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1. Introduction

One of the main results in the theory of functions with bounded variation (BV) is 
the rank-one theorem. Recall that a function u ∈ L1(Ω, Rd) has bounded variation in an 
open set Ω ⊂ R

n (u ∈ BV (Ω, Rd)) if the derivatives Du of u in the sense of distributions 
are represented by a (matrix-valued) measure with finite total variation. The measure 
Du can then be decomposed as the sum Du = Dau + Dsu of a measure Dau, that 
is absolutely continuous with respect to L n, and a measure Dsu that is singular with 
respect to L n. The Radon–Nikodym derivative Dsu

|Dsu| of Dsu with respect to its total 
variation |Dsu| is a |Dsu|-measurable map from Ω to Rd×n. The rank-one theorem states 
that |Dsu|-a.e. this map takes values in the space of rank-one matrices. We refer to [3]
for more details on BV functions.

The rank-one theorem was first conjectured by L. Ambrosio and E. De Giorgi in [7]
and it has important applications to vectorial variational problems and systems of PDEs. 
It was proved by G. Alberti in [1] (see also [2,8]): due to its complexity, Alberti’s proof 
is generally regarded as a tour de force in measure theory. Two different proofs of the 
rank-one theorem were recently found. One is due to G. De Philippis and F. Rindler 
and follows from a profound PDE result [9], where a rank-one property for maps with 
bounded deformation (BD) was also proved for the first time. At the same time another 
proof, of a geometric flavor and considerably simpler than those in [1,9], was provided 
by the second- and third-named authors in [27].

Motivated by these results, in this paper we consider the following natural general-
ization. Let X1, . . . , Xm be linearly independent vector fields in Rn, m ≤ n, and let u :
Ω → R

d be a function with bounded H-variation in an open set Ω ⊂ R
n, i.e., a vector val-

ued function such that the distributional horizontal derivatives DHu := (X1u, . . . , Xmu)
are represented by a d ×m-matrix valued measure with finite total variation in Ω; consider 
the singular part Ds

Hu of DHu with respect to L n. Is it true that the Radon–Nikodym 
derivative Ds

Hu
|Ds

Hu| is a rank-one matrix |Ds
Hu|-a.e.?

We investigate this question in the setting of Carnot groups G ≡ R
n (see Section 2) 

endowed with a left-invariant basis X1, . . . , Xm of the first layer g1 in the stratification 
of their Lie algebra. In particular, we find two assumptions on G, that we call properties 
C2 and R (see Definitions 2.2 and 5.1, respectively), that ensure the rank-one property 
for BVH functions in G. We will discuss later the role played by these properties in our 
argument. Our first main result is the following

Theorem 1.1. Let G be a Carnot group satisfying properties C2 and R; let Ω ⊂ G be an 
open set and u ∈ BVH,loc(Ω, Rd) be a function with locally bounded H-variation. Then 
the singular part Ds

Hu of DHu is a rank-one measure, i.e., the matrix-valued function 
Ds

Hu
s (x) has rank one for |Ds

Hu|-a.e. x ∈ Ω.
|DHu|
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It is worth pointing out that Theorem 1.1 applies to the n-th Heisenberg group H
n

provided n ≥ 2. Recall that Heisenberg groups, defined in Example 2.1 below, are the 
most notable examples of Carnot groups.

Corollary 1.2. Let u be as in Theorem 1.1 and assume that G is the Heisenberg group H
n, 

n ≥ 2; then Ds
Hu is a rank-one measure. More generally, the same holds if G is a Carnot 

group of step 2 satisfying property C2.

Corollary 1.2 is an immediate consequence of Theorem 1.1, see Remarks 2.4 and 5.3.
Theorem 1.1 does not directly follow from the outcomes of [9], see Remark 5.5. Its 

proof follows the geometric strategy devised in [27] and it is based on the relations 
between a (real-valued) BVH function u in G and the H-perimeter of its subgraph 
Eu := {(x, t) : t < u(x)} ⊂ G × R. Recall that a set E ⊂ G × R has finite H-perimeter 
if its characteristic function χE has bounded H-variation with respect the vector fields 
of a basis of the first layer in the Lie algebra stratification of the Carnot group G × R. 
Our second main result is the following

Theorem 1.3. Suppose that Ω ⊂ G is open and bounded and let u ∈ L1(Ω). Then u
belongs to BVH(Ω) if and only if its subgraph Eu has finite H-perimeter in Ω × R.

Actually, the proof of Theorem 1.1 requires much finer properties than the one stated 
in Theorem 1.3. Such properties are stated in Theorems 4.2 and 4.3 in a much more gen-
eral context than Carnot groups, i.e., for maps with bounded H-variation with respect 
to a generic fixed family of linearly independent vector fields X1, . . . , Xm on Rn. Theo-
rem 4.2, from which Theorem 1.3 immediately follows, focuses on the relations between 
the horizontal (in Rn) derivatives of u and the horizontal (in Rn×R) derivatives of χEu

. 
Theorem 4.3 instead deals with the relations between the horizontal normal to Eu and 
the polar vector σu in the decomposition DHu = σu|DHu|, and it also deals with the 
relations between Da

Hu, Ds
Hu and the horizontal derivatives of χEu

. When m = n and 
Xi = ∂xi

one recovers some results that belong to the folklore of Geometric Measure The-
ory and are scattered in the literature (see e.g. [28], [11, 4.5.9] and [17, Section 4.1.5]); we 
tried here to collect them in a more systematic way. We were not able to find references 
for some of the results we stated.

Property R (“rectifiability”) intervenes in ensuring that the horizontal derivatives 
of χEu

are a “rectifiable” measure, see Definition 5.1. This is a non-trivial technical 
obstruction one has to face when following the strategy of [27]: the rectifiability of sets 
with finite H-perimeter in Carnot groups is indeed a major open problem, which has 
been solved only in step 2 Carnot groups (see [14,15]) and in the class of Carnot groups 
of type � ([26]). See also [4] for a partial result in general Carnot groups.

Once the rectifiability of Eu is ensured, the proof of Theorem 1.1 follows rather easily 
from the technical Lemma 3.2 below, which is the natural counterpart of the Lemma 
in [27]. The latter, however, was proved by utilizing the area formula for maps between 
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rectifiable subsets of Rn, see e.g. [3]. A similar tool is not available in the context of 
Carnot groups, a fact which forces us to follow a different path. The proof of Lemma 3.2
is indeed achieved by a covering argument that is based on the following result: we state it 
and postpone to Section 2 the definitions of property Ck, the Hausdorff measure Hd, the 
homogeneous dimension Q of G and of hypersurfaces of class C1

H with their horizontal 
normal.

Theorem 1.4. Let k ≥ 1 be an integer, G a Carnot group satisfying property Ck and 
let Σ1, . . . , Σk be hypersurfaces of class C1

H with horizontal normals ν1, . . . , νk. Let also 
x ∈ Σ := Σ1∩· · ·∩Σk be such that ν1(x), . . . , νk(x) are linearly independent. Then, there 
exists an open neighborhood U of x such that

0 < HQ−k(Σ ∩ U) < ∞.

In particular, the measure HQ−k is σ-finite on the set

Σ� := {x ∈ Σ : ν1(x), . . . , νk(x) are linearly independent}.

Theorem 1.4, that we prove in Appendix A, is an easy consequence of Theorems A.3
and A.5 proved, respectively, in [12] and [22]. Theorem A.5, in particular, states the much 
deeper property that Σ� is locally an intrinsic Lipschitz graph. To this aim, one needs the 
intersection TxΣ1∩· · ·∩TxΣk of the tangent subgroups to Σi at x to admit a (necessarily 
commutative) complementary homogeneous subgroup that is horizontal, i.e., contained 
in exp(g1). This algebraic property is guaranteed by property Ck (“complementability”), 
see Remark 2.3. We will provide in Appendix A a proof of Theorem A.5 which does 
not rely on the homotopy invariance of the topological degree and is then simpler and 
shorter than the one in [22].

For the validity of Theorem 1.4, property Ck might seem a restrictive one. We however 
point out that Theorem 1.4 is no longer valid already when k = 2 and G is the first 
Heisenberg group H1, which does not satisfy C2: indeed, in this setting the measure 
HQ−2(Σ�) might be either 0 or +∞ (even locally) as shown by A. Kozhevnikov [19]. See 
also [20,25].

The fact that Theorem 1.4 does not apply to H1 (actually, to H1×R ×R, see the proof 
of Lemma 3.2) prevents us from proving the rank-one Theorem 1.1 for G = H

1. This 
does not follow from [9] either (see Remark 5.6) and, thus, it remains a very interesting 
open problem.

Acknowledgments We are grateful to G. De Philippis, U. Menne and F. Serra Cassano 
for several stimulating discussions.
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2. Preliminaries on Carnot groups

2.1. Algebraic facts

A Carnot (or stratified) group is a connected, simply connected and nilpotent Lie 
group whose Lie algebra g is stratified, i.e., it has a decomposition g = g1 ⊕ · · ·⊕ gs such 
that

∀j = 1, . . . , s− 1 gj+1 = [gj , g1], gs �= {0} and [gs, g] = {0}.

We refer to the integer s as the step of G and to m := dimg1 as its rank; apart from 
the case in which G is a Heisenberg group (see Example 2.1), n denotes the topological 
dimension of G. The group identity is denoted by 0.

The exponential map exp : g → G is a diffeomorphism and, given a basis X1, . . . , Xn

of g, we often identify G with Rn by means of exponential coordinates:

R
n 
 x = (x1, . . . , xn) ←→ exp (x1X1 + · · · + xnXn) ∈ G.

A one-parameter family {δλ}λ>0 of dilations δλ : g → g is defined by δλ(X) := λjX for 
any X ∈ gj ; notice that δλμ = δλ ◦ δμ. By composition with exp one can then define 
a one-parameter family, for which we use the same symbol δ, of group isomorphisms 
δλ : G → G.

Example 2.1. Apart from Euclidean spaces, which are the only commutative Carnot 
groups, the most basic examples of Carnot groups are Heisenberg groups. Given an inte-
ger n ≥ 1, the n-th Heisenberg group Hn is the 2n +1 dimensional Carnot group of step 
2 whose Lie algebra is generated by X1, . . . , Xn, Y1, . . . , Yn, T and the only non-vanishing 
commutation relations among these generators are given by

[Xj , Yj ] = T for any j = 1, . . . , n.

The stratification of the Lie algebra is given by g1 ⊕ g2, where g1 := span{Xj , Yj : j =
1, . . . n} and g2 := span{T}. In exponential coordinates

R
n × R

n × R 
 (x, y, t) ←→ exp(x1X1 + · · · + ynYn + tT )

one has

Xj = ∂xj
− yj

2 ∂t, Yj = ∂yj
+ xj

2 ∂t, T = ∂t.

In this paper, given a Carnot group G we will frequently deal with products like 
G × R

N . Needless to say, this is the Carnot group with algebra g × R
N with product 

defined by [(X, t), (Y, s)] = ([X, Y ], 0) for any X, Y ∈ g, t, s ∈ R
N and whose stratification 

is given by (g1 × R
N ) ⊕ (g2 × {0}) ⊕ · · · ⊕ (gs × {0}).
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Definition 2.2. Let G be a Carnot group with rank m and let 1 ≤ k ≤ m be an integer. We 
say that G satisfies the property Ck if the first layer g1 of its Lie algebra has the following 
property: for any linear subspace w of g1 of codimension k there exists a commutative 
complementary subspace in g1, i.e., a k-dimensional subspace h of g1 such that [h, h] = 0
and g1 = w ⊕ h.

Remark 2.3. As customary in the literature, we say that W ⊂ G is a vertical plane
of codimension k (for some 1 ≤ k ≤ m) if W = exp(w ⊕ g2 ⊕ · · · ⊕ gs) for some linear 
subspace w of g1 of codimension k (possibly w = {0}); such a W is a homogeneous normal 
subgroup of G of topological dimension n − k, see also Section 3 below. Then, a Carnot 
group has the property Ck if and only if, for any vertical plane W in G, there exists a 
complementary homogeneous subgroup H that is horizontal, i.e., such that H ⊂ exp(g1). 
Notice also that, in this case, H is necessarily commutative.

Remark 2.4. The Heisenberg group Hn has the property Ck if and only if 1 ≤ k ≤ n.
All Carnot groups have the property C1. Free Carnot groups (see e.g. [18]) have the 

property Ck if and only if k = 1.
A Carnot group of rank m has the property Cm if and only if G is Abelian (i.e., 

G ≡ R
m).

Remark 2.5. It is an easy exercise to show that, if k ≥ 2 and G has the property Ck, 
then G has also the property Ch for any 1 ≤ h ≤ k.

Lemma 2.6. Let N ≥ 1 be an integer and G be a Carnot group. Then G has the property 
Ck if and only if G × R

N has the property Ck.

Proof. It is clearly enough to prove the statement for N = 1.
Assume first that G has the property Ck and let w be a k-codimensional subspace of 

the first layer g1 × R of the Lie algebra of G × R. We have two cases according to the 
dimension of w′ := w ∩ (g1 × {0}):

• if dim w′ = m − k, using the Ck property of G one can find a k-dimensional com-
mutative subspace h of g1 such that g1 × {0} = w′ ⊕ (h × {0}). In particular, 
g1 × R = w ⊕ (h × {0});

• if dim w′ = m + 1 − k, then w = w′ ⊂ g1 × {0} and, by Remark 2.5, one can find a 
(k−1)-dimensional commutative subspace h of g1 such that g1×{0} = w ⊕(h ×{0}). 
In particular, g1 × R = w ⊕ (h × R).

In both cases we have found a commutative complementary subspace of w.
Assume now that G × R has the property Ck and let w be a k-codimensional linear 

subspace of g1. Then w × R is a k-codimensional linear subspace of g1 × R, hence it 
admits a k-dimensional commutative complementary subspace h in g1 ×R. Denoting by 
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π : g1×R → g1 the canonical projection, it is readily noticed that π(h) is a k-dimensional 
commutative subspace of g1 such that g1 = w ⊕ π(h). This concludes the proof. �
2.2. Metric facts

Let G be a Carnot group with stratified algebra g = g1 ⊕ · · · ⊕ gs. We endow g
with a positive definite scalar product 〈·, ·〉 such that gi ⊥ gj whenever i �= j. We 
also let | · | := 〈·, ·〉1/2. We fix an orthonormal basis X1, . . . , Xn of g adapted to the 
stratification, i.e., such that gj = span{Xmj−1+1, . . . , Xmj

} for any j = 1, . . . , s, where 
mj := dim(g1) + · · · + dim(gj) and m0 := 0 (in particular, m1 = m).

We will frequently use the homogeneous (pseudo-)norm ‖ · ‖ on G defined in this way: 
if x = exp(Y1 + · · · + Ys) for Yj ∈ gj , then

‖x‖ :=
s∑

j=1
|Yj |1/j .

Clearly one has ‖δλ(x)‖ = λ‖x‖ for any x ∈ G, λ > 0. Homogeneous pseudo-norms 
arising from different choices of the scalar product 〈·, ·〉 on G are equivalent.

The group G is endowed with the Carnot–Carathéodory (CC) distance d induced by 
the family X1, . . . , Xm, as we now introduce. Given an interval I ⊂ R, a Lipschitz curve 
γ : I → G is said to be horizontal if there exist functions h1, . . . , hm ∈ L∞(I) such that 
for a.e. t ∈ I we have

γ̇(t) =
m∑
i=1

hi(t)Xi(γ(t)). (2.1)

Letting |h| := (h2
1 + . . . + h2

m)1/2, the length of γ is defined as

L(γ) :=
∫
I

|h(t)| dt.

It is well-known that for any pair of points x, y ∈ G there exists a horizontal curve joining 
x to y. We can therefore define a distance function d letting

d(x, y) := inf
{
L(γ) : γ : [0, T ] → M horizontal with γ(0) = x and γ(T ) = y

}
.

It is also well-known that, for any pair x, y ∈ G, there exists a geodesic joining x and y, 
i.e., a horizontal curve γ realizing the infimum in the previous formula. Notice that

d(zx, zy) = d(x, y) and d(δλ(x), δλ(y)) = λd(x, y) ∀ x, y, z ∈ G,λ > 0

and that d(x, y) is equivalent to ‖x−1y‖.
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We denote by B(x, r) open balls of center x ∈ G and radius r > 0 with respect to the 
CC distance; we also write Br instead of B(0, r), so that B(x, r) = xBr. The diameter 
diam E of E ⊂ G and the distance d(E1, E2) between E1, E2 ⊂ G is understood with 
respect to the CC distance.

As customary, for E ⊂ G, d > 0 and δ > 0 we set

Hd
δ(E) := inf

{ ∞∑
i=1

(diam Ei)d : E ⊂
∞⋃
i=1

Ei, diam Ei < δ

}

Sd
δ (E) := inf

{ ∞∑
i=1

(diam Bi)d : Bi are open balls, E ⊂
∞⋃
i=1

Bi, diam Bi < δ

}

and we define the d-dimensional Hausdorff measure and d-dimensional spherical Haus-
dorff measure of E respectively as

Hd(E) := lim
δ↓0

Hd
δ(E) = sup

δ>0
Hd

δ(E)

Sd(E) := lim
δ↓0

Sd
δ (E) = sup

δ>0
Sd
δ (E).

The Hausdorff dimension of E is inf{d : Hd(E) = 0} = sup{d : Hd(E) = ∞}. It is 
well-known that the metric space (G, d) has Hausdorff dimension Q :=

∑s
j=1 j dim gj

and that, in exponential coordinates and up to multiplicative constants, the measures 
HQ, SQ and L n coincide, all of them being Haar measures on G.

3. Intrinsic regular hypersurfaces in Carnot groups

We say that a continuous real function f on an open set Ω ⊂ G is of class C1
H

if its horizontal derivatives X1f, . . . , Xmf are continuous in Ω. In this case we write 
f ∈ C1

H(Ω) and we set ∇Hf := (X1f, . . . , Xmf).
A set S ⊂ G is a C1

H hypersurface if for any x ∈ S there exist an open neighborhood 
U of x and f ∈ C1

H(U) such that

S ∩ U = {y ∈ U : f(y) = 0} and ∇Hf �= 0 on U.

In this case, we define the horizontal normal to x as νS(x) := ∇Hf(x)
|∇Hf(x)| ∈ R

m. The 
normal νS(x) = ((νS(x))1, . . . , (νS(x))m) is defined up to sign and it can be canonically 
identified with a horizontal vector at x by

νS(x) = (νS(x))1X1(x) + · · · + (νS(x))mXm(x).
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A C1
H hypersurface has locally finite HQ−1-measure, see e.g. [30] and the references 

therein.1
The hyperplane νS(x)⊥ in g is a Lie subalgebra. The associated subgroup TxS :=

exp(νS(x)⊥) is called tangent subgroup to S at x: we point out the well-known property 
that

∀ ε > 0 ∃ r̄ = r̄(x, ε) > 0 such that ∀ r ∈ (0, r̄) (x−1S) ∩Br ⊂ (TxS)εr ∩Br, (3.2)

where for E ⊂ G and δ > 0 we denote by Eδ the δ-neighborhood of E. A proof of (3.2), 
using the fact that in exponential coordinates TxS = {(ξ, η) ∈ R

n = R
m × R

n−m : ξ ⊥
νS(x)}, is implicitly contained in the proof of Lemma A.4. Notice also that

TxS = exp({X ∈ g1 : Xf(x) = 0} ⊕ g2 · · · ⊕ gs);

in particular, while νS(x) depends on the scalar product 〈·, ·〉 on g, the subgroup TxS is 
intrinsic.

The tangent group TxS is a vertical plane of codimension 1 (or vertical hyperplane), 
where we say that W ⊂ G is a vertical plane of codimension k, 1 ≤ k ≤ m, if W =
exp(w ⊕ g2 ⊕ · · · ⊕ gs) for some linear subspace w of g1 of codimension k (possibly 
w = {0}). Such a W is a homogeneous normal subgroup of G of topological dimension 
n − k and Hausdorff dimension Q − k. The intersection of vertical planes is always a 
vertical plane (of possibly higher codimension).

The following simple lemma will be used in the proof of Lemma 3.2.

Lemma 3.1. Let W ⊂ G be a vertical plane of codimension k and let x ∈ W, r > 0
and ε ∈ (0, 1) be fixed. Then, the set W ∩ B(x, r) can be covered by a family of balls 
{B(y�, εr)}�∈L of radius εr with cardinality #L ≤ (4/ε)Q−k.

Proof. By dilation and translation invariance, it is not restrictive to assume that x = 0
and r = 1. Let {y�}�∈L be a maximal family of points of W ∩B(0, 1) such that the balls 
B(y�, ε/2) are pairwise disjoint; working by contradiction, it can be easily seen that the 
family {B(y�, ε)}�∈L covers W ∩ B(0, 1). The measure HQ−k is locally finite on W (see 
e.g. [21,23,24]), is left-invariant and it is (Q − k)-homogeneous with respect to dilations. 
In particular, setting M := HQ−k(W ∩B(0, 1)), we have

(ε
2

)Q−k

M #L =
∑
�∈L

HQ−k(W ∩B(y�, ε/2)) ≤ HQ−k(W ∩B(0, 2)) = 2Q−kM,

which proves the claim. �
1 Actually, this also follows from Theorem 1.4 with k = 1.



JID:YJFAN AID:8113 /FLA [m1L; v1.246; Prn:15/10/2018; 13:01] P.10 (1-29)
10 S. Don et al. / Journal of Functional Analysis ••• (••••) •••–•••
A key tool in the proof of the rank-one Theorem 1.1 is the following Lemma 3.2 which, 
in turn, uses Theorem 1.4, whose proof is instead postponed to Appendix A. We denote 
by π : G × R → G the canonical projection π(x, t) = x.

Lemma 3.2. Let G be a Carnot group satisfying property C2. Let Σ1, Σ2 be C1
H hypersur-

faces in G × R with unit normals νΣ1 , νΣ2 . Then, the set

R :=

⎧⎪⎨⎪⎩p ∈ Σ1 : ∃ q ∈ Σ2 such that
π(q) = π(p),
(νΣ1(p))m+1 = (νΣ2(q))m+1 = 0,
νΣ1(p) �= ±νΣ2(q)

⎫⎪⎬⎪⎭
is HQ-negligible.

Proof. Let us consider the distances dG×R and dG×R×R on (respectively) G × R and 
G × R × R defined by

dG×R((x, t), (x′, t′)) := d(x, x′) + |t− t′| ∀ x, x′ ∈ G, t, t′ ∈ R

dG×R×R((x, t, s), (x′, t′, s′)) := d(x, x′) + |t− t′| + |s− s′| ∀ x, x′ ∈ G, t, t′, s, s′ ∈ R,

where d is the Carnot–Carathéodory distance on G. Such distances are left-invariant and 
homogeneous, hence they are equivalent to the Carnot–Carathéodory distances on G ×R

and G × R × R; in particular, it is enough to prove the statement when the Hausdorff 
measure HQ is the one induced by dG×R on G × R. We use the same notation B(a, r)
for balls of radius r > 0 in either G, G × R or G × R × R, according to which group the 
center a belongs to.

The sets

Σ̃1 := {(x, t, s) ∈ G× R× R : (x, t) ∈ Σ1, s ∈ R}

Σ̃2 := {(x, t, s) ∈ G× R× R : (x, s) ∈ Σ2, t ∈ R}

are clearly C1
H hypersurfaces in G × R × R and, moreover,

νΣ̃1
(x, t, s) =

(
(νΣ1(x, t))1, . . . , (νΣ1(x, t))m, (νΣ1(x, t))m+1, 0

)
νΣ̃2

(x, t, s) =
(
(νΣ2(x, s))1, . . . , (νΣ2(x, s))m, 0 , (νΣ2(x, s))m+1

)
.

Let us define

R̃ := {P ∈ Σ̃1 ∩ Σ̃2 : (νΣ̃1
(P ))m+1 = (νΣ̃2

(P ))m+2 = 0 and νΣ̃1
(P ) �= ±νΣ̃2

(P )}

= {(x, t, s) ∈ Σ̃1 ∩ Σ̃2 : (νΣ1(x, t))m+1 = (νΣ2(x, s))m+1 = 0

and νΣ1(x, t) �= ±νΣ2(x, s)}.
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By construction we have π̃(R̃) = R, where π̃ : G × R × R → G × R is the group 
homomorphism defined by π̃(x, t, s) := (x, t); moreover the measure HQ R̃ is σ-finite 
by Theorem 1.4 (notice that we are also using Lemma 2.6). We are going to show that 
HQ(π̃(T )) = 0 for any fixed T ⊂ R̃ such that SQ(T ) < ∞; this is clearly enough to 
conclude.

For any P ∈ T and i = 1, 2, the tangent space TP Σ̃i equals Wi ×R ×R for a suitable 
vertical hyperplane Wi of G. In particular, setting W = W(P ) := W1 ∩W2, we have by 
(3.2) that for any P ∈ T and any ε ∈ (0, 1) there exists r̄ = r̄(ε, P ) > 0 such that

(P−1T ) ∩B(0, r) ⊂ (W× R× R)εr ∩B(0, r)

= (Wεr × R× R) ∩B(0, r) for any r ∈ (0, r̄).
(3.3)

Notice also that W is a vertical plane of codimension 2 in G. Let ε > 0 be fixed and set

Tj := {P ∈ T : r̄(ε, P ) ≥ 1
j }, j = 1, 2, . . .

Since Tj ↑ T , the proof will be accomplished by showing that for any fixed j

HQ(π̃(Tj)) < Cε, (3.4)

where C > 0 is a constant that will be determined in the sequel.
Let us prove (3.4). Fix δ ∈ (0, 1j ); since HQ(Tj) ≤ HQ(T ) < +∞, one can find a 

(countable or finite) family {B(P̃i, ri/2)}i of balls in G × R × R such that 0 < ri < δ,

Tj ⊂
⋃
i

B(P̃i, ri/2) and
∑
i

(ri/2)Q ≤
∑
i

(diam B(P̃i, ri/2))Q ≤ C1

where C1 := HQ(T ) + 1. We can also assume that Tj ∩ B(P̃i, ri/2) is non-empty for 
any i. Choosing Pi ∈ Tj∩B(P̃i, ri/2), for any i the balls B(Pi, ri) have then the following 
properties:

Pi ∈ Tj , 0 < ri < δ, Tj ⊂
⋃
i

B(Pi, ri) and
∑
i

rQi ≤ 2QC1. (3.5)

Setting Wi := W(Pi), by (3.3) we have

(P−1
i Tj) ∩B(0, ri) ⊂ ((Wi)εri × R× R) ∩B(0, ri)

= ((Wi)εri ∩B(0, ri)) × (−ri, ri) × (−ri, ri).
(3.6)

By Lemma 3.1, for any i we can find a family of balls {B(yi,�, εri)}�∈Li
such that

∀ � ∈ Li yi,� ∈ Wi, #Li ≤ (8/ε)Q−2 and Wi ∩B(0, 2ri) ⊂
⋃

B(yi,�, εri).

�∈Li
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In particular

(Wi)εri ∩B(0, ri) ⊂ (Wi ∩B(0, ri + εri))εri ⊂
⋃
�∈Li

B(yi,�, 2εri). (3.7)

Let us also fix points {τk}k∈Ki
⊂ (−ri, ri) such that #Ki ≤ 2ε−1 and

(−ri, ri) ⊂
⋃

k∈Ki

(τk − 2εri, τk + 2εri) (3.8)

By (3.6), (3.7) and (3.8) we get

(P−1
i Tj) ∩B(0, ri) ⊂

⋃
�∈Li

k,h∈Ki

B(yi,�, 2εri) × (τk − 2εri, τk + 2εri) × (τh − 2εri, τh + 2εri).

For any � ∈ Li and k, h, h′ ∈ Ki one has

π̃
(
B(yi,�, 2εri) × (τk − 2εri, τk + 2εri) × (τh − 2εri, τh + 2εri)

)
= π̃

(
B(yi,�, 2εri) × (τk − 2εri, τk + 2εri) × (τh′ − 2εri, τh′ + 2εri)

)
= B(yi,�, 2εri) × (τk − 2εri, τk + 2εri)

⊂ B((yi,�, τk), 4εri)

which, using (3.5), implies that

π̃(Tj) ⊂
⋃
i

π̃
(
Tj ∩B(Pi, ri)

)
⊂
⋃
i

⋃
�∈Li

k,h∈Ki

π̃
(
Pi(B(yi,�, 2εri) × (τk − 2εri, τk + 2εri) × (τh − 2εri, τh + 2εri))

)
⊂
⋃
i

⋃
�∈Li
k∈Ki

π̃(Pi)B((yi,�, τk), 4εri)

=
⋃
i

⋃
�∈Li
k∈Ki

B(pi�k, 4εri)

where pi�k := π̃(Pi)(yi,�, τk) ∈ G × R. Using again (3.5) we obtain that

HQ
4εδ(Tj) ≤

∑
i

#Li #Ki (8εri)Q ≤ ε
∑
i

26Q−5rQi ≤ 27Q−5C1ε

which, by the arbitrariness of δ ∈ (0, 1j ), gives the claim (3.4). �
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4. Functions with bounded H-variation and subgraphs

Let X = (X1, . . . , Xm) be an m-tuple of linearly independent vector fields in Rn; for 
i = 1, . . . , m and j = 1, . . . , n we consider smooth functions aij such that

Xi(x) =
n∑

j=1
aij(x)∂xj

.

The model case is of course that of a Carnot group G ≡ R
n endowed with a left-invariant 

basis X1, . . . , Xm of the first layer g1 in the Lie algebra stratification; in the present 
section, however, we work in higher generality.

One of the main purposes of this paper is the study of functions with bounded 
H-variation ([6,13]), that we are going to introduce only very briefly. In this section, 
Ω is an open subset of Rn and, given ϕ ∈ C1(Ω, Rm), we let divXϕ :=

∑m
i=1 X

∗
i ϕi where 

X∗
i denotes the formal adjoint operator of the vector field Xi. Given a Rm-valued func-

tion f on Ω and a Rm-valued measure μ on Ω we use the compact notation 
∫
Ω f · dμ for 

the sum 
∫
Ω f1 dμ1 + · · · +

∫
Ω fm dμm.

Definition 4.1. We say that u ∈ L1
loc(Ω) is a function of locally bounded H-variation in Ω, 

and we write u ∈ BVH,loc(Ω), if there exists a vector valued Radon measure DHu =
(DX1u, . . . , DXm

u) with locally finite total variation such that for every ϕ ∈ C1
c (Ω; Rm)

we have ∫
Ω

ϕ · dDHu = −
∫
Ω

u divXϕdL n. (4.9)

Moreover, if u ∈ L1(Ω), we say that u has bounded H-variation in Ω (u ∈ BVH(Ω)) if 
DHu has finite total variation |DHu| on Ω.

We say that E ⊂ Ω has finite H-perimeter in Ω if its characteristic function χE

belongs to BVH(Ω).

We recall that the total variation |μ| of a Rd-valued measure μ = (μ1, . . . , μd) is 
defined for Borel sets B as

|μ|(B) := sup
{ ∞∑

�=1

|μ(B�)| : (B�)� disjoint Borel subsets of B
}

= sup

⎧⎨⎩
∫
B

ϕ · dμ : ϕ :B → R
d Borel function, |ϕ| ≤ 1

⎫⎬⎭ .

If A � Ω is open and u ∈ BVH,loc(Ω), one can easily prove that
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|DHu|(A) = sup

⎧⎨⎩
∫
A

u divXϕdL n : ϕ ∈ C1
c (A;Rm), |ϕ| ≤ 1

⎫⎬⎭ ;

actually, u ∈ BVH(A) if and only if the supremum on the right-hand side is finite. The 
total variation is lower-semicontinuous with respect to the L1

loc convergence; moreover 
(see [16,13]), for any u ∈ BVH(Ω) there exists a sequence (uh)h in C∞(Ω) ∩ BVH(Ω)
such that

uh → u in L1(Ω)

|DHuh|(Ω) → |DHu|(Ω)

|DXi
uh|(Ω) → |DXi

u|(Ω) ∀ i = 1, . . . ,m

|(DHuh,L
n)|(Ω) → |(DHu,L n)|(Ω).

(4.10)

The aim of this section is the study of the relations occurring between a function 
u ∈ BVH(Ω) and its subgraph

Eu := {(x, t) ∈ Ω × R : t < u(x)} ⊂ Ω × R.

We introduce the family X̃ = (X̃1, . . . , X̃m+1) of linearly independent vector fields in 
R

n+1 defined for (x, t) ∈ R
n × R by

X̃i(x, t) := (Xi(x), 0) ∈ R
n+1 ≡ R

n × R if i = 1, . . . ,m

X̃m+1(x, t) := ∂t.

If U ⊂ R
n+1 is open and u ∈ BVH,loc(U) with respect to the family X̃ we write D

H̃
u :=

(D
X̃1

u, . . . , D
X̃m+1

u).
The following result is the natural generalization of some classical facts about Eu-

clidean functions of bounded variation, see e.g. [17, Section 4.1.5]. We denote by 
π : Rn+1 → R

n the canonical projection π(x, t) = x; π# denotes the associated push-
forward of measures.

Theorem 4.2. Suppose Ω is bounded in Rn and let u ∈ L1(Ω). Then u belongs to BVH(Ω)
if and only if its subgraph Eu has finite H-perimeter (with respect to the family X̃) in 
Ω × R.

Moreover, writing D′
H̃
χEu

:= (D
X̃1

χEu
, . . . , D

X̃m
χEu

), then the following statements 
hold:

(i) π#D
X̃i

χEu
= DXi

u for any i = 1, . . . , m;
(ii) π#∂tχEu

= −L n;
(iii) π#|D

X̃i
χEu

| = |DXi
u| for any i = 1, . . . , m;

(iv) π#|∂tχEu
| = L n;
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(v) π#|D′
H̃
χEu

| = |DHu|;
(vi) π#|D

H̃
χEu

| = |(DHu, −L n)|.

Proof. Suppose first that χEu
∈ BVH(Ω × R) with respect to the family X̃. We need 

to fix a sequence (gh)h in C∞
c (R) such that gh is even, gh ≡ 1 on [0, h], gh ≡ 0 on 

[h + 1, +∞) and 
∫
R
gh(t)dt = 2h + 1. Let ϕ ∈ C1

c (Ω, Rm) with |ϕ| ≤ 1 be fixed. By the 
Dominated Convergence Theorem we have∫

Ω×R

ϕ(x) · d(D′
H̃
χEu

)(x, t) = lim
h→+∞

∫
Ω×R

gh(t)ϕ(x) · d(D′
H̃
χEu

)(x, t)

= − lim
h→+∞

∫
Ω×R

χEu
(x, t)gh(t)divXϕ(x)dL n+1(x, t)

= − lim
h→+∞

∫
Ω

⎛⎜⎝ u(x)∫
−∞

gh(t)dt

⎞⎟⎠divXϕ(x)dL n(x).

For every z ∈ R and every h ∈ N we have

z∫
−∞

gh(t)dt ≤ |z| + h + 1
2 and lim

h→+∞

⎛⎝ z∫
−∞

gh(t)dt− h− 1
2

⎞⎠ = z;

using the fact that 
∫
Ω divXϕ(x)dL n(x) = 0, by the Dominated Convergence Theorem 

we obtain

∫
Ω×R

ϕ(x) · d(D′
H̃
χEu

)(x, t) = − lim
h→+∞

∫
Ω

⎛⎜⎝ u(x)∫
−∞

gh(t)dt− h− 1
2

⎞⎟⎠ divXϕ(x)dL n(x)

= −
∫
Ω

u(x)divXϕ(x)dL n(x) (4.11)

=
∫
Ω

ϕ(x) · d(DHu)(x).

In particular, u ∈ BVH(Ω) and, for any open set A ⊂ Ω,

|DHu|(A) ≤ |D′
H̃
χEu

|(A× R)

|DXi
u|(A) ≤ |D

X̃i
χEu

|(A× R) for any i = 1, . . . ,m.
(4.12)

Before passing to the reverse implication we observe two facts. First, for any ϕ ∈ C1
c (Ω)

one has
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∫

Ω×R

ϕ(x)d (∂tχEu
) (x, t) = lim

h→+∞

∫
Ω×R

ϕ(x)gh(t)d (∂tχEu
) (x, t)

= − lim
h→+∞

∫
Ω×R

ϕ(x)g′h(t)χEu
(x, t)dL n+1(x, t)

= − lim
h→+∞

∫
Ω

ϕ(x)

⎛⎜⎝ u(x)∫
−∞

g′h(t)dt

⎞⎟⎠ dL n(x) (4.13)

= − lim
h→+∞

∫
Ω

ϕ(x)gh(u(x))dL n(x)

= −
∫
Ω

ϕdL n

whence, for any open set A ⊂ Ω,

L n(A) ≤ |∂tχEu
|(A× R). (4.14)

Second, if ϕ ∈ C1
c (Ω, Rm+1) one has by (4.11) and (4.13)

∫
Ω×R

ϕ(x) · d(D
H̃
χEu

)(x, t) =
∫
Ω

ϕ(x) · d(DHu,−L n)(x)

which gives for any open set A ⊂ Ω

|(DHu,−L n)|(A) ≤ |D
H̃
χEu

|(A× R). (4.15)

Suppose now that u ∈ BVH(Ω). Let A ⊂ Ω be open and let ϕ ∈ C1
c (A × R) and 

i = 1, . . . , m be fixed. Let (uh)h be a sequence in C∞(A) ∩ BVH(A) satisfying (4.10)
(with A in place of Ω); then

∫
A×R

ϕ d(D
X̃i

χEuh
)

= −
∫

A×R

χEuh
(x, t)X̃∗

i ϕ(x, t)dL n+1(x, t)

= −
∫ ⎛⎜⎝ uh(x)∫

−∞

n∑
j=1

∂xj
(aij(x)ϕ(x, t)) dt

⎞⎟⎠ dL n(x) (4.16)

A
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= −
∫
A

⎛⎜⎝ n∑
j=1

∂xj

uh(x)∫
−∞

aij(x)ϕ(x, t)dt−
n∑

j=1
aij(x)ϕ(x, uh(x))∂xj

uh(x)

⎞⎟⎠ dL n(x)

=
∫
A

ϕ(x, uh(x))Xiuh(x)dL n(x),

where we used the fact that x �→ aij(x) 
∫ uh(x)
−∞ ϕ(x, t)dt is in C1

c (A). In a similar way

∫
A×R

ϕ d
(
∂tχEuh

)
= −

∫
A

⎛⎜⎝ uh(x)∫
−∞

∂tϕ(x, t)dt

⎞⎟⎠ dL n(x)

= −
∫
A

ϕ(x, uh(x))dL n(x).

(4.17)

Formulas (4.16) and (4.17) imply that for any ϕ ∈ C1
c (A × R, Rm+1)∫

A×R

ϕ · d(D
H̃
χEuh

) =
∫
A

ϕ(x, uh(x)) · d(DHuh,−L n)(x).

Since χEuh
→ χEu

in L1(A × R) we obtain

|D
H̃
χEu

|(A× R) ≤ lim inf
h→+∞

|D
H̃
χEuh

|(A× R) ≤ lim
h→+∞

|(DHuh,−L n)|(A)

=|(DHu,−L n)|(A) < +∞,
(4.18)

which proves that χEu
∈ BV

H̃
(Ω ×R), as desired. Notice that, using the lower semicon-

tinuity in a similar way, one also gets

|D′
H̃
χEu

|(A× R) ≤ |DHu|(A)

|D
X̃i

χEu
|(A× R) ≤ |DXi

u|(A) for any i = 1, . . . ,m

|∂tχEu
|(A× R) ≤ L n(A) < +∞.

(4.19)

Eventually, statements (i) and (ii) follow from (4.11) and (4.13), while statements 
(iii)–(vi) are consequences of formulas (4.12), (4.14), (4.15), (4.18) and (4.19). �

Let us introduce some further notation. For u ∈ BVH,loc(Ω) we decompose its dis-
tributional horizontal derivatives as DHu = Da

Hu + Ds
Hu, where Da

Hu is absolutely 
continuous with respect to L n and Ds

Hu is singular with respect to L n. We also write 
Da

Hu = Xu L n for some function Xu ∈ L1
loc(Ω, Rm).

We also consider the polar decomposition DHu = σu|DHu|, where σu : Ω → S
m−1

is a |DHu|-measurable function. In case u = χE is the characteristic function of a set 
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E ⊂ Ω ×R of locally finite H̃-perimeter in Ω ×R we write D
H̃
χE = νE |DH̃

χE | for some 
Borel function νE = ((νE)1, . . . , (νE)m+1) called horizontal inner normal to E.

The following result is basically a consequence of Theorem 4.2.

Theorem 4.3. Let u ∈ BVH(Ω) and define

S := {(x, t) ∈ Ω × R : (νEu
)m+1(x, t) = 0}

T := {(x, t) ∈ Ω × R : (νEu
)m+1(x, t) �= 0} .

Then, the following identities hold

νEu
(x, t) = (σu(x), 0) for |D

H̃
χEu

|-a.e. (x, t) ∈ S; (4.20)

νEu
(x, t) = (Xu(x),−1)√

1 + |Xu(x)|2
for |D

H̃
χEu

|-a.e. (x, t) ∈ T ; (4.21)

π#(D
H̃
χEu

S) = (Ds
Hu, 0); (4.22)

π#(D
H̃
χEu

T ) = (Da
Hu,−L n). (4.23)

Proof. Thanks to Theorem 4.2 (vi) we can disintegrate the measure |D
H̃
χEu

| with re-
spect to |(DHu, −L n)| (see e.g. [3, Theorem 2.28]): for every x ∈ Ω there exists a 
probability measure μx on R such that for every Borel function g ∈ L1(Ω ×R, |D

H̃
χEu

|)

∫
Ω×R

g(x, t)d|D
H̃
χEu

|(x, t) =
∫
Ω

⎛⎝∫
R

g(x, t)dμx(t)

⎞⎠ d|(DHu,−L n)|(x).

It follows that for any Borel function ϕ : Ω → R∫
Ω

ϕ(x)d(DHu,−L n)(x) =
∫
Ω

ϕ(x)dπ#(νEu
|D

H̃
χEu

|)(x)

=
∫

Ω×R

ϕ(x)νEu
(x, t)d|D

H̃
χEu

|(x, t)

=
∫
Ω

ϕ(x)

⎛⎝∫
R

νEu
(x, t)dμx(u)

⎞⎠ d|(DHu,−L n)|(x).

(4.24)

Since Da
Hu and Ds

Hu are mutually singular we have

|(DHu,−L n)| = |(Da
Hu,−L n)| + |(Ds

Hu, 0)| =
√

1 + |Xu|2L n + |Ds
Hu|

and (4.24) gives
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∫

Ω

ϕ d
(
(Xu,−1)L n + (σu, 0)|Ds

Hu|
)

(4.25)

=
∫
Ω

ϕ(x)

⎛⎝∫
R

νEu
(x, t)dμx(t)

⎞⎠ d
(√

1 + |Xu|2L n + |Ds
Hu|
)

(x). (4.26)

Denote by I a subset of Ω such that L n(I) = 0 and |Ds
Hu|(Ω \I) = 0. Considering Borel 

test functions ϕ such that ϕ = 0 in Ω \ I, we deduce that for |Ds
Hu|-a.e. x ∈ I one has

(σu(x), 0) =
∫
R

νEu
(x, t)dμx(t).

Taking on both sides the scalar product with (σu(x), 0) we get〈
(σu(x), 0),

∫
R

νEu
(x, t)dμx(t)

〉
= 1,

and, since μx(R) = 1 and (for |(DHu, −L n)|-a.e. x ∈ Ω) |νEu
(x, t)| = 1 for μx-a.e. t, we 

deduce that

νEu
(x, t) = (σu(x), 0) for |Ds

Hu|-a.e. x ∈ I and μx-a.e. t ∈ R,

i.e.,

νEu
(x, t) = (σu(x), 0) for |D

H̃
χEu

|-a.e. (x, t) ∈ I × R. (4.27)

Taking into account again (4.25) and letting ϕ be such that ϕ = 0 on I we instead 
obtain ∫

Ω

ϕ
(Xu,−1)√
1 + |Xu|2

√
1 + |Xu|2dL n

=
∫
Ω

ϕ(x)

⎛⎝∫
R

νEu
(x, t)dμx(t)

⎞⎠√1 + |Xu(x)|2dL n(x)

Consequently, for L n-a.e. x ∈ Ω \ I we have

∫
R

νEu
(x, t)dμx(t) = (Xu(x),−1)√

1 + |Xu(x)|2
.

Reasoning as before we deduce that
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νEu
(x, t) = (Xu(x),−1)√

1 + |Xu(x)|2
for L n-a.e. x ∈ Ω \ I and μx-a.e. t ∈ R,

or equivalently

νEu
(x, t) = (Xu(x),−1)√

1 + |Xu(x)|2
for |D

H̃
χEu

|-a.e. (x, t) ∈ (Ω \ I) × R. (4.28)

Formula (4.27) implies that |D
H̃
χEu

|-a.e. (x, t) ∈ I × R belongs to S and that 
|D

H̃
χEu

|-a.e. (x, t) ∈ T belongs to (Ω \ I) × R. Similarly, (4.28) says that |D
H̃
χEu

|-a.e. 
(x, t) ∈ (Ω \ I) ×R belongs to T and that |D

H̃
χEu

|-a.e. (x, t) ∈ S belongs to I×R. Since 
S and T are disjoint, this is enough to conclude (4.20) and (4.21). Statement (4.22) now 
easily follows because

π#(D
H̃
χEu

S) = π#(νEu
|D

H̃
χEu

| (I × R)) = (σu, 0)|(DHu,−L n)| I = (Ds
Hu, 0).

Similarly, one has

π#(D
H̃
χEu

T ) =π#(νEu
|D

H̃
χEu

| ((Ω \ I) × R))

= (Xu,−1)√
1 + |Xu|2

|(DHu,−L n)| (Ω \ I) = (Xu,−1)L n,

which gives (4.23). �
5. The rank-one theorem for BVH functions in Carnot groups

We now use the results of the previous section in the setting of a Carnot group G. We 
utilize the notation of Section 2; in particular, we identify G ≡ R

n by exponential coordi-
nates and a left-invariant basis X1, . . . , Xm of g1 is fixed. The vector fields X̃1, . . . , X̃m+1
on G ×R are defined as in the previous section; notice that they form a basis of the first 
layer of the Lie algebra of G × R. The homogeneous dimension of G × R is Q + 1.

A set R ⊂ G is H-rectifiable if HQ−1(R) < ∞ and there exists a (finite or countable) 
family (Σi)i of C1

H hypersurfaces in G such that

HQ−1
(
R \

⋃
i

Σi

)
= 0.

We define the horizontal normal νR to R as

νR(x) := νΣi
(x) if x ∈ R ∩ Σi \ ∪j<iΣj .

The normal νR is well-defined (up to sign) HQ−1-a.e. on R.2

2 The key property to prove this assertion is that the set of points where two C1
H hypersurfaces intersect 

transversally is HQ−1-negligible: this fact holds true in any equiregular Carnot–Carathéodory space, see 
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Definition 5.1. We say that a Carnot group G satisfies property R if the following holds. 
For any bounded open set Ω ⊂ G and any u ∈ BVH(Ω), the distributional X̃-derivatives 
D

H̃
χEu

of the characteristic function of the subgraph Eu of u can be represented as

D
H̃
χEu

= ν∂∗
HEu

θSQ ∂∗
HEu (5.29)

for some H-rectifiable set ∂∗
HEu in Ω ×R and some positive density θ ∈ L1(∂∗

HEu, SQ). 
We call ∂∗

HEu the H-reduced boundary of Eu.

Notice that, in Definition 5.1, the measure D
H̃
χEu

has finite total variation by The-
orem 4.2.

Remark 5.2. In view of Theorem 1.3, for the validity of property R in G it is enough that 
a rectifiability theorem holds for sets with finite H-perimeter in G ×R; namely, it suffices 
that any set E with finite H-perimeter in G × R satisfies D

H̃
χE = ν∂∗

HEθSQ ∂∗
HE for 

some H-rectifiable set ∂∗
HE and some positive density θ ∈ L1(∂∗

HE, SQ). We conjecture 
that this, in turn, is equivalent to the validity of a rectifiability theorem for sets with 
finite H-perimeter in G; in particular, we conjecture that property R is equivalent to 
the rectifiability theorem in G.

Remark 5.3. If G is a Carnot group of step 2, then G satisfies property R: this follows 
from the fact that G ×R is also a step 2 Carnot group and that the rectifiability theorem 
holds in any step 2 Carnot group, see [15].

Remark 5.4. If (5.29) holds, then

|D
H̃
χEu

| = θSQ ∂∗
HEu and νEu

= ν∂∗
HEu

SQ-a.e. on ∂∗
HEu.

Proof of Theorem 1.1. Without loss of generality one can assume that u = (u1, . . . , ud) ∈
BVH(Ω, Rd). It is not restrictive to assume that Ω is bounded. For any i = 1, . . . , d we 
write Ds

Hui = σi|Ds
Hui| for a |Ds

Hui|-measurable map σi : Ω → S
m−1; notice that, using 

the notation of Section 4, the equality σi = σui
holds |Dsui|-almost everywhere. We also 

let Ei := {(x, t) ∈ Ω ×R : t < ui(x)} be the subgraph of ui, that has finite H-perimeter 
in Ω ×R by Theorem 4.2. Denoting by ∂∗

HEi the H-reduced boundary of Ei and writing 
νi = νEi

for the measure theoretic inner normal to Ei, we have by Theorem 4.3 and 
Remark 5.4 that

|Ds
Hui| = π#(θiSQ Si) for some positive θi ∈ L1(∂∗

HEi,SQ),

e.g. [10]. Actually, in view of Theorem 1.1 we could restrict to the setting of Carnot groups satisfying 
property C2, where the claim follows from Theorem 1.4.
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where Si :=
{
p ∈ ∂∗

HEi : (νi(p))m+1 = 0
}

and π# denotes push-forward of measures 
through the projection π defined by G × R 
 (x, t) �→ x ∈ G. By rectifiability, we can 
assume that ∂∗

HEi is contained in the union ∪�∈NΣi
� of C1

H hypersurfaces Σi
� in G × R.

Using Theorem 4.3, Remark 5.4 and Lemma 3.2 the following properties hold for 
SQ-a.e. p ∈ S1 ∪ · · · ∪ Sd:

if p ∈ Si, then νi(p) = (σi(π(p)), 0) (5.30)

if p ∈ Σi
�, then νi(p) = ±νΣi

�
(p) (5.31)

if p ∈ Σi
� and ∃ q ∈ Sj ∩ Σj

k ∩ π−1(π(p)), then νΣi
�
(p) = ±νΣj

k
(q). (5.32)

Up to modifying each Si on a SQ-negligible set and each σi on a |Ds
Hui|-negligible set, 

we can assume that (5.30), (5.31) and (5.32) hold for any p ∈ S1 ∪ · · · ∪ Sd and that, for 
any i = 1, . . . , d, σi = 0 on Ω \ π(Si).

Since Ds
Hu = (σ1|Ds

Hu1|, . . . , σd|Ds
Hud|) and |Ds

Hu| is concentrated on π(S1) ∪ · · · ∪
π(Sd), it is enough to prove that the matrix-valued function (σ1, . . . , σd) has rank 1 on 
π(S1) ∪ · · · ∪ π(Sd). This follows if we prove that the implication

i, j ∈ {1, . . . , d}, i �= j, x ∈ π(Si) =⇒ σj(x) ∈ {0, σi(x),−σi(x)}

holds. If i, j, x are as above and x /∈ π(Sj), then σj(x) = 0. Otherwise, x ∈ π(Si) ∩π(Sj), 
i.e., there exist p ∈ Si and � ∈ N such that π(p) = x and σi(x) = ±νΣi

�
(p) and there 

exist q ∈ Sj and k ∈ N such that π(q) = x and σj(x) = ±νΣj
k
(p). By (5.32) we obtain 

σj(x) = ±σi(x), as wished. �
Remark 5.5. As an easy consequence of Remark 2.4 and Remark 5.3, Theorem 1.1 holds 
for the Heisenberg group Hn provided n ≥ 2. This result does not directly follow from [9], 
as we now briefly explain using the notation of Example 2.1 and restricting for simplicity 
to n = 2, the general case n ≥ 2 being a straightforward generalization.

Let u ∈ BVH(Ω, Rm) for some open set Ω ⊂ H
2. It can be easily seen that the matrix-

valued measure (μ1, μ2, μ3, μ4) := DHu = (X1u, X2u, Y1u, Y2u) satisfies the equations

A μ :=

⎛⎜⎜⎜⎜⎜⎝
X1μ2 −X2μ1
Y1μ4 − Y2μ3
X1μ4 − Y2μ1
Y1μ2 −X2μ3
X1μ3 − Y1μ1 + Y2μ2 −X2μ4

⎞⎟⎟⎟⎟⎟⎠ = 0

in the sense of distributions. Write the first-order differential operator A (the horizontal 
curl in H2, see [5, Example 3.12]) in the form

A = A1∂x1 + A2∂x2 + A3∂y1 + A4∂y2 + A5∂t
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for suitable Aj = Aj(x, y, t) and consider the wave cone ΛA (x, y, t) (see [9]) associated 
with A

ΛA (x, y, t) :=
⋃

ξ∈R5\{0}
kerAx,y,t(ξ), where Ax,y,t(ξ) := 2πi

5∑
j=1

Aj(x, y, t)ξj .

One can readily check that

Ax,y,t(ξ) = 0 for ξ := (y2 ,−
x
2 , 1) ∈ R

5 \ {0},

i.e., the wave cone ΛA (x, y, t) is the full space for any (x, y, t) ∈ H
2. In particular, [9, 

Theorem 1.1] gives no information on the polar decomposition of Ds
Hu.

Remark 5.6. The rank-one property for BV functions in the first Heisenberg group re-
mains a very interesting open question, since it does not follow either from Theorem 1.1
(because property C2 fails for H1) or from [9, Theorem 1.1], as we now explain.

Let u ∈ BVH(Ω, Rm) for some open set Ω ⊂ H
1; we use again the notation of Ex-

ample 2.1 and we set p = (x, y, t) ∈ H
1 ≡ R

3. One can check that (μ1, μ2) := DHu =
(Xu, Y u) satisfies

A μ :=
(
YXμ1 − 2XY μ1 + XXμ2
Y Y μ1 − 2YXμ2 + XY μ2,

)
= 0

in the sense of distributions. Now A (the horizontal curl in H1, see [5, Example 3.11]) 
is a second-order differential operator that one can write as

A =
∑
|α|=2

Aα(p)∂α,

where α ∈ N
3 is a multi-index and ∂α = ∂α1

x ∂α2
y ∂α3

t . As before, one can define the wave 
cone

ΛA (p) =
⋃

ξ∈R3\{0}
kerAp(ξ), where Ap(ξ) = (2πi)2

∑
|α|=2

Aα(p)ξα.

Again, one has

Ap(ξ) = 0 for ξ := (y2 ,−
x
2 , 1) ∈ R

3 \ {0}

and the wave cone ΛA (x, y, t) is the full space.
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Appendix A. Intersection of regular hypersurfaces vs. intrinsic Lipschitz graphs

A.1. Intrinsic Lipschitz graphs

We follow [12]. Let W, H be homogeneous (i.e., invariant under dilations) complemen-
tary subgroups of G, i.e., such that W ∩ H = {0} and G = WH. In particular, for any 
x ∈ G there exist unique xW ∈ W and xH ∈ H such that x = xWxH. Recall (see e.g. [12, 
Remark 2.3]) that any homogeneous subgroup W is stratified, that is, its Lie algebra w
is a subalgebra of g and w = w1 ⊕ · · · ⊕ ws where wi = w ∩ gi. Moreover, the metric 
(Hausdorff) dimension of W is QW :=

∑s
i=1 i dimwi.

The intrinsic graph of a function φ : W → H is defined by

gr φ := {wφ(w) : w ∈ W}.

We introduce the homogeneous cones CW,H(x, α) of center x ∈ G and aperture α > 0 as

CW,H(x, α) := xCW,H(0, α) where CW,H(0, α) := {y ∈ G : ‖xW‖ ≤ α‖xH‖}.

Definition A.1. A function φ : W → H is intrinsic Lipschitz if there exists α > 0 such 
that

∀ x ∈ gr φ gr φ ∩ CW,H(x, α) = {x}.

We say that S ⊂ G is an intrinsic Lipschitz graph if there exists an intrinsic Lipschitz 
map φ : W → H such that S = gr φ.

Remark A.2. We will later use the following equivalent definition of intrinsic Lipschitz 
continuity: φ : W → H is intrinsic Lipschitz if and only if there exists β > 0 such that

∀ x ∈ gr φ gr φ ∩D(x,H, β) = {x}

where the homogeneous cone D(x, H, β) is defined by

D(x,H, β) := xD(H, β) and D(H, β) :=
⋃
h∈H

B(h, βd(h, 0)).

Indeed, it is enough to observe that, for any α > 0 and β > 0, there exist βα > 0 and 
αβ > 0 such that

CW,H(x, α) ⊃ D(H, βα) and D(H, β) ⊃ CW,H(x, αβ).

This, in turn, is a consequence of a homogeneity argument based on the following fact: 
if S := {x ∈ G : ‖x‖ = 1} and
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Aα := S ∩ int(CW,H(x, α)), Bβ := S ∩ int(D(H, β)),

then {Aα}α>0 and {Bβ}β>0 are monotone families of (relatively) open subsets of S such 
that the intersection ⋂

α>0
Aα =

⋂
β>0

Bβ = H ∩ S

is a compact set.

The following result will be used in the proof of Theorem 1.4.

Theorem A.3 ([12, Theorem 3.9]). Let W, H be homogeneous complementary subgroups 
of G, let φ : W → H be intrinsic Lipschitz and let α > 0 be as in Definition A.1. Then 
there exists a positive C = C(W, H, α) such that

1
C
rQW ≤ HQW(gr φ ∩B(x, r)) ≤ CrQW ∀ x ∈ gr φ, r > 0.

A.2. Transversal intersections of C1
H hypersurfaces are intrinsic Lipschitz graphs

The aim of this section is proving Theorem A.5, due to V. Magnani [22], for which 
we need the preparatory Lemma A.4. Actually, its use could be avoided by utilizing a 
local version of Theorem A.3 which, even though not explicitly stated there, would easily 
follow adapting the techniques of [12]. We note however that Lemma A.4, and (A.33) in 
particular, provides also a proof of (3.2).

Lemma A.4. Let Ω ⊂ G be open, f ∈ C1
H(Ω), x̄ ∈ Ω and let A := ∇Hf(x̄). Then, for 

any ε > 0 there exist an open set U ⊂ Ω with x̄ ∈ U and a function g ∈ C1
H(G) such 

that

(i) g = f on U ;
(ii) |∇Hg −A| < ε on G.

Proof. Without loss of generality we can assume that x̄ = 0. We preliminarily fix a 
smooth function χ : G → [0, 1] such that χ ≡ 1 on B1 and χ ≡ 0 on G \ B2. For any 
r > 0, the functions χr := χ ◦ δ1/r satisfy

0 ≤ χr ≤ 1, χ ≡ 1 on Br, χ ≡ 0 on G \B2r, |∇Hχr| ≤
C

r

for some positive C independent of r.
Let ε > 0 be fixed. We fix r > 0 such that |∇Hf − A| < ε on B2r. With this choice, 

setting λ(x) := A1x1 + · · · + Amxm (where x is represented in exponential coordinates) 
we prove that
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|f(x) − λ(x)| < 2εr for any x ∈ B2r. (A.33)

Indeed, for any x ∈ B2r there exists a horizontal curve γ : [0, 1] → G such that γ(0) = 0, 
γ(1) = x and L(γ) < 2r. By definition, there exists h ∈ L∞([0, 1], Rm) such that

γ̇(t) =
m∑
i=1

hi(t)Xi(γ(t)) for a.e. t ∈ [0, 1].

Moreover, for any i = 1, . . . , m we have 
∫ 1
0 hi = xi, because in exponential coordinates 

one has Xi(x) = ∂xi
+
∑

�>m+1 ai�∂x�
(see e.g. [29]). It follows that

|f(x) − λ(x)| =

∣∣∣∣∣∣
1∫

0

m∑
i=1

hi(t)Xif(γ(t))dt−
1∫

0

m∑
i=1

Aihi(t)dt

∣∣∣∣∣∣
≤

1∫
0

|h(t)| ‖∇Hf(γ(t)) −A‖dt

<2εr.

We now define g := χrf + (1 − χr)λ; statement (i) is readily checked, while for (ii)

|∇Hg −A| = |χr∇Hf + (1 − χr)A + (f − λ)∇Hχr −A|
≤ χr|∇Hf −A| + |f − λ||∇Hχr|
≤ ε + 2Cε.

The proof is then accomplished. �
We can now prove the main result of this section. Since property C1 holds in any 

Carnot group, when k = 1 Theorem A.5 states in particular that hypersurfaces of class 
C1

H in a Carnot group G are locally intrinsic Lipschitz graphs of codimension 1.

Theorem A.5 ([22, Theorem 1.4]). Let G be a Carnot group of rank m and let Σ1, . . . , Σk, 
k ≤ m, be hypersurfaces of class C1

H with horizontal normals ν1, . . . , νk; let x ∈ Σ := Σ1∩
· · ·∩Σk be such that ν1(x), . . . , νk(x) are linearly independent. Consider the vertical plane 
W := TxΣ1 ∩ · · · ∩TxΣk of codimension k and assume that there exists a complementary 
homogeneous horizontal subgroup H such that G = WH. Then, there exists an open 
neighborhood U of x and an intrinsic Lipschitz φ : W → H such that

Σ ∩ U = gr φ ∩ U.

Proof. We work in exponential coordinates associated with an adapted basis X1, . . . , Xn

of g such that



JID:YJFAN AID:8113 /FLA [m1L; v1.246; Prn:15/10/2018; 13:01] P.27 (1-29)
S. Don et al. / Journal of Functional Analysis ••• (••••) •••–••• 27
H = exp(span {X1, . . . , Xk}), W = exp((span {Xk+1, . . . , Xs}) ⊕ g2 ⊕ · · · ⊕ gs).

By definition we can find an open neighborhood U of x and f = (f1, . . . , fk) ∈ C1
H(U, Rk)

such that Σ ∩ U = {x ∈ U : f(x) = 0} ∩ U and the m × k matrix-valued function 
∇Hf has rank k in U . Actually, by our choice of the basis the k × k minor M :=
(X1f(x), . . . , Xkf(x)) has rank k.

Let ε be a positive number, to be fixed later and only depending on M . By 
Lemma A.4, possibly restricting U we can assume that f is defined on the whole G, 
that f ∈ C1

H(G, Rk) and |∇Hf −∇Hf(x)| < ε; in particular,

|(X1f, . . . ,Xkf) −M | < ε on G.

It is enough to prove that the level set R := {x ∈ G : f(x) = 0} is an intrinsic Lipschitz 
graph. We divide the proof of this claim into two steps.

Step 1: R is the intrinsic graph of some φ : W → H. It is enough to show that, for 
any w ∈ W, there exists a unique h ∈ H such that f(wh) = 0; in particular, this allows 
to define the map φ by φ(w) := h.

The map (h1, . . . , hk) ←→ exp(h1X1 + · · · + hkXk) is a group isomorphism between 
H and Rk. Upon identifying H and Rk in this way, for any w ∈ W we can consider 
fw : Rk → R

k defined by fw(h) := f(wh). This map is of class C1 and

∇fw(h) = (X1f(wh), . . . , Xkf(wh)).

We have |∇fw−M | < ε which, if ε is small enough, implies that fw is a C1 diffeomorphism 
of Rk: see e.g. the argument in [11, 3.1.1].3 This concludes the proof of Step 1; we notice 
also that, possibly reducing ε, there exists c > 0 such that (see again in [11, 3.1.1])

|f(wh1) − f(wh2)| = |fw(h1) − fw(h2)| ≥ c|h1 − h2| ∀ h1, h2 ∈ R
k. (A.34)

Step 2: φ is intrinsic Lipschitz. By Remark A.2 it is enough to prove that

gr φ ∩D(x,H, β) = {x} for any x ∈ G

for a suitable β > 0 that we will choose in a moment.
Let then x ∈ gr φ be fixed; consider x′ ∈ D(x, H, β), so that x′ = xy for some 

y ∈ D(H, β). By definition, there exists h ∈ H such that

d(0, h−1y) = d(h, y) ≤ βd(h, 0).

Denoting by L the Lipschitz constant of f we deduce using (A.34) that

3 The careful reader will notice that the argument in [11, 3.1.1] works also when the parameter δ introduced 
therein is +∞.
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|f(x′)| = |f(xhh−1y) − f(x)|
≥ |f(xh) − f(x)| − |f(xhh−1y) − f(xh)| ≥ c‖h‖ − Ld(h, y) ≥ (c̃− βL)d(0, h)

for some c̃ > 0. In particular, if β is small enough, one can have f(x′) = 0 only if h = 0, 
which immediately gives x′ = x. This concludes the proof. �

We can eventually prove Theorem 1.4.

Proof of Theorem 1.4. By property Ck and Remark 2.3, the vertical plane W := TxΣ1∩
· · · ∩ TxΣk admits a complementary horizontal homogeneous subgroup H. One can then 
easily conclude using Theorems A.3 and A.5. �
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