from

1.67 to 1.71, while remaining far below the expected spending of 3 in the equilibrium with

π ∈
(
0, 1

2

)
, or 2 in the equilibrium with π ∈

(
1
2
, 3

4

)
, as shown in Figure 1.

We also obtain the following corollary on welfare. Let β̄ = (1/n)
∑n

i=1 βi be the average
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project benefit.

Corollary 2 Assume n = 3. If β̄ > 1, then for any πL < 1
2
, any πM ∈

(
1
2
, 3

4

]
and any

πH ∈
(

3
4
, 1
]
, aggregate welfare decreases as information π increases from πL to πM , or from

πM to πH (if β̄ < 1, this comparative static is reversed).

For the same reason as in the case of Corollary 1, this monotonicity result does not hold

locally within the interval
(

3
4
, 1
]
.

4 Discussion

Our theory relates targeted spending on local public good provision to the magnitude of

the asymmetry in voters’information about spending targeted across districts.12 We predict

greater aggregate targeted spending if the information asymmetry is large (π small) than if

the information asymmetry is low (π large).

We focus on a specific form of voters’lack of information: voters’imperfect observation

of the electoral promises made to other voters. Gavazza and Lizzeri [26] focus on the same

information problem, to study government spending under the restriction that case spending

targeted to any district is ineffi cient. They conclude that imperfect observability generates

incentives for candidates to offer ineffi cient targeted spending. Our predictions partially align

with Gavazza and Lizzeri’s [26]: in the special case that any spending is ineffi cient, if voters

become more informed about spending targeted to other districts, then the ineffi ciency is

reduced. However, we also consider more optimistic scenarios, in which provision of local

public goods can be effi cient. In the extreme case in which all projects under consideration

are effi cient, effi ciency is only achieved if the electorate is not informed about targeted

spending in other districts: a reduction in this information asymmetry leads to ineffi cient

under-spending, a form of excessive austerity.

As uninformed public good consumers, citizens push candidates to provide local public

goods in every district, irrespective of effi ciency. As informed tax payers, they push candi-

12Our theory also applies to a society in which voters are divided into interest groups, rather than districts,
as in Schipper and Woo [49], or Boyer, Konrad, and Roberson [11].
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dates to reduce targeted spending on local public good projects, again, irrespective of the

effi ciency of these projects.

5 Appendix

5.1 Evidence of Asymmetric Information

We assume that voters are more informed about proposals for projects in their district, than

about proposals for projects to be executed in other districts. An implication is that given

a proposal to execute a project in a given district, voters in this district are better informed

about the project than voters from other districts.

We searched for survey data from 2007 to 2012 about policy proposals to be executed

in specific districts or that disproportionately affect specific districts in the U.S. We found

national surveys that ask factual questions testing respondents’knowledge about three such

targeted policy proposals: proposals about offshore drilling, about securing the border, and

about the auto bailout.

The 2008 National Annenberg Election Survey asked a factual question (question CDd08)

on campaign proposals to secure the border to 6,864 subjects, and it asked a factual question

(question CFa11) on campaign proposals about offshore drilling to 15,048 subjects. Projects

to secure the border directly affect Texas, New Mexico, Arizona and California. Offshore

drilling policy affects mostly Louisiana.

The Pew Research Center for the People & the Press’s survey on Political Knowledge

conducted on March 26—29, 2009, asked a factual question on the auto bailout to 1003

subjects. The auto bailout program directly affects mostly Michigan. The percentages of

correct responses to these questions are as follows:

On Drilling (NAES) On the Border (NAES) On Auto Bailout (Pew)
Louisiana 66.3 Border States 48.6 Michigan 73.1
Rest of US 57.1 Rest of US 43.9 Rest of US 57.5
Diff. +9.2 Diff. +4.7 Diff. +15.6

Table 1: Percentage of correct answers by local and non-local respondents.
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In each of the three questions, respondents from the state(s) directly affected by the

policy were more informed. We checked that this result is not driven by citizens of these

six states being generally better informed about all issues: these states perform no better

and in fact generally worse than the rest of the U.S. in answering the two questions that do

not directly affect them. Table 2 offers this comparison. Each cell gives the difference in

“percentage of correct responses from the state(s) in the row to the question in the column”

minus “percentage of correct responses from respondents in the rest of the U.S. excluding

the state(s) in the row.”

Drill Border Auto
Louisiana +9.2 -1.5 -25.1

Border States +3.1 +4.7 -4.5
Michigan +3.2 -0.8 +15.5

Table 2: Difference in percentage of correct responses relative to the rest of the US.

With the caveats that the 2008 NAES and the 2009 Pew poll are not directly comparable,

and the sample size by state for the auto bailout question is small, we can say that these states

on average outperform the nation by ten percentage points on knowledge about policies that

directly affect them (cells in bold in Table 2), and underperform the nation by four percentage

points on questions that affect other states (all other cells); a difference of fourteen percentage

points.

This is the raw data on number of correct responses and total responses to each question.

Drill Border Auto
Correct Total Correct Total Correct Total

Louisiana 108 163 45 104 6 18
Michigan 316 524 88 200 19 26
Texas 496 837 154 390 39 72

New Mexico 58 94 23 44 7 9
Arizona 124 212 73 127 11 20
California 879 1462 354 681 56 107
US Total 8613 15048 3074 6864 581 1003

Table 3: Observation count, by question and state.

15



5.2 Additional Figure

Figure 2: Expected provision if βmed < 1.

5.3 Formal Notation and Definitions

Notation.

For each candidate j ∈ C, let −j denote C\{j}.

Let zV ≡ (z1, ..., zn) ∈ Zn denote the voters’ chosen strategy profile. Let z∗V be the

voter profile in which each voter i uses strategy zi = z∗, (recall z∗ is defined by z∗((0, 0)) =

z∗((1, 1)) = ∅, z∗((0, 1)) = B and z∗((1, 0)) = A).

Let σN ≡ (σC , zV ) ∈ Σ2 × Zn denote the strategy profile chosen by all agents, and for

each h ∈ N, let σN\{h} be the strategy profile of n − 1 agents constructed by excluding the

strategy of agent h from profile σN .

For each j ∈ C, for any σ ∈ Σ, and for any σN\{j} ∈ Σ× Zn, let uj(σ, σN\{j}) denote j′s

expected utility given σj = σ and given that all other players play profile σN\{j}.

Let su ≡ {1}n ∈ S be the candidate strategy of universal provision.

For each ε ∈ (0, 1), define Σε ≡ {σ ∈ Σ : σ(s) ≥ ε ∀s ∈ S} and Σ+ ≡
⋃

ε∈(0,1)

Σε, so that

Σ+ is the set of all totally mixed strategies.
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Beliefs.

For each candidate j ∈ C and voter i ∈ V, for any given σj ∈ Σ and {σjt}∞t=1 −→ σj such

that σjt ∈ Σ+ for each t ∈ N, and for each s ∈ S, let ωji (s|p
j
i , σ

j, {σjt}∞t=1) denote the belief

that voter i assigns to pj = s given that i only observes pji , uses Bayes rule and σ
j to form

beliefs about pj if pji is consistent with σ
j, and uses Bayes rule and {σjt}∞t=1 to form beliefs

about pj if pji is not consistent with σ
j. Then, for any j ∈ C and any s ∈ S such that pji = si,

ωji
(
s
∣∣(pji , σj, {σjt}∞t=1

))
=


σj(s)∑

s̃∈S,s̃i=p
j
i

σj(s̃)
if

∑
s̃∈S,s̃i=pji

σj(s̃) > 0,

lim
t−→∞

σjt (s)∑
s̃∈S,s̃i=p

j
i

σjt (s̃j)
otherwise.

And ωi
(
s
∣∣(pji , σj, {σjt}∞t=1

))
= 0 for any s ∈ S such that si 6= pji .

For each candidate j ∈ C, for each voter i ∈ V, for each observed proposal pji ∈ {0, 1},

and for each
(
σj, {σjt}∞t=1

)
that i uses to form beliefs about pj, let ui(Ei[pj|(pji , σj, {σ

j
t}∞t=1)])

denote the expected value for i of the proposal made by j. Then

ui
(
Ei
[
pj
∣∣(pji , σj, {σjt}∞t=1

)])
= βip

j
i −

1

n

∑
s∈S

(
ωji
(
s
∣∣(pji , σj, {σjt}∞t=1

))∑
h∈V

sh

)
.

And let EUi[j|
(
pi, σ

N\{i}, {σCt }∞t=1

)
] denote the expected utility for i of voting for j.

Equilibrium concept.

Definition 1 For any ε ∈ R++, we say that a strategy profile σN ≡ (σC , zV ) ∈ (Σ+)2 × Zn

is “ε− proper with respect to C”if it satisfies:

i) for each j ∈ C, and for any s, s̃ ∈ S, if uj(s, σN\{j}) < uj(s̃, σN\{j}), then σj(s) < εσj(s̃),

and

ii) for any i ∈ V , zi is a best response to σN\{i}.

Our solution concept is a strategy profile that is the limit of profiles that are ε− proper

with respect to C, in which both candidates play the same strategy, and in which voters,

if strategically indifferent, vote sincerely for the candidate whose expected proposal they

prefer. This concept is a variation of Myerson’s ([42]) notion of an “ε − proper”strategy
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profile in which only the set of candidates C is required to use totally mixed strategies, while

we allow voters to best respond in a standard fashion. We use the totally mixed candidates’

strategy profile to generate voters’beliefs that are consistent with this profile at every voter

information set.13

Definition 2 We say that a strategy profile σN ≡ (σC , zV ) ∈ (Σ+)2×Zn is an “equilibrium”

if σA = σB and there exists a pair of convergent sequences {εt}∞t=1 −→ 0 and
{
σCt
}∞
t=1
−→ σC

such that

i) ∀t ∈ N, εt ∈ R++, σ
C
t ∈ (Σ+)2 and (σCt , zV ) is εt-proper with respect to C, and

ii) for each voter i ∈ V and candidate j ∈ C, strategy zi is such that if EUi[A|(pi, σN\{i}, {σCt }∞t=1)] =

EUi[B|(pi, σN\{i}, {σCt }∞t=1)], then:

zi(pi) = j ⇐⇒ ui
(
Ei
[
pj
∣∣(pji , σj, {σjt}∞t=1

)])
> ui

(
Ei
[
p−j
∣∣(p−ji , σ−j, {σ−jt }∞t=1

)])
. (2)

Condition (2) above rules out equilibria in which no voter is pivotal because they all vote

for the same candidate.

5.4 Proofs

Proposition 1. Assume βi > 1 for each i ∈ V . An equilibrium exists.

If π ∈
(
0, 1

2

)
, the equilibrium is pure, unique and effi cient: it provides the local public

good to every district (universal provision).

If π ∈
(

1
2
, 1
]
, all equilibria are in strictly mixed strategies and therefore ineffi cient,

under-spending in expectation on local public goods.

Proof. Part I. First we show existence for any π ∈ (0, 1]. For each voter i ∈ V, fix zi = z∗.

We show below that this is a best response for voter i that satisfies Condition (2) in Definition

2.
13We do not need to construct a profile of totally mixed voters’strategy profiles because there is no infor-

mation set in which an agent has observed a voter deviation (voters move last). Candidates anticipate voters
will follow their equilibrium strategy, and voters similarly expect other voters to follow their equilibrium
strategy.
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For each ε ∈ R++, define

η(ε) ≡ ε2n

2n
.

Define the correspondence Fε : Ση(ε) ⇒ Ση(ε) by Fε(σ) = {σ̃ ∈ Ση(ε) : σ̃(s) ≤ εσ(s̃) for

any s, s̃ ∈ S such that uA((s, (σ̃, z∗V )) < uA(s̃, σ̃, z∗V )}.

Note that for any σ ∈ Ση(ε), Fε(σ) 6= ∅. In particular, for any σ ∈ Ση(ε) and for each

s ∈ S, define

λ(s, σ) ≡ |{s̃ ∈ S : uA(s, (σ, z∗V )) < uA(s̃, (σ, z∗V ))}|

and

σ̌(s) ≡ ελ(s,σ)∑̃
s∈S

ελ(s̃,σ)
.

Then σ̌ ∈ F (σ).

Furthermore, for each σ ∈ Ση(ε), Fε(σ) is defined by a finite collection of linear weak

inequalities, so it is a closed set.

Furthermore, for each σ ∈ Ση(ε), Fε(σ) is also convex: for any σ ∈ Ση(ε) and for any

σ̃, σ′ ∈ Fε(σ) and any λ ∈ (0, 1), σ̄ = λσ̃ + (1− λ)σ′ is such that for any s, s̃ ∈ S such that

uA (s, (σ, z∗V ))) < uA(s̃, (σ, z∗V )),

λσ̃(s) + (1− λ)σ′(s) ≤ ε(λσ̃(s̃) + (1− λ)σ′A(s̃))

σ̄(s) ≤ εσ̄(s̃).

We next establish that Fε is upper hemi continuous. Note that for each ε ∈ R++,Ση(ε)

is compact and Fε(σ) is closed for any σ ∈ Ση(ε), so Fε is compact-valued. It suffi ces then

to show that Fε has a closed graph. For any strategy σ ∈ Σ and for any δ ∈ R++, let

Nδ(σ) ≡ {σ̃ ∈ Σ : ||σ − σ̃|| < δ} be the open neighborhood of size δ around strategy σ

in the standard Euclidean space R|S|. Consider any σ ∈ Ση(ε) and any convergent sequence

{(σt, σ̃t)}∞t=1 −→ (σ, σ̃) such that for any t ∈ N, σt ∈ Ση(ε) and σ̃t ∈ Fε(σt). We want to

establish that σ̃ ∈ Fε(σ). Suppose not. Then either σ̃ 6∈ Ση(ε), or σ̃ ∈ Ση(ε) and there

exist s, s̃ ∈ S such that uA(s, (σ, z∗V )) < uA(s̃, (σ, z∗V )) and σ̃(s) > εσ̃(s̃). Suppose first
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σ̃ 6∈ Ση(ε); then ∃δ̄ ∈ R++ such that σ̂ /∈ Ση(ε) ∀σ̂ ∈ Nδ(σ̃), ∀δ ∈ (0, δ̄), which contradicts the

statement: {σ̃t ∈ Fε(σt) ∀t ∈ N and σ̃t −→ σ̃}.

Suppose instead σ̃ ∈ Ση(ε) and there exist s, s̃ ∈ S such that uA(s, (σ, z∗V )) < uA(s̃, (σ, z∗V ))

and σ̃(s) > εσ̃(s̃). Then, ∃δ̄ ∈ R++ such that ∀δ ∈
(
0, δ̄
)
and ∀σ̂ ∈ Nδ(σ̃), uA(s, (σ̂, z∗V )) <

uA(s̃, (σ̂, z∗V )) and σ̂(s) > εσ̂(s̃), which again contradicts {σ̃t ∈ Fε(σt)∀t ∈ N and σ̃t −→ σ̃}.

So, σ̃ ∈ Fε(σ) and Fε is upper hemi continuous.

Since Fε(σ) is a compact and convex set for each σ ∈ Ση(ε), the Cartesian product

Fε(σ) × Fε(σ) is also compact and convex. For each ε ∈ R++, Define Hε : Ση(ε) ⇒
(
Ση(ε)

)2

by Hε(σ) ≡ Fε(σ) × Fε(σ) for each σ ∈ Ση(ε), so Hε is compact and convex. Further, since

Fε is upper hemi continuous, the product correspondence Hε = Fε × Fε is also upper hemi

continuous (Aliprantis and Border [2] Thm. 17.28).

Then for each ε ∈ R++, Hε satisfies the conditions of the Kakutani fixed point theorem,

and it has a fixed point σε ∈ Ση(ε). Construct the strategy profile σNε ≡ ((σε, σε) , z
∗
V ) ∈

Σ2 × Zn. Note that if players play the profile σN = σNε , then σ
A = σB. Further, σA = σAε

is a constrained best response to σN\{A}ε , subject to the constraint of σA ∈ Ση(ε). Because

σAε = σBε , zi((k, k)) = z∗((k, k)) = ∅ for each k ∈ {0, 1} is a best response to σN\{i}ε for each

i ∈ V, and because βi > 1, zi((0, 1)) = z∗((0, 1)) = B and zi((1, 0)) = z∗((1, 0)) = A are best

responses as well. So zi = z∗ is a best response to σN\{i}ε for each voter i ∈ V. Furthermore,

because each voter i ∈ V uses a strategy z∗, payoffs for candidate B are the same up to

relabeling as for candidate A, and then, since σAε = σBε , the strategy chosen by A in response

to σBε is also a best response by B to σAj subject to the same constraints for candidate B

given by ε that apply to A.

So, the fixed point σNε is a symmetric strategy profile that is ε− proper with respect to

{A,B}.

Then, take a sequence {εt}∞t=1 −→ 0 such that εt ∈ R++ for each t ∈ N, and a cor-

responding sequence of candidates’strategies {σt}∞t=1 such that each σ
N
t = ((σt, σt) , z

∗
V ) is

εt − proper with respect to C. Take a convergent subsequence of {σt}∞t=1, let σ denote the

limit of this convergent subsequence, and let {σCt }∞t=1 ≡ {(σt, σt)}∞t=1, converging to σ
C ∈ Σ2.

We next show that given (σC , {σCt }∞t=1), zV = z∗V satisfies the voting Condition (2) in
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Definition 2.

For each voter i ∈ V, because σA = σB and βi > 1, EUi[A
∣∣(pi, ((σ, σ) , z∗V ), {σCt }∞t=1) ] = EUi[B

∣∣(pi, ((σ, σ) , z∗V ), {σCt }∞t=1) ]

and ui
(
Ei
[
pj
∣∣(pji , σ, {σt}∞t=1)

])
= ui

(
Ei
[
[p−j

∣∣(p−ji , σ, {σt}∞t=1)
])


occurs if and only if pi ∈ {(0, 0), (1, 1)}, so Condition (2) in Definition 2 requires zi(pi) = ∅

if pi ∈ {(0, 0), (1, 1)}; zi = z∗ satisfies this restriction. Because βi > 1, for {j,−j} = {A,B}, EUi[A
∣∣(pi, ((σ, σ) , z∗V ), {σCt }∞t=1) ] = EUi[B

∣∣(pi, ((σ, σ) , z∗V ), {σCt }∞t=1) ]

and ui
(
Ei
[
pj
∣∣(pji , σ, {σt}∞t=1)

])
> ui

(
Ei
[
p−j
∣∣(p−ji , σ, {σt}∞t=1)

])


occurs only if pji > p−ji , and in this case Condition (2) in Definition 2 requires zi(pi) = j

which is again satisfied by zi = z∗.

Hence, σN = ((σ, σ), z∗V ) is an equilibrium.

Part II. We next prove that σN = ((su, su) , z∗V ) is an equilibrium for π ∈
(
0, 1

2

)
. Note that

given the assumption that βi > 1 for each i ∈ V, the effi cient policy is universal provision,

so (sA, sB) = (su, su) guarantees that the policy outcome is effi cient.

Assume π ∈
(
0, 1

2

)
.

We construct a sequence {σt}∞t=1 −→ su as follows. For each t ∈ N, let εt = 1
2t
and for

each k ∈ {0, 1, 2, ..., n− 1}, and for each s ∈ Sk let

σt(s) =
1

(2t)n+1−k , (3)

so {σt(s)}∞t=1 −→ 0 for any s 6= su , so {σt}∞t=1 −→ su.

We check that given σAt = σBt = σt, the weights given by Expression (3) along the sequence

{σt}∞t=1 satisfy the restriction (i) in Definition 1. We show this for A, and a symmetric

argument applies to B. For any suffi ciently large t ∈ N, uA(s, (σt, z
∗
V )) is lexicographic: for
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any s, s̃ ∈ S, uA(s, (σt, z
∗
V )) > uA(s̃, (σt, z

∗
V )) if and only if ∃l ∈ {0, ..., n} such that

uA(s, (ŝ, z∗V )) ≥ uA(s, (ŝ, z∗V )) ∀ŝ ∈
n⋃

k=l+1

Sk, and

uA(s, (ŝ, z∗V )) > uA(s, (ŝ, z∗V )) for any ŝ ∈ Sl.

For any k ∈ {0, ..., n} and any ŝ ∈ Sk, if (sA, sB) = (s, ŝ) and information is not revealed

(which occurs with probability 1−π > 1
2
), the margin of victory for A is

∑
i∈V

si−k, so A wins

if
∑
i∈V

si > k, ties if
∑
i∈V

si = k and loses if
∑
i∈V

si < k. If information is revealed and
∑
i∈V

si = k,

A ties as well.

Hence, uA(s, (σt, z
∗
V )) > uA(s̃, (σt, z

∗
V )) if and only if

∑
i∈V

si >
∑
i∈V

s̃i, in which case, accord-

ing to Expression (3), σt(s) ≥ 2tσt(s̃), satisfying (i) in Definition 1.

We check that there exists t̄ ∈ N such that for each i ∈ V, zi = z∗ is a best response for

voter i to ((σt, σt) , z
∗
V \{i}) for any t > t̄, thus satisfying Condition (2) in Definition 1. For

an arbitrary voter i , given that σA = σB = σt, ∀t ∈ N, zi((0, 0)) = zi((1, 1)) = z∗((0, 0)) =

z∗((1, 1)) = ∅ is a best response. And given pi = (0, 1), given that pAi = 0 establishes that

A has not played the equilibrium strategy su, voter i uses {σt}∞t=1 to form beliefs and infers

that A has played the strategy that assigns pAh = 1 for any h ∈ V \{i} with probability 1.

Whereas, pBi = 1 is consistent with the equilibrium strategy su and thus i believes that B

has played sB = su with probability 1, hence, zi((0, 1)) = B is a best response. An analogous

argument applies to pi = (1, 0).

We complete this part by noting that voters satisfy the voting restriction Condition (2)

in Definition 2.

Given that σA = su = σB and {σCt }∞t=1 = {(σt, σt)}∞t=1, for each i ∈ V, if pi ∈ {(0, 0), (1, 1)},

then

EUi
[
A
∣∣(pi, ((su, su), z∗V \{i}) , {σCt }∞t=1

)]
= EUi

[
B
∣∣(pi, ((su, su), z∗V \{i}) , {σCt }∞t=1

)]
and Ei[pA

∣∣(pAi , su, {σt}∞t=1) ] = Ei[p
B
∣∣(pBi , su, {σt}∞t=1) ],

so Condition (2) requires zi((0, 0)) = zi((1, 1)) = ∅, which is satisfied by zi = z∗. Given
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pi ∈ {(0, 1), (1, 0)}, then

EUi
[
A
∣∣(pi, ((su, su), z∗V \{i}) , {σCt }∞t=1)

]
6= EUi

[
B
∣∣(pi, ((su, su), z∗V \{i}) , {σCt }∞t=1)

]
and thus Condition (2) in Definition 2 is vacuously satisfied.

Part III. We prove uniqueness for π ∈
(
0, 1

2

)
. Assume π ∈

(
0, 1

2

)
. We prove that for any

(σ, z̃V ) ∈ (Σ× Zn) \{(su, su, z∗V ), (σA, σB, zV ) = ((σ, σ), z̃V ) is not an equilibrium.14

For any i ∈ V , because βi > 1, for any {σCt }∞t=1 −→ (σ, σ), and given pi = (0, 1), for

t ∈ N suffi ciently large we obtain

EUi[A
∣∣(pi, ((σ, σ), z̃V ) , {σCt }∞t=1) ] ≤ EUi[B

∣∣(pi, ((σ, σ), z̃V ) , {σCt }∞t=1) ]

and

Ei[p
A|(pAi , σ, {σt}∞t=1)] < Ei[p

B|(pBi , σ, {σt}∞t=1)]

and thus, it must be z̃i((0, 1)) = B, and similarly, z̃i((1, 0)) = A. Further, because σA = σB,

on the equilibrium path it must be z̃i((0, 0)) = z̃i((1, 1)) = ∅.

Assume that σ(su) 6= 1. Assume that candidate B deviates to sB = su. For any i ∈ V

such that
∑
s∈S

σ(s)si > 0 (that is, for any voter i who observes pAi = 1 with strictly positive

probability), pi = (1, 1) is on the equilibrium path, and thus z̃i((1, 1)) = ∅, and for any

i ∈ V, z̃i((0, 1)) = B as shown above. Thus, if B deviates to sB = su, with probability

1 − σA(su) > 0, sB = su and pA 6= su (B proposes universal provision and A does not).

In this case, with probability 1 − π > 1
2
, information is not revealed and given that voters

play z̃V , B wins; whereas, B may only lose with probability at most π < 1
2
. So if A

proposes any pA 6= su, the deviation is strictly profitable for B. With probability σA(su),

pA = su and both candidates tie. So, in the aggregate, the deviation is strictly profitable, so

(σA, σB, zV ) = ((σ, σ), z̃V ) is not an equilibrium. Hence, it must be σC = (su, su).

Then, given that the equilibrium candidates’strategy profile is (su, su) and given that

βi > 1 for each i ∈ V and z̃i((0, 1)) = B and z̃i((1, 0)) = A, the order of possible deviations

14Note that this claim, together with existence, suffi ces to establish that ((su, su), z∗V ) is an equilibrium.
Part II provides an alternative, constructive proof.
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according to the expected utility that they yield to candidate j ∈ C is a partial order such

that sj = s is strictly better than sj = s̃ if and only if
∑
i∈V

si >
∑
i∈V

s̃i. That is, if two strategies

offer provision to a different number of districts, the one that offers provision to more districts

wins; hence strategies that offer provision to more districts are better, and must have greater

weights in the sequence {σCt }∞t=1. Hence, for each j ∈ C, if voter i ∈ V observes p
j
i = 0, voter

i infers that with probability one, candidate j ∈ C has offered provision to n − 1 districts.

Thus, if voter i ∈ V observes pi = (0, 0), then her expectation over the policies of A and B,

and her expected utility of voting for either A or B, are the same, and hence i abstains, so

z̃i((0, 0)) = ∅ and thus zi = z∗ for each i ∈ V.

Part IV. We prove that if π ∈
(

1
2
, 1
)
, in any equilibrium candidates use strictly mixed

strategies. Since the effi cient policy is universal provision, if candidates play a strictly mixed

strategy, there exists i ∈ V such that Pr[pAi = pBi = 0] > 0, which implies that the equilibrium

is in expectation ineffi cient, and the expected number of districts that receive local public

good provision is strictly less than n, that is, the equilibrium under-spends in expectation.

Assume π ∈
(

1
2
, 1
)
and that (

(
σA, σB

)
, zV ) = ((ŝ, ŝ) , ẑV ) for some ŝ ∈ S and some

ẑV ∈ Zn. Define k ∈ {0, 1, ..., n} by k =
∑
i∈V

si. Because in equilibrium both candidates

propose the same policy, and voters abstain when indifferent, in equilibrium, both candidates

win with equal probability. If k = 0 and candidate A deviates to sA = s for any s ∈ S(n+1)/2

(if n is odd) or any s ∈ S1+n/2 (if n is even), then A wins if information is revealed, which

occurs with probability π > 1
2
, hence the deviation is profitable. If k > 0 and candidate

deviates to sA = s for any s ∈ Sk−1 such that |{i ∈ V : si < ŝi}| = 1, then A wins

if information is revealed, which occurs with probability π > 1
2
, hence the deviation is

profitable.

The proof of Proposition 2 is long. We first prove existence for any π ∈ (0, 1] construc-

tively. Claim 1 establishes that the strategy profiles listed in the statement of Proposition

2 constitute equilibria for the stated values of parameter π ∈ (0, 1]. We subsequently prove

that no other strategy profile constitutes an equilibrium.

We use the following notation: s0 = (0, 0, 0), s1 = (1, 0, 0), s2 = (0, 1, 0), s3 = (0, 0, 1),

s4 = (1, 1, 0), s5 = (1, 0, 1) and s6 = (0, 1, 1), and to be consistent with the notation we use
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for universal provision for an arbitrary n, for n = 3 we use su = (1, 1, 1). Also note that if

n = 3, S0 ≡ {s0}, S1 ≡ {s1, s2, s3}, S2 ≡ {s4, s5, s6}, and S3 ≡ {su}.

Claim 1 Assume n = 3. If π ∈
(
0, 1

2

]
, there exists an equilibrium in which candidates

play the pure strategy (1, 1, 1) (full provision) and the voters’strategy profile is z∗V . For any

π ∈
(

1
2
, 1
]
, there is an equilibrium ((σ, σ), z∗V ) in which σ is as follows:

σ(s0) σ(s) ∀s ∈ S1 σ(s) ∀s ∈ S2 σ(su)

0 0 1
3

0 if π ∈
(

1
2
, 3

4

]
0 2π−1

10π−3
1

10π−3
4π−3
10π−3

if π ∈
(

3
4
, 11+

√
61

20

]
or π > 3

4
and βmed > 1

4π−3
10π−3

2π−1
10π−3

1
10π−3

0 if π ∈
(

11+
√

61
20

, 1
]
and βmed < 1.

Further, if π = 11+
√

61
20

and βmed < 1, for any λ ∈ [0, 1], the strategy profile ((λσπ + (1−

λ)σ̂π, λσπ + (1− λ)σ̂π), z∗V ) is an equilibrium.

Proof. For expositional convenience, without loss of generality, label voters such that β1 ≥

β2 ≥ β3. We partition the parameter range of π into five cases.

Case 1. Assume π ∈
(
0, 1

2

]
. For any V̄ ⊆ V, let z∗

V̄
∈ Z |V̄ | denote the voters’strategy profile

in which zi = z∗ for each i ∈ V̄ . We show that if π ∈
(
0, 1

2

]
, (
(
sA, sB

)
, zV ) = ((su, su) , z∗V )

is an equilibrium. Note sA = sB. For each of two subcases, we construct a pair of sequences

{εt}∞t=1 −→ 0 and {σCt }∞t=1 −→ (su, su) such that for each t ∈ N, εt ∈ R++, σNt = (σCt , z
∗
V ) is

εt − proper with respect to C. We then note that for each i ∈ V, zi = z∗ satisfies the voting

Condition (2) in Definition 2 given (
(
sA, sB

)
, zV ) = ((su, su) , z∗V ) and given {σCj }∞t=1, hence

((su, su) , z∗V ) constitutes an equilibrium.

Subcase 1.1. β2 > 1. Construct a pair of sequences
(
{εt}∞t=1, {σNt }∞t=1

)
such that εt = 1/2t

for each t ∈ N; such that for each t ∈ N, for each j ∈ {A,B}, for any k ∈ {0, 1, 2} and for

any s ∈ Sk,

σjt (s) =
1

2t(4−k)
;

and such that for each t ∈ N and for each i ∈ V, zi,t = z∗. Here is the payoff matrix for
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candidate A as a row player as a function of play by B given that zV = z∗V :

sA
∖
sB (0, 0, 0) ∈ S1 ∈ S2 (1, 1, 1)

(0, 0, 0) 1
2

π 0 0

∈ S1 1− π 1
2

2π
3

0

∈ S2 1 1− 2π
3

1
2

π

(1, 1, 1) 1 1 1− π 1
2

. (4)

Hence, given that candidateB plays σBt , and for t ∈ N suffi ciently large, uA((1, 1, 1),
(
σBt , z

∗
V

)
) >

uA(s,
(
σBt , z

∗
V

)
) > uA(s̃,

(
σBt , z

∗
V

)
) > uA((0, 0, 0),

(
σBt , z

∗
V

)
) for any s ∈ S2 and any s̃ ∈ S1 and

hence the weights in the sequence {σCt }∞t=1 satisfy the εt − proper restrictions.

To conclude the proof of this case, we need a further step, which is common to both

subcases. Given that sA = sB = su and σAt = σBt for each t ∈ N, zi((0, 0)) = zi((1, 1)) =

z∗((0, 0)) = z∗((1, 1)) = ∅ is a best response to (σCt , z
∗
V \{i}) and to (su, su, z∗V \{i}) for each

i ∈ V given pi ∈ {(0, 0), (1, 1)} for each t ∈ N. Moreover, given pi = (0, 1),

∑
s∈S2

ωAi (s|
(
pAi , s

u, {σAt }∞t=1

)
) = 1, so

EUi
[
A
∣∣((0, 1), ((su, su) , z∗V \{i}), {σCt }∞t=1

)]
< EUi

[
B
∣∣((0, 1), ((su, su) , z∗V \{i}), {σCt }∞t=1

)]
,

so zi((0, 1)) = z∗((0, 1)) = B is a best response, and, by a symmetric argument, zi((1, 0)) =

z∗((1, 0)) = A is a best response, so zi = z∗ is a best response for each i ∈ V .

Finally, the voting Condition (2) in Definition 2 is satisfied because

EUi
[
A
∣∣(pi, ((su, su) , z∗V \{i}), {σCt }∞t=1

)]
= EUi

[
B
∣∣(pi, ((su, su) , z∗V \{i}), {σCt }∞t=1

)]
if and only if pi ∈ {(0, 0), (1, 1)}, in which case

ui
(
Ei[p

A|
(
pAi , s

u, {σAt }∞t=1

)
]
)

= ui
(
Ei[p

B|
(
pBi , s

u, {σBt }∞t=1

)
]
)

and thus zi(pi) = z∗(pi) = ∅, as required by Condition (2) in Definition 2.
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Subcase 1.2. β2 < 1. Let the pair of sequences
(
{εt}∞t=1, {σCt }∞t=1

)
be such that εt = 1/2t for

each t ∈ N; such that for each t ∈ N, for each j ∈ {A,B}, σjt ((0, 0, 0)) = 1/23t, σjt (s) = 1/24t

for any s ∈ S1 and σ
j
t (s) = 1/22t for any s ∈ S2; and such that for each t ∈ N, zV,t = z∗V .

Here is the payoff matrix for candidate A as a row player as a function of play by B given

that voters play zV = z∗V :

sA
∖
sB (0, 0, 0) ∈ S1 ∈ S2 (1, 1, 1)

(0, 0, 0) 1
2

π 0 π

∈ S1 1− π 1
2

2π
3

0

∈ S2 1 1− 2π
3

1
2

π

(1, 1, 1) 1− π 1 1− π 1
2

. (5)

Hence, given that candidate B plays σBt , and for t ∈ N suffi ciently large,

uA((1, 1, 1),
(
σBt , z

∗
V

)
) > uA(s,

(
σBt , z

∗
V

)
) > uA((0, 0, 0),

(
σBt , z

∗
V

)
) > uA(s̃,

(
σBt , z

∗
V

)
)

for any s ∈ S2 and any s̃ ∈ S1 and hence the weights in the sequence {σCt }∞t=1 satisfy the

εt − proper restrictions.

Further, given that sA = sB = su and σAt = σBt for each t ∈ N, zV = z∗V is a best response

for voters and satisfies Condition (2) in Definition 2 for the same arguments as in Subcase

1.1, verbatim.

Case 2. Assume π ∈
(

1
2
, 3

4

]
. Throughout this Case 2, let σ̂ ∈ Σ refer to the candidate

strategy defined by σ̂(s) = 1
3
∀s ∈ S2, and σ̂(s) = 0 ∀s 6∈ S2, and let σ̂N ≡ (σ̂, σ̂, z∗V ). We

show that if π ∈
(

1
2
, 3

4

]
, then σN = σ̂N is an equilibrium. For each of two subcases, we

construct a pair of sequences {εt}∞t=1 −→ 0 and {σCt }∞t=1 −→ (σ̂, σ̂) such that for each t ∈ N,

εt ∈ R++ and (σCt , z
∗
V ) is εt − proper with respect to C. We then note that z∗V satisfies the

voting Condition (2) in Definition 2 given σ̂N and {σCt }∞t=1.

Subcase 2.1. π ∈
(

1
2
, 3

5

]
. The payoff for candidate A as a row player given that B plays
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σB = σ̂ andvoters play zV = z∗V is

sA ui(s
A, σN\{A})

(0, 0, 0) 0

∈ S1
2π
3

∈ S2
1
2

(1, 1, 1) 1− π

, (6)

so for any t ∈ N suffi ciently large,

uA(s,
(
σBt , z

∗
V

)
) > uA((1, 1, 1),

(
σBt , z

∗
V

)
) > uA(s̃,

(
σBt , z

∗
V

)
) > uA((0, 0, 0),

(
σBt , z

∗
V

)
)

for any s ∈ S2 and any s̃ ∈ S1.

Let the pair of sequences
(
{εt}∞t=1, {σCt }∞t=1

)
be such that εt = 1/2t for each t ∈ N; and

such that for each t ∈ N, for each j ∈ {A,B}, σjt ((1, 1, 1)) = 1/22t, σjt (s) = 1/23t for any

s ∈ S1 and σ
j
t ((0, 0, 0)) = 1/24t.

Note that the weights in the sequence {σCt }∞t=1 satisfy the εt− proper restriction for each

j ∈ C.

Further, given that σA = σB and σAt = σBt for each t ∈ N,

zi((0, 0)) = zi((1, 1)) = z∗((0, 0)) = z∗((1, 1)) = ∅

is a best response to (σCt , z
∗
V \{i}) and to ((σ̂, σ̂) , z∗V \{i}) for each i ∈ V given pi ∈ {(0, 0), (1, 1)}.

Moreover, given pi = (0, 1),

EUi
[
A
∣∣((0, 1), σ̂N\{i}, {σCt }∞t=1

)]
< EUi

[
B
∣∣((0, 1), σ̂N\{i}, {σCt }∞t=1

)]
,

so zi((0, 1)) = z∗((0, 1)) = B is a best response, and, by a symmetric argument, zi((1, 0)) =

z∗((1, 0)) = A is a best response, so zi = z∗ is a best response for each i ∈ V .
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Finally, the voting Condition (2) in Definition 2 is satisfied because

EUi[A
∣∣(pi, σ̂N\{i}, {σCt }∞t=1

)
] = EUi

[
B
∣∣(pi, σ̂N\{i}, {σCt }∞t=1

)]
if and only if pi ∈ {(0, 0), (1, 1)}, in which case

ui
(
Ei
[
pA|
(
pAi , σ̂, {σAt }∞t=1

)])
= ui

(
Ei[p

B|
(
pBi , σ̂, {σBt }∞t=1

)
]
)

and thus zi(pi) = z∗(pi) = ∅, as required by Condition (2) in Definition 2.

Subcase 2.2. π ∈
(

3
5
, 3

4

]
. The payoff for candidate A as a row player given that B plays

σB = σ̂ andvoters play zV = z∗V is Matrix (6) above. So for any π ∈
(

3
5
, 3

4

)
and any t ∈ N

suffi ciently high,

uA(s,
(
σBt , z

∗
V

)
) > uA(s̃,

(
σBt , z

∗
V

)
) > uA((1, 1, 1),

(
σBt , z

∗
V

)
) > uA((0, 0, 0),

(
σBt , z

∗
V

)
)

for any s ∈ S2 and any s̃ ∈ S1 . If π = 3
4
and B plays σB = σ̂, the payoff for A from playing

any s ∈ S2 or any s̃ ∈ S1 is 1
2
; we must look at the payoff of A if B plays any strategy.

The payoff for A playing sA = s for any s ∈ S1 is 1
4
if sB = (0, 0, 0), 1

2
if sB ∈ S1, and 0

if sB ∈ S3; further, since σBt (s) = σBt (s̃) for any s, s̃ ∈ S2, it follows that the expected payoff

for A from playing sA = s for any s ∈ S1 given that sB ∈ S2 is 1
3
0 + 2

3
3
4

= 1
2
. Similarly, the

payoff for A playing sA = s for any s ∈ S2 is 1 if sB = (0, 0, 0), 1
2
if sB ∈ S2, and 3

4
if sB ∈ S3;

and, since σBt (s) = σBt (s̃) for any s, s̃ ∈ S1, it follows that the expected payoff for A from

playing sA = s for any s ∈ S2 given that sB ∈ S1 is 1
3
1 + 2

3
1
4

= 1
2
.

So again, uA(s,
(
σBt , z

∗
V

)
) > uA(s̃,

(
σBt , z

∗
V

)
) for π = 3

4
, for any s ∈ S2 and any s̃ ∈ S1 .

Let the pair of sequences
(
{εt}∞t=1, {σCt }∞t=1

)
be such that εt = 1/2t for each t ∈ N; and

such that for each t ∈ N, for each j ∈ {A,B}, σjt ((1, 1, 1)) = 1/22t, σjt (s) = 1/23t for any

s ∈ S1 and σ
j
t ((0, 0, 0)) = 1/24t.

Note that the weights in the sequence {σCt }∞t=1 satisfy the εt− proper restriction for each

j ∈ C.

Further, given that σA = σB and σAt = σBt for each t ∈ N, zV = z∗V is a best response
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for voters and satisfies Condition (2) in Definition 2 for the same arguments as in previous

subcase, verbatim.

Case 3. Assume π ∈
(

3
4
, 1
]
and β2 > 1. Throughout cases 3, 4, and 6, let σN,π ≡

((σπ, σπ) , z∗V ). We show that if π ∈
(

3
4
, 1
]
and β2 > 1, then σN = σN,π is an equilib-

rium. We construct a pair of sequences {εt}∞t=1 −→ 0 and {σCt }∞t=1 −→ (σπ, σπ) such that

for each t ∈ N, εt ∈ R++ and (σCt , z
∗
V ) is εt − proper with respect to C. We then note that

z∗V satisfies the voting Condition (2) in Definition 2 given σ
N,π and {σCt }∞t=1.

The payoff matrix for candidate A as a row player as a function of play by B given that

voters play zV = z∗V is Matrix (4).

For any t ∈ N, assume that σBt ((0, 0, 0)) = 1/24t, σBt (s) = δ1,t/3 ∈ (0, 1) ∀s ∈ S1,

σBt (sB) = δ2,t/3 ∈ (0, 1) ∀s ∈ S2 and σBt ((1, 1, 1)) = δ3,t, and solve the system of equations

with δ1,t, δ2,t, δ3,t ∈ [0, 1− 1/24t] as the variables to solve for, such that uA(s,
(
σBt , z

∗
V

)
) =

uA(s̃,
(
σBt , z

∗
V

)
) for any s, s̃ ∈ S\{(0, 0, 0)}. For each t ∈ N, let δ3,t = 1− 1/24t − δ1,t − δ2,t.

Then the system of equations is:

1

24t
(1− π) +δ1,t

(
1

2

)
+δ2,t

(
2π

3

)
=

1

24t
(1) +δ1,t

(
1− 2π

3

)
+δ2,t

(
1

2

)
+

(
1− 1

24t
− δ1,t − δ2,t

)
π,

and
1

24t
(1− π) +δ1,t

(
1

2

)
+δ2,t

(
2π

3

)
=

1

24t
(1) +δ1,t (1) +δ2,t (1− π) +

(
1− 1

24t
− δ1,t − δ2,t

)
1

2

with solutions

δ1,t =
6π − 3

10π − 3

(
1− 1

24t

)
, δ2,t =

3

10π − 3
+

6π − 3

10π − 3

1

24t
.

Let the pair of sequences
(
{εt}∞t=1, {σCt }∞t=1

)
be such that εt = 1

2t
for each t ∈ N; and such

that for each t ∈ N, for each j ∈ {A,B}, σjt ((0, 0, 0)) = 1/24t,

σjt (s) =
2π − 1

10π − 3

(
1− 1

24t

)
for any s ∈ S1, and

σjt (s) =
1

10π − 3
+

2π − 1

10π − 3

1

24t
for any s ∈ S2.

Note that {σjt}∞t=1 −→ σ̄ for each j ∈ C, and that for each t ∈ N, σjt satisfies the weights
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restriction in the definition of an εt − proper equilibrium:

uA(s,
(
σBt , z

∗
V

)
) = uA(s̃,

(
σBt , z

∗
V

)
) > uA((0, 0, 0),

(
σBt , z

∗
V

)
)

for any s, s̃ ∈ S\{(0, 0, 0)} so the only restriction is that

σAt ((0, 0, 0)) <
1

2t
σAt (s) for any s ∈ S\{(0, 0, 0)},

which is satisfied.

Further, given that σA = σB and σAt = σBt for any t ∈ N,

zi((0, 0)) = zi((1, 1)) = z∗((0, 0)) = z∗((1, 1)) = ∅

is a best response for each i ∈ V given pi ∈ {(0, 0), (1, 1)}. Moreover, for each i ∈ V,

EUi
[
A
∣∣((0, 1), σN\{i},π, {σCt }∞t=1

)]
< EUi

[
B
∣∣((0, 1), σN\{i},π, {σCt }∞t=1

)]
,

so zi((0, 1)) = z∗((0, 1)) = B is a best response, and, by a symmetric argument, zi((0, 1)) =

z∗((1, 0)) = A is a best response, so zi = z∗ is a best response for each i ∈ V .

Finally, the voting Condition (2) in Definition 2 holds because

EUi
[
A
∣∣(pi, σN\{i},π, {σCt }∞t=1

)]
= EUi[B

∣∣(pi, σN\{i},π, {σCt }∞t=1

)
]

if and only if pi ∈ {(0, 0), (1, 1)}, in which case

ui
(
Ei[p

A
∣∣(pAi , σπ, {σAt }∞t=1

)
]
)

= ui
(
Ei[p

B
∣∣(pBi , σπ, {σBt }∞t=1

)
]
)
,

and thus zi(pi) = z∗(pi) = ∅, as required by Condition (2) in Definition 2.

Case 4. Assume π ∈
(

3
4
, (11 +

√
61)/20

]
and β2 < 1. We show that σN = σN,π is an

equilibrium. Note that σA = σB. We construct a pair of sequences {εt}∞t=1 −→ 0 and

{σCt }∞t=1 −→ (σπ, σπ) such that for each t ∈ N, εt ∈ R++ and (σCt , z
∗
V ) is εt − proper with
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respect to C. We then note that z∗V satisfies the voting Condition (2) in Definition 2 given

σ̄N and {σCt }∞t=1.

The payoff matrix for candidate A as a row player as a function of play by B given that

voters play zV = z∗V is Matrix (5).

For any t ∈ N, assume that σBt ((0, 0, 0)) = 1
24t
, σBt (s) = δ1,t/3 ∈ (0, 1) ∀s ∈ S1,

σBt (sB) = δ2,t/3 ∈ (0, 1) ∀s ∈ S2 and σBt ((1, 1, 1)) = δ3,t, and solve the system of equations

with δ1,t, δ2,t, δ3,t ∈ [0, 1− 1/24t] as the variables to solve for, such that uA(s,
(
σBt , z

∗
V

)
) =

uA(s̃,
(
σBt , z

∗
V

)
) for any s, s̃ ∈ S\{(0, 0, 0)}. For each t ∈ N, let δ3,t = 1− 1/24t − δ1,t − δ2,t.

Then the system of equations is:

1

24t
(1− π) +δ1,t

(
1

2

)
+δ2,t

(
2π

3

)
=

1

24t
(1) +δ1,t

(
1− 2π

3

)
+δ2,t

(
1

2

)
+

(
1− 1

24t
− δ1,t − δ2,t

)
π;

1

24t
(1− π) +δ1,t

(
1

2

)
+δ2,t

(
2π

3

)
=

1

24t
(1− π) +δ1,t (1) +δ2,t (1− π) +

(
1− 1

24t
− δ1,t − δ2,t

)
1

2
,

with solutions

δ1,t =
6π − 3

10π − 3
+

3

(10π − 3)24t
and

δ2,t =
3

10π − 3
− 3

(10π − 3)24t
.

Note that {σjt}∞t=1 −→ σπ for each j ∈ C, and that for each t ∈ N, σjt satisfies the weights

restriction in the definition of an εt − proper equilibrium:

uA(s,
(
σBt , z

∗
V

)
) = uA(s̃,

(
σBt , z

∗
V

)
) > uA((0, 0, 0),

(
σBt , z

∗
V

)
)

for any s, s̃ ∈ S\{(0, 0, 0)} and any π ∈
(

3
4
, (11 +

√
61)/20

)
, and analogously for candidate

B, so the only restriction is that

σjt ((0, 0, 0)) <
1

2t
σjt (s)

for any s ∈ S\{(0, 0, 0)} for any π ∈
(

3
4
, (11 +

√
61)/20

)
, which is satisfied.
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The proof of this case concludes following the same steps as in Case 3, verbatim.

Case 5. Assume π ∈
(
(11 +

√
61)/20, 1

]
and β2 < 1. Throughout Case 5 and Case 6, let

σ̂N,π ≡ ((σ̂π, σ̂π), z∗V ). We show that if π ∈
(
(11 +

√
61)/20, 1

]
and β2 < 1, then σN = σ̂N,π

is an equilibrium. Note that σN = σ̂N,π implies σA = σB. We construct a pair of sequences

{εt}∞t=1 −→ 0 and {σCt }∞t=1 −→ (σ̂π, σ̂π) such that for each t ∈ N, εt ∈ R++ and (σCt , z
∗
V ) is

εt − proper with respect to C. We then note that zV = z∗V satisfies the voting Condition (2)

in Definition 2 given σ̂N,π and {σCt }∞t=1.

The payoff matrix for candidate A as a row player as a function of play by B given that

voters play zV = z∗V is Matrix (5).

For any t ∈ N, assume that σBt ((0, 0, 0)) = δ0,t, σ
B
t (s) = δ1,t/3 ∈ (0, 1) ∀s ∈ S1,

σBt (s) = δ2,t/3 ∈ (0, 1) ∀s ∈ S2 and σBt ((1, 1, 1)) = 1/24t, and solve the system of equations

with δ0,t, δ1,t, δ2,t ∈ [0, 1− 1/24t] as the variables to solve for, such that uA(s,
(
σBt , z

∗
V

)
) =

uA(s̃,
(
σBt , z

∗
V

)
) for any s, s̃ ∈ S\{(1, 1, 1)}. For each t ∈ N, let δ0,t = 1− 1/24t − δ1,t − δ2,t.

Then the system of equations is:

(
1− 1

24t
−δ1,t−δ2,t

)
1

2
+δ1,t (π) +

1

24t
(π)=

(
1− 1

24t
−δ1,t−δ2,t

)
(1− π) +δ1,t

(
1

2

)
+δ2,t

(
2π

3

)
;(

1− 1

24t
− δt1 − δt2

)
1

2
+δ1,t (π)=

(
1− 1

24t
− δt1 − δt2

)
(1) +δ1,t

(
1− 2π

3

)
+δ2,t

(
1

2

)

with solutions

δ1,t =
3

10π − 3

(
1− 1

24t

)
and δ2,t =

6π − 3

10π − 3
+

3

(10π − 3)24t
.

Let the pair of sequences
(
{εt}∞t=1, {σCt }∞t=1

)
be such that εt = 1

2t
for each t ∈ N, and such

that for each t ∈ N, for each j ∈ {A,B},

σjt ((0, 0, 0)) =
4π − 3

10π − 3
,

σjt (s) =
1

10π − 3

(
1− 1

24t

)
∀s ∈ S1,

σjt (s) =
2π − 1

10π − 3
+

1

10π − 3

1

24t
∀s ∈ S2.
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Note that {σjt}∞t=1 −→ σ̂π for each j ∈ C, and that for each t ∈ N, σjt satisfies the weights

restriction in the definition of an εt − proper equilibrium:

uA(s,
(
σBt , z

∗
V

)
) = uA(s̃,

(
σBt , z

∗
V

)
) > uA((1, 1, 1),

(
σBt , z

∗
V

)
)

for any s, s̃ ∈ S\{(1, 1, 1)} and analogously for candidate B, so the only restriction is that

σjt ((1, 1, 1)) <
1

2t
σjt (s)∀s ∈ S\{(1, 1, 1)},

which is satisfied.

Further, given that σA = σB and σAt = σBt for any t ∈ N,

zi((0, 0)) = zi((1, 1)) = z∗((0, 0)) = z∗((1, 1)) = ∅

is a best response for each i ∈ V given pi ∈ {(0, 0), (1, 1)}. Moreover, for each i ∈ V,

EUi[A
∣∣((0, 1), σ̂N\{i},π, {σCt }∞t=1

)
] < EUi[B

∣∣((0, 1), σ̂N\{i},π, {σCt }∞t=1

)
],

so zi((0, 1)) = z∗((0, 1)) = B is a best response, and, by a symmetric argument, zi((1, 0)) =

z∗((1, 0)) = A is a best response so zi = z∗ is a best response for each i ∈ V .

Finally, the voting Condition (2) in Definition 2 is satisfied because

EUi[A
∣∣(pi, σ̂N\{i},π, {σCt }∞t=1

)
] = EUi[B

∣∣(pi, σ̂N\{i},π, {σCt }∞t=1

)
]

if and only if pi ∈ {(0, 0), (1, 1)}, in which case

ui
(
Ei[p

A
∣∣(pAi , σ̂π, {σAt }∞t=1

)
]
)

= ui
(
Ei[p

B
∣∣(pBi , σ̂π, {σBt }∞t=1

)
]
)

and thus zi(pi) = z∗(pi) = ∅, as required by Condition (2) in Definition 2.

Case 6. Assume π = (11 +
√

61)/20 and β2 < 1. We first want to show that σ̂N,π defined

in Case 5 is also an equilibrium in this special case. The expected utility for candidate j
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of each pure strategy, given that candidate −j plays an arbitrary σ ∈ Σ and voters play

zV = z∗V , is:

sj uj(sj, (σ, z∗V ))

s0 1
2
σ(s0) + π (σ(s1) + σ(s2) + σ(s3) + σ(su))

s1, s2 or s3 (1− π)σ(s0) + 1
2

(σ(s1) + σ(s2) + σ(s3)) + π(σ(s4) + σ(s5))

s4, s5 or s6 σ(s0) + (1− π)(σ(s1) + σ(s2)) + σ(s3) + 1
2
(σ(s4) + σ(s5) + σ(s6)) + πσ(su)

su (1− π)σ(s0) + σ(s1) + σ(s2) + σ(s3) + (1− π)(σ(s4) + σ(s5) + σ(s6)) + 1
2
σ(su).
(7a)

Since π = (11 +
√

61)/20,

4π − 3

10π − 3
=

2(−4 +
√

61)

5(5 +
√

61)
;

1

10π − 3
=

2

5 +
√

61
; and

2π − 1

10π − 3
=

1 +
√

61

5(5 +
√

61)
,

then

uj(s0, (σ̂π, z∗V )) =
1

2

2(−4 +
√

61)

5(5 +
√

61)
+

11 +
√

61

20
3

2

5 +
√

61
=

1

2

uj(s1, (σ̂π, z∗V )) =

(
1− 11 +

√
61

20

)
2(−4 +

√
61)

5(5 +
√

61)
+

1

2
3

2

5 +
√

61
+

11 +
√

61

20
2

1 +
√

61

5(5 +
√

61)
=

1

2

uj(s4, (σ̂π, z∗V )) =
2(−4 +

√
61)

5(5 +
√

61)
+

(
1− 11 +

√
61

20

)
2

2

5 +
√

61
+

2

5 +
√

61
+

3

2

1 +
√

61

5(5 +
√

61)
=

1

2

uj(su, (σ̂π, z∗V )) =

(
1− 11 +

√
61

20

)(
2(−4 +

√
61)

5(5 +
√

61)
+ 3

1 +
√

61

5(5 +
√

61)

)
+ 3

2

5 +
√

61
=

1

2
,

hence no candidate deviation is profitable. The condition on voting behavior holds as in

Case 5. Hence σ̂N,π holds as an equilibrium for π = (11 +
√

61)/20 and β2 < 1.

Further, we noted in Case 4 that σN,π is an equilibrium, hence uj(s, (σπ, z∗V )) = 1
2
for any

s ∈ S\{s0}. Note

uj(s0, (σπ, z∗V )) =
1

2
σπ(s0) + π

(
σπ(s1) + σπ(s2) + σπ(s3) + σπ(su)

)
=

11 +
√

61

20

(
3

1 +
√

61

5(5 +
√

61)
+

2(−4 +
√

61)

5(5 +
√

61)

)
=

1

2
.
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Therefore uj(s, (σ, z∗V )) = 1
2
for any s ∈ S and for any σ ∈ {σπ, σ̂π} and thus for any

λ ∈ [0, 1], and for any j ∈ {A,B}, there is no profitable deviation for candidate j from

((λσπ + (1−λ)σ̂π, λσπ + (1−λ)σ̂π), z∗V ). The voter condition holds as a convex combination

of the conditions in cases 4 and 5, so for any λ ∈ [0, 1], the strategy profile ((λσπ + (1 −

λ)σ̂π, λσπ + (1− λ)σ̂π), z∗V ) constitutes an equilibrium for π = (11 +
√

61)/20.

The proof of uniqueness for

π ∈
(

0,
1

2

)
∪
(

1

2
,
11 +

√
61

20

)
∪
(

11 +
√

61

20
, 1

]

is conceptually simple, but tedious: it proceeds by exhaustively considering and ruling out

each other class of strategy profiles. We relegate to an Online Supplementary Appendix

this proof, together with the proof that for π = (11 +
√

61)/20, the only equilibria that

hold are those listed in Proposition 2. This supplementary appendix is available online at

https://msu.edu/~eguia/EguiaNicolo18OA.pdf.
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