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Abstract

We prove the existence of an almost full measure set of (3n− 2)-dimensional
quasi-periodic motions in the planetary problem with (1 + n) masses, with eccen-
tricities arbitrarily close to the Levi–Civita limiting value and relatively high incli-
nations. This extends previous results, where smallness of eccentricities and incli-
nations was assumed. The question had been previously considered by V. I. Arnold
(1963) in the 60s, for the particular case of the planar three-body problem, where,
due to the limited number of degrees of freedom, it was enough to use the invariance
of the system by the SO(3) group.

The proof exploits nice parity properties of a new set of coordinates for the
planetary problem, which reduces completely the number of degrees of freedom
for the system (in particular, its degeneracy due to rotations) and, moreover, is
well fitted to its reflection invariance. It allows the explicit construction of an
associated close to be integrable system, replacing Birkhoff normal form, common
tool of previous literature.

Received by the editor February 21, 2015 and, in revised form, February 9, 2016.
Article electronically published on June 25, 2018.
DOI: https://doi.org/10.1090/memo/1218
2010 Mathematics Subject Classification. Primary 34C20, 70F10, 37J10, 37J15, 37J40; Sec-

ondary 34D10, 70F07, 70F15, 37J25, 37J35.
Key words and phrases. Canonical coordinates, Jacobi’s reduction, Deprit’s reduction, Peri-

helia reduction, symmetries, quasi-periodic motions, Arnold’s theorem on the stability of planetary
motions.

This research has been financially supported partly (up to February 28, 2016) by ERC Ideas-
Project 306414 “Hamiltonian PDEs and small divisor problems: a dynamical systems approach”
and partly (since March 1, 2016) by the ERC Project 677793 “Stable and Chaotic Motions in the
Planetary Problem.”

The author is affiliated with the Dipartimento di Matematica “T. Levi-Civita”, via Trieste
63, 35131 Padova, Italy. Email: gabriella.pinzari@math.unipd.it.

c©2018 American Mathematical Society

v

https://doi.org/10.1090/memo/1218
https://doi.org/10.1090/memo/1218


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 1

Background and results

In recent years, substantial progress on a statement by Vladimir Igorevich
Arnold concerning the stability of the planetary system has been achieved [2,9,14,
20,22,23,27,33].

It sounds as follows.

“For the majority of initial conditions under which the instantaneous orbits of the
planets are close to circles lying in a single plane, perturbation of the planets on
one another produces, in the course of an infinite interval of time, little change
on these orbits provided the masses of the planets are sufficiently small. [ . . . ] In
particular [ . . . ] in the n-body problem there exists a set of initial conditions having
a positive Lebesgue measure and such that, if the initial positions and velocities
of the bodies belong to this set, the distances of the bodies from each other will
remain perpetually bounded.” [2, Chapter III, p. 125].

Solving the differential equations of the motions of the planetary problem, i.e., n
planets interacting among themselves and with a star via gravity is, for n ≥ 2,
a problem with ancient roots. This story goes back to Sir Isaac Newton – who
brilliantly solved the case of two bodies and then, tackling the analogous one for
three bodies, soon realized the necessity of turning to a “perturbative” study (except
for naming it a “head ache problem”) – passed through investigations by eminent
mathematicians like Delaunay, Lagrange, the prize publicly announced by King
Oscar II of Sweden and Norway and awarded to Henri Poincaré, but its “solution”
is nowadays open. Chaotic and stable regions may coexist [2,11,17].

The question received a new mathematical description, and a strong modern en-
dorsement, after A. N. Kolmogorov announced, at the International Congress of
Mathematicians of 1954 in Amsterdam, what is now almost unanimously considered
the most important result of the last century for dynamical systems: the theorem
of conservation of the invariant torus. This breakthrough result, next enriched by
substantial contributions by J. Moser and V. I. Arnold himself [1, 22, 26], states
that for a generic Hamiltonian system close to an integrable one, i.e., a system of
the form

H(I, ϕ) = h(I)+μ f(I, ϕ) (I, ϕ) ∈ B×TN B ⊂ RN T := R/(2πZ) μ � 1,

the major part of unperturbed motions survives, after a small perturbation is
switched on, provided suitable “non-degeneracy” conditions are verified by the
“unperturbed part” h. Moreover, the theory provides precise arithmetic (“dio-
phantine”) properties to be verified by the “unperturbed frequencies” ω∗ = ∂h(I∗),
so that they will be preserved in the full system.
In 1962, V. I. Arnold, extending Kolmogorov’s ideas, and looking for an applica-
tion to the planetary problem, at the International Congress of Mathematicians of

1
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Stockholm, announced the theorem of stability of planetary motions quoted above.
In 1965 Kolmogorov and Arnold were awarded the Lenin Prize for their studies on
the stability of the planetary problem – but the story was not finished there.

In order to introduce the results of this paper, we highlight basic facts of this story
and its continuation, referring the reader to [5,10,16,28,29] for more notices.

The planetary problem is close to the integrable problem of n uncoupled two-body
problems, where each planet interacts separately with the sun. The mutual interac-
tions among planets are regarded as a perturbing function, the smallness of which
is ruled by the planets’ masses. However, as a perturbed system, the planetary
problem has a limiting degeneracy. Its associated integrable system (the two-body
problem) is “super-integrable”: it has more integrals than degrees of freedom. At
a technical level, the limiting degeneracy is exhibited by the disappearance of de-
grees of freedom in the unperturbed part. Therefore, continuing the unperturbed
motions to a positive measure set of quasi-periodic trajectories might, in general,
be not possible, in absence of further informations on the perturbing function.

Arnold found, for the planetary problem, a brilliant solution to the problem of the
limiting degeneracy. This led him to add to the assumptions and assertions that
are proper of perturbation theories (e.g., “the masses of the planets are sufficiently
small”, “set of initial conditions having a positive Lebesgue measure”, “the dis-
tances . . . will remain perpetually bounded”) a further requirement of smallness of
eccentricities and inclinations of the unperturbed Keplerian ellipses (“the instan-
taneous orbits of the planets are close to circles lying in a single plane”). Let’s
summarize Arnold’s ideas.
Choosing, as Arnold did, Poincaré coordinates [30] (see, also [2, Ch. III, §2], or,
e.g., [8,15]), the system takes the usual close to be integrable form

HPoi = hKep + μ fPoi,

where μ is a small parameter related to the planetary masses, but the unperturbed
“Keplerian” part hKep(Λ) depends on only n action variables Λ = (Λ1, · · · ,Λn) (re-
lated to the semi-major axes of the instantaneous Keplerian ellipses), out of an over-
all of 3n degrees of freedom. The perturbing function, fPoi, on the other hand, de-
pends on all the coordinates: the actions Λ, their conjugated angles � = (�1, · · · , �n)
(proportional to the areas of the elliptic sectors spanned by the planets), and, more-
over, on some other coordinates (p, q) = (p1, · · · , p2n, q1, · · · , q2n), 4n-dimensional,
related to those (“secular”) quantities (eccentricities, inclinations, nodes and peri-
helia of the ellipses) that in the unperturbed problem stay fixed, and for this reason
do not appear in hKep.

It is of great help that the averaged perturbing function (with respect to the angles
�) fPoi(Λ, p, q) enjoys several parities in the coordinates (p, q), geometrically related
to its invariance by rotations and reflections with respect to the coordinate planes.
The “secular origin” (p, q) = 0, corresponding to all the planets moving on co-
centric circles in the same plane, turns out to be an elliptic equilibrium point for
the averaged perturbing function, for any value of Λ.

Arnold brilliantly argued to exploit this circumstance to his purpose. By Birkhoff

theory, one might think to switch to another set of canonical coordinates (Λ, �̃, p̃, q̃),
analogous to Poincaré’s coordinates, possibly defined only for (p̃, q̃) in a small neigh-
borhood of radius ε around the origin, such that the Hamiltonian of the system, or,
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more precisely, its �̃-averaged (“secular”) perturbing function fBir, takes a “nor-
malized form” : it is a polynomial, fBir,tr, of some degree greater or equal than

two in the combinations (“degenerate actions”) τi =
p̃2
i+q̃2

i

2 , i = 1, · · · , 2n, plus a
remainder with a higher order. Roughly, Arnold projected to solve the limiting de-
generacy by conjugating the planetary system to a new system, whose unperturbed
part was just the truncated, normalized Hamiltonian

hKep + μ fBir,tr

so as to recover the standard set up of KAM theory. With these ideas in mind, he
proved the following impressive result and next applied it to the planar three-body
problem. It states that stable trajectories occupy a positive measure set of the phase
space, and are more and more dense closer to the elliptic equilibrium. Hence, the
smaller eccentricities and inclinations are, the larger the number of stable motions
is.

‘The Fundamental Theorem” (V. I. Arnold, [2]) If the Hessian matrix of h
and the matrix of the coefficients of the second-order term in τi in fBir (“torsion”, or
“second-order Birkhoff invariants”) do not vanish identically, and if μ is suitably
small with respect to ε, the system affords a positive measure set Kμ,ε of quasi-
periodic motions in phase space such that its density goes to 1 as ε → 0.

Arnold perfectly knew that, in order to apply the Fundamental Theorem to the
problem in space, one should previously treat an unpleasant fact: one of the first
order Birkhoff invariants vanishes identically. He was aware that the reason for this
first-order degeneracy was to be sought into the existence of two non-commuting
integrals, the two horizontal components of the total angular momentum of the
systems. If, apparently, a vanishing eigenvalue strongly violates the construction of
the normalized system (a deeper analysis of the symmetries of the perturbing func-
tion [8,25], however, shows that the identically vanishing eigenvalue is not a real
obstruction), a major problem definitely prevents the application of the Fundamen-
tal Theorem: an infinite number of coefficients of any order of the (formal) Birkhoff
series vanishes identically, among which one entire row and a column in the torsion
matrix, which so is identically singular, and the reason is again the invariance by
rotations. The proof of this generalized degeneracy is in [8]. We recall here that
even Herman had raised a question about the degeneracy of torsion [20, p. 24].

We do not know weather Arnold was aware of the infinite degeneracy of the nor-
malized system (he did not even mention the vanishing of torsion in his paper).
He however suggested two different strategies for the three- and the many-body
case, of which he provided very few and somewhat controversial details. As for the
three-body problem (his ideas for the many-body case will be recalled a few below),
he proposed to reduce the integrals (hence, the number of degrees of freedom) of
the system by switching to a system of canonical coordinates going back to the XIX
century, worked out by Jacobi and Radau [21,32], which in literature go under the
name of Jacobi reduction of the nodes. The idea was later completely developed by
P. Robutel [33], who, in a deeply quantitative study, checked the non-degeneracy
assumptions required by the Fundamental Theorem.

Finding a system of canonical coordinates that do the job of Jacobi reduction of the
nodes when the number of bodies is more than three has been a central difficulty
for a long time [2,25]. At this respect, Arnold sadly commented: “In the case of
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more than three bodies there is no such elegant method [as Jacobi reduction of the
nodes] of reducing the number of degrees of freedom.” [2, Ch. III, §5.5, p. 141].

Exactly twenty years later, F. Boigey and A. Deprit refuted this sentence [3,12].
They indeed were able to extend Jacobi-Radau reduction to the four-body and
general problem, respectively. It should be remarked, anyway, that, while the
works by Jacobi, Radau and Boigey provide canonical coordinates on suitable sub-
manifolds of the phase space, the one by Deprit is more general and clarifying, since
it provides a set of canonical coordinates for the whole phase space and allows us
to recover his predecessors by restriction.

The utility of Boigey-Deprit’s coordinates was not suddenly clear. Neither Boigey
nor Deprit ever provided any motivation of their study, or foresaw applications.
The only application that is known to the author up to 2008, concerning indeed
Deprit’s coordinates, stands in a paper by Ferrer and Osácar, in the 90s, to the three
body problem [18]. But this case is not really exhaustive, since for three bodies
Deprit’s and Jacobi-Radau’s coordinates coincide. A reason why Boigey-Deprit’s
coordinates have been forgotten so long might be that, for more than three bodies,
they actually have a less natural aspect, compared to the classical case of Jacobi. A
sort of “hierarchical” structure in the geometry of Deprit’s coordinates discouraged
the author himself, who, at the end of his paper, declared: “Whether the new phase
variables are practical in the general theory of perturbation is an open question. At
least, for planetary theories, the answer is likely to be in the negative. But finding
a natural system of coordinates for eliminating the nodes in a planetary cluster was
not the intention of this note.” [12, p. 194].

In the meantime, in 2004, the first general proof of Arnold’s stability statement ap-
peared. It was by Jacques Féjoz, who completed investigations by the late Michael
Herman [14] – but the different procedure that Herman had in mind did not rely on
the necessity of handling, explicitly, good coordinates. Indeed, Herman conceived a
proof based, besides on a “twist-less” KAM theory going back to H. Russmann [34],
on indirect arguments of Lagrangian intersections in order to bypass the so-called
“secular resonances”. See [10] for more details.

In 2008, Boigey-Deprit’s coordinates were rediscovered by the author [27], in a
slightly different, “planetary” form. The rediscovery was motivated by the purpose
of realizing Arnold’s program (i.e., applying the Fundamental Theorem quoted
above directly to the planetary Hamiltonian) in the general case, so as to obtain a
detailed information about the tori frequencies, the measure of the invariant set and
the symplectic structure of the phase space. The utility of Boigey-Deprit’s coordi-
nates became suddenly clear: switching (in order to overcome certain singularities
of the chart) to a regularized version, called “RPS” coordinates, (acronym stand-
ing for “Regular, Planetary and Symplectic”), allowed them to derive the Birkhoff
normal form of the planetary problem, to prove its non-degeneracy, and hence
to complete the application of the Fundamental Theorem to the general problem.
These results have been published in [6,7,9].

Qualitatively, RPS coordinates are very different from JRBD (Jacobi-Radau-Boigey-
Deprit); rather, they are more similar to Poincaré coordinates. The mentioned
parities and the elliptic equilibrium of the averaged system are still present in the
RPS-averaged system. But, as an advantage with respect to Poincaré coordinates,
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the RPS perform1 a “partial reduction” of the rotation symmetry – in contrast
with JRBD coordinates, which reduce “fully”. This way, all the degeneracies of
the Birkhoff series mentioned above are removed at once, and the non-degeneracy
assumptions of the Fundamental Theorem may be checked.
We like to recall now Arnold’s strategy for the many-body case: more than forty
years earlier, he foresaw to construct a system of coordinates analogous to RPS,
via a Taylor series in Poincaré coordinates [2, Ch III, §5, n. 5, p. 141].
Indeed, both the reduction of the nodes and this latter reduction are available
whatever the number of bodies is.

The possibility of switching from Delaunay-Poincaré to the more fruitful JRBD,
or even RPS coordinates, is an effect of the limiting degeneracy. This gives in
fact the opportunity of remixing coordinates related to secular quantities, and,
simultaneously, keeping the Keplerian term hKep unvaried.

Following this idea, in this paper, we show that other systems of coordinates may be
determined for the planetary problem which, as well as JRBD and RPS coordinates,
are well adapted to overcome the degeneracy due to rotations, and, moreover, enjoy
some different properties.

We present a full reduction, which we call P-map, or perihelia reduction. It refines
JRBD coordinates in two respects.

Firstly, the P-map is well defined in the case of the planar problem, while JRBD
coordinates are not. Everyone knows, in fact, that the starting point for the Radau-
Jacobi reduction is the so-called “line of the nodes”, the straight line determined by
the intersection between the planes of the two orbits. When the orbits of the two
planets belong to the same plane, this is not defined. A similar circumstance arises
for Boigey-Deprit’s coordinates, since their construction relies on certain straight
lines in the space, which again lose their meaning in case of co-planarity.

The proof of Arnold’s theorem given in [9,27] is not affected by such singularity,
since, as said, it relies on RPS coordinates, which, at the expense of one more
degree of freedom, are well defined for co-planar motions – in that case they reduce
to the classical Poincaré coordinates.

It has its consequences when one wants to compare results for the fully reduced
systems, in space or in the plane. The singularity of the chart does not allow one
to state that motions in the spatial problem with minimum number of independent
frequencies starting with very small inclinations stay close to the corresponding
planar motions. Notwithstanding further studies appearing in [28], where this
problem is partially overcome (via the construction of regular coordinates for co-
planar motions defined locally), it would be nice, in principle, to handle a global
system of action-angle coordinates which completely reduces rotations and is shared
simultaneously by the planar and the spatial problem.

Secondly, the P-map is well adapted to reflection symmetries of the problem, while
JRBD coordinates are not, as discussed in [25,29].

1In the framework of the study of canonical coordinates for the planetary system, by “partial
reduction”, we mean a system of canonical coordinates where a couple of conjugated coordinates
consists of integrals (e.g., functions of the three components of the total angular momentum).
By “full reduction”, we mean a partial reduction where also another integral appears among the
coordinates. The terms “partial reduction”, “full reduction” have been coined in [25].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6 1. BACKGROUND AND RESULTS

Reflection symmetries are parities of the Hamiltonian expressed in Cartesian coor-
dinates. As known, this does not change under arbitrary changes of the signs of
positions or momenta coordinates. They are not related to integrals. Therefore,
it might be a nice fact, and in general useful for applications, to have a system
of coordinates that, after integrals are reduced, parities associated to reflections
are maintained. Quite often parities are associated to equilibria, and equilibria to
stable motions; an example is provided a few lines below.

We shall apply the P-map by proving a variant of Arnold’s stability theorem. We
shall face up to a question raised again by Arnold in his fantastic paper on the
possibility of removing the constraint on eccentricities and inclinations. He indeed
proved that, at least for the planar three-body problem, there is no need to assume
their smallness. Rather, it is sufficient that the trajectories of the planets are away
enough so as to avoid collisions. He obtained this stronger result by exploiting
the convergence of the Birkhoff series associated to the averaged perturbation, a
very particular and happy circumstance, due to the few degrees of freedom of the
problem.

From the mathematical point of view, the question is whetherstrategies exist for
finding stable motions other than the one of exploring the neighborhood of the
elliptic equilibrium.

Concerning instead the physical relevance, asteroids or some trans-Neptunian ob-
jects have motions with relatively large eccentricities and inclinations and an almost
continuous spectrum of frequencies.

Besides the mentioned stronger result by Arnold, some other statements in the
same direction have been obtained for the case of the spatial three-body problem
and the planar problem with any number of bodies [28]. Here, the measure of the
invariant set has been estimated to be larger and larger as the planetary masses
and the semi-axes ratios are small, no matter the smallness of the eccentricities
and inclinations – the proof relies on an argument of convergence of a significant
approximation of the Birkhoff series. Other results in this direction have been
announced by J. Féjoz, since late 2013 [13].

Even though the arguments of [2,28] do not apply to the general spatial problem,
since no significant approximation of the Birkhoff series associated to the averaged
perturbation is integrable, using the P-map, we shall prove the following.

Theorem A. Fix numbers 0 < ei < ei < 0.6627 . . ., i = 1, · · · , n. There exists a
number N depending only on n and a number α0 depending on ei, ei, and n such
that, if α < α0, μ ≤ αN, in a domain of planetary motions where the semi-major
axes a1 < a2 < · · · < an are spaced as follows

(∗) a−i ≤ ai ≤ a+i with a±i :=
a±1

α
1
3 (2

n+1−2n−i+2+1−i)

there exists a positive measure set Kμ,α, the density of which in phase space can be
bounded below as

dens(Kμ,α) ≥ 1− (logα−1)p
√
α,

consisting of quasi-periodic motions with 3n − 2 frequencies where the planets’ ec-
centricities ei verify

ei ≤ ei ≤ ei.
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Before we switch to details, a few remarks.

Firstly, the claimed upper bound 0.6627 . . . is classical. It is related to the fact that,
as well as in [2, 28], the proof uses the machinery of real-analytic functions. We
refer the reader to [24,35] and references therein for general notices. A treatment
of the argument, as needed in the present paper, is provided in Chapter A.1.

Secondly, as it may be seen to the choice of a±j , the distances among the planets’
semi-axes are not of the same order but grow super-exponentially going towards the
sun. This resembles a sort of belt arrangement, observed in nature for asteroids. It
is possible to prove an analogous result, with increasing distances in the opposite
direction.

Thirdly, the result in Theorem A (especially, the claimed growth of a±i ) may be
regarded as an alternative way of solving the problem of the limiting degeneracy –
without Birkhoff normal form.
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CHAPTER 2

Kepler maps and the Perihelia reduction

We introduce the Perihelia reduction, or P-map, in the slightly general context of
Kepler maps.

Fix a reference frame G0 = (k(1), k(2), k(3)) in the Euclidean space E3. We identify
the three chosen directions k(1), k(2), k(3) with the triples of coordinates with respect
of the system of coordinates established by themselves:

k(1) =

⎛⎝ 1
0
0

⎞⎠ k(2) =

⎛⎝ 0
1
0

⎞⎠ k(3) =

⎛⎝ 0
0
1

⎞⎠ .

Definition 2.1. An ellipse (with a focus in the origin and non-vanishing ec-
centricity) is a quadruplet E = (a, e,N, P ), where a ∈ R+ is the semi-major axis,
e ∈ (0, 1) is the eccentricity, N ∈ R3 ∩S2 is the normal direction and P ∈ N⊥ ∩S2

is the perihelion direction.

Definition 2.2 (Kepler maps). Given 2n positive “mass parameters” m1, · · · ,
mn, M1, · · · , Mn, a set X ⊂ R5n, we say that a map

K : K = (XK, �) ∈ D := X× Tn → (yK, xK) ∈ C := K(D) ⊂ (R3)n × (R3)n

where

� = (�1, · · · , �n), (yK, xK) = (y
(1)
K , · · · , y(n)K , x

(1)
K , · · · , x(n)

K )

y
(j)
K = y

(j)
K (XK, �j) x

(j)
K = x

(j)
K (XK, �j) j = 1, · · ·n,

is a Kepler map if there exists an injection

τK : XK ∈ X → EK =
(
E1,K, · · · ,En,K

)
which assigns to any XK ∈ X an n-plet

(
E1,K, · · · ,En,K

)
of (co-focal) ellipses

Ej,K =
(
aj,K, ej,K, N

(j)
K , P

(j)
K

)
, j = 1, · · · , n

and K acts in the following way. Letting Q
(j)
K := N

(j)
K × P

(j)
K , then

(2.1) x
(j)
K = aj,KP

(j)
K + bj,KQ

(j)
K y

(j)
K = a◦j,KP

(j)
K + b◦j,KQ

(j)
K

where, if ζj,K, the eccentric anomaly, is the solution of Kepler’s Equation

(2.2) ζj,K − ej,K sin ζj,K = �j

9
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then

aj,K := aj,K
(
cos ζj,K − ej,K

)
bj,K := aj,K

√
1− e2j,K sin ζj,K

a◦j,K := −mj

√
Mj

aj,K

sin ζj,K
1− ej,K cos ζj,K

b◦j,K := mj

√
Mj(1− e2j,K)

aj,K

cos ζj,K
1− ej,K cos ζj,K

.

(2.3)

Remark 2.1. The definition implies that

(i) K is a bijection of the sets D and C;
(ii) the angular momenta and the energies1

(2.4) C
(j)
K := x

(j)
K × y

(j)
K , H

(j)
K :=

‖y(j)K ‖2
2mj

− mjMj

‖x(j)
K ‖

do not depend on �j and are given by

(2.5) C
(j)
K = mj

√
Mjaj,K(1− e2j,K)N

(j)
K , H

(j)
K = −mjMj

2aj,K
;

(iii) the couples (y
(j)
K , x

(j)
K ) verify the system of ODEs⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mj

√
Mj

a3j,K
∂�jx

(j)
K = y

(j)
K

√
Mj

a3j,K
∂�jy

(j)
K = −mjMj

x
(j)
K

‖x(j)
K ‖3

.

(2.6)

(iv) Even though canonical maps (with respect to the standard two-form) have
a pre-eminent role in Hamiltonian Mechanics, Kepler maps are used also
in different contexts in Astronomy, where being canonical is not required.
For example, one can consider the Kepler map associated to the “elliptic
elements” injection

τEe�� : (a, e, P, i,Ω) → EEe��

where a = (a1, · · · , an) are the semi-major axes, e = (e1, · · · , en) are the
eccentricities, P = (P (1), · · · , P (n)) are the perihelia, i = (i1, · · · , in) are
the inclinations, Ω = (Ω1, · · · ,Ωn) are the nodes’ longitudes.

The only known examples up to now of canonical Kepler maps are the
classical Delaunay map De� (its definition is recalled in the next Definition
2.5) and the map Dep [7,27] related to Deprit’s coordinates [12], which
is recalled in Appendix E. Below, we introduce a new canonical Kepler
map.

Definition 2.3 (perihelia reduction, or P-map). We denote as P, and call
perihelia reduction, or P-map, the Kepler map

(2.7) P : P = (XP , �) ∈ DP = XP × Tn → (y, x) ∈ R3n × R3n

associated to the bijection

τP : XP = (Θ, χ,Λ, ϑ, κ) ∈ XP → (E1, · · · ,En)ınEP = τP(XP) ⊂ E3n

defined by means of Definition 2.4 and Proposition 2.1 below.

1Here, ‖v‖ :=
√

v21 + v22 + v23 denotes the usual Euclidean norm of v = (v1, v2, v3) ∈ R3.
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Definition 2.4. For a given (E1, · · · ,En) ⊂ E3 × · · · × E3, with

Ej = (aj , ej , N
(j), P (j)),

and masses m1, · · · , mn, M1, · · · , Mn, define

C
(j)
E := mj

√
Mjaj(1− e2j)N

(j) S
(j)
E :=

n∑
i=j

C
(i)
E 1 ≤ j ≤ n(2.8)

be the angular momenta associated to Ej and the jth partial angular momenta, so
that

(2.9) S
(1)
E =

n∑
i=1

C
(i)
E S

(n)
E = C

(n)
E

are the total angular momentum and the angular momentum of the last ellipse,
respectively. Define the P-nodes

νj :=

⎧⎪⎨⎪⎩
k(3) × S

(1)
E j = 1

P (j−1) × S
(j)
E j = 2, · · · , n

nj := S
(j)
E × P (j) j = 1, · · · , n.

(2.10)

Finally, define

EP :=
{
((E1, · · · ,En) ⊂ E3×· · ·×E3) : 0 < ej < 1, νj = 0 nj = 0 ∀ j = 1, · · · , n

}
,

and, on this set, the map

τ−1
P : (E1, · · · ,En) ∈ EP → XP ∈ XP = τ−1

P (EP)
where

XP = (Θ, χ,Λ, ϑ, κ) ∈ Rn × Rn
+ × Rn

+ × Tn × Tn

with

Θ = (Θ0, · · · ,Θn−1), ϑ = (ϑ0, · · · , ϑn−1)

χ = (χ0, · · · , χn−1), κ = (κ0, · · · , κn−1)

Λ = (Λ1, · · · ,Λn)

defined via the following formulae:

Θj−1 :=

⎧⎪⎨⎪⎩
Z := S

(1)
E · k(3)

S
(j)
E · P (j−1)

ϑj−1 :=

⎧⎨⎩ ζ := αk(3)(k(1), ν1) j = 1

αP (j−1)(nj−1, νj) 2 ≤ j ≤ n

χj−1 :=

⎧⎪⎨⎪⎩
G := ‖S(1)E ‖

‖S(j)E ‖
κj−1 :=

⎧⎪⎨⎪⎩
g := α

S
(1)
E
(ν1, n1) j = 1

α
S
(j)
E
(νj , nj) 2 ≤ j ≤ n

Λj := Mj
√
mjaj .

(2.11)
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Proposition 2.1. Let XP be the subset of Rn × Rn
+ × Rn

+ × Tn × Tn defined
by the following inequalities√

χ2
i−1 + χ2

i − 2Θ2
i + 2

√
(χ2

i −Θ2
i )(χ

2
i−1 −Θ2

i ) cosϑi < Λi

(χi−1 − χi, ϑi) = (0, π) 0 < χn−1 < Λn i = 1, · · · , n− 1(2.12)

and

(2.13) |Θ0| < χ0 |Θi| < min(χi−1, χi) i = 1, · · · , n− 1.

The map τ−1
P is a bijection of EP onto XP . The formulae of the inverse map

τP : XP = (Θ, χ,Λ, ϑ, κ) ∈ DP → EP = (E1,P , · · · ,En,P) ∈ EP
Ej,P = (aj,P , ej,P , N

(j)
P , P

(j)
P )

are as follows. Let ι1, · · · , ιn, i1, · · · , in ∈ (0, π) be defined via

(2.14) cos ιj =
Θj−1

χj−1
, cos ij :=

Θj

χj−1
, 1 ≤ j ≤ n

(with Θn := 0, so that in = π
2 ) and T1, · · · , Tn, S1, · · · , Sn ∈ SO(3) via

Tj := R3(ϑj)R1(ιj) Sj := R3(κj)R1(ij), 1 ≤ j ≤ n(2.15)

and let

C
(j)
P := T1S1 · · ·Tj−1Sj−1Tj

(
χj−1k

(3) − χjSjTj+1k
(3)

)
(2.16)

with χn := 0, so that

‖C(j)
P ‖ =

⎧⎪⎪⎨
⎪⎪⎩

√
χ2
j−1 + χ2

j − 2Θ2
j + 2

√
(χ2

j −Θ2
j )(χ

2
j−1 −Θ2

j ) cosϑj j = 1, · · · , n− 1

χn−1 j = n.

(2.17)

Then C
(j)
P = C

(j)
E ◦ τP and

aj,P =
1

Mj
(
Λj

mj
)2 ej,P =

√√√√1− ‖C(j)
P ‖2
Λ2
j

N
(j)
P =

C
(j)
P

‖C(j)
P ‖

P
(j)
P = T1S1 · · ·TjSjk

(3).

(2.18)

Remark 2.2.

(i) From C
(j)
P = C

(j)
E ◦ τP , (2.4), (2.5) and (2.25), there follows that C

(j)
P =

x
(j)
P × y

(j)
P .

(ii) P
(j)
P ⊥ N

(j)
P . Indeed, using the definitions,

C
(j)
P · P (j)

P = χj−1k
(3) ·

(
Sjk

(3)
)
− Tj+1χjk

(3) ·
(
k(3)

)
= χj−1 cos ιj − χj cos ij+1

= 0.

(iii) S
(j)
P := S

(j)
E ◦ τP =

∑n
i=j C

(i)
P = χj−1T1S1 · · ·Tj−1Sj−1Tjk

(3).

We shall prove that
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Theorem 2.1. The P-map preserves the standard 2-form
n∑

j=1

dy
(j)
P ∧ dx

(j)
P =

n∑
i=1

(
dΘi−1 ∧ dϑi−1 + dχi−1 ∧ dκi−1 + dΛi ∧ d�i

)
.

Remark 2.3. Actually, we shall prove a finer result: the change φP
De� :=

De�−1 ◦ P which relates the P-coordinates to the classical Delaunay coordinates
(see the Definition 2.5) is homogeneous-canonical (compare Lemma 2.6).

Proof of Proposition 2.1. The formula for aj,P in (2.16) is immediate from

the definition of Λj . Postponing to below that C
(j)
P := C

(j)
E ◦ τP has the expression

in (2.16) (in turn this implies (2.17), the formula for N (j) and the one for ej,P in

(2.18)), we check that the image set τ−1
P (EP) is included in the domain XP defined

by inequalities (2.12), (2.13). From the formula for ej,P in (2.18), we have that
conditions 0 < ej,P < 1 for all j = 1, · · · , n correspond to relations in (2.12). Note
that the first condition in the second line of (2.12) is equivalent to ej,P = 1, as one
sees rewriting
(2.19)

‖C(j)
P ‖2 =

(√
χ2
j−1 −Θ2

j −
√
χ2
j −Θ2

j

)2
+ 2

√
(χ2

j −Θ2
j )(χ

2
j−1 −Θ2

j)(1 + cosϑj).

Next, recalling the definitions of Θ0, χ0 in (2.11), and noticing the relations

Θj = S
(j+1)
E · P (j) = (S

(j)
E − C

(j)
E ) · P (j) = S

(j)
E · P (j) j = 1, · · · , n− 1,

we immediately see that conditions νi = 0 = ni imply (2.13). We have so checked
what we wanted.

Now it remains to check the formula for C
(j)
P in (2.16) and the one for P

(j)
P in (2.18),

for any XP ∈ XP . To this end, we consider the following chain of vectors

k(3) → S
(1)
E → P (1) → · · · → S

(j)
E → P (j) → · · · → P (n)

⇓ ⇓
... ⇓ ⇓

... ⇓

ν1 n1
... νj nj

... nn

(2.20)

where ν1, n1, · · · , νn, nn are the P-nodes in (2.10), given by the skew-product of the
two consecutive vectors in the chain.

We associate to this chain of vectors the following chain of frames

G0 → F1 → G1 → · · · → Fj → Gj → Fj+1 → · · · → Gn

(2.21)

where G0 = (k(1), k(2), k(3)) is the initial prefixed frame and the frames, while Fi,
Gi are frames defined via

Fj = (νj , ·, S(j)) Gj = (nj , ·, P (j)) j = 1, · · · , n.(2.22)

By construction, each frame in the chain has its first axis coinciding with the
intersection of horizontal plane with the horizontal plane of the previous frame
(hence, in particular, νj ⊥ S(j) and nj ⊥ P (j)). Denote as Tj the rotation matrix
which describes the change of coordinates from Gj−1 to Fj and as Sj the one from
Fj to Gj . The matrices Tj , Sj have just the expressions claimed in (2.14), (2.15).
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This follows from the definitions of (Θ, χ, ϑ, κ) in (2.11). Then we have the following
sequence of transformations

T1 S1 · · · Sj · · · Sn

G0 → F1 → G1 → · · · → Fj → Gj → · · · → Gn

connecting G0 to any other frame in the chain. From this, and the definitions of

the frames (2.22), the formulae for P
(j)
P in (2.18) and

S
(j)
P = χj−1T1S1 · · ·Tj−1Sj−1Tjk

(3)

follow at once. Hence, also the formulae for C
(j)
P , which is given by C

(j)
P = S

(j)
P −

S
(j+1)
P , with S

(n+1)
P ≡ 0. �

For the proof of Theorem 2.1, we shall use three auxiliary maps, that we shall

denote as P̃, D̃e� and De�. The map P̃ is very closely related to P; D̃e� and De�
are well known: in the literature they are often referred to as (two variants of)
Delaunay maps.

The map P̃. Define the set

CP̃ :=
{
(y, x) ∈ R3n × R3n : x(j) = 0, ñj := 0, ν̃j = 0 ∀ j = 1, · · · , n

}
,

where, for (y, x) ∈ R3n × R3n, with y = (y(1), · · · , y(n)), x = (x(1), · · · , x(n)),
x(j) = 0, we let

ν̃j :=

⎧⎪⎪⎨⎪⎪⎩
k(3) × S

(1)
C j = 1

x(j−1)

‖x(j−1)‖ × S
(j)
C j = 2, · · · , n

ñj := S
(j)
C × x(j)

‖x(j)‖

with j = 1, · · · , n and

C
(j)
C := x(j) × y(j), S

(j)
C :=

n∑
i=j

C(i).(2.23)

Define a map

P̃−1 : (y, x) ∈ CP̃ → (Θ̃, χ̃, R̃, ϑ̃, κ̃, r̃) ∈ Rn × Rn
+ × Rn × Tn × Tn × Rn

+

with

Θ̃ = (Θ̃0, · · · , Θ̃n−1) ϑ̃ = (ϑ̃0, · · · , ϑ̃n−1)

χ̃ = (χ̃0, · · · , χ̃n−1) κ̃ = (κ̃0, · · · , κ̃n−1)

R̃ = (R̃1, · · · , R̃n) r̃ = (̃r1, · · · , r̃n)
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via the following formulae:

R̃j =
y(j) · x(j)

‖x(j)‖ r̃j = ‖x(j)‖ j = 1, · · · , n

χ̃j−1 = ‖S(j)C ‖ κ̃j−1 = α
S
(j)
C
(ν̃j , ñj) j = 1, · · · , n

Θ̃j−1 =

⎧⎪⎪⎨⎪⎪⎩
S
(1)
C · k(3)

S
(j)
C · x(j−1)

‖x(j−1)‖

ϑ̃j−1 =

⎧⎪⎨⎪⎩
αk(3)(k(1), ν̃1)

α x(j−1)

‖x(j−1)‖

(ñj−1, ν̃j)

j = 1

j = 2, · · · , n.

Lemma 2.1. Let DP̃ be the set of (Θ̃, χ̃, R̃, ϑ̃, κ̃, r̃) ∈ Rn×Rn
+×Rn×Tn×Tn×Rn

+

such that (Θ̃, χ̃, ϑ̃, κ̃) satisfies (2.13), and let T̃j, S̃j and C
(j)

P̃ be the functions of

(Θ̃, χ̃, ϑ̃, κ̃) defined in (2.14)-(2.16), with (Θ̃, χ̃, ϑ̃, κ̃) replacing (Θ, χ, ϑ, κ).

The map P̃−1 is a bijection from CP̃ onto the set DP̃ . Its inverse map

P̃ : (Θ̃, χ̃, R̃, ϑ̃, κ̃, r̃) ∈ DP̃ → (yP̃ , xP̃) ∈ Rn × Rn

has the following analytical expression:⎧⎪⎪⎪⎨⎪⎪⎪⎩
x
(j)

P̃ := r̃jT̃1S̃1 · · · T̃j S̃jk
(3)

y
(j)

P̃ :=
R̃j

r̃j
x
(j)

P̃ +
1

r̃2j
C

(j)

P̃ × x
(j)

P̃ 1 ≤ j ≤ n

(2.24)

Moreover, the following relation holds:

(2.25) C
(j)

P̃ = C
(j)
C ◦ P̃ = x

(j)
P × y

(j)
P .

Proof. With similar arguments as the ones of the proof of Proposition 2.1,

but replacing, in the diagram (2.20), S
(j)
E with S

(j)
C , P

(j)
P with x(j)

‖x(j)‖ and the nodes

νk, nk with ν̃k, ñk, one finds the formula for x
(j)

P̃ in (2.24), the formula for

S
(j)

P̃ := S
(j)
C ◦ P̃ = χ̃j−1T̃1S̃1 · · · T̃j−1S̃j−1T̃jk

(3)

and hence the formula for

C
(j)
C ◦ P̃ = S

(j)

P̃ − S
(j+1)

P̃ = C
(j)

P̃

being just the formula for C
(j)
P in (2.16), with (Θ, χ, ϑ, κ) replaced by (Θ̃, χ̃, ϑ̃, κ̃).

With the same argument as in Remark 2.2(ii), we see that x
(j)

P̃ ⊥ C
(j)

P̃ . Finally, the

formula for y
(j)

P̃ is found taking for y
(j)

P̃ the unique vector verifying

y
(j)
P · x

(j)
P

‖x(j)
P ‖

= Rj x
(j)
P × y

(j)
P = C

(j)
P .

�
Lemma 2.2. P̃ preserves the standard Liouville 1-form:

(2.26)
n∑

j=1

y
(j)

P̃ · dx(j)

P̃ =
n∑

j=1

(
Θ̃j−1dϑ̃j−1 + χ̃j−1dκ̃j−1 + R̃j d̃rj

)
.
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The proof of Lemma 2.2 uses the following easy lemma:

Lemma 2.3 ([7]). Let

x = R3(θ)R1(i)x̄, y = R3(θ)R1(i)ȳ, C := x× y, C̄ := x̄× ȳ,

with x, x̄, y, ȳ ∈ R3. Then,

y · dx = C · k(3)dθ + C̄ · k(1)di+ ȳ · dx̄.
Proof of Lemma 2.2. We may write

x
(j)

P̃ = T̃1S̃1 · · · T̃j S̃j x̃
(j), y

(j)

P̃ = T̃1S̃1 · · · T̃j S̃j ỹ
(j), C

(j)

P̃ = T̃1S̃1 · · · T̃j S̃jC̃
(j)

where

x̃(j) := r̃jk
(3) j = 1, · · · , n− 1

ỹ(j) := R̃jk
(3) +

1

r̃j
C̃(j) × k(3)

C̃(j) := χ̃j−1S̃−1
j k(3) − χ̃j T̃j+1k

(3) = x̃(j) × ỹ(j)(2.27)

with χ̃n := 0, S̃n := id . We also let, for 1 ≤ k ≤ j ≤ n and 1 ≤ i ≤ n− 1,

Ĉ
(j)
k = S̃k(T̃k+1S̃k+1 · · · T̃j S̃j)C̃

(j), Č
(j)
k = T̃kS̃k · · · T̃j S̃jC̃

(j), Č
(j)
j+1 := C̃(j)

Ŝ
(j)
k :=

n∑
m=j

Ĉ
(m)
k , Š

(j)
k :=

n∑
m=j

Č
(m)
k , Š

(i)
i+1 := C̃(i) + Š

(i+1)
i+1

where the product T̃k+1S̃k+1 · · · T̃j S̃j is to be replaced with the identity when k = j.

We have the following identities (implied by S(j) =
∑n

k=j C
(k)):

Š
(j)
j =

n∑
k=j

Č
(k)
j = χ̃j−1T̃jk(3), Ŝ

(j)
j =

n∑
k=j

Ĉ
(k)
j = χ̃j−1k

(3), Š
(i)
i+1 = χ̃j−1S̃−1

i k(3).

(2.28)

Applying Lemma 2.3 repeatedly and using (as it follows from (2.27))

ỹ(j) · dx̃(j) = R̃j d̃rj ,

we have, for 1 ≤ j ≤ n,

y
(j)

P̃ · x(j)

P̃ =

j∑
k=1

(
Č

(j)
k · k(3)dϑ̃k−1

+ Ĉ
(j)
k · k(1)dι̃k + Ĉ

(j)
k · k(3)dκ̃k−1 + Č

(j)
k+1 · k(1)d̃ik

)
+ R̃j d̃rj

where, as in the proof of Lemma 2.1, ι̃j , ĩj denote the functions ιj , ij in (2.14), with

Θi, χi replaced by Θ̃i, χ̃i. Note that we have used d ĩn ≡ 0, since, by definition,

ĩn = π
2 . Taking the sum over j = 1, · · · , n,

n∑
j=1

y
(j)

P̃ · dx(j)

P̃ =
n∑

j=1

Š
(j)
j · k(3)dϑ̃j−1 + Ŝ

(j)
j · k(1)dι̃j+

Ŝ
(j)
j · k(3)dκ̃j−1 + Š

(j)
j+1 · k(1)d̃ij +

n∑
j=1

R̃j d̃rj .

In view of (2.28) and of the definitions in (2.14)-(2.15), we then find (2.26). �
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The map D̃e�. The map

D̃e� : (H̃, Γ̃, R̃, h̃, g̃, r̃) ∈ DD̃e�
→ (yD̃e�

, xD̃e�
) ∈ R3n × R3n

is defined on the set

DD̃e�
:=

{
(H̃, Γ̃, R̃, h̃, g̃, r̃) = (H̃1, · · · , H̃n, Γ̃1, · · · , Γ̃n, R̃1, · · · , R̃n, h̃1, · · · , h̃n,

g̃1, · · · , g̃n, r̃1, · · · , r̃n) ∈ R3n × T2n × Rn
+ : r̃j > 0, Γ̃j > 0,

|H̃j |
Γ̃j

< 1

∀ j = 1, · · · , n
}

via the following formulae:

x
(j)

D̃e�
:= R3(h̃j)R1(̃ij)x

(j)

D̃e�
, y

(j)

D̃e�
:= R3(h̃j)R1(̃ij)y

(j)

D̃e�

where

ĩj := cos−1 H̃j

Γ̃j

∈ (0, π)

x
(j)

D̃e�
:= r̃j cos g̃jk

(1) + r̃j sin g̃jk
(2)

y
(j)

D̃e�
:=

(
R̃j cos g̃j −

Γ̃j

r̃j
sin g̃j

)
k(1) +

(
R̃j sin g̃j +

Γ̃j

r̃j
cos g̃j

)
k(2).

Lemma 2.4 (Delaunay). D̃e� is a bijection from the domain DD̃e�
onto the set

CD̃e�
:=

{
(y, x) = (y(1), · · · , y(n), x(1), · · · , x(n)) ∈ R3n × R3n :

ñj := k(3) × C
(j)
C = 0, x(j) = 0 ∀ j = 1, · · · , n

}
where C

(j)
C is as in (2.23). The formulae for the inverse map

D̃e�
−1

: (y, x) ∈ CD̃e�
→ (H̃, Γ̃, R̃, h̃, g̃, r̃) ∈ DD̃e�

are
(2.29)⎧⎨⎩ H̃j = C

(j)
C · k(3)

h̃j := αk(3)(k(1), ñj)

⎧⎪⎨⎪⎩
Γ̃j := ‖C(j)

C ‖

g̃j := α
C

(j)
C
(ñj , x

(j))

⎧⎪⎪⎨⎪⎪⎩
R̃j =

y(j) · x(j)

‖x(j)‖

r̃j = ‖x(j)‖

Finally, D̃e� preserves the standard Liouville 1-form

n∑
i=1

y
(i)

D̃e�
· dx(i)

D̃e�
=

n∑
i=1

(
H̃idh̃i + Γ̃idg̃i + R̃id̃ri

)
.

We omit the proof of Lemma 2.4, which may be found in classical textbooks.
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The map De�.

Definition 2.5 (Delaunay map). Let

XDe� :=
{
XDe� := (H,Γ,Λ, h, g) = (H1, · · · ,Hn,Γ1, · · · ,Γn,Λ1, · · · ,Λn, h1, · · · , hn,

g1, · · · , gn) ∈ R3n × T2n : Γj > 0,
|Hj |
Γj

< 1, Λj > 0

∀ j = 1, · · · , n
}

and let EDe� be the set of n-plets (E1, · · · ,En) where Ej = (aj , ej , N
(j), P (j)) satis-

fies

0 < ej < 1, nj := k(3) ×N (j) = 0, ∀ j = 1, · · · , n.
Fix positive numbers M1, · · · , Mn, m1, · · · , mn. Define

τDe� : XDe� := (H,Γ,Λ, h, g) ∈ XDe� → EDe� = (E1,De�, · · · ,En,De�)

with Ej,De� = (aj,De�, ej,De�, N
(j)
De�, P

(j)
De�) and

aj,De� =
1

Mj
(
Λj

mj
)2, ej,De� =

√
1− (

Γj

Λj
)2

N
(j)
De� = R3(hj)R1(ij)k

(3) P
(j)
De� = R3(hj)R1(ij)R3(gj)k

(1)

where ij := cos−1 Hj

Γj
.

We call Delaunay map the map

De� : Del = (H,Γ,Λ, h, g, �) ∈ DDe� → (yDe�, xDe�) ∈ R3n × R3n(2.30)

which is defined on the domain

DDe� := XDe� × Tn

as the Kepler map associated to τDe� via the following lemma (the proof of which
may be found in classical textbooks).

Lemma 2.5 (Delaunay). τDe� is a bijection of XDe� onto EDe�. Its inverse map

τ−1
De� : EDe� = (E1,De�, · · · ,En,De�) ∈ EDe� → XDe� ∈ XDe�

is defined by equations⎧⎨⎩ Hj = C
(j)
E · k(3)

hj := αk(3)(k(1), nj)

⎧⎪⎨⎪⎩
Γj = ‖C(j)

E ‖

gj := α
C

(j)
E
(nj , P

(j))
Λj = mj

√
Mjaj ,(2.31)

where C
(j)
E is as in (2.9). Furthermore, De� preserves the standard 2-form

n∑
j=1

dy
(j)
De� ∧ dx

(j)
De� =

n∑
j=1

(
dHj ∧ dhj + dΓj ∧ dgj + dΛj ∧ d�j

)
.

Now we are ready to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Let

D∗
P :=

{
P = (Θ, χ,Λ, ϑ, κ, �) ∈ DP : P(P) ∈ CDe�

}
.
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It is enough to prove Theorem 2.1 on D∗
P , since indeed the P-map is regular on

DP = D∗
P . On D∗

P , we consider the map

φP
De� := De�−1 ◦ P :

P = (Θ, χ,Λ, ϑ, κ, �) ∈ D∗
P → Del = (H,Γ,Λ, h, g, �) ∈ D∗

De� := φP
De�(D∗

P) ⊂ DDe�.

φP
De� gives the Delaunay coordinates at left hand side in (2.30) in terms of the

P-coordinates at left hand side of (2.7) in the subset D∗
P of DP the P-image of

which lies in the De�-image of DDe�. Clearly, φ
P
De� leaves the (Λ, �) unvaried. More

precisely, φP
De� decouples into two disjoint maps: the identity on the (Λ, �), and a

4n-dimensional map

φ̂P
De� : (Θ, χ, ϑ, κ) ∈ D̂∗

P → (H,Γ, h, g) ∈ D̂∗
De� = φP

De�(D̂∗
P) ⊂ D̂De�

on the remaining coordinates, which turns out to be a bijection of the sets D̂∗
P and

D̂∗
De�. Here, the map φ̂P

De� and the sets D̂∗
P and D̂De� do not depend on (Λ, �).

Indeed, the explicit expressions of φ̂P
De�, D̂∗

P in terms of P = (Θ, χ,Λ, ϑ, κ, �); or of

D̂De� in terms of Del = (H,Γ,Λ, h, g, �) involve only the C
(j)
P , P

(j)
P ; the C

(j)
De�, P

(j)
De�,

that do not depend on (Λ, �): (2.31) (where one has to replace C with P), (2.15)
and (2.18).

In view of the previous consideration and of Lemma 2.5, Theorem 2.1 is implied by

Lemma 2.6. The map φ̂P
De� preserves that standard 1-form:

n∑
j=1

(
Hjdhj + Γjdgj

)
=

n∑
j=1

(
Θj−1dϑj−1 + χj−1dκj−1

)
.

Proof. We look at the analogous map

̂
φP̃
D̃e�

: (Θ̃, χ̃, ϑ̃, κ̃) ∈ D̂∗
P̃ → (H̃, Γ̃, h̃, g̃) ∈ D̂∗

D̃e�
= φP̃

D̃e�
(D̂∗

P̃) ⊂ D̂D̃e�
.

The analytical expression of this map is identical to the one of φ̂P
De�. This follows

from the fact that
̂
φP̃
D̃e�

depends on the coordinates (Θ̃, χ̃, ϑ̃, κ̃) only via C
(j)

P̃ and

x
(j)

P̃
‖x(j)

P̃
‖
exactly as φ̂P

De� depends on (Θ, χ, ϑ, κ) only via C
(j)
P and Π

(j)
P , that C

(j)

P̃

and
x
(j)

P̃
‖x(j)

P̃
‖
have exactly the same expressions of C

(j)
P and P (j), apart for replacing

(Θ, χ, ϑ, κ) with (Θ̃, χ̃, ϑ̃, κ̃). Compare (2.29) (where one has to replace C
(j)
C with

C
(j)

P̃ ), (2.31) (where one has to replace C
(j)
E with C

(j)
P ), (2.15), (2.18), (2.24) and

(2.25). But Lemmata 2.2 and 2.4 imply that
̂
φP̃
D̃e�

preserves that standard 1-form:

n∑
j=1

(
H̃jdh̃j + Γ̃jdg̃j

)
=

n∑
j=1

(
Θ̃j−1dϑ̃j−1 + χ̃j−1dκ̃j−1

)
.

Then φ̂P
De� does. �
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2.1. The P-map vs rotations and reflections

Now we discuss how the P-map behaves in presence of symmetries in the Hamil-
tonian due to rotations or reflections.

Let H = H(y, x) be the Hamiltonian governing the motion of n particles, where such
particles are expressed in the canonical coordinates (y(1), x(1)), · · · , (y(n), x(n)).
Assume that H is left unvaried by rotations and reflections. Namely, if

φR,S : (y(j), x(j)) → (Ry(j),Sx(j)), j = 1, · · · , n
where R, S are real a 3× 3 matrices, then rotation invariance is

H ◦ φR,R = H ∀ R : RRt = id

while reflection invariance is

H ◦ φSσ,Sτ
= H for some Sσ =

⎛⎝ σ1 0 0
0 σ2 0
0 0 σ3

⎞⎠ Sτ =

⎛⎝ τ1 0 0
0 τ2 0
0 0 τ3

⎞⎠
σi, τi = ±1.

Rotation invariance is associated to the conservation, through the motion, of the

total angular momentum S
(1)
C is (2.23). Reflection invariance is not associated to

integrals.

The Hamiltonian Hhel in (3.33) is rotation and reflection invariant, and reflection
invariance holds with any choice of σ, τ .

Let

HP := H ◦ P.

The fact that S
(1)
C is preserved along the motions of H implies that the coordinates

Θ0 = Z, ϑ0 = ζ, κ0 = g

do not appear in HP . Indeed, Z and ζ are integrals, while g is conjugated to

G = ‖S(1)P ‖, which is an integral for HP . Thus, the number of degrees of freedom is
naturally reduced by two units, once one regards G as a prefixed external parameter.
Namely, for any fixed χ0 = G, HK may be regarded as a function of the 2(3n− 1)
dimensional coordinates

P := (Θ, χ,Λ, ϑ, κ, �)

which does not depend on κ0. Here,

Θ̄ = (Θ1, · · · ,Θn−1), ϑ̄ = (ϑ1, · · · , ϑn−1).

An analogue property is also shared with the action-angle coordinates (Ψ, Γ, Λ,
ψ, γ, �) described in [7,27], and related to a set of coordinates discovered by A.
Deprit [12] in the 80s (compare also [36] or the Appendix E).

The main novelty introduced by the P-coordinates (that does not hold for the
coordinates of [7]) is how P behaves relative to reflections.

We denote as

R−
2 := φS

σ(2) ,Sσ(2)
σ(2) = (1,−1, 1)

the reflection of the second coordinate both for the y(j)’s and the x(j)’s and we let

S−(Θ, χ,Λ, ϑ, κ, �) := (−Θ, χ,Λ,−ϑ, κ, �).
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Proposition 2.2.

(2.32) R−
2 ◦ P = P ◦ S−.

Therefore, if H = H(y, x) satisfies

H ◦ R−
2 = H

then HP := H ◦ P satisfies
HP ◦ S− = HP .

Hence, any of the points

Θ0 = · · · = Θn−1 = 0, (ϑ0, · · · , ϑn−1) = (k0, · · · , kn−1)π mod 2πZn

is an equilibrium point for HP , for any (χ,Λ, κ, �).

Proof. Defining R(j) := TjSj , s
(j) := Tjk

(3), we write the vectors P
(j)
P and

S
(j)
P (compare Eq. (2.18) and Remark 2.2(iii)) as

P
(j)
P = R(1) · · ·R(j)k(3), S

(j)
P = χj−1R(1) · · ·R(j)s(j).

The explicit expressions of R(j) and s(j) are

R(j)
11 = cosκj−1 cosϑj−1 − sinκj−1 cos ιj sinϑj−1

R(j)
21 = cosκj−1 sinϑj−1 + sin κj−1 cos ιj cosϑj−1

R(j)
31 = sin κj−1 sin ιj

R(j)
12 = − cos ij sinκj−1 cosϑj−1 + sinϑj−1(− cos ij cos ιj cosκj−1 + sin ιj sin ij)

R(j)
22 = − cos ij sinκj−1 sinϑj−1 − cosϑj−1(− cos ij cos ιj cosκj−1 + sin ιj sin ij)

R(j)
32 = cos ij cosκj−1 sin ιj + sin ij cos ιj

R(j)
13 = sin ij sinκj−1 cosϑj−1 + sinϑj−1(sin ij cos ιj cosκj−1 + sin ιj cos ij)

R(j)
23 = sin ij sinκj−1 sinϑj−1 − cosϑj−1(sin ij cos ιj cosκj−1 + sin ιj cos ij)

R(j)
33 = − sin ij cosκj−1 sin ιj + cos ij cos ιj

s
(j)
1 = sin ιj sinϑj−1

s
(j)
2 = − sin ιj cosϑj−1

s
(j)
3 = cos ιj .

Then S− lets P
(j)
P and S

(j)
P respectively, into

(P
(j)
P )− := R−

2 P
(j)
P and (S

(j)
P )− := −R−

2 S
(j)
P .

Therefore, C
(j)
P = S

(j)
P − S

(j+1)
P (with S

(n+1)
P := 0) and Q

(j)
P =

C
(j)
P

‖C(j)
P ‖

× P
(j)
P are

transformed, respectively, into

(C
(j)
P )− := −R−

2 C
(j)
P , (Q

(j)
P )− := R−

2 Q
(j)
P .

On the other hand, aj,P and ej,P are left unvaried by S−. In view of Definition 2.2
and Definition 2.3, the thesis (2.32) follows. �
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CHAPTER 3

The P-map and the planetary problem

After the reduction of the invariance by translations, a Hamiltonian governing the
motions of n planets with masses μm1, · · · , μmn interacting among themselves and
with a star with mass m0 can be taken to be the “heliocentric” one

(3.33) Hhel :=
∑

1≤i≤n

(
‖y(i)‖2
2mi

− miMi

‖x(i)‖

)
+ μ

∑
1≤i<j≤n

(
y(i) · y(j)

m0
− mimj

‖x(i) − x(j)‖

)
where (y, x) = (y(1), · · · , y(n), x(1), · · · , x(n)) are “Cartesian coordinates” taking
values on the “collision-less” phase space R3n × R3n \Δ, where

Δ =
{
x = (x(1), · · · , x(n)) ∈ R3 × · · · × R3 : 0 = x(i) = x(j) ∀ 1 ≤ i < j ≤ n

}
endowed with the standard 2- form

Ω := dy ∧ dx :=

n∑
i=1

3∑
j=1

dy
(i)
j ∧ dx

(i)
j

and with

(3.34) Mi = m0 + μmi mi =
m0mi

m0 + μmi

being the so-called “reduced masses”.

In the following Chapter 3.1 we describe a general property of Kepler maps, in
relation to their application to the Hamiltonian Hhel. Then (in Chapter 3.2) we
shall specialize to the case of the P-map.

3.1. A general property of Kepler maps

For a general Kepler map K, we denote

HK(K) := Hhel ◦ K = −
n∑

j=1

mjMj

2aj,K(XK)
+ μfK(K),

where

fK(K) :=
∑

1≤i<j≤n

(
y
(i)
K · y(j)K
m0

− mimj

‖x(i)
K − x

(j)
K ‖

)
and y

(j)
K , x

(j)
K are as in Definition 2.2.

We denote

(3.35) fK(XK) :=
1

(2π)n

∫
Tn

fK(XK, �)d�,

23
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so that

fK =
∑

1≤i<j≤n

f ij
K , fK =

∑
1≤i<j≤n

f ij
K

f ij
K :=

y
(i)
K · y(j)K
m0

− mimj

‖x(i)
K − x

(j)
K ‖

, f ij
K :=

1

(2π)n

∫
Tn

f ij
K d�1 · · · d�n.

For a general Kepler map, one always has, as a consequence of (2.6),

− 1

2π

∫
T

T
(j)
K d�j =

1

2π

∫
T

V
(j)
K
2

d�j = T
(j)
K + V

(j)
K = − mM

2aj,K

1

2π

∫
T

y
(j)
K d�j = 0

1

2π

∫
T

x
(j)
K

‖x(j)
K ‖3

d�j = 0,(3.36)

where we have denoted as

T
(j)
K :=

‖y(j)K ‖2
2mj

V
(j)
K := −mjMj

‖x(j)
K ‖

the kinetic, potential part of H
(j)
K in (2.4), respectively.

Consider the average fK(XK) in (3.35). Due to the fact that y
(j)
K has zero-average,

one has that only the Newtonian part contributes to fK(XK):

fK = −
∑

1≤i<j≤n

mimj

(2π)2

∫
T2

d�id�j

‖x(i)
K − x

(j)
K ‖

.

We now consider any of the contributions to this sum

f ij
K = −mimj

(2π)2

∫
T2

d�id�j

‖x(i)
K − x

(j)
K ‖

1 ≤ i < j ≤ n

and expand any such terms

f ij
K = f ij

K
(0)

+ f ij
K

(1)

+ f ij
K

(2)

+ · · ·
where

f ij
K

(h)

:= −mimj

(2π)2

∫
T2

1

h!

dh

dεh
1

‖εx(i)
K − x

(j)
K ‖

∣∣∣
ε=0

d�id�j

is proportional to 1
aj
( ai

aj
)h. Then the formulae in (3.36) imply that the two first

terms of this expansion are given by

f ij
K

(0)

= −mimj

aj,K
, f ij

K
(1)

= 0.

Namely, whatever is the Kepler map that is used, the first term that depends on
the secular coordinates XK is the double average of the second order term

f ij
K

(2)

(XK) = −mimj

(2π)2

∫
T2

3(x
(i)
K · x(j)

K )2 − ‖x(i)
K ‖2‖x(j)

K ‖2

‖x(j)
K ‖5

d�id�j .

Now we specialize to the case of the P-map.
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3.2. The case of the P-map

We denote as

(3.37) HP(XP , �) = h0fast(Λ) + μfP(XP , �) XP := (Θ, χ,Λ, ϑ, κ)

where

(3.38) h0fast(Λ) := −
n∑

j=1

m3
jM

2
j

2Λ2
j

,

is the Hamiltonian (3.33) expressed in P-coordinates.

Using the definitions, it not difficult to see that

Lemma 3.1. f ij
P , f ij

P depend, respectively, only on the coordinates

Xij
P :=

(
Θi, · · · ,Θj∧(n−1), χi−1, · · · , χj∧(n−1), Λi, Λj , ϑi, · · · , ϑj∧(n−1), κi, · · · , κj−1

)
Pij := (Xij

P , �i, �j)

with a ∧ b denoting the minimum of a and b.

Accordingly to the previous lemma, the “nearest-neighbor” terms f i,i+1
P , with

i = 1, · · · , n− 1, depend only on

Xi,i+1
P =

⎧⎪⎨⎪⎩
(
Θi, Θi+1, χi−1, χi, χi+1, Λi, Λi+1, ϑi, ϑi+1, κi

) n ≥ 3 &
1 ≤ i ≤ n− 2(

Θn−1, χn−2, χn−1, Λn−1, Λn, ϑn−1, κn−1

)
i = n− 1.

(3.39)

However, for the functions f i,i+1
P

(2)

, we have a special rule. Indeed, for any Kepler

map K, the “exterior” angular momentum ‖C(i+1)
K ‖ is an integral for f i,i+1

K
(2)

. This

readily implies that any f i,i+1
K

(2)

is integrable, for having four degrees of freedom

and four independent, commuting integrals (‖C(i)
K + C

(i+1)
K ‖, (C(i)

K + C
(i+1)
K ) · k(3),

‖C(i+1)
K ‖ and f i,i+1

K
(2)

itself). This fact has been firstly noticed, in the three-body
case (i = 1, n = 2), by R. Harrington [19] who, using the Jacobi reduction of the
nodes J ac, where the coordinates are named

Gi, gi, Λi, �i, i = 1, 2

(with Gi = ‖C(i)‖, gi related to the perihelia directions, and G := ‖C‖, C =

C(1)+C(2) appearing as an external parameter), noticed that f12
J ac

(2)
depends only

on (G,G1,G2, γ1,Λ1,Λ2).

Let us now inspect how the integrability of f i,i+1
P

(2)

is exhibited in terms of the

P-map. Since ‖C(n)
P ‖ = χn−1, one has that fn−1,n

P
(2)

does not depend on κn−1,
and hence, by (3.39), depends only on

Xn−1,n
P :=

(
Θn−1, χn−2, χn−1, Λn−1, Λn, ϑn−1

)
.

This fact, for n ≥ 3, is no longer true for i = 1, · · · , n − 2, because in that case

χi = ‖C(i+1)
P ‖ (indeed, χi = ‖S(i+1)

P ‖). However, since, for (Θi+1, ϑi+1) = (0, π),
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‖C(i+1)
P ‖ reduces to

‖C(i+1)
P ‖

∣∣∣
(Θi+1,ϑi+1)=(0,π)

= χi − χi+1 i = 1, · · · , n− 2,

one has that the functions

f i,i+1
P

(2)

:= f i,i+1
P

(2)∣∣∣
(Θi+1,ϑi+1)=(0,π)

, i = 1, · · · , n− 2

do not depend on κi and hence, by (3.39) depend only on

Xi,i+1
P :=

(
Θi, χi−1, χi, χi+1, Λi, Λi+1, ϑi

)
, i = 1, · · · , n− 2.

In the following lemma we provide their explicit expressions.

Lemma 3.2. The function fn−1,n
P

(2)

and , for n ≥ 3 and 1 ≤ i ≤ n − 2, the

functions f i,i+1
P

(2)

have the following expressions

fn−1,n
P

(2)

= mn−1mn
a2n−1

4a3n

Λ3
n

χ5
n−1

[5
2
(3Θ2

n−1 − χ2
n−1)

− 3

2

4Θ2
n−1 − χ2

n−1

Λ2
n−1

(
χ2
n−2 + χ2

n−1 − 2Θ2
n−1

+ 2
√
(χ2

n−1 −Θ2
n−1)(χ

2
n−2 −Θ2

n−1) cosϑn−1

)
+

3

2

(χ2
n−1 −Θ2

n−1)(χ
2
n−2 −Θ2

n−1)

Λ2
n−1

sin2 ϑn−1

]
(3.40)

and

f i,i+1
P

(2)

= mimi+1
a2i

4a3i+1

Λ3
i+1

χ2
i (χi − χi+1)3

[5
2
(3Θ2

i − χ2
i )

− 3

2

4Θ2
i − χ2

i

Λ2
i

(
χ2
i−1 + χ2

i − 2Θ2
i + 2

√
(χ2

i −Θ2
i )(χ

2
i−1 −Θ2

i ) cosϑi

)
+

3

2

(χ2
i −Θ2

i )(χ
2
i−1 −Θ2

i )

Λ2
i

sin2 ϑi

]
.(3.41)

Lemma 3.2 is proved in Appendix B. Here, we limit to the following.
Remark 3.3.

(i) The formula in (3.41) holds also for complex values of the coordinates,
provided that
arg(χi − χi+1) ∈ (−π

2 ,
π
2 ] mod 2π.

(ii) The importance of the formulae in (3.40) and (3.41), which is the main fea-
ture of the P-map, is that, exploiting the equilibrium for (Θi, ϑi) = (0, π),

the integration of fn−1,n
P

(2)

and of f i,i+1
P

(2)

can be performed explicitly,
switching to a suitable associated convergent Birkhoff series, as Lemma 3.4

below states. Direct integrations of fn−1,n
K

(2)

, for example, starting with
Hamiltonian computed in [19], appear technically much more involved
and, up to now, are not known.
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Lemma 3.4. It is possible to find complex domains Bi with non-empty real part
and a canonical, real-analytic change of coordinates

φi
int

: (pi, qi, y
∗
i , x

∗
i ) ∈ Bi → (Θi, ϑi, yi, xi)(3.42)

where

y∗i :=

⎧⎨⎩ (χ∗
n−2, χ

∗
n−1,Λ

∗
n−1,Λ

∗
n) i = n− 1

(χ∗
i−1, χ

∗
i , χ

∗
i+1,Λ

∗
i ,Λ

∗
i+1) i = 1, · · · , n− 2 & n ≥ 3

x∗i :=

⎧⎨⎩ (κ∗
n−2, κ

∗
n−1, �

∗
n−1, �

∗
n) i = n− 1

(κ∗
i−1, κ

∗
i , κ

∗
i+1, �

∗
i , �

∗
i+1) i = 1, · · · , n− 2 & n ≥ 3

yi :=

⎧⎨⎩ (χn−2, χn−1,Λn−1,Λn) i = n− 1

(χi−1, χi, χi+1,Λi,Λi+1) i = 1, · · · , n− 2 & n ≥ 3

xi :=

⎧⎨⎩ (κn−2, κn−1, �n−1, �n) i = n− 1

(κi−1, κi, κi+1, �i, �i+1) i = 1, · · · , n− 2 & n ≥ 3
(3.43)

such that

(3.44) hisec :=

⎧⎪⎪⎨⎪⎪⎩
fn−1,n
P

(2)

◦ φn−1
int

i = n− 1

f i,i+1
P

(2)

◦ φi
int

i = 1, · · · , n− 2 & n ≥ 3

depends only on

Y∗
i :=

⎧⎪⎨⎪⎩
(
p2
n−1+q2n−1

2 ,Λ∗
n−1,Λ

∗
n, χ

∗
n−2, χ

∗
n−1) i = n− 1

(
p2
i+q2i
2 ,Λ∗

i ,Λ
∗
i+1, χ

∗
i−1, χ

∗
i , χ

∗
i+1) i = 1, · · · , n− 2 & n ≥ 3.

The transformation φi
int

may be chosen so as to verify

y∗i = yi, (Θi, ϑi, xi − x∗i ) = Fi(pi, qi, y
∗
i )

φi
int

(−pi,−qi, y
∗
i , x

∗
i ) = (−Θi,−ϑi, yi, xi)(3.45)

if

φi
int

(pi, qi, y
∗
i , x

∗
i ) = (Θi, ϑi, yi, xi).

Lemma 3.4 is proved in the following Chapter 5.2.1.
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CHAPTER 4

Global Kolmogorov tori in the planetary problem

In this chapter we show how the P-map can be used to prove Theorem A. We
defer to the next Chapter 5 more technical parts.

4.1. A domain of holomorphy

A typical practice, in order to use perturbation theory techniques, is to extend
Hamiltonians governing dynamical systems to the complex field, and then to study
their holomorphy properties.

In this section we aim to discuss a domain of holomorphy for the perturbing function
fP in (3.37), regarded as a function of complex coordinates. We shall choose it of
the following form

DP := TΘ+,ϑ+ ×
(
Xθ × T

n

s

)
×

(
Aθ × T

n

s

)
,

where, for given positive numbers

Θ+
j , ϑ+

j , G±
i , Λ±

i , θi, s

with i = 1, · · · , n, j = 1, · · · , n− 1,

TΘ+,ϑ+ :=
{
(Θ, ϑ) = (Θ1, · · · ,Θn−1, ϑ1, · · · , ϑn−1) ∈ Cn−1 × Tn−1

C
:

|ϑj − π| ≤ ϑ+
j , |Θj | ≤ Θ+

j , ∀ j = 1, · · · , n− 1
}

Xθ :=
{
χ = (χ0, · · · , χn−1) ∈ Cn : G−

j ≤ |χj−1 − χj | ≤ G+
j ,

| Im (χj−1 − χj)| ≤ θj∀ j = 1, · · · , n
}

Aθ :=
{
Λ = (Λ1, · · · ,Λn) ∈ Cn : Λ−

j ≤ |Λj | ≤ Λ+
j , | ImΛj | ≤ θj

∀ j = 1, · · · , n
}

Ts :=T+ i[−s, s]

(4.46)

with χn := 0.

The domain DP will be determined as the intersection of the “collision-less” set,
where, as functions of complex variables, the mutual distances of the planets

dj,P := ‖x(j)
P − x

(j+1)
P ‖

are far away from zero, with the holomorphy domain of P, where, again as as
functions of complex variables, the absolute values |ej,P | of eccentricities in (2.18)

29
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are bounded away from 0 and 1, those of the inclinations |ιj |, |ij | in (2.14) are away
from 0 and, finally, Kepler equation (2.2) provides a holomorphic solution.

The latter issue is not a peculiarity of this problem, since it naturally arises in
the context of the two-body problem’s equations. In the early XX century, T.
Levi Civita [24] studied the holomorphy of the solution of Kepler’s Equation with
respect to the eccentricity. The holomorphy with respect to the mean anomaly has
been investigated, using similar arguments as in [24], in [4]. Here, we address the
problem of determining the holomorphy with respect to both the arguments.

Proposition 4.1. Let ê = 0.6627 . . . be the solution of

(4.47) 0 ≤ ρ ≤ 1 &
ρ e

√
1+ρ2

1 +
√
1 + ρ2

= 1.

Then for any 0 < e < ê, one can find a positive number �̄ depending on e such that,
for any e = e1 + ie2 ∈ C, with |e| ≤ e, the complex Kepler equation

ζ − e sin ζ = �

has a unique solution ζ(�, e) which turns out to be real-analytic for � ∈ T�̄.

The following result completes the study of the holomorphy of fP .

Proposition 4.2. Let ê be as in Proposition 4.1. For any given ei, ei, with

0 < ei < ei < ê i = 1, · · · , n

it is possible to find positive numbers

Aj , Bj , Ci > Ci, d̄j , s ∈ (0, 1), σ ∈ (0, 1)

such that, if the following inequalities are satisfied

CiΛ
+
i < G−

i < G+
i < CiΛ

−
i ;

max

{
θi

Λ−
i

,
θi

G−
i

,

n−1∑
i=1

∣∣∣∣ sin−1
( G+

i

G−
i+1

)∣∣∣∣, Θ+
j

G−
n
,

n−1∑
i=1

G+
i

G−
n
, ϑ+

j , | Imκj |, | Im �i|
}

≤ s

ϑ+
j ≤ min

{
A
G+

n

√
(G−

j )
2 − (CjΛ

+
j )

2,
B
G+

n

√
(CjΛ

−
j )

2 − (G+
j )

2

}
,

(4.48)

then the eccentricities ei,P , inclinations ιi, ii and the mutual distances di,P verify

(4.49) ei ≤ |ei,P | ≤ ei, max
i,j

{
| cos ιi|, | cos ij |

}
≤ σ, |di,P | ≥ d̄

Proposition 4.1 and Proposition 4.2 are proved in Appendix A.1 and A.2, re-
spectively. We shall use them in the form below. We remark that the super-
exponential decay of the semi-major axes ratio will be used only in Chapter 5.2
below.

Corollary 4.1 (choice of parameters). Fix ei < ei, c ∈ (0, 1), and let Ci <

C∗
i < C∗

i < Ci, Di := min{A
√
(C∗

i )
2 − (Ci)

2, B
√
(Ci)2 − (C∗

i )
2}, D :=
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min1≤j≤n−1
Dj

C∗
n

mj

√
Mj

mn

√
Mn

, α < s
D . Define, for i = 1, · · · , n and j = 1, · · · , n− 1,

Λ±
i :=mi

√
Mia

±
i , G+

i := C∗
iΛ

−
i , G−

i := C∗
iΛ

+
i , Θ+

j := sG−
n ,

ϑ+
j :=Di

Λ−
i

G+
n

θi := s
√
Λ−
i

(4.50)

where a±i is as in (∗). Then fP is real-analytic in the domain DP .

4.2. A normal form for the planetary problem

Definition 4.1 ([2]). Given m, ν1, · · · , νm ∈ N, ν := ν1 + · · ·+ νm, let

L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lm = {0}
be a decreasing sequence of sub-lattices of Zν defined by
(4.51)

L0 := Zν , Li :=
{
k = (k1, · · · , km) ∈ Zν , kj ∈ Zνj : k1 = · · · = ki = 0

}
with i = 1, · · · , n. Next, given γ, γ1, · · · , γm, τ ∈ R+, we define the set Dν

γ1···γm;τ

of the (γ1 · · · γm; τ )-diophantine numbers via the following formulae:

Dν,K,i
γ;τ :=

{
ω ∈ Rν : |ω · k| ≥ γ

|k|τ ∀k ∈ Li−1 \ Li, |k|1 ≤ K
}

Dν,K
γ1···γm;τ :=

m⋂
i=1

Dν,K,i
γi;τ Dν

γ1···γm;τ :=
⋂
K∈N

Dν,K
γ1···γm;τ .

In other words ω = (ω1, · · · , ωm) ∈ Dν
γ1···γm;τ if, for any k = (k1, · · · , km) ∈ Zν\{0},

with kj ∈ Zνj ,

(4.52) |ω ·k| =
∣∣∣∣ m∑
j=1

ωj ·kj
∣∣∣∣ ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1
|k|τ if k1 = 0;

γ2
|k|τ if k1 = 0, k2 = 0;

...

γm
|km|τ if k1 = · · · = km−1 = 0, · · · , km = 0.

Remark 4.1. The choice m = 1, γ1 := γ gives the usual Diophantine set Dν
γ,τ .

The m = 2-case, Dν
γ1,γ2,τ , with γ1 = O(1) and γ2 = O(μ), where μ is the strength

of the planetary masses has been considered in [2] for the proof of the Fundamental
Theorem, mentioned in the introduction.

The following result in proven in the next Chapter 5. It is unavoidably detailed.

Proposition 4.3. Let mj, Mj be as in (3.34) and mj :=
∑j−1

i=1 mi, with j =
2, · · · , n. There exists a number c, depending only on n, m0, · · · ,mn, a

±
n , ej, ej,

and a number 0 < c < 1, depending only on n such that, for any fixed positive
numbers γ < 1 < K̄, α > 0 verifying

K̄ ≤ c

α3/2
(4.53)
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and

1

c
max

{
μ(

a+n
a−1

)5
K̄2τ̄+2

γ̄2
,
K̄2(τ̄+1)α

γ̄2

}
< 1(4.54)

there exist natural numbers ν1, · · · , ν2n−1, with
∑

j νj = 3n − 2, open sets B∗
j ⊂

B2
εj ,X

∗ ⊂ X, positive real numbers γ1 > · · · > γ2n−1ε1, · · · , εn−1, r1, · · · , rn−1,

r̃1, · · · , r̃n, a domain

Dn := B√
2r ×Xr ×Ar̃ × Tn

cs × Tn
cs

a sub-domain of the form

D
∗
n := B∗√

2r
× X∗

r ×Ar̃ × Tn
cs × Tn

cs

verifying

(4.55) measD∗
n ≥

(
1− γ̄

c

)
measDn

a real-analytic transformation

φn : (p, q, χ,Λ, κ, �) ∈ D∗
n → DP

which conjugates HP to

Hn(p, q, χ,Λ, κ, �) := HP ◦ φn = hfast,sec(p, q, χ,Λ) + μ fexp(p, q, χ,Λ, κ, �)

where fexp(p, q, χ,Λ, κ, �) is independent of κ0, and the following holds.

1. The function hfast,sec(p, q, χ,Λ) is a sum

hfast,sec(p, q, χ,Λ) = hfast(Λ) + μ hsec(p, q, χ,Λ)

where, if

ŷi :=

(
p2i + q2i

2
, · · · ,

p2n−1 + q2n−1

2
, χi−1, · · · , χn−1, Λi, · · · , Λn

)
then hfast and hsec are given by

hfast(Λ) = −
n∑

j=1

m3
jM

2
j

2Λ2
j

− μ
n∑

j=2

Mjm
2
jmjmj

Λ2
j

, hsec(p, q, χ,Λ) =
n−1∑
i=1

hisec(ŷi)

where the functions hisec have an analytic extension on Dn and verify

c
(a+n−j)

2

(a−n−j+1)
3
≤ |hjsec(ŷj)| ≤

1

c

(a+n−j)
2

(a−n−j+1)
3
.

2. The function fexp satisfies

|fexp| ≤
1

c

e−cK̄

a−1
.
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3. If ζ is ŷ1 deprived of χ0, the frequency-map

ζ → ωfast,sec(ζ) := ∂ζhfast,sec(ζ)

is a diffeomorphism of Πζ(B
∗√
2r

×X∗
r ×A∗

r̃) and, moreover, it satisfies (4.52), with

m = 2n− 1, τ = τ̄ > 2, and

νj :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 j = 1, · · · , n

2 j = 3, n = 2

3 j = n+ 1, n ≥ 3

2 n+ 2 ≤ j ≤ 2n− 2, n ≥ 4

1 j = 2n− 1, n ≥ 3

ωj :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Λj
hfast,sec j = 1, · · · , n

∂
(
p21+q21

2 ,χ1)
hfast,sec j = 3, n = 2

∂
(
p2
n−1

+q2
n−1

2 ,χn−2,χn−1)
hfast,sec j = n+ 1, n ≥ 3

∂
(
p2
2n−j

+q2
2n−j

2 ,χ2n−j−1)
hfast,sec n+ 2 ≤ j ≤ 2n− 2, n ≥ 4

∂ p21+q21
2

hfast,sec j = 2n− 1, n ≥ 3

γj :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

a−j

γ

θj
1 ≤ j ≤ n

μ(a+j−n)
2

(a−j+1−n)
3

γ

θj−n
n+ 1 ≤ j ≤ 2n− 1

(4.56)

4. The mentioned constants are

εj := c
√
θj , rj :=

θjγ

K̄ τ̄+1
, r̃i := c θj

with τ̄ > 2.

4.3. A “multi-scale” KAM Theorem and proof of Theorem A

In this section we state a “multi-scale” KAM Theorem and next we show how
this theorem applies to the Hamiltonian Hn so as to obtain the proof of Theorem
A.

Theorem 4.1 (Multi-scale KAMTheorem). Let m, �, ν1, · · · , νm ∈ N, ν := ν1+
· · ·+ νm ≥ �, τ∗ > ν, γ1 ≥ · · · ≥ γm > 0, 0 < 4s ≤ s̄ < 1, ρ1, · · · , ρ�, r1, · · · , rν−�,
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ε1, · · · , ε� > 0, B1, · · · , B� ⊂ R2, Dj := {x2+y2

2 ∈ R : (x, y) ∈ Bj} ⊂ R, B :=

B1 × · · · ×B� ⊂ R2�, D := D1 × · · · ×D� ⊂ R�, C ⊂ Rν−�, A := Dρ × Cr. Let

H(p, q, I, ψ) = h(p, q, I) + f(p, q, I, ψ)

be real-analytic on B√
2ρ × Cr × Tν−�

s̄+s, where h(p, q, I) depends on (p, q) only via

J(p, q) :=
(p21 + q21

2
, · · · , p2� + q2�

2

)
.

Assume that ω0 := ∂(J(p,q),I)h is a diffeomorphism of A with non singular Hessian

matrix U := ∂2
(J(p,q),I)h and let Uk denote the (νk + · · ·+ νm)× ν submatrix of U ,

i.e., the matrix with entries (Uk)ij = Uij, for ν1+ · · ·+νk−1+1 ≤ i ≤ ν, 1 ≤ j ≤ ν,
where 2 ≤ k ≤ m. Let

M ≥ sup
A

‖U‖, Mk ≥ sup
A

‖Uk‖, M̄ ≥ sup
A

‖U−1‖, E ≥ ‖f‖ρ,s̄+s

M̄k ≥ sup
A

‖Tk‖ if U−1 =

⎛⎜⎝ T1

...
Tm

⎞⎟⎠ 1 ≤ k ≤ m.

Define

K :=
6

s
log+

(
EM2

1 L

γ2
1

)−1

where log+ a := max{1, log a}

ρ̂k :=
γk

3MkKτ∗+1
, ρ̂ := min {ρ̂1, · · · , ρ̂m, ρ1, · · · , ρ�, r1, · · · , rν−�}

L := max
{
M̄, M−1

1 , · · · , M−1
m

}
Ê :=

EL

ρ̂2
.

Then one can find two numbers ĉν > cν depending only on ν such that, if the
perturbation f is so small that the following “KAM condition” holds

ĉνÊ < 1,

for any ω ∈ Ω∗ := ω0(D)∩Dγ1,··· ,γm,τ∗ , one can find a unique real-analytic embed-
ding

φω : ϑ = (ϑ̂, ϑ̄) ∈ Tν → (v̂(ϑ;ω), ϑ̂+ û(ϑ;ω),Rϑ̄+ū(ϑ;ω)w1, · · · , Rϑ̄+ū(ϑ;ω)w�)

∈ ReCr × Tν−� × ReB2�√
2r

where r := cνÊρ̂ such that Tω := φω(T
ν) is a real-analytic ν-dimensional H-

invariant torus, on which the H-flow is analytically conjugated to ϑ → ϑ + ω t.
Furthermore, the map (ϑ;ω) → φω(ϑ) is Lipschitz and one-to-one and the invari-

ant set K :=
⋃

ω∈Ω∗

Tω satisfies the following measure estimate

meas
(
Re (Dr)×Tn\K

)
≤ cν

(
meas (D\Dγ1,··· ,γm,τ∗×Tn)+meas (Re (Dr)\D)×Tn

)
,
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where Dγ1,··· ,γm,τ∗ denotes the ω0-pre-image of Dγ1,··· ,γm,τ∗ in D. Finally, on Tν ×
Ω∗, the following uniform estimates hold

|vk(·;ω)− I0k(ω)| ≤ cν

(M̄k

M̄
+

Mk

M1

)
Ê ρ̂

|u(·;ω)| ≤ cνÊ s

where vk denotes the projection of v = (v̂, v̄) ∈ Rν1×· · ·×Rνm over Rνk , v̄k :=
|wk|2
2

and I0(ω) = (I01 (ω), · · · , I0ν (ω)) ∈ D is the ω0-pre-image of ω ∈ Ω∗.

Theorem 4.1 generalizes [6, Proposition 3] in two respects. The first generalization
concerns the consideration of m ≥ 2 scales (in [6] only the case m = 2 was treated).
The second consists of taking H depending also on the rectangular variables (p, q) ∈
B2�. Such generalizations can be easily obtained, and hence will be not discussed
here.

Proof of Theorem A. Let

γ̄ := c
√
α(logα−1)τ̄+1, K̄ =

1

c̃
log

1

α

where c is as in (4.55) and c̃ will be fixed later. We aim to apply Theorem 4.1 to
the Hamiltonian Hn of Proposition 4.3, with these choices of γ̄ and K̄. To this end,
we take

Mj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

c1a
−
j θ

2
j

1 ≤ j ≤ n

μ(a+j )
2

c1(a
−
j+1)

3θ2j
n+ 1 ≤ j ≤ 2n− 1

L = M̄ =
1

c2

θ21(a
+
2 )

3

μ(a−1 )
2

E =
1

c3

μ

a−1
e−cK̄ K =

1

c4
log+

( 1

γ2

(a2)
3

(a−1 )
3
e−cK̄

)−1

ρ̂j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c5

γθj
Kτ∗+1

1 ≤ j ≤ n

c5
γθj−n

Kτ∗+1
n+ 1 ≤ j ≤ 2n− 1

ρ̂ :=
θ1γ

K̂τ∗+1
τ∗ > 3n− 2

Ê =
1

c6

1

γ2

(a2)
3

(a−1 )
3
e−cK̄K̂2(τ∗+1)

where K̂ := max{K, K̄}. The number 1
γ2

(a2)
3

(a−
1 )3

can be bounded by 1
αN for a suffi-

ciently large N depending only on n. Hence, if c̃ < c

N and α < c6, we have Ê < 1
and the theorem is proved. �
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CHAPTER 5

Proofs

In this chapter we provide the proof of Proposition 4.3. This is divided in two
steps: normalization of fast angles and of secular coordinates.

5.1. Normalization of fast angles

Let f ij
P , f ij

P
(k)

as in Lemma 3.1, and let

(5.57) f ij
P

(≥2)

:= f ij
P − f ij

P
(0)

.

Proposition 5.1. There exist two small numbers ĉ, c1, where ĉ depends only
on n, while c1 depends only on n, m1, · · · ,mn, such that, if the inequality in (4.53)
and

1

c
μK̄

(
a+n
a−1

) 3
2

< 1(5.58)

hold, one can find a real-analytic and symplectic transformation

φfast : (Θ, ϑ, χ,Λ, κ, �) ∈ Dfast := TĉΘ+ ,̂cϑ+ ×Xĉθ ×Aĉθ × Tn
ĉs × Tn

ĉs → DP

which conjugates HP to

Hfast,exp(Θ, χ,Λ, ϑ, κ, �)

:= HP ◦ φfast = hfast(Λ) + μ ffast(Θ, χ,Λ, ϑ, κ) + μ ffast,exp(Θ, χ,Λ, ϑ, κ, �)

(5.59)

where hfast is as in Proposition 4.3, and

ffast :=

n−1∑
i=1

f i
fast, ffast,exp :=

n−1∑
i=1

f i
fast,exp.(5.60)

Here,

1. The “fast frequency-map”

ωfast := ∂hfast

is a diffeomorphism of A with non-vanishing Jacobian matrix on Aĉθ and, moreover,

ωfast ∈ DK̄,νfast

γfast,τ ∀ Λ ∈ A,

with

γfast := (γ1, · · · , γn) νfast := (ν1, · · · , νn)

and νi, γi as in (4.56);

37
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2. the functions f i
fast, f

i
fast,exp do not depend on κ0; the f i

fast’s are given by

f i
fast = f i

fast(ti, yi, xi) = f i
P
(≥2)

(ti, yi, xi) + f̃ i
fast

(ti, yi, xi), i = 1, · · · , n− 1,

(5.61)

with

f i
P
(≥2)

:=

n∑
j=i+1

f ij
P

(≥2)

ti :=
(
Θi, · · · , Θn−1, ϑi, · · · , ϑn−1

)
,

yi := (χi−1, · · · , χn−1, Λi, · · · , Λn

)
xi := (κi, · · · , κn−1).

In particular, f̃ i
fast

do not depend on �1, · · · , �n;

3. finally, f̃ i
fast

, f i
exp,fast satisfy the following bounds

‖f̃ i
fast

‖Dfast
≤ 1

c1
μK̄

(
a+n
a−1

) 3
2 1

a−i+1

, ‖f i
fast,exp‖Dfast

≤ 1

c1

e−ĉK̄s

a−i+1

.(5.62)

Let L0, · · · , Ln be defined as Li in (4.51), with ν = m = n and ν1 = · · · = νn = 1.

Lemma 5.1. If K̄ verifies the inequality in (4.53), then one can find a number
c3, depending only on m0, · · · , mn, such that

|ωk,fast(Λ) · k| ≥
c3

(a+j )
3/2

∀ k ∈ Lj−1 \ Lj , |k| ≤ K̄, ∀ Λ ∈ Aθ, ∀ j = 1, · · · , n.

Proof. For Λ ∈ Aθ, ωk,fast,j :=
M

2
jm

3
j

Λ3
j

verifies
√
Mj

(a+
j )3/2

≤ |ωk,fast,j| ≤
√
Mj

(a−
j )3/2

.

In the case j = n, we find |ωk,fast · k| = |ωk,fast,nkn| ≥
√
Mj

(a+
n )3/2

, since kn = 0. Let

then j = n. For k ∈ Lj−1 \ Lj , kj = 0, so, inequality (4.53), with c2 ≤ minj

√
Mj

maxj

√
Mj

,

and (4.50) imply

K̄ ≤
minj

√
Mj

maxj
√
Mj

min
1≤j≤n−1

(a−j+1

a+j

)3/2

and hence

|ωk,fast · k| = |
n∑

i=j

ωk,fast,iki| ≥ inf
Aθ

|ωk,fast,j| − K̄ max
j<i≤n

sup
Aθ

|ωk,fast,i|

≥
√
Mj

(a+j )
3/2

− K̄
maxi>j

√
Mi

(a−j+1)
3/2

≥
√
Mj

2(a+j )
3/2

eq

�

Proof of Proposition 5.1. The proof proceeds by recursion, in n steps.
We describe the hth step of this recursion, with h = 1, · · · , n. We start with a
Hamiltonian of the form

(5.63) Hh−1 = h0fast + μ fh−1
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where h0fast is as in (3.38), and a domain

Dh−1 = TΘ+(h−1),ϑ+(h−1) ×Xθ(h−1) ×Aθ(h−1) × Tn
s(h−1) × Tn

s(h−1) .

When h = 1, we take H0 := HP , Θ
(0)
+ := Θ+, ϑ

(0)
+ := ϑ+, θ(0) := θ, s(0) := s,

f0 := fP and we decompose

f0 := f̂0 :=
n−1∑
i=1

f̂ i
0 with f i

0 :=
n∑

j=i+1

f ij
P .

We observe that f̂ i
0 depends on the coordinates

Θi, · · · , Θn−1, χi−1, · · · , χn−1, Λi, · · · , Λn

ϑi, · · · , ϑn−1, κi, · · · , κn−1, �i, · · · , �n.

For n ≥ 3 and 2 ≤ h ≤ n− 1, we assume, inductively, that fh−1 is a sum

fh−1 = f̂h−1 + fexp,h−1 =
∑

1≤i≤n

f̂ i
h−1 +

∑
1≤i≤n

f i
exp,h−1,(5.64)

where, in turn,

f̂ i
h−1 = f i

h−1 + f̃ i
h−1

with f i
h−1, f̃

i
h−1 depending only on the coordinates

Θi, · · · , Θn−1, χi−1, · · · , χn−1, Λi, · · · , Λn

ϑi, · · · , ϑn−1, κi, · · · , κn−1, �i∨h, · · · , �n

and f i
h−1, f̃

i
h−1, fexp,h−1 verifying the following bounds and identities

f i
h−1 = ΠLh−1

TK̄ f̂ i
h−2

‖f̃ i
h−1‖Dh−1

≤ C1,h−1μK̄
(a+n
a−1

) 3
2 ‖f̂ i

h−2‖Dh−2

‖f i
exp,h−1‖Dh−1

≤ C2,h−1e
−Ks(h)‖f̂ i

h−2‖Dh−2
.(5.65)

Here ΠLh
denotes the projection over the module Lh. In any case, h = 1, or

2 ≤ h ≤ n− 1, we focus on the Hamiltonian

(5.66) Ĥh−1 = h0fast + μ f̂h−1 = h0fast + μ
n−1∑
i=1

f̂ i
h−1.

Our purpose is to apply Proposition D.1 to this Hamiltonian, in the case that the
abstract system (D.133) does not depend on the coordinates (p, q). To this end, we
take the coordinates

I := Λ, ϕ := �, η := (Θ, χ), ξ := (ϑ, κ),
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the functions fi in (D.135) to be the f̂n−i
h−1, and

N = n− 1, ν = n, mi := 2i

(I1, · · · , Iν) := (Λn, · · · ,Λ1)

(ϕ1, · · · , ϕνi
) := (�n, · · · , �max{n−i,h})

(η1, · · · , ηmi
) := (Θn−1, · · · ,Θn−i, χn−1, · · · , χn−i−1)

(ξ1, · · · , ξmi
) := (ϑn−1, · · · , ϑn−i, κn−1, · · · , κn−i)

ui := (Λn, · · · ,Λ1,Θn−1, · · · ,Θn−i, χn−1, · · · , χn−i−1, ϑn−1, · · · , ϑn−i,

κn−1, · · · , κn−i).

The non-resonance assumption (D.134) for ω = ωk,fast = ∂Λhk,fast, with

Zi = Lh−1, Z = ∪iZi = Lh−1, L = Lh K = K̄

is ensured by Lemma 5.1, with

a =
c3

(a+h )
3/2

, A = A, r = θ
(h−1)
1 .

Now we have to check condition (D.139). In the case 2 ≤ h ≤ n − 1 the inductive
assumptions (5.65) and assumption (5.58) imply

‖f̂ i
h−1‖Dh−1

≤ ‖f i
h−1‖Dh−1

+ ‖f̃ i
h−1‖Dh−1

≤
(
1 + C1μK̄

( a+
n

a−
1

) 3
2

)
‖f̂ i

h−2‖Dh−2

≤ · · · ≤ (1 + C1,h−1c1)
h−1‖f̂ i

0‖D0
≤ C4,h−1

a−i
=: Ei.(5.67)

An analogous bound holds also for h = 1. The numbers ci and di in (D.138) may
be evaluated as

ci = e(1 + 2ie)/2 di = min{θ(h−1)
1 s(h−1),Θ

+(h−1)
i ϑ

+(h−1)
i } = c2θ

(h−1)
1 .

From these bounds it is immediate to see that inequality (D.139) is implied by
(5.58), provided c1 < 2−7 6

7 (
8
9 )

n−2c2/(C4cn). Then Proposition D.1 applies. Its

thesis implies that Ĥh−1 in (5.66) can be conjugated to a suitable H∗
h = hk,fast+μf∗

h ,
where f∗

h verifies equalities and inequalities in (5.64)-(5.65) with h replaced by
h+ 1 and C1,h−1, C2,h−1 replaced by suitable C∗

1,h, C
∗
2,h. Then, applying the same

transformation to Hh−1 in (5.63), we shall conjugate Hh−1 to Hh = hk,fast + μfh,
where fh satisfies the same equalities and inequalities as f∗

h , with suitable C1,h ≥
C∗
1,h, C2,h ≥ C∗

2,h.

After we have performed n steps, we let Dfast := Dn, Hfast,exp := Hn, f
i
fast := f̂ i

n,

f̃ i
fast

:= f i
fast−f i

P , f
i
fast,exp := f i

exp,n, f̂fast :=
∑n−1

i=1 f̂ i, f̃fast :=
∑n−1

i=1 f̃ i, ffast,exp :=∑n−1
i=1 f i

fast,exp , with f i
P :=

∑n
j=i+1 f

ij
P . Therefore,

Hfast = h
(0)
fast

+ μ
(
f̂fast + fexp,fast

)
= h

(0)
fast

+ μ
( ∑
1≤i<j≤n

f ij
P + f̃fast + fexp,fast

)
reduces to (5.59) and the formulae given below, using (5.57).

It remains to check the bound on the left in (5.62) (the one on the right follows by
construction). This follows by telescopic arguments. Indeed,
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‖f̃ i
fast

‖Dn
= ‖f i

fast − f i
P‖Dn

= ‖f̂ i
n − f i

P‖Dn
= ‖ΠLn

f̂ i
n −ΠLn

f i
P‖Dn

≤
n∑

h=1

‖ΠLn
f̂ i
h −ΠLn

TK̄ f̂ i
h−1‖Dn

=

n∑
h=1

‖ΠLn
f̂ i
h −ΠLn

ΠLh
TK̄ f̂ i

h−1‖Dn

≤
n∑

h=1

‖f̂ i
h −ΠLh

TK̄ f̂ i
h−1‖Dn

≤
n∑

h=1

‖f̂ i
h −ΠLh

TK̄ f̂ i
h−1‖Dh

≤ μK̄
(a+n
a−1

) 3
2

∑n
h=1 C1,hC4,h−1

a−i+1

.

Here, we have used the second bound in (5.65), (5.67), that f̂ i
n does not depend on

�1, · · · , �n, and, finally, ΠLn
= ΠLn

TK̄ = ΠLn
ΠLh

, for all 1 ≤ h ≤ n. �

5.2. Secular normalizations

Consider the following truncation

Hfast(Θ, χ,Λ, ϑ, κ) := hfast(Λ) + μ ffast(Θ, χ,Λ, ϑ, κ)

of the Hamiltonian Hfast,exp in (5.59). The purpose of this section is to describe
an iterative scheme which, after (n − 1) steps, conjugates Hfast to a close-to be
integrable system, with an arbitrarily small remainder.

Let us firstly establish the following notation.

• Given a Taylor-Fourier expansion of the form

g(p, q, κ) =
∑

(a,b)∈N
2m1

k∈Z
m2

ga,b,k

(
p− iq√

2

)a(
p+ iq√

2i

)b

eik·κ (p, q, κ) ∈ B2m1(0)× Tm2 .

we denote as

Πp,q,κg :=
∑

a∈Nm1

g0,a,a

(
p2 + q2

2i

)a

.

Proposition 5.2. There exists number ch, depending only on n, m0, · · · , mn,
a±n such that, for any h = 1, · · · , n − 1 and any K̄, γ̄ > 0 such that (4.54) hold
with c replaced by ch, one finds open sets

B∗
j ⊂ B2

εj , G∗
j ⊂ Gj :=

[
G+

j , G+
j

]
, j = n− h, · · · , n− 1

verifying

(5.68) meas
(
B∗

j ×G∗
j

)
≥

(
1− γ̄

ch

)
meas (B2

εj ×Gj

)
such that, defining
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Th
chθ

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
(Θ1, · · · ,Θn−h−1, ϑ1, · · · , ϑn−h−1)

∈ Cn−1 × Tn−1
C

:

|ϑj − π| ≤ ch
θj
G−

n
, |Θj | ≤ chG

+
n

∀ j = 1, · · · , n− h− 1
}

n ≥ 3, 1 ≤ h < n− 2

∅ otherwise

B∗h
chr

:= (B∗
n−h)ch

√
rn−h

× · · · × (B∗
n−1)ch

√
rn−1

X∗h
chθ,chr̄

:=
{
χ = (χ0, · · · , χn−1) : χi−1 − χi ∈ (G∗

i )chθi , χj−1 − χj ∈ (Gj)chr̄j

∀ i = 1, · · · , n− h− 1, j = n− h, · · · , n, χn := 0
}

D
h
sec := Th

cθ ×B∗h
cε ×X∗h

cθ,cr ×Achr̃ × Tn
chs

× Tn
chs

(5.69)

a real-analytic transformation

Φsec,h : D
h
sec → Dfast,

may be found, which conjugates ffast to a new function

fsec,h := ffast ◦ Φsec,h

enjoying the following properties.

1. Denoting by (t(h), z(h), y(h), x(h)), where

t(h) = (Θ(h), ϑ(h)) = (Θ
(h)
1 , · · · , Θ

(h)
n−h−1, ϑ

(h)
1 , · · · , ϑ

(h)
n−h−1)

z(h) = (p(h), q(h)) = (p
(h)
n−h, · · · , p

(h)
n−1, q

(h)
n−h, · · · , q

(h)
n−1)

y(h) = (χ(h),Λ(h)) = (χ
(h)
0 , · · · , χ

(h)
n−1, Λ

(h)
1 , · · · , Λ(h)

n )

x(h) = (κ(h), �(h)) = (κ
(h)
0 , · · · , κ

(h)
n−1, �

(h)
1 , · · · , �(h)n ),(5.70)

coordinates on Dh
sec then Φsec,h is co-variant with the symmetry:

Φsec,h(−t(h),−z(h), y(h), x(h)) = (−t(0), y(0), x(0)) if

Φsec,h(t
(h), z(h), y(h), x(h)) = (t(0), y(0), x(0))

and hence, fsec,h is even around

t(h) = (0, kπ), z(h) = 0 k ∈ {0, 1}n−h−1
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2. Defining

t
(h)
i :=

⎧⎨⎩
(
Θ

(h)
i , · · · ,Θ(h)

n−h−1, ϑ
(h)
i , · · · , ϑ(h)

n−h−1

)
i ≤ n− h− 1

∅ otherwise

ŷ
(h)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(p

(h)
i )2+(q

(h)
i )2

2 , · · · , (p
(h)
n−1)

2+(q
(h)
n−1)

2

2 , χ
(h)
i−1, · · · , χn−1,

Λ
(h)
i , · · · , Λ

(h)
n

)
i ≥ n− h

(
(p

(h)
n−h)

2+(q
(h)
n−h)

2

2 , · · · , (p
(h)
n−1)

2+(q
(h)
n−1)

2

2 , χ
(h)
i−1, · · · , χn−1,

Λ
(h)
i , · · · , Λ

(h)
n

)
otherwise

x̂
(h)
i =

⎧⎨⎩
(
κ
(h)
i , · · · , κ

(h)
n−h−2

)
n ≥ 4 & 1 ≤ h ≤ n− 3 & 1 ≤ i ≤ n− h− 2

∅ otherwise

(5.71)

and ŷ := ŷ1, x̂ := x̂1, fsec,h has the form

fsec,h(t
(h), z(h), y(h), x(h)) = hsec,h(ŷ

(h)
n−h) + fnorm,h(t

(h), ŷ(h), x̂(h))

+ fexp,sec,h(t
(h), z(h), y(h), x(h))(5.72)

with

hsec(ŷ
(h)
n−h) =

n−1∑
i=n−h

hisec(ŷ
(h)
i )

fnorm,h(t
(h), ŷ(h), x̂(h)) =

n−h−1∑
i=1

f i
norm,h(t

(h)
i , ŷ

(h)
i , x̂

(h)
i )(5.73)

where

3. the functions hisec f i
norm,h may be decomposed as

hisec(ŷ
(h)
i ) = hisec(ŷ

(h)
i ) + h̃iseci(ŷ

(h)
i )

f i
norm,h(t

(h)
i , ŷ

(h)
i , x̂

(h)
i ) = f i

norm,h(t
(h)
i , ŷ

(h)
i , x̂

(h)
i ) + f̃ i

norm,h(t
(h)
i , ŷ

(h)
i , x̂

(h)
i )(5.74)

where

(5.75) f i
norm,h =

n∑
j=i+1

Πh

(
f ij
P

(≥2)

◦ φn−1
int

◦ · · · ◦ φn−h
int

)
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and hisec, φ
i
int

as in Lemma 3.4. The functions h̃sec,h, f̃norm,h, fexp,sec,h in (5.72)
may be bounded as

|h̃i
sec,h| ≤

1

ch
max

{
μK̄

(an
a1

)3/2 1

a−i+1

,
K̄ τ̄+1

√
α

γ̄

(a+i )
2

(a+i+1)
3
,

ε2i+1

θi+1

(a+i )
2

(a−i+1)
3

}
|f̃ i

norm,h| ≤
1

ch
max

{
μK̄

(an
a1

)3/2 1

a−i+1

,
K̄ τ̄+1

√
α

γ̄

(a+i )
2

(a−i+1)
3

}
|fexp,sec,h| ≤

1

ch

(a+n−1)
2

(a−n )3
e−chK̄(5.76)

4. Defining

ζ(h) :=
( (p(h)n−h)

2 + (q
(h)
n−h)

2

2
, · · · ,

(p
(h)
n−1)

2 + (q
(h)
n−1)

2

2
, χ

(h)
i−1, · · · , χn−1

)
so that

ŷ
(h)
n−h = (ζ(h),Λ

(h)
n−h, · · · , Λ(h)

n )

for any Λ
(h)
n−h, · · · , Λ

(h)
n , the map

ζ(h) → ωsec,h := ∂ζ(h)hsec,h(ζ
(h),Λ(h))

is a diffeomorphism of Dr × Xr, with non-vanishing Jacobian matrix. The set

D∗
r × X∗

r consists of the subset of Dr × Xr such that ωfast,sec ∈ DK̄,νsec

γsec;τ
, where, if

νj, γj are as in (4.56),

νsec := (νn+1, · · · , ν2n−1) γsec := (γn+1, · · · , γ2n−1).

We shall give the complete details of the proof of Proposition 5.2 along the following
sections 5.2.1-5.2.4. In this section we just provide main ideas.

Scheme of Proof. The proof is by recursion. The hth step of this recursion
starts with

fsec,h−1 = hsec,h−1 + fnorm,h−1 + fexp,sec,h−1,

where, for h = 1

(5.77) hsec,0 ≡ 0, fexp,sec,0 ≡ 0, fsec,0 := fnorm,0 := ffast,

while, for n ≥ 3 and h = 2, · · · , n−1, we assume, inductively, that hsec,h−1, fsec,h−1

and fexp,sec,h−1 satisfy the theses of Proposition 5.2, with h replaced by (h− 1).

The transformation φn−h
sec conjugating fsec,h−1 to fsec,h will be constructed as a

product φn−h
sec = φn−h

int
◦ φn−h

norm of an “integrating” and a “normalizing” transforma-
tion.

Due to the bound on fexp,sec,h−1, it is enough to focus on the truncation

̂fsec,h−1 := hsec,h−1 + fnorm,h−1 = hsec,h−1 +
n−h∑
i=1

f i
norm,h−1(t

(h−1)
i , ŷ

(h−1)
i , x̂

(h−1)
i )

(5.78)

of fsec,h−1. We split

fnorm,h−1 = fn−h
norm,h−1(t

(h−1)
n−h , ŷ

(h−1)
n−h , x̂

(h−1)
n−h )+

n−h−1∑
i=1

f i
norm,h−1(t

(h−1)
i , ŷ

(h−1)
i , x̂

(h−1)
i )



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5.2. SECULAR NORMALIZATIONS 45

and we distinguish two cases.

Case n ≥ 3, h = 2, · · · , n − 1. By the inductive assumption (see (5.71) with h

replaced by (h− 1)), the function fn−h
norm,h−1 depends only on

t
(h−1)
n−h =

(
Θ

(h−1)
n−h , ϑ

(h−1)
n−h

)
and ŷ

(h−1)
n−h

therefore is integrable. In Chapter 5.2.2, we shall construct a canonical, real-
analytic change of coordinates

φn−h
int

: Dh
int → Dh−1

sec

(t
(h)
∗ , z

(h)
∗ , y

(h)
∗ , x

(h)
∗ ) → (t(h−1), z(h−1), y(h−1), x(h−1))

Dh
int := Th

ĉhθ
× B2

ĉhεn−h
×B∗,h−1

ĉhε
×X∗,h−1

ĉhθ,ĉhr
×Aĉhr̃ × Tn

ĉhs
× Tn

ĉhs
(5.79)

such that

(5.80) fn−h
norm,h−1 ◦ φ

n−h
int

= hn−h
sec (ŷ

(h)
∗,n−h)

depends only on ŷ
(h)
∗,n−h, where ŷ

(h)
∗,i is defined analogously to ŷ

(h)
i in (5.71). Here,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t
(h)
∗ :=

(
Θ

(h)
∗ , ϑ

(h)
∗

)
z
(h)
∗ :=

(
p
(h)
∗ , q

(h)
∗

)
y
(h)
∗ :=

(
χ
(h)
∗ , Λ

(h)
∗

)
x
(h)
∗ :=

(
κ
(h)
∗ , �

(h)
∗

)
⎧⎪⎪⎨⎪⎪⎩

t(h−1) :=
(
Θ(h−1), ϑ(h−1)

)
z(h−1) :=

(
p(h−1), q(h−1)

)
y(h−1) :=

(
χ(h−1), Λ(h−1)

)
x(h−1) :=

(
κ(h−1), �(h−1)

)
are defined analogously to (5.70).

We shall construct φn−h
int

in such a way that it involves only the coordinates

φn−h
int

: (z
(h)
∗,n−h, y

(h)
∗,n−h, x

(h)
∗,n−h) → (t

(h−1)
n−h , z

(h−1)
n−h+1, y

(h−1)
n−h , x

(h−1)
n−h )

with

z
(h)
∗,n−h :=

(
p
(h)
∗,n−h, · · · , p

(h)
n−1, q

(h)
∗,n−h, · · · , q

(h)
n−1

)
y
(h)
∗,n−h :=

(
χ
(h)
∗,n−h−1, · · · , χ∗,n−1, Λ

(h)
∗,n−h, · · · , Λ(h)

n

)
x
(h)
∗,n−h :=

(
κ
(h)
∗,n−h−1, · · · , κ

(h)
∗,n−1, �

(h)
∗,n−h, · · · , �(h)n

)
t
(h−1)
n−h :=

(
Θ

(h−1)
n−h , ϑ

(h−1)
n−h

)
z
(h−1)
n−h+1 :=

(
p
(h−1)
n−h+1, · · · , p

(h−1)
n−1 , q

(h−1)
n−h+1, · · · , q

(h−1)
n−1

)
y
(h−1)
n−h :=

(
χ
(h−1)
n−h−1, · · · , χn−1, Λ

(h−1)
n−h , · · · , Λ(h−1)

n

)
x
(h−1)
n−h :=

(
κ
(h−1)
n−h−1, · · · , κ

(h−1)
n−1 , �

(h−1)
n−h , · · · , �(h−1)

n

)
(5.81)
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and has the form

φn−h
int

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ
(h−1)
n−h = F

(h)
int

(p
(h)
∗,n−h, q

(h)
∗,n−h, ỹ

(h)
∗ )

ϑ
(h−1)
n−h − π = G

(h)
int

(p
(h)
∗,n−h, q

(h)
∗,n−h, ỹ

(h)
∗ )

ẑ
(h−1)
j = ẑ

(h)
∗,j e

iψ
(h)
int,j(p

(h)
∗,n−h, q

(h)
∗,n−h, ỹ(h)

∗ )

y
(h−1)
n−h = y

(h)
∗,n−h

x
(h−1)
n−h = x

(h)
∗,n−h + ϕ

(h)
int

(p
(h)
∗,n−h, q

(h)
∗,n−h, ỹ

(h)
∗ )

(5.82)

with F
(h)
int

, G
(h)
int

odd, ψ
(h)
int,j , ϕ

(h)
int

even in (p
(h)
∗,n−h, q

(h)
∗,n−h),

ỹ
(h)
∗ :=

( (p(h)∗,n−h+1)
2 + (q

(h)
∗,n−h+1)

2

2
, · · ·

(p
(h)
∗,1)

2 + (q
(h)
∗,1 )

2

2
, y

(h)
∗,n−h

)
ẑ
(h−1)
j :=

(
p
(h−1)
j , q

(h−1)
j

)
:= p

(h−1)
j + iq

(h−1)
j

ẑ
(h)
∗,j :=

(
p
(h)
∗,j , q

(h)
∗,j

)
:= p

(h)
∗,j + iq

(h)
∗,j(5.83)

with j = n− h+ 1, · · · , n− 1, for n ≥ 3, h ≥ 2 and y
(h)
∗,n−h as in (5.81).

In particular, observe that φn−h
int

enjoys the following properties:

• it is co-variant with the symmetry: if

φn−h
int

(t
(h)
∗ , z

(h)
∗ , y

(h)
∗ , x

(h)
∗ ) = (t(h−1), z(h−1), y(h−1), x(h−1)),

then

φn−h
int

(−t
(h)
∗ ,−z

(h)
∗ , y

(h)
∗ , x

(h)
∗ ) = (−t(h−1), −z(h−1), y(h−1), x(h−1));

• leaves the “actions”

ỹ
(h)
∗ = ỹ(h−1)

unvaried, where ỹ
(h)
∗ is as in (5.83), and

ỹ(h−1) :=
( (p(h−1)

n−h+1)
2 + (q

(h−1)
n−h+1)

2

2
, · · · (p

(h−1)
1 )2 + (q

(h−1)
1 )2

2
, y

(h−1)
n−h

)
is defined analogously;

• leaves the averages with respect to the x-coordinates unvaried. Namely,
for any real-analytic function g on Dh−1

sec ,

Π
x
(h)
∗

(
g ◦ φn−h

int

)
=

(
Πx(h−1)g

)
◦ φn−h

int
.

Applying φn−h
int

to ̂fsec,h−1 in (5.78), we obtain

fsec,int,h−1 := ̂fsec,h−1 ◦ φn−h
int

= hsec,h−1 + hn−h
sec +

n−h−1∑
i=1

f i
norm,int,h−1(t

(h)
∗,i ,

˜̂y
(h)
∗,i ,

˜̂x
(h)
∗,i )

=
n−1∑

i=n−h

hisec,h(ŷ
(h)
∗,i ) +

n−h−1∑
i=1

f i
norm,int,h−1(t

(h)
∗,i ,

˜̂y
(h)
∗,i ,

˜̂x
(h)
∗,i )
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with

hsec,h := hsec,h−1 + hn−h
sec , f i

norm,int,h−1 := f i
norm,h−1 ◦ φn−h

int
(5.84)

and (as it follows from (5.71) with h−1 replacing h and (5.82)) f i
norm,int,h−1 depends

only on the arguments

t
(h)
∗,i :=

(
Θ

(h)
∗,i , · · · ,Θ

(h)
∗,n−h−1, ϑ

(h)
∗,i , · · · , ϑ

(h)
∗,n−h−1

)
˜̂y
(h)
∗,i :=

(
p
(h)
∗,n−h, q

(h)
∗,n−h,

(p
(h)
∗,n−h+1)

2 + (q
(h)
∗,n−h+1)

2

2
, · · · ,

(p
(h)
∗,n−1)

2 + (q
(h)
∗,n−1)

2

2
,

χ
(h)
∗,i−1, · · · , χ∗,n−1,Λ

(h)
∗,i , · · · , Λ

(h)
∗,n

)
˜̂x
(h)
∗,i :=

⎧⎨⎩
(
κ
(h)
∗,i , · · · , κ

(h)
∗,n−h−1

)
n ≥ 4 & 1 ≤ h− 1 ≤ n− 3

∅ otherwise

(5.85)

The next step will be to retain the dependence on (p
(h)
n−h, q

(h)
n−h) only via

(p
(h)
n−h)

2+(q
(h)
n−h)

2

2 and, for h < n − 1, to to eliminate from fsec,int,h−1 the depen-

dence upon the angle k
(h)
∗,n−h−1, up to an exponential remainder. Namely, we look

for another canonical, real-analytic change of coordinates

φn−h
norm : D

h
sec → D

h
int

(t(h), z(h), y(h), x(h)) → (t
(h)
∗ , z

(h)
∗ , y

(h)
∗ , x

(h)
∗ )(5.86)

so as to conjugate fsec,int,h−1 to a new Hamiltonian

f̂sec,h := fsec,int,h−1 ◦ φn−h
norm = hsec,h +

n−h−1∑
i=1

f i
norm,h(t

(h)
i , ŷ

(h)
i , x̂

(h)
i ) + ̂fexp,sec,h

(5.87)

where f i
norm,h and ̂fexp,sec,h satisfy (5.74)-(5.76). We choose Dh

sec as the subset of

Dh
int where the map

ωsec,h :=

⎧⎪⎪⎨⎪⎪⎩
∂

(p
(h)
n−h

)2+(q
(h)
n−h

)2

2 ,χ
(h)
n−h−1

hsec,h h = 2, · · · , n− 2 & n ≥ 4

∂
(p

(n−1)
1 )2+(q

(n−1)
1 )2

2

hsec,n−1 h = n− 1

does not verify resonances up to order K̄, and next we apply a suitable normal
form theory (Proposition D.1). We shall choose φn−h

norm in such a way that

• it is co-variant with the symmetry: if

φn−h
norm(t

(h), z(h), y(h), x(h)) = (t
(h)
∗ , z

(h)
∗ , y

(h)
∗ , x

(h)
∗ ),

then

φn−h
norm(−t(h), −z(h), y(h), x(h)) = (−t

(h)
∗ ,−z

(h)
∗ , y

(h)
∗ , x

(h)
∗ ),(5.88)

• leaves the “actions”

y
(h)
∗,n−h = y

(h)
n−h
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unvaried, where

y
(h)
n−h :=

( (p(h)n−h+1)
2 + (q

(h)
n−h+1)

2

2
, · · · (p

(h)
1 )2 + (q

(h)
1 )2

2
, χ

(h)
n−h, · · · , χ(h)

n−1,

Λ
(h)
1 , · · · , Λ(h)

n

)
;

y
(h)
∗,n−h :=

( (p(h)∗,n−h+1)
2 + (q

(h)
∗,n−h+1)

2

2
, · · ·

(p
(h)
∗,1)

2 + (q
(h)
∗,1 )

2

2
, χ

(h)
∗,n−h, · · · , χ(h)

∗,n−1,

Λ
(h)
∗,1 , · · · , Λ

(h)
∗,n

)
;(5.89)

• verifies

(5.90) Π
z
(h)
∗,n−h+1,x

(h)
∗,n−h+1

(
g ◦ φn−h

norm

)
=

(
Π

z
(h)
n−h+1,x

(h)
n−h+1

g
)
◦ φn−h

norm.

The thesis of Proposition 5.2 at rank h follows, with

fsec,h := f̂sec,h + fexp,sec,h−1 ◦ φn−h
sec , fexp,sec,h := ̂fexp,sec,h + fexp,sec,h−1 ◦ φn−h

sec .

Case h = 1. The proof of this case uses similar ideas as the proof of the case
2 ≤ h ≤ n− 1 for n ≥ 3. However, due to subtle differences between the two cases
(compare, e.g., the inductive assumption on fn−h

norm,h−1 in (5.71) for h ≥ 2 with Eq.

(5.91); the definition of hn−h
sec , φn−h

int
for h ≥ 2 in (5.80), with the definition of hn−1

sec ,

φn−1
int

in (5.93) and (5.96)), for sake of precision, we briefly discuss also this case.

Let fsec,0 be as in (5.77). In view of (5.60) and (5.61), we can split

(5.91) fsec,0 = fn−1,n
P

(2)

+ fn−1
P

(≥3)
+ f̃n−1

fast
+

n−2∑
i=1

f i
fast

where

fn−1
P

(≥3)
:= fn−1

P
(≥2)

− fn−1
P

(2)

and the summand appears only when n ≥ 3. As for fn−1,n
P

(2)

, by Lemmata 3.4

(see also Lemma 5.2), we find a domain Bn−1 (defined in Eq. (5.97) below), a
real-analytic and canonical transformation

φn−1
int

:
(
z
(1)
∗,n−1, y

(1)
∗,n−1, x

(1)
∗,n−1

)
∈ Bn−1 →

(
z
(0)
n−1, y

(0)
n−1, x

(0)
n−1

)
∈ Dn−1 := φn−1

int

(
Bn−1

)(5.92)

of the form (5.82), with h = 1 (but neglecting the coordinates ẑ
(0)
j , ẑ

(1)
j,∗) such that

(5.93) fn−1
P

(2)
◦ φn−1

int
= hn−1

sec (ŷ
(1)
∗,n−1)

depends only on

(5.94) ŷ
(1)
∗,n−1 =

( (p(1)∗,n−1)
2 + (q

(1)
∗,n−1)

2

2
, χ

(1)
∗,n−2, χ

(1)
∗,n−1, Λ

(1)
∗,n−1, Λ

(1)
∗,n

)
.

In (5.92), we have let⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z
(1)
∗,n−1 :=

(
p
(1)
∗,n−1, q

(1)
∗,n−1

)
y
(1)
∗,n−1 :=

(
χ
(1)
∗,n−2, χ

(1)
∗,n−1, Λ

(1)
∗,n−1, Λ

(1)
∗,n

)
x
(1)
∗,n−1 :=

(
κ
(1)
∗,n−2, κ

(1)
∗,n−1

)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t
(0)
n−1 :=

(
Θ

(0)
n−1, ϑ

(0)
n−1

)
y
(0)
n−1 :=

(
χ
(0)
n−2, χ

(0)
n−1, Λ

(0)
n−1, Λ

(0)
n

)
x
(0)
n−1 :=

(
κ
(0)
n−2, κ

(0)
n−1

)
.
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We let ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t(0) :=

(
Θ(0), ϑ(0)

)
y(0) :=

(
χ(0),Λ(0)

)
x(0) :=

(
κ(0), �(0)

)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t
(1)
∗ :=

(
Θ

(1)
∗ , ϑ

(1)
∗

)
z
(1)
∗ :=

(
p
(1)
∗ , q

(1)
∗

)
y
(1)
∗ :=

(
χ
(1)
∗ ,Λ

(1)
∗

)
x
(1)
∗ :=

(
κ
(1)
∗ , �

(1)
∗

)
analogously to (5.70), with h = 0, 1, and then we regard the map in (5.92) as a
map

φn−1
int

:
(
t
(1)
∗ , z

(1)
∗ , y

(1)
∗ , x

(1)
∗

)
∈ D

1
int →

(
t(0), y(0), x(0)

)
on the set

D1
int :=

{(
t
(1)
∗ , z

(1)
∗ , y

(1)
∗ , x

(1)
∗

)
:

(
z
(1)
∗,n−1, y

(1)
∗,n−1, x

(1)
∗,n−1

)
∈ Bn−1

}
where φn−1

int
is defined on the extra-coordinates via the identity. D1

int has the form
in (5.79), with h = 1. Applying this extension to fsec,0 in (5.91) we obtain

fsec,int,0 := fsec,0 ◦ φn−1
int

= hn−1
sec (ŷ

(1)
∗,n−1) +

n−1∑
i=1

f i
norm,int,0(t

(1)
∗,i ,

˜̂y
(1)
∗,i ,

˜̂x
(1)
∗,i )

where

fn−1
norm,int,0 :=

(
fn−1
P

(≥3)
+ f̃n−1

fast

)
◦ φn−1

int
, f i

norm,int,0 := f̂ i
fast

◦ φn−1
int

and, as a consequence of (5.61) and of (5.82), with h = 1, f i
norm,int,0 depends only

on the arguments

t
(1)
∗,i :=

(
Θ

(1)
∗,i , · · · ,Θ

(1)
∗,n−2, ϑ

(1)
∗,i , · · · , ϑ

(1)
∗,n−2,

)
˜̂y
(1)
∗,i :=

(
p
(1)
∗,n−1, q

(1)
∗,n−1, χ

(1)
∗,i−1, · · · , χ∗,n−1, Λ

(1)
∗,i , · · · , Λ

(1)
∗,n

)
˜̂x
(1)
∗,i :=

(
κ
(1)
∗,i , · · · , κ

(1)
∗,n−1

)
.

Note, in particular, that fn−1
norm,int,0 is a function of

(5.95)

(t∗,n−1, y∗,n−1, x∗,n−1) = (p
(1)
∗n−1, q

(1)
∗n−1, χ∗,n−2, χ∗,n−1, Λ∗,n−1, Λ∗,n, κ∗n−1).

In view of the fact that hn−1
sec depends on the actions in (5.94), we aim to eliminate

from fsec,int,0 the dependence on the following angles⎧⎨⎩ κ∗,1 if n = 2

κ∗,n−2, κ∗,n−1 if n ≥ 3

and to retain the dependence on (p
(1)
∗,n−1, q

(1)
∗,n−1) only via

(p
(1)
∗,n−1)

2+(q
(1)
∗,n−1)

2

2 . Then

we choose a domain D1
sec ⊂ D1

int as in (5.69) where the frequency

ωsec,1 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

p
(1)
∗,n−1

)2+(q
(1)
∗,n−1

)2

2 ,χ
(1)
∗,n−1

hn−1
sec n = 2

∂
p
(1)
∗,n−1

)2+(q
(1)
∗,n−1

)2

2 ,χ
(1)
∗,n−2,χ

(1)
∗,n−1

hn−1
sec n ≥ 3
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is non-resonant up to the order K̄ and on this domain we construct a real-analytic
transformation φn−1

norm as in (5.86) which conjugates fsec,1 to a Hamiltonian

fsec,1 := fsec,int,0 ◦ φn−1
norm = hn−1

sec (ŷ
(1)
n−1) +

n−1∑
i=1

f i
norm,1(t

(1)
i , ŷ

(1)
i , x̂

(1)
i ) + fexp,sec,1

Now, since (as it follows from (5.95)), fn−1
norm,1 is actually a function of ŷ

(1)
n−1 only,

this step is proved, with

(5.96) hn−1
sec (ŷ

(1)
n−1) := hn−1

sec (ŷ
(1)
n−1) + fn−1

norm,1(ŷ
(1)
n−1).

�

5.2.1. Construction of φn−1
int

. The following lemma completes Lemma 3.4.

In particular, it provides the transformation φn−1
int

= φn−1
int

in (5.93).

Lemma 5.2. Let i = 1, · · · , n − 1. Let A, X, θ in (4.46) be chosen in such a
way that

inf
DP

|g| > 0, sup
DP

| arg g| < π

4

∀ g ∈
{
χi−1, χi, χi−1 + χi, 5χi−1Λ

2
i − (χi−1 − χi)

2(4χi−1 − χi)
}
.(5.97)

Then, the domains Bi in (3.42), the functions hisec and the transformations φi
int

can be taken as follows

Bi =

⎧⎨⎩ B2
εi ×Ai

θ̄i × χi
θ̄i × T4

s̄i i = n− 1

B2
εi ×Ai

θ̄i × χi
θ̄i × T5

s̄i i = 1, · · · , n− 2 & n ≥ 3

φi
int

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θi =
pi
βi

+ fi(pi, qi, y
∗
i )

ϑi − π = βiqi + gi(pi, qi, y
∗
i )

yi = y∗i

xi = x∗i + ϕi(pi, qi, y
∗
i )

hisec = Ai

[
Ei +Ωi

p2i + q2i
2

+ τi(
p2i + q2i

2
)2 +O(pi, qi)

6
]

(5.98)
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where Xi
θ̄i ×Ai

θ̄i denote the projection of the set Xθ̄ ×Aθ̄ over the coordinates yi in

(3.43), θ̄ := θ/2, s̄ := s/2, fi, gi are O(pi, qi)
3, odd in (pi, qi), ϕi is O(pi, qi)

2, and

εi = ci

√
θi

βi := 4

√
5χi−1Λ2

i − (χi−1 − χi)2(4χi−1 − χi)

χ2
i−1χ

2
i (χi−1 + χi)

Ai := mimi+1
a2i

4a3i+1

Ei := −
Λ3
i+1

2(χi − χi+1)3

(
5− 3

(χi−1 − χi)
2

Λ2
i

)
Ωi :=

3Λ3
i+1

χiΛ2
i (χi − χi+1)3

√
(5χi−1Λ2

i − (χi−1 − χi)2(4χi−1 − χi))(χi−1 + χi)

τi :=
Λ3
i+1

χ2
i (χi − χi+1)3

[
− 9

16

(χi−1 − χi)
2(3χi−1 − χi)(5χi−1 + χi)

χ3
i−1χiΛ2

iβ
4
i

−3

8

2χ3
i−1 + 9χ2

i−1χi + 2χi−1χ
2
i + χ3

i

χi−1Λ2
i

− 3

16

χi−1χ
2
i

Λ2
i

(4χi−1 + χi)β
4
i

]
(5.99)

with χn ≡ 0, c̄i depending at most on the ratios a+i /a
−
i , the masses m1, · · · , mn

and, as usual, m
√
z denoting the principal determination of the mth root of a complex

number z.

Proof. Since the formula for fn−1,n
P coincides with the one for fn−1,n

P taking

χn ≡ 0, we shall only work on the terms f i,i+1
P ’s.

Let yi be as in (3.43), and let

(5.100) Di : (Θi, ϑi) ∈ Ti
Θ+

i ,ϑ+
i

yi ∈ Ai
θi ×Xi

θi xi ∈ Tmi
s

where Ti
Θ+

i ,ϑ+
i

is the projection of TΘ+,ϑ+ over the coordinates (Θi, ϑi), while mi

is 4 or 5, accordingly to (5.98). We shall obtain the transformation φi
int

in (3.42)

as a product φi
int

= φi
diag

◦ φi
bir

, where φi
diag

and φi
bir

are described below.

A Taylor expansion of f i,i+1
P around (Θi, ϑi) = (0, π) gives

f i,i+1
P = Ai

[
Ei +Ωi

β2
i Θ

2
i +

(ϑi−π)2

β2
i

2
+Ri

]
(5.101)

where Ai, Ei, βi, Ωi are as in (5.99). Note that βi, Ωi are well defined under the
assumption (5.97). The expansion in (5.101) shows that (Θi, ϑi) = (0, π) is an

elliptic equilibrium point for f i,i+1
P . The remainder Ri is given by

Ri = F
[
− 3

2

4Θ2
i − χ2

i

Λ2
i

( (χ2
i − χ2

i−1)
2

(
√
χ2
i −Θ2

i +
√
χ2
i−1 −Θ2

i )
2

+ 2
√
(χ2

i −Θ2
i )(χ

2
i−1 −Θ2

i )(1 + cosϑi)
)
+

1

2

(χ2
i −Θ2

i )(χ
2
i−1 −Θ2

i )

Λ2
i

sin2 ϑi

]
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where the symbol F on the left means that only terms of the fourth order in (Θi, ϑi−
π) have to be included. The lower order expansion of Ri is

Ri = τ1,iΘ
4
i + τ2,i(ϑi − π)2Θ2

i + τ3,i(ϑi − π)4 +O(Θi, ϑi − π)6

with

τ1,i := τ1(yi) := −3(χi−1 − χi)
2(3χi−1 − χi)(5χi−1 + χi)

8χ3
i−1χiΛ2

i

τ2,i := τ2(yi) := −
3(2χ3

i−1 + 9χ2
i−1χi + 2χi−1χ

2
i + χ3

i )

4χi−1Λ2
i

τ3,i := τ3(yi) := −χi−1χ
2
i

8Λ2
i

(4χi−1 + χi).

We introduce the generating function

Sdiag,i(p̃i, ỹi, ϑi, xi) =
p̃i(ϑi − π)

β̃i

+ ỹixi.

It generates the canonical transformation

φi
diag

: Θi =
p̃i

β̃i

ϑi − π = β̃iq̃i, yi = ỹi, xi = x̃i +
∂yi

βi(ỹi)

βi(ỹi)
p̃iq̃i

which transforms f i,i+1
P into

fdiag,i = f i,i+1
P ◦ φi

diag
= Ãi

[
Ẽi + Ω̃i

p̃2i + q̃i
2

+ R̃i

]
(5.102)

with

β̃i := β(ỹi), Ãi := Ai(ỹi), Ẽi := C(ỹi), Ω̃i := Ω(ỹi),

R̃i := Ri ◦ φi
diag = τ̃1,ip̃

4
i + τ̃2,ip̃

2
i q̃

2
i + τ̃3,iq̃

4
i +O(p̃i, q̃i)

6

τ̃1,i :=
τ1(ỹi)

β̃4
i

, τ̃2,i := τ2(ỹi), τ̃3,i := τ3(ỹi)β̃
4
i

To compute the domain of φi
diag

, we use the following inequalities, which readily
follow from the definitions:

ĉi

√
θi

G+
n

≤ |βi| ≤
1

ĉi

√
θi

G−
n

and

|∂yi
βi(ỹi)

βi(ỹi)
| ≤ 1

ĉiθi
.

We then see that, choosing a suitable c̃i ≤ ĉi, and the domain

B̃i : |(p̃i, q̃i)| ≤ ε̃i = c̃i

√
θi ỹi ∈ Ai

θi ×Xi
θi x̃i ∈ Tmi

3
4 s

inequalities1 (5.100) are verified, as desired. Now we look for another canonical
transformation

φi
bir

: (p∗i , q
∗
i , y

∗
i , x

∗
i ) → (p̃i, q̃i, ỹi, x̃i) (y∗i = ỹi)

1Compare (4.50).
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defined in a analogous domain

Bi
∗
:= Bi : |(p∗i , q∗i )| ≤ εi = c∗i

√
θi y∗i ∈ Ai

θi ×Xi
θi x∗i ∈ Tmi

s
2

with c∗i =: ci ≤ c̃i/2, such that

fdiag,i ◦ φi
bir

= hisec

satisfies the thesis of the lemma. We aim to apply Theorem D.1, with

h = Ẽi + Ω̃i
p̃2i + q̃i

2
, f = Ri, ε = 2c∗i

√
θi, ε̄ = c

∗
i

√
θi.

We have to check that inequalities (D.152) are satisfied. We can take a and e as
it follows from the following inequalities, which, in turn, are easily implied by the
definitions

inf
B∗

i

|∂h| = inf
B∗

i

|Ω̃i| ≥
či|G−

n |2
θi

=: a

sup
B∗

i

|R̃i| ≤ sup
D∗

i

|Ri| ≤
1

či
max sup

D∗
i

{ (Θ∗
i )

4

(G−
n )2

, (ϑ∗
i − π)2Θ2

i , (G+
n )

2(ϑ∗
i − π)4

}
≤ (c∗)4(G+

n )
2

c̄i
=: e

Here, we have used that, for |(p∗i , q∗i )| ≤ 2c∗
√
θi, (Θ

∗
i , ϑ

∗
i ) := (φi

diag
)−1(p∗i , q

∗
i ) veri-

fies

|Θ∗
i | =

|p∗i |
|βi|

≤ 2c∗
√
θi

G+
n

ĉi
√
θi

= 2
c∗G+

n

ĉi

|ϑ∗
i − π| = |q∗i ||βi| ≤

2c∗
√
θi

c1

√
θi

G−
n

= 2
c∗

ĉi

θi

G−
n
.

We then have that condition (D.152) holds, provided one takes

c∗ := min
{G−

n

G+
n

√
čic̄i,

c̃i

2

}
.

From (5.102), one easily computes that the fourth order term of hisec corresponds
to be as in (5.98), with

τi =
3

2
τ∗1,i +

1

2
τ∗2,i +

3

2
τ∗3,i τ∗j,i := τ̃j,i(y

∗
i ).

Finally, properties (3.45) easily follow from the construction. �

5.2.2. Construction of φ1
int, · · · , φn−2

int
(n ≥ 3). We have to solve (5.80),

assuming that Proposition 5.2 holds, up to rank h − 1. Accordingly to (5.74),
(5.75) and letting

Φn−h+1
int

:= φn−h+1
int

◦ · · · ◦ φn−1
int
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we may split

fn−h
norm,h−1 =

n∑
j=n−h+1

Πh−1

(
fn−h,j
P

(≥2)

◦ Φn−h+1
int

)
+ ˜fn−h

sec,h−1

= Πh−1

(
fn−h,n−h+1
P

(2)

◦ Φn−h+1
int

)
+Πh−1

(
fn−h,n−h+1
P

(≥3)

◦ Φn−h+1
int

)
+

n∑
j=n−h+2

Πh−1

(
fn−h,j
P

(≥2)

◦ Φn−h+1
int

)
+ ˜fn−h

sec,h−1

= fn−h,n−h+1
P

(2)

+Πh−1

( ˜
fn−h,n−h+1
P

(2)

◦ Φn−h+1
int

)
+ Πh−1

(
fn−h,n−h+1
P

(≥3)

◦ Φn−h+1
int

)
+

n∑
j=n−h+2

Πh−1

(
fn−h,j
P

(≥2)

◦ Φn−h+1
int

)
+ ˜fn−h

sec,h−1

where

fn−h,n−h+1
P

(≥3)

:= fn−h,n−h+1
P

(≥2)

− fn−h,n−h+1
P

(2)

˜
fn−h,n−h+1
P

(2)

:= fn−h,n−h+1
P

(2)

− fn−h,n−h+1
P

(2)

and fn−h,n−h+1
P

(2)

as in Lemma 3.4. Note that we have used that fn−h,n−h+1
P

(2)

is

left unvaried by Φn−h+1
int

. Let Bn−h, φ
n−h
int

be as in Lemmata 3.4, with the symbols
(Θn−h, ϑn−h), yn−h, xn−h of that lemma corresponding to

t
(h−1)
n−h :=

(
Θ

(h−1)
n−h , ϑ

(h−1)
n−h

)
y
(h−1)
n−h :=

(
χ
(h−1)
n−h−1, χ

(h−1)
n−h , χ

(h−1)
n−h+1, Λ

(h−1)
n−h , Λ

(h−1)
n−h+1

)
x
(h−1)
n−h :=

(
κ
(h−1)
n−h−1, κ

(h−1)
n−h , κ

(h−1)
n−h+1, �

(h−1)
n−h , �

(h−1)
n−h+1

)
and the symbols (pn−h, qn−h), y

∗
n−h, x

∗
n−h to

z
∗(h)
n−h :=

(
p
∗(h)
n−h, q

∗(h)
n−h

)
y
∗(h)
n−h :=

(
χ
∗(h)
n−h−1, χ

∗(h)
n−h, χ

∗(h)
n−h+1, Λ

∗(h)
n−h, Λ

∗(h)
n−h+1

)
x
∗(h)
n−h :=

(
κ
∗(h)
n−h−1, κ

∗(h)
n−h, κ

∗(h)
n−h+1, �

∗(h)
n−h, �

∗(h)
n−h+1

)
.

Defining

t∗(h) :=
(
Θ∗(h), ϑ∗(h))

z∗(h) :=
(
p∗(h), q∗(h)

)
y∗(h) :=

(
χ∗(h),Λ∗(h))

x∗(h) :=
(
κ∗(h), �∗(h)

)
in an alagous way as in (5.70), we regard φn−h

int
as a map on the set

Dh
int

:=
{(

t∗(h), z∗(h), y∗(h), x∗(h)
)
:
(
z
∗(h)
n−h, y

∗(h)
n−h, x

∗(h)
n−h

)
∈ Bn−h

}



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5.2. SECULAR NORMALIZATIONS 55

extended via the identity on the extra-coordinates. We then have that φn−h
int

trans-

forms fn−h
sec,h−1 into

fn−h
sec,h−1 := fn−h

sec,h−1 ◦ φ
n−h
int

= hn−h
sec + fn−h

sec

where

fn−h
sec := Πh−1

( ˜
fn−h,n−h+1
P

(2)

◦ Φn−h
int

)
+Πh−1

(
fn−h,n−h+1
P

(≥3)

◦ Φn−h
int

)
+

n∑
j=n−h+2

Πh−1

(
fn−h,j
P

(≥2)

◦ Φn−h
int

)
+ ˜fn−h

sec,h−1 ◦ φ
n−h
int

.(5.103)

Here, we have used Φn−h
int

= Φn−h+1
int

◦ φn−h
int

; that Πh−1 and φn−h
int

commute and

observe that Dh
int

has the form of Dh
int in (5.79), with ĉh replaced by a suitable ĉ′h

of the same form. The function fn−h
sec satisfies the following two properties:

• It depends only on (
p
∗(h)
n−h, q

∗(h)
n−h, ỹ∗(h)

)
where ỹ∗(h) is defined analogously to (5.83);

• is uniformly bounded by the right hand side of the first inequality in (5.76)
(this follows from the definition in (5.103));

• is even for

(p
∗(h)
n−h, q

∗(h)
n−h) → −(p

∗(h)
n−h, q

∗(h)
n−h).

Proceeding in a similar way as we did for the construction of φi
bir

in the proof of
Lemma 5.2, we may apply Theorem D.1, with

h = hn−h
sec , f = fn−h

sec , (P,Q) = (p
∗(h)
n−h, q

∗(h)
n−h)

(P ′, Q′) = ẑ
∗(h)
n−h, y = y

∗(h)
n−h, x = x

∗(h)
n−h.

with y
∗(h)
n−h, x

∗(h)
n−h defined analogously to y

(h)
∗,n−h, x

(h)
∗,n−h in (5.81) and ẑ

∗(h)
n−h defined

analogously to ẑ
(h)
∗,n−h in (5.83). We then find another domain Dh

int as in (5.79) and
another real-analytic transformation

φn−h
∗,int :

(
t
(h)
∗ , z

(h)
∗ , y

(h)
∗ , x

(h)
∗

)
∈ Dh

int →
(
t∗(h), z∗(h), y∗(h), x∗(h)

)
∈ Dint,h

such that

˜fn−h
sec,h−1 := fn−h

sec,h−1 ◦ φ
n−h
∗,int = fn−h

sec,h−1 ◦ φ
n−h
int

◦ φn−h
∗,int = hn−h

sec

as desired, depends only on ŷ
(h)
∗,n−h in (5.71), and hence (5.80) is satisfied. That

φn−h
∗,int may be also chosen of a form analogous to (5.82), with Θ

(h−1)
n−h , ϑ

(h−1)
n−h , ẑ(h−1),

y
(h−1)
n−h , x

(h−1)
n−h replaced by p∗(h), q∗(h), ẑ∗(h), y∗(h), x∗(h) also easily follows from the

properties bove. Therefore the composition

φn−h
int

:= φn−h
int

◦ φn−h
∗,int

has again the form in (5.82) and satisfies (5.80), as wanted. �
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5.2.3. Construction of φ1
norm, · · · , φn−2

norm (n ≥ 3). In this section we aim
to determine, for n ≥ 3 and 1 ≤ h ≤ n− 2, a transformation φn−h

norm solving (5.86)-

(5.87), assuming the Proposition 5.2 holds up to rank (h − 1) and that φn−h
int

has
been constructed.

We switch from the coordinates (χ
(h)
∗ , κ

(h)
∗ ) defined implicitly via the right hand

side of (5.86) to the auxiliary coordinates

G
(h)
aux = (G

(h)
aux,1, · · · ,G

(h)
aux,n), g

(h)
aux = (g

(h)
aux,1, · · · , g

(h)
aux,n)

defined via the linear transformation

(5.104) φn−h
aux :

⎧⎪⎨⎪⎩
χ
(h)
∗,i−1 = G

(h)
aux,i + · · ·+G

(h)
aux,n

κ
(h)
∗,i−1 = g

(h)
aux,i − g

(h)
aux,i−1

with 1 ≤ i ≤ n and gaux,0 := 0. We regard φn−h
aux as a transformation on all the

coordinates, extending it as the identity on the remaining ones. We denote the new
coordinates as

t
(h)
aux :=

⎧⎨⎩
(
Θ

(h)
aux,1, · · · , Θ

(h)
aux,n−h−1, ϑ

(h)
aux,1, · · · , ϑ

(h)
aux,n−h−1

)
n ≥ 4, 2 ≤ h ≤ n− 2

∅ otherwise

z
(h)
aux := (p

(h)
aux,n−h, · · · , p

(h)
aux,n−1, q

(h)
aux,n−h, · · · , q

(h)
aux,n−1)

y
(h)
aux :=

(
G

(h)
aux,1, · · · , G

(h)
aux,n, Λ

(h)
aux,1, · · · , Λ

(h)
aux,n

)
x
(h)
aux :=

(
g
(h)
aux,1, · · · , g

(h)
aux,n, �

(h)
aux,1, · · · , �

(h)
aux,n

)
the new Hamiltonian as

fsec,int,aux,h−1(t
(h)
aux, z

(h)
aux, y

(h)
aux, x

(h)
aux) := fsec,int,h−1 ◦ φn−h

aux (t
(h)
aux, z

(h)
aux, y

(h)
aux, x

(h)
aux).

(5.105)

Now we define the domain where we want to consider fsec,int,aux,h−1. Firstly, we let

Dh
int,aux :=

{
(t

(h)
aux, z

(h)
aux, y

(h)
aux, x

(h)
aux) : (t

(h)
∗ , z

(h)
∗ , y

(h)
∗ , x

(h)
∗ ) ∈ Dh

int

}
where Dh

int is defined in (5.79). Then Dh
int,aux is given by

D
h
int,aux = Th

ĉhθ
×B2

ĉhεn−h
×B∗,h−1

ĉhε
× (G∗)chθ,chr̄ ×Achr̃(h) × Tn

chs
× Tn

chs
,

with

(G∗)chθ,chr̄ := (G1)ĉ1θ1 × · · · × (Gn−h)ĉn−hθn−h

× (G∗
n−h+1)ĉn−h+1rn−h+1

× · · · × (G∗
n−1)ĉn−1rn−1

.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5.2. SECULAR NORMALIZATIONS 57

Next, for 1 ≤ h′ ≤ h and any fixed γ̄, K̄ > 0 and τ̄ > 2, we define

ωn−h′

sec (ŷ
(h)
aux,n−h′) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
(p

(1)
aux,n−1

)2+(q
(1)
aux,n−1

)2

2 ,G
(1)
aux,n−1,G

(1)
aux,n

hn−1
sec (ŷ

(h)
aux,n−1) n ≥ 3, h′ = 1,

2 ≤ h ≤ n− 1

∂
(p

(h′)
aux,n−h′ )2+(q

(h′)
aux,n−h′ )2

2 ,G
(h′)
aux,n−h′

hn−h′

sec (ŷ
(h)
aux,n−h) n ≥ 3,

2 ≤ h′ ≤ h ≤ n− 1,
(h′, h) = (n− 1, n− 1)

∂
(p

(n−1)
aux,1 )2+(q

(n−1)
aux,1 )2

2

hn−h
sec (ŷ

(n−1)
aux,1 ) h′ = h = n− 1.

(5.106)

We then choose the following sub-domain of Dh
int,aux

D
h
sec,aux :=

{
(t

(h)
norm,aux, z

(h)
norm,aux, y

(h)
norm,aux, x

(h)
norm,aux) ∈ D

h
int,aux :

|ωn−h′

sec · k| ≥
(a+n−h′)2

(a−n−h′+1)
3θn−h

γ̄

K̄ τ̄
,

∀ k ∈ Zj \ {0}, |k|1 ≤ K̄, ∀ 2 ≤ h′ ≤ h
}
.(5.107)

Here j is chosen to be 3, 2 or 1 accordingly to the three cases above. The set
Dh

int,aux is non-empty, if γ̄ is chosen suitably small. Indeed, if we put

ŷ
(h)
aux,n−h :=

( (p(h)
aux,n−h)

2 + (q
(h)
aux,n−h)

2

2
,G

(h)
aux,n−h,Λ

(h)
aux,n−h, ŷ

(h)
aux,n−h+1

)
then standard quantitative arguments show that, for any fixed value

(
Λ̄
(h)
aux,n−h, ˆ̄y

(h)
aux,n−h+1

)
∈ Π

Λ
(h)
aux,n−h,ŷ

(h)
aux,n−h+1

D
h
int,aux,

the measure of the set Nn−h ⊂ B2
chεn−h

× Gn−h of (p
(h)
aux,n−h, q

(h)
aux,n−h, G

(h)
aux,n−h

)
where the inequality in (5.107) does not hold may be bounded as

measNn−h ≤ γ̄

c
meas

(
B2

chεn−h
×Gn−h

)
,

(where c depends only on the semi-axes ratio and the masses), hence (5.68) follows.

This is because ωn−h′

sec (ŷ
(h)
aux,n−h) is a diffeomorphism (Compare Appendix C).
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Now we inspect the form of fsec,int,aux,h−1 in (5.105). Introducing the following
symbols

t
(h)
aux,i :=

⎧⎪⎪⎨⎪⎪⎩
(
Θ

(h)
aux,i, · · · , Θ

(h)
aux,n−h−1, ϑ

(h)
aux,i, · · · , ϑ

(h)
aux,n−h−1

)
n ≥ 4, 2 ≤ h ≤ n− 2, 1 ≤ i ≤ n− h− 1

∅ otherwise

y
(h)
aux,i :=

(
G

(h)
aux,i, · · · , G

(h)
aux,n, Λ

(h)
aux,1, · · · , Λ

(h)
aux,n

)
x
(h)
aux,i :=

(
g
(h)
aux,i, · · · , g

(h)
aux,n, �

(h)
aux,1, · · · , �

(h)
aux,n

)
ŷ
(h)
aux,i :=

( (p(h)aux,i)
2 + (q

(h)
aux,i)

2

2
, · · · ,

(p
(h)
aux,n−1)

2 + (q
(h)
aux,n−1)

2

2
, G

(h)
aux,i, · · · ,

G
(h)
aux,n, Λ

(h)
aux,i, · · · , Λ

(h)
aux,n

)
x̂
(h)
aux,i :=

⎧⎪⎪⎨⎪⎪⎩
(
g
(h)
aux,i+1 − g

(h)
aux,i, · · · , g(h)

aux,n−h − g
(h)
aux,n−h−1

)
n ≥ 4 & 1 ≤ h− 1 ≤ n− 3

∅ otherwise

X̂
(h)

aux,i :=

⎧⎨⎩
(
G

(h)
aux,i, · · · ,G(h)

aux,n−h

)
n ≥ 4 & 1 ≤ h− 1 ≤ n− 3

∅ otherwise

z
(h)
aux,n−h :=

(
p
(h)
aux,n−h, q

(h)
aux,n−h

)
, ẑ

(h)
norm,j := p

(h)
norm,j + iq

(h)
norm,j

ỹ
(h)
aux,i :=

( (p(h)aux,n−h+1)
2 + (q

(h)
aux,n−h+1)

2

2
, · · · ,

(p
(h)
aux,n−1)

2 + (q
(h)
aux,n−1)

2

2
,

G
(h)
aux,i, · · · , G

(h)
aux,n,Λ

(h)
aux,i, · · · , Λ

(h)
aux,n

)
ỹ
(h)
aux := ỹ

(h)
aux,1, x̂

(h)
aux := x̂

(h)
aux,1, X̂

(h)
aux := X̂

(h)
aux,1,

by means of (5.85), we have

fsec,int,aux,h−1(t
(h)
aux, z

(h)
aux, y

(h)
aux, x

(h)
aux)

= hsec,h(ŷ
(h)) + fnorm,int,aux,h−1(t

(h)
aux, z

(h)
aux,n−h, ỹ

(h)
aux, x̂

(h)
aux)

=

n−1∑
i=n−h

hisec(ŷ
(h)
i )

+
n−h−1∑
i=1

f i
norm,int,aux,h−1(t

(h)
aux,i, z

(h)
aux,n−h, ỹ

(h)
aux,i, x̂

(h)
aux,i)

(5.108)

where we have let

fnorm,int,aux,h−1 := fnorm,int,h−1 ◦ φn−h
aux , f i

norm,int,aux,h−1 := f i
norm,int,h−1 ◦ φn−h

aux .

(5.109)

On the domain Dh
sec,aux specified in (5.107), we aim to construct and real-analytic

and canonical transformation

(5.110) φn−h
norm,aux : (t

(h)
norm,aux, z

(h)
norm,aux, y

(h)
norm,aux, x

(h)
norm,aux)

∈ Dh
sec,aux → (t

(h)
aux, z

(h)
auxy

(h)
aux, x

(h)
aux) ∈ Dh

int,aux
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such that the transformed Hamiltonian

fsec,aux,h := fsec,int,aux,h−1 ◦ φn−h
norm,aux

has the form

fsec,aux,h = hsec,h(ŷ
(h)
norm,aux) + fnorm,aux,h(t

(h)
norm,aux, ŷ

(h)
norm,aux, x̂

(h)
norm,aux)

=
n−1∑

i=n−h

hisec(ŷ
(h)
norm,aux,i)

+

n−h−1∑
i=1

f i
norm,aux,h(t

(h)
norm,aux,i, ŷ

(h)
norm,aux,i, x̂

(h)
norm,aux,i)

+ fexp,sec,aux,h(t
(h)
norm,aux, z

(h)
norm,aux, y

(h)
norm,aux, x

(h)
norm,aux)

where

x̂
(h)
norm,aux,i :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
g
(h)
norm,aux,i+1 − g

(h)
norm,aux,i, · · · , g(h)

norm,aux,n−h−1

−g
(h)
norm,aux,n−h−2

)
if n ≥ 4 & 1 ≤ h− 1 ≤ n− 3

∅ otherwise

ŷ
(h)
norm,aux,i :=

( (p(h)norm,aux,n−h)
2 + (q

(h)
norm,aux,n−h)

2

2
, · · · ,

(p
(h)
norm,aux,n−1)

2 + (q
(h)
norm,aux,n−1)

2

2
,G

(h)
norm,aux,i, · · · ,

G
(h)
norm,aux,n,Λ

(h)
norm,aux,i, · · · , Λ

(h)
norm,aux,n

)
and fexp,sec,aux,h satisfies the bound for fexp,sec,h in (5.76). This will conclude the

proof, up to apply the inverse transformation of (5.104), with G
(h)
aux,i, g

(h)
aux,i, χ

(h)
∗,i ,

κ
(h)
∗,i replaced by G

(h)
norm,aux,i, g

(h)
norm,aux,i, χ

(h)
i , κ

(h)
i , and to take

D
h
sec := φn−h

aux

(
D

h
sec,aux

)
.

We shall obtain the transformation φn−h
norm,aux in (5.110) via an application of Propo-

sition D.1. Before doing it, we just remark that, since, in our particular case,

fnorm,int,aux,h−1 depends on z
(h)
aux, y

(h)
aux, x

(h)
aux only via z

(h)
aux,n−h, ỹ

(h)
aux, x̂

(h)
aux and is even

in (t
(h)
aux, z

(h)
aux,n−h), the proof of Proposition D.1 can be easily handled to show that
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φn−h
norm,aux can be chosen of the form

φn−h
norm,aux :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ
(h)
aux,j = F

(h)
norm,aux,j(t

(h)
norm,aux, z

(h)
norm,aux,n−h, ỹ

(h)
norm,aux, x̂

(h)
norm,aux)

ϑ
(h)
aux,j − π = G

(h)
norm,aux,j(t

(h)
norm,aux, z

(h)
norm,aux,n−h, ỹ

(h)
norm,aux, x̂

(h)
norm,aux)

j = 1, · · · , n− h− 1

z
(h)
aux,n−h = Z

(h)
norm,aux(t

(h)
norm,aux, z

(h)
norm,aux,n−h, ỹ

(h)
norm,aux, x̂

(h)
norm,aux)

(
X̂

(h)

aux, x̂(h)aux

)
= X

(h)
norm,aux(t

(h)
norm,aux, z

(h)
norm,aux,n−h, ỹ

(h)
norm,aux, x̂

(h)
norm,aux)

ẑ
(h)
norm,j = ẑ

(h)
norm,aux,je

iψ
(h)
norm,aux,j(t

(h)
norm,aux,z

(h)
norm,aux,n−h,ỹ

(h)
norm,aux,x̂

(h)
norm,aux)

j = n− h+ 1. · · · , n− 1

y
(h)
aux,n−h+1 = y

(h)
norm,aux,n−h+1

x
(h)
aux,n−h+1 = x

(h)
norm,aux,n−h+1

+ϕ
(h)
norm,aux(t

(h)
norm,aux, z

(h)
norm,aux,n−h, ỹ

(h)
norm,aux, x̂

(h)
norm,aux)

where F
(h)
norm,aux, G

(h)
norm,aux and Z

(h)
norm,aux are odd; X

(h)
norm,aux, ψ

(h)
norm,aux,j and

ϕ
(h)
norm,aux are even under the change

(t
(h)
norm,aux, z

(h)
norm,aux,n−h) → −(t

(h)
norm,aux, z

(h)
norm,aux,n−h).

Then (5.88)–(5.90) follow.

Now we proceed with proving the existence of φn−h
norm,aux. We can choose, in (D.133),

(D.135) and (D.136),

νi = 2(h+ 1), �i = h, mi = 3i, i = 1, · · · , n− h− 1 = N

h(p, q, I) =

n−1∑
i=n−h

hisec(ŷ
(h)
i ), f(p, q, I, ϕ, η, ξ) =

n−h−1∑
i=1

f i(ui, p, q, ϕ)

f i(ui, p, q, ϕ) := fn−h−i
norm,int,aux,h−1(t

(h)
aux,n−h−i, ỹ

(h)
aux,n−h−i, x̂

(h)
aux,n−h−i)

Z := Zi :=
{
(k′, k′′, k′′′) ∈ Zh × Zh+1 × Zh+1 : k′n−h+1 = · · · = k′n−1 = 0

k′′n−h+1 = · · · = k′′n = 0, k′′′n−h = · · · = k′′′n = 0, k′′1 + · · ·+ k′′n−h = 0
}

L :=
{
(k′, k′′, k′′′) ∈ Z : k′n−h = k′′n−h = 0

}

(5.111)
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where we have re-named

(p, q) := (p
(h)
aux, q

(h)
aux) = (p

(h)
aux,n−h, · · · , p

(h)
aux,n−1, q

(h)
aux,n−h, · · · , q

(h)
aux,n−1, )

I :=
(
G

(h)
aux,n−h, · · · , G

(h)
aux,n,Λ

(h)
aux,n−h, · · · , Λ

(h)
aux,n

)
ϕ :=

(
g
(h)
aux,n−h, · · · , g

(h)
aux,n, �

(h)
aux,n−h, · · · , �

(h)
aux,n

)
ui := (I, ηi, ξi), η := η1, ξ := ξ1

with

ηi :=
(
Θaux,n−h−i, · · · , Θaux,n−1, Gaux,n−h−i, · · · , Gaux,n−h−1,

Λaux,n−h−i, · · · , Λaux,n−h−1

)
ξi :=

(
ϑaux,n−h−i, · · · , ϑaux,n−1, gaux,n−h−i, · · · , gaux,n−h−1,

�aux,n−h−i, · · · , �aux,n−h−1

)
.

In order to verify that Proposition D.1 can be applied, we have to check conditions
(D.134) and (D.139). Due to the choices of Z, L and to the fact that only the
function hn−h

sec in the summand for hsec in (5.108) depends on

(p
(h)
aux,n−h, q

(h)
aux,n−h,G

(h)
aux,n−h),

it is sufficient to check that condition (D.134) holds with

ω = ωn−h
sec , (k′, k) ∈ Z2 \ {0}, K = K̄.

But due to the choice of Dh
int,aux in (5.107), we have that (D.134) is verified, with

a =
(a+n−h)

2

(a−n−h+1)
3θn−h

γ̄

K̄ τ̄
, r = ch

θn−hγ̄

K̄ τ̄+1
, ε = ch

√
θn−h.

It remains to check the inequalities in (D.139). In view of the definition of f i

following from the formulae (5.84), (5.109) and (5.111), of the definition of f i
norm,h−1

in (5.74), the definition of f i
norm,h−1, the bound for ˜f i

norm,h−1 in (5.76), and first

inequality in (4.54), we see that the former of the inequalities in (D.139) is satisfied
with
(5.112)

Ei =
1

ch
max

{ (a+n−h−i)
2

(a+n−h−i+1)
3
, μK̄

(a+n
a−1

) 3
2

1

a−n−h−i+1

}
i = 1, · · · , n− h− 1.

In order to check that also the second inequality in (D.139) is satisfied, we previously
note that the number di in (D.138) can be taken to be

di = ch min
{θn−hγ̄

K̄ τ̄+1
, θn−h−i

}
, i = 1, · · · , n− h− 1.

Inserting then the above values for K, a, Ei and di into the left hand side of the
second inequality in (D.139), we find that this can be bounded by
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1

c̃h
max

{K̄2τ̄+2

γ̄2

(a+n−h−i)
2

(a+n−h)
2

(a−n−h+1)
3

(a−n−h−i+1)
3
,

K̄ τ̄+1

γ̄

(a+n−h−i)
2

(a+n−h)
2

(a−n−h+1)
3

(a−n−h−i+1)
3

θn−h

θn−h−i

K̄2τ̄+2

γ̄2

μK̄
( a+

n

a−
1

) 3
2

(a+n−h)
2

(a−n−h+1)
3

a−n−h−i+1

,
K̄ τ̄+1

γ̄

μK̄
( a+

n

a−
1

) 3
2

(a+n−h)
2

(a−n−h+1)
3

a−n−h−i+1

θn−h

θn−h−i

}
Using (4.50), one easily finds that this quantity does not exceed

1

ĉh
max

{
μ(

an
a1

)5
K̄2τ̄+2

γ̄2
,

K̄ τ̄+1
√
α

γ̄

}
< 1.(5.113)

where ĉh depends only on the ratio a−n /a
+
n and the masses and the inequality follows

from (4.54). This conclude the proof of this case. �
5.2.4. Construction of φn−1

norm. The arguments we have used in the previous
section to construct φ1

norm, · · · , φn−2
norm also fit for the case of φn−1

norm, therefore we shall
not repeat them. We only limit to remark that, for this case, Equations (5.106),
(5.111), (5.112) and (5.113) have to be replaced with

ωn−1
sec (ŷ

(1)
aux,n−1) :=

⎧⎪⎪⎨⎪⎪⎩
∂

(p
(1)
aux,n−1

)2+(q
(1)
aux,n−1

)2

2 ,G
(1)
aux,n−1,G

(1)
aux,n

hn−1
sec (ŷ

(1)
aux,n−1) n ≥ 3

∂
G

(1)
aux,2

h2sec(ŷ
(1)
aux,1) n = 2,

f i = fn−i
norm,int,aux,0(t

(1)
aux,i, ŷ

(1)
aux,i, x̂

(1)
aux,i), di = c1 min

{θn−1γ̄

K̄ τ̄+1
, θn−i−1

}
i = 1, · · · , n− 1, θ0 := θ1

Ei =
1

ĉ1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
max

{
μ
(a+n
a−1

) 3
2
1

a−n
,
(a+n−1)

3

(a−n )4

}
i = 1

max
{
μK̄

(a+n
a−1

) 3
2

1

a−n−i+1

,
(a+n−i)

2

(a−n−i+1)
3

}
n ≥ 3, i = 2, · · · , n− 1

1

ĉ1
max

{
μ(

an
a1

)5
K̄2τ̄+2

γ̄2
,

K̄2(τ̄+1)α

γ̄2

}
.

�
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APPENDIX A

Computing the domain of holomorphy

A.1. On the analyticity of the solution of Kepler equation

Here is a refinement of Proposition 4.1.

Proposition A.1. Let ê be as in (4.47). For any 0 < e < ê there exists
η = η(e) such that, for any η < η < 1 and any e ∈ C with |e| ≤ e, there exist two
positive numbers ζ̄ = ζ̄(η, e), � = �(η, e) such that the map

(A.114) ζ ∈ Tζ̄ → K(ζ, e) := ζ − e sin ζ

is injective, its image verifies

K(Tζ̄ , e) ⊃ T� ∀ e ∈ C : |e| ≤ e.

The inverse function

� ∈ T� → ζ(�, e) := K−1(�, e) ∈ Tζ̄η(e)

verifies

(A.115) |1− e cos ζ(�, e)| ≥ 1− η

Therefore, ζ(�, e) is real-analytic for � ∈ T�.

The proof of Proposition A.1 is elementary and goes along the same lines of [24].
Therefore, we shall present it skipping some detail.

Lemma A.1. Let ê be as in Proposition 4.1. For any 0 < e < ê there exists a
unique η = η(e) ∈ (e, 1) such that

∀ η ∈ [η, 1) : �η(e) := log
[η
e
+

√
1 +

η2

e2

]
−

√
η2 + e2 ≥ 0,

�η(e) = 0 ⇐⇒ η = η.

Proof. By definition of ê, and since the function ρ ∈ [0, 1] → ρ e
√

1+ρ2

1+
√

1+ρ2
in-

creases with ρ, we have

e e
√

1+e2

1 +
√
1 + e2

< 1.

Consider now the function

η ∈ (0, 1] → gρ(η) :=
ρ e

√
η2+ρ2

η +
√
η2 + ρ2

.

This function decreases with η for any ρ ∈ (0, 1]. Since

ge(0) = ee > 1, ge(1) =
e e

√
1+e2

1 +
√
1 + e2

< 1

63
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we find a unique η = η(e) ∈ [0, 1] such that

ge(η) < 1 ∀ η < η < 1, ge(η(e)) = 1.

Since also

ge(e) =
ee

√
2

1 +
√
2
≥ e

√
2

1 +
√
2
> 1

we actually have
e < η < 1.

�
Proof of Proposition A.1. We shall prove Proposition A.1 with

ζ̄(η, e) := log

√
η2 + e22 +

√
η2 − e21√

e21 + e22

�(η, e) := log
[η
e
+

√
1 +

η2

e2

]
−

√
η2 + e2(A.116)

where e = e1 + ie2. Observe that �(η, e) > 0 by Lemma A.1. Moreover, since

e1 ≤ |e| ≤ e < η < η

we have that ζ̄(η, e) is well defined and positive1:

ζ̄(η, e) ≥ log
η

e
> 0.

We split Equation (A.114) into its real and imaginary part⎧⎨⎩ K1(ζ1, ζ2, e1, e2) := ζ1 − (e1 sin ζ1 cosh ζ2 − e2 cos ζ1 sinh ζ2) = �1

K2(ζ1, ζ2, e1, e2) := ζ2 − (e1 cos ζ1 sinh ζ2 + e2 sin ζ1 cosh ζ2) = �2

(with ζ = ζ1 + iζ2, � = �1 + i�2). The equation for the real part gives a unique
solution

ζ1 = Z1(e1, e2, ζ2, �1)

provided

(A.117) |e1| ≤ η, |ζ2| ≤ ζ(η, e)

since it reduces to an ordinary real Kepler equation

ζ1 − E1(e1, e2, ζ2) sin(ζ1 − φ1(e1, e2, ζ2) = �1 if E1(e1, e2, ζ2) = 0

ζ1 = �1 otherwise

with

E1(e1, e2, ζ2) :=

√
e21 cosh

2 ζ2 + e22 sinh
2 ζ2

φ1(e1, e2, ζ2) : E1 cosφ1 = e1 cosh ζ2, E1 sinφ1 = e2 sinh ζ2.

and, under condition (A.117), one has

(A.118) E1 ≤ η < 1.

1Actually, ζ̄(η, e), as a function of (e1, e2), reaches its positive minimum

ζmin = log
[η
e
+

√
1 +

η2

e2

]
> log(1 +

√
2)

for (e1, e2) = (0, e).
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Observe that this solution Z1(e1, e2, ζ2, �1) verifies

(A.119) Z1(e1, e2,−ζ2, �1) = −Z1(e1, e2, ζ2, �1) mod 2π.

On the other hand, the function

ζ2 → K2(e1, e2, ζ2, �1) := K2(Z1(e1, e2, ζ2, �1), ζ2, e1, e2)

is strictly increasing, therefore, it maps the interval [−ζ(η, e), ζ(η, e)], onto the
interval [−L2 (η, e, �1), L2 (η, e, �1)], where L2(η, e, �1) := K2(e1, e2, ζ(η, e), �1)
(note that K2(e1, e2,−ζ(η, e), �1) = −K2(e1, e2, ζ(η, e), �1) because of (A.119)). We
have thus proved that the map (A.114) maps bijectively the strip Tζ(η,e) onto the
set

� = �1 + i�2 ∈ C : �1 ∈ T, �2 ∈ [−L2(η, e, �1),L2(η, e, �1)].

But the curve

�2 = L2(η, e, �1) �1 ∈ [0, 2π)

is concave, its minimum points are cusps, where L2 attains the value

L2,min(η, e) = ζ(η, e)−
√
η2 − e21 + e22.

The minimum of this quantity while |e| ≤ e is just �(η, e) in (A.116). Inequality in
(A.115) follows from

|1− e cos ζ| ≥ |Re (1− e cos ζ)| ≥ 1− |Re
(
e cos ζ

)
|

and (by (A.118))

|Re
(
e cos ζ

)
| = |E1(e1, e2, ζ2) cos(ζ1 − φ1(e1, e2, ζ2)| ≤ E1 ≤ η.

�

A.2. Proof of Proposition 4.2

Define

δj :=
√
1− e2j , δj :=

√
1− e2j .

Assume (4.48), with

A := (1− σ2)

√
1

(1 + σ)3(1 + σ2)4
, B :=

√
1

(1− σ2)(1 + σ)3(1 + σ2)

Ci :=

{
C1(σ)δi i = 1, · · · , n− 1

δn i = n
,

Ci :=

⎧⎨⎩ C2(σ)

√
δ2i + 2g(σ)2δ

2

i i = 1, · · · , n− 1√
δ2i + 2g(σ)2δ

2

n i = n

s = σ(1− σ)

where

C1(σ) :=
√
1− σ2, C2(σ) :=

√
(1 + σ2)3

(1− σ2)2
(A.120)
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and σ, g are chosen as follows: g(σ′) is a suitable positive function, depending at

most on the ratios
Λ+

j

Λ−
j

,
G+

i

G−
i

, such2 that

(A.121)

g(σ′) → 0 as σ′ → 0, and | sin arg ‖C(j)
P ‖2
Λ2
j

| ≤ g(σ′), j = 1, · · · , n,

provided

max
{
| arg(Λi)|, | arg(χj)|, | arg(Θj)|, | arg(ϑj)|

}
≤ σ′

while σ is so small that, if �1, · · · , �n are as in Proposition 4.1, with e replaced by
e1, · · · , en, then

σ ≤ min
{3

4
, �1, · · · , �n

}
and the following inequality is satisfied

C1(σ)

C2(σ)

δj√
δ2j +

√
2g(σ)δj

> 1 ∀ i = 1, · · · , n.

Note that this inequality is satisfied for σ suitably small, since, by definition,

δj > δj , C1(σ
′) ↑ 1, C2(σ

′) ↓ 1, g(σ′) ↓ 0 as σ′ → 0.

Definitions and assumptions in (4.48) imply, since σ(1− σ) < σ,

(1− σ)G−
n < |χi| < G+

n (1 + σ)

| tan arg(χi−1 − χi)| ≤
max | Im (χi−1 − χi)|
min |Re (χi−1 − χi)|

≤ θi

G−
i

≤ σ ≤ 1

| argχi| ≤ | argχn−1|+
n−1∑

j=i+1

| sin−1 |χj−1 − χj |
|χj − χj+1|

| ≤ σ ≤ π

3
(A.122)

The previous inequalities imply that, firstly

| Θj

χj−1
| ≤ σ(1− σ)G−

n

(1− σ)G−
n

≤ σ

and, similarly,

|Θj

χj
| ≤ σ

therefore, the inequality for ij , ιi is (4.49) follows. Secondly, the definitions of Θ+
i ,

ϑ+
i imply that conditions (A.127) are met and hence Lemma A.2 applies. By the

thesis (A.128), we have3, for j = 1, · · · , n− 1,

2Since, for j = 1, · · · , n, ‖C(j)
P ‖2 depends only on χj−1, χj , Θj and ϑj as in (2.17) and all

such coordinates, together also with Λj , have their anomalies bounded by σ′, we can always find

such a function g(σ′).
3Beware that, if z = (z1, z2, z3) ∈ C3, we denote

‖z‖2 := z21 + z22 + z33 .

For a given z ∈ C, the symbol |z| denotes the usual modulus of z ∈ C:

|z| :=
√

(Re z)2 + ( Im z)2.
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∣∣‖C(j)
P ‖2

∣∣ ≤
∣∣χj−1 − χj

∣∣2
1− σ2

+ (1 + σ)(1 + σ2)|χj−1||χj ||ϑj − π|2

≤ (G+
i )

2

C
2

j

+
(G+

n )
2

C
2

jB
2
|ϑj − π|2

≤ δ
2

j(Λ
−
j )

2.(A.123)

For j = n, ∣∣‖C(j)
P ‖2

∣∣ = ∣∣χn−1

∣∣2 ≤ (G+
n )

2 < δ
2

n(Λ
−
n )

2.

We suddenly have the left bound in (4.49):

1− |e2i,P | ≤ |1− e2i,P | = |
∣∣‖C(i)

P ‖2
∣∣

Λ2
i

| ≤ δ
2

i = 1− e2i ,

for i = 1, · · · , n. Now we check the right bound. To this end, previously check the
following inequality

(A.124)
∣∣|χj−1| − |χj |

∣∣ ≥ 1− σ2

1 + σ2
G−

j .

Because of the second inequality in (A.122),

| arg
[
(χj−1 − χj)(χm−1 − χm)

]
| ≤ 2 tan−1 σ.

Then we have

Re
[
(χj−1 − χj)(χm−1 − χm)

]
≥ 1− σ2

1 + σ2
|χj−1 − χj ||χm−1 − χm|.

Taking the sum for m = j + 1, · · · , n, gives

Re (χj−1 − χj)χj ≥ 1− σ2

1 + σ2
|χj−1 − χj |

n∑
m=j+1

|χm−1 − χm|

≥ 1− s2

1 + s2
|χj−1 − χj ||χj |

≥ 1− σ2

1 + σ2
G−

j |χj |

So, Lemma A.3 with

A = χj−1, B = χj , Δ = G−
j , a =

1− σ2

1 + σ2

gives (A.124). Then the thesis (A.129) of Lemma A.2 and the definition of ϑj

provide, for j = 1, · · · , n− 1,

(A.125)
∣∣‖C(j)

P ‖2
∣∣ ≥ 1

A2C2
j

[
A2(G−

j )
2−(G+

n )
2|ϑj−π|2 ≥

]
≥ (δ2j+

√
2g(σ)δi)(Λ

+
j )

2

where g(σ) is as in (A.121). Again, this inequality is implied by the definition of ϑ+
j

in (4.48) and the ones of A and C2 in (A.120). By (A.121), (A.123) and (A.125),
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for j = 1, · · · , n, we have

|ej,P |2 =

√√√√(1− Re
‖C(j)

P ‖2
Λ2
j

)2 + ( Im
‖C(j)

P ‖2
Λ2
j

)2

≤

√√√√(
1−

∣∣‖C(j)
P ‖2
Λ2
j

∣∣)2

+ 2| Im ‖C(j)
P ‖2
Λ2
j

|

≤
√(

1− δ2j −
√
2g(σ)δj

)2

+ 2δ
2

jg(σ)
2 ≤ 1− δ2j = e2j .(A.126)

For j = n, ∣∣‖C(n)
P ‖2

∣∣ = |χn−1|2 ≥ (δ2n +
√
2g(σ)δn)(Λ

+
n )

2

again implies (A.126) with j = n.

The proof of the inequality on the right in (4.49) proceeds in a similar way. Indeed,
starting with

|di,P |2 =
∣∣∣‖x(i+1)

P ‖2 − 2x
(i)
P · x(i+1)

P + ‖x(i)
P ‖2

∣∣∣
≥

∣∣∣‖x(i+1)
P ‖2

∣∣∣− 2
∣∣∣x(i)

P · x(i+1)
P

∣∣∣− ∣∣∣‖x(i)
P ‖2

∣∣∣
and using (as it follows from Proposition A.1)

∣∣∣‖x(i+1)
P ‖2

∣∣∣ = |a2i+1(1− ei+1,P cos ζi+1)
2| ≥ (1− ηi+1)

2(a−i+1)
2

and analogous arguments as above to evaluate
∣∣∣x(i)

P ·x(i+1)
P

∣∣∣ and ∣∣∣‖x(i)
P ‖2

∣∣∣, one easily
finds the ansatz. �

Estimates.

Lemma A.2. Fix a number σ > 0. Assume that, for 1 ≤ j ≤ n− 1,

Reχj(χj−1 − χj) > 0, |Θj | ≤ σmin{|χj−1|, |χj |}, | Im (ϑj − π)| ≤ log(1 + σ).

(A.127)

Then

∣∣‖C(j)
P ‖2

∣∣ ≤ ∣∣χj−1 − χj

∣∣2
1− σ2

+ (1 + σ)(1 + σ2)|χj−1||χj ||ϑj − π|2(A.128)

∣∣‖C(j)
P ‖2

∣∣ ≥ ∣∣|χj−1| − |χj |
∣∣2

1 + σ2
− (1 + σ)(1 + σ2)|χj−1||χj ||ϑj − π|2(A.129)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

A.2. PROOF OF PROPOSITION ?? 69

Proof. We use the formula (2.19). By Taylor’s, given a, b, z ∈ C, with
|z| ≤ σmint∈[0,1] |a+ t(b− a)|∣∣∣√b2 − z2 −

√
a2 − z2

∣∣∣ =
∣∣∣ ∫ 1

0

d

dt

√(
a+ t(b− a)

)2 − z2dt
∣∣∣

=
∣∣∣(b− a)

∫ 1

0

a+ t(b− a)√(
a+ t(b− a)

)2 − z2
dt
∣∣∣

≤ |b− a|
∫ 1

0

|a+ t(b− a)|√∣∣a+ t(b− a)
∣∣2 − |z|2

dt

≤ |b− a|√
1− σ2

We use this formula with b := χj−1, a := χj , z := Θj , with the observation that,
for Reχj(χj−1 − χj) > 0, the function

t ∈ [0, 1] →
∣∣χj + t(χj−1 − χj)

∣∣2 = |χj |2 + 2tReχj(χj−1 − χj) + t2|χj−1 − χj |2

reaches its minimum, given by min{|χj−1|2, |χj |2}, for t = 0 or t = 1. Developing
also the function w ∈ C → cosw around w = π, with � := w − π = �1 + i�2 and
|ρ2| ≤ log(1 + σ)∣∣ cosw + 1

∣∣ =
∣∣ ∫ 1

0

(1− t)
d2

dt2
cos(π + t(w − π))

∣∣ = 1

2
|�|2 sup

|�′|≤�

| cos(π + �′)|

≤ 1

2
|�|2e|�2| ≤ 1

2
|�|2(1 + σ)

and using again the second inequality in (A.127), then inequality in (A.128) follows.
The inequality in (A.129) is obtained via the second inequality in (A.127) and∣∣√χ2

j −Θ2
j −

√
χ2
j−1 −Θ2

j

∣∣ =

∣∣χ2
j−1 − χ2

j

∣∣∣∣√χ2
j −Θ2

j +
√
χ2
j−1 −Θ2

j

∣∣
≥

∣∣|χj−1|2 − |χj |2
∣∣∣∣√χ2

j −Θ2
j +

√
χ2
j−1 −Θ2

j

∣∣
≥

∣∣|χj−1| − |χj |
∣∣

√
1 + σ2

.

�
Lemma A.3. If A, B ∈ C and a, Δ ∈ R+ verify |A−B| ≥ Δ and ReB(A−B) ≥

a|B|Δ, where 0 < a < 1, then
∣∣|A| − |B|

∣∣ > aΔ.

Proof. Let D := A− B. Then
∣∣|A| − |B|

∣∣ = ∣∣|B +D| − |B|
∣∣ ≤ aΔ implies

|B|2 + |D|2 + 2ReBD = |B +D|2 ≤ (|B|+ aΔ)2 = |B|2 + a2(Δ)2 + 2a|B|Δ.

This contradicts assumptions |D| ≥ Δ > aΔ and ReBD ≥ a|B|Δ. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

APPENDIX B

Proof of Lemma 3.2

In this chapter, we prove the formulae (3.40) and (3.41) given in Lemma 3.2.

We recall the following result

Proposition B.1 ([28]). Let X = X1 × · · · × Xn ⊂ R5 × · · · × R5 and let

(�k,Xk) ∈ T1 × Xk → (y
(k)
φ (�k,Xk), x

(k)
φ (�k,Xk)) ∈ R3 × R3 k = 1, · · · , n

be mappings such that, for 1 ≤ i < j ≤ n

(A) the map

φij : (�i, �j ,Xi,Xj) → (y
(i)
φ , y

(2)
φ , x

(j)
φ , x

(2)
φ )

is symplectomorphism of T2 × Xi × Xj into R12.

(B) The map (�j ,Xj) → (y
(2)
φ (�j ,Xj), x

(2)
φ (�j ,Xj)) verifies

‖y(2)φ (�j ,Xj)‖2

2mj
− mjMj

‖x(2)
φ (�j ,Xj)‖

= −
m3

jM
2
j

2Λ2
j

;

where Λj is the variable conjugated to �j in this symplectomorphism.

Then the function

P(i)(�i,X) := − 1

2π

∫
T

d�j

3(x
(i)
φ (�i,Xi) · x(j)

φ (�j ,Xj))
2 − ‖x(i)

φ (�i,Xi)‖2‖x(j)
φ (�j ,Xj)‖2

2‖x(j)
φ (�j ,Xj)‖5

is given by

(B.130) P(i) =
Mjm

2
j

4

3(x
(i)
φ · C(j)

φ )2 − ‖x(i)
φ ‖2‖C(j)

φ ‖2

‖C(j)
φ ‖4

1

2π

∫
T

d�j

‖x(j)
φ ‖2

.

with C
(j)
φ (X) := x

(j)
φ (�j ,X)× y

(j)
φ (�j ,X).

Even though the (i, j) projections of the P-map do not verify assumption (A), one
has

Corollary B.1. The formula (B.130) applies also to the P-map, or, more in
general, to any Kepler map K related to the map De� in Definition 2.5 via

XDe� = F(X).

Proof. De� verifies (A) and (B). �
71
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In particular, we have an expression for the second-order term of the doubly aver-
aged Newtonian potential

f ij
K

(2)

:= −mimj

(2π)2

∫
T2

d�id�j

3(x
(i)
K (�i,XK) · x(j)

K (�j ,XK))
2 − ‖x(i)

K (�i,XK)‖2‖x(j)
K (�j ,XK)‖2

2‖x(j)
K (�j ,XK)‖5

.

Corollary B.2. For any K as in Corollary B.1,

f ij
K

(2)

= mimj
a2i
4a3j

Λ3
j

‖C(j)
K ‖5

[
−

(5
2
− 3

2

‖C(i)
K ‖2
Λ2
i

)
‖C(j)

K ‖2

+
3

2

(
5− 4

‖C(i)
K ‖2
Λ2
i

)
(P

(i)
K · C(j)

K )2 +
3

2

‖C(i)
K ‖2
Λ2
i

(Q
(i)
K · C(j)

K )2
]

(B.131)

Proof. Lemma B.1 implies that

f ij
K

(2)

= mimj

Mjm
2
j

4

1
2π

∫
T

(
3(x

(i)
K · C(j)

K )2 − ‖x(i)
K ‖2‖C(j)

K ‖2
)
d�i

‖C(j)
K ‖4

× 1

2π

∫
T

d�j

‖x(j)
K ‖2

.

By (2.1)

x
(i)
K · C(j)

K =
(
ai,KP

(i)
K + bi,KQ

(i)
K

)
· C(j)

K

= ai,KP
(i)
K · C(j)

K + bi,KQ
(i)
K · C(j)

K

Therefore, squaring, �i-averaging and using

1

2π

∫
T

(ai,K)
2d�i =

a2i
2

(
5− 4

‖C(i)
K ‖2
Λ2
i

)
1

2π

∫
T

(bi,K)
2d�i =

a2i
2

‖C(i)
K ‖2
Λ2
i

1

2π

∫
T

ai,Kbi,Kd�i = 0

we obtain

1

2π

∫
T

(x
(i)
K · C(j)

K )2d�i =
a2i
2
(5− 4

‖C(i)
K ‖2
Λ2
i

)(P
(i)
K · C(j)

K )2

+
a2i
2

‖C(i)
K ‖2
Λ2
i

(Q
(i)
K · C(j)

K )2.

Using finally

1

2π

∫
T

‖x(i)
K ‖2d�i = a2i

(5
2
− 3

2

‖C(i)
K ‖2
Λ2
i

)
,

1

2π

∫
T

d�j

‖x(j)
K ‖2

=
1

a2j

Λj

‖C(j)
K ‖

we obtain (B.131). �
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Now we may proceed with proving the formulae in (3.40) and (3.41).
Proof of of (3.40). We apply Corollary B.2 with K = P, i = n − 1, j = n.

Using ‖C(n)
P ‖ = χn−1 (see (2.17)), C

(n)
P = S

(n)
P and Eq. (2.3), Proposition 2.1, and

Remark 2.2, we have

P
(n−1)
P · S(n)P = Θn−1

Q
(n−1)
P · S(n)P =

1

‖C(n−1)
P ‖

(
(S

(n−1)
P − S

(n)
P )× P

(n−1)
P

)
· S(n)P

=
1

‖C(n−1)
P ‖

S
(n−1)
P × P

(n−1)
P · S(n)P

=
1

‖C(n−1)
P ‖

√
(χ2

n−1 −Θ2
n−1)(χ

2
n−2 −Θ2

n−1) sinϑn−1.

�
Proof of (3.41). By Corollary B.2 with K = P, j = i+1, we find, for f i,i+1

P
(2)

an expression as in (B.131), replacing (n− 1, n) with (i, i+ 1).

P
(i)
P · C(i+1)

P = P
(i)
P · (S(i+1)

P − S
(i+2)
P ) = Θi − P

(i)
P · S(i+2)

P

Q
(i)
P · C(i+1)

P = Q
(i)
P · (S(i+1)

P − S
(i+2)
P ) =

1

‖C(i)
P ‖

(
√
(χ2

i −Θ2
i )(χ

2
i−1 −Θ2

i ) sinϑi

− S
(i)
P × P

(i)
P · S(i+2)

P − P
(i)
P × S

(i+1)
P · S(i+2)

P ).

(B.132)

Now, when (Θi+1, ϑi+1) = (0, π), ‖C(i+1)
P ‖ reduces to

‖C(i+1)
P ‖ = χi − χi+1,

(provided arg(χi − χi+1) ∈ (−π
2 ,

π
2 ] mod 2π) and S

(i+2)
P ‖ S

(i+1)
P , so

S
(i+2)
P =

χi+1

χi
S
(i+1)
P

and hence, the extra-terms in (B.132) reduce to

P
i)
P · S(i+2)

P = Θi
χi+1

χi

S
(i)
P × P

(i)
P · S(i+2)

P =
χi+1

χi

√
χ2
i−1 −Θ2

i

√
χ2
i −Θ2

i sinϑi

P
(i)
P × S

(i+1)
P · S(i+2)

P = 0.

Then (3.41) readily follows. �
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APPENDIX C

Checking the non-degeneracy condition

In this chapter we prove statement 4 of Proposition 5.2.

Due to the form of hsec in (5.73)–(5.74) and to the bound for h̃i
sec,h in (5.76), it is

sufficient to prove that the maps

ζ
(h)
i → ωi

sec := ∂
ζ
(h)
i

hisec(ζ
(h)
i ,Λ

(h)
n−h,Λ

(h)
n−h+1)

in (5.74), where

ζ
(h)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( (p(h)1 )2 + (q
(h)
1 )2

2
, χ

(h)
1

)
i = 1 & n = 2

( (p(h)n−1)
2 + (q

(h)
n−1)

2

2
, χ

(h)
n−2, χ

(h)
n−1

)
i = n− 1 & n ≥ 3

( (p(h)i )2 + (q
(h)
i )2

2
, χ

(h)
i−1

)
i = 2, · · · , n− 2 & n ≥ 4

(p
(h)
1 )2 + (q

(h)
1 )2

2
i = 1 & n ≥ 3

are diffeomorphisms, with non-vanishing Hessian matrices. We shall do this verifi-
cations for just one of the cases above, and we choose the second case in the list,

i = n − 1, for n ≥ 3. The explicit expression of hn−1
sec is given in (5.98)-(5.99). We

neglect the coefficient An−1 (which does not depend on ζ
(h)
n−1) and we denote

ĥn−1
sec = En−1 +Ωn−1

p2n−1 + q2n−1

2
+ τn−1(

p2n−1 + q2n−1

2
)2 +O(pn−1, qn−1)

6
]

the function hn−1
sec thus rescaled, and ω̂n−1

int
its gradient with respect to

(
(p

(h)
n−1)

2 + (q
(h)
n−1)

2

2
, χn−2, χn−1).

A perturbative argument shows that, under the choices of Corollary 4.1, the
frequency-map with respect to (χn−2, χn−1) associated to

En−1 = − Λ3
n

2χ3
n−1

(
5− 3

(χn−2 − χn−1)
2

Λ2
n−1

)
is an injection of its domain and hence, by another perturbative argument, so is

the gradient of ĥn−1
sec with respect to the same coordinates, for any fixed value

of
p2
n−1+q2n−1

2 . On the other hand, since τn−1 does not vanish under the same

75
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assumptions of Corollary 4.1, ω̂n−1
int

is an injection. The computation shows that

the Jacobian of ω̂n−1
int

does not vanish. �
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APPENDIX D

Some results from perturbation theory

D.1. A multi-scale normal form theorem

The purpose of this chapter is to present a normal form result which takes
into account different scale lengths. It is a particularization of [31, Normal Form
Lemma, p. 192] and uses the same techniques of that paper.

Following [31], the notations are as follows.

• If A ⊂ Rν is open and connected, T := R/(2πZ) is the usual flat torus,

r, s are positive numbers, we denote as Ar :=
⋃

x∈A

{
z ∈ Cν : z ∈

Bν
r (x)

}
the complex r-neighborhood of A. Tν

s will denote the complex set

T+i[−s, s]. As usual, Bν
r (x) denotes the ball in Cν with radius r centered

at x, accordingly to a prefixed norm | · | of Cν .
• If f = f(u, p, q, ϕ) is real-analytic for (u, p, q, ϕ) ∈ Wv,s,ε = Uv×B2�

ε ×Tν
s ,

and affords the Taylor-Fourier expansion

f =
∑
k∈Zm

fk,α,β(u)e
ik·ϕ

�∏
j=1

(
pj − iqj√

2
)αj (

pj + iqj

i
√
2

)βj ,

we denote as ‖f‖v,s,ε its “sup-(Taylor, Fourier) norm”:

‖f‖v,s,ε :=
∑

(a,b)∈N2�

k∈Zν

sup
u∈Uv

|fα,β,k(u)|e|k|sε|(α,β)|

with |k| := |k|1, |(α, β)| := |α|1 + |β|1.
• If f is as in the previous item, K > 0 and L = L1 × L2 is a sub-lattice
of Zν × Z�, TKf and ΠLf denote, respectively, the K-truncation and the
L-projection of f :

TKf :=
∑

|(α,β)|≤K, |k|≤K

fα,β,k(u)e
ik·ϕ

�∏
j=1

(
pj − iqj√

2
)αj (

pj + iqj

i
√
2

)βj

ΠLf :=
∑
k∈L1

α−β∈L2

fα,β,k(u)e
ik·ϕ

�∏
j=1

(
pj − iqj√

2
)αj (

pj + iqj

i
√
2

)βj .

Proposition D.1 (Multi-scale normal form). Let

ν, �, 1 ≤ m1 < · · · < mN = m

be natural numbers;

A ⊂ Rν , B ⊂ R2�, C1, C
′
1 ⊂ Rm1 , C2, C

′
2 ⊂ Rm2−m1 , · · · , CN , C ′

N ⊂ RmN−mN−1 ,

77
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be open and connected sets;

r, s, ε, ρ1 ≥ ρ2 · · · ≥ ρN , ρ′1 ≥ ρ′2 · · · ≥ ρ′N

positive numbers. Put

vi := (r, ρ1, · · · , ρi, ρ′1, · · · , ρ′i), v := vN

U (i)
vi := Ar × C1ρ1

× · · · × Ciρi
× C ′

1ρ′
1
× · · · × C ′

iρ′
i
, Uv := U

(N)
vN

W (i)
vi,s,ε := U (i)

vi × Tν
s ×Bε, Wv,s,ε := W

(N)
vN ,s,ε,

with i = 1, · · · , N .

Let a, K > 0 with 0 < s < 6 log 6/5 and Ks ≥ 12; let also L and Z1, · · · , ZN be
sub-lattices of Z� × Zν and let Z := Z1 ∪ · · · ∪ ZN .

Let

(D.133) H(u, ϕ, p, q) = h(p, q, I) + f(u, ϕ, p, q)

be real-analytic for (u, ϕ, p, q) ∈ Wv,s,ε, where u : = (I, η, ξ) = (I1, · · · , Iν , η1,
· · · , ηm, ξ1, · · · , ξm). Suppose that

(i) h depends on (p, q) only via
p2
i+q2i
2 , with the frequency map ω = (ω1, · · · ,

ω�, ω�+1, · · · , ω�+ν) defined via

ωi :=

⎧⎪⎨⎪⎩
∂ p2

i
+q2

i
2

h 1 ≤ i ≤ �

∂Ii−�
h �+ 1 ≤ i ≤ �+ ν

verifying

(D.134) |ω(p, q, I) · (k′, k)| ≥ a ∀ (k′, k) ∈ Z \ L, |(k′, k)| ≤ K

and all (p, q, I) ∈ B2�
ε ×Ar;

(ii) f is a sum

(D.135) f =

N∑
i=1

fi(ui, ϕ, p, q)

where fi is real-analytic on W
(i)
vi,s,ε and has the form

fi(ui, ϕ, p, q) =
∑

(α−α+,k)∈Zi

f i
k,α−,α+(ui)

ν∏
j=1

eikjϕj

�∏
k=1

(pk − iqk√
2

)α−
k
(pk + iqk√

2i

)α+
k

(D.136)

with

ui := (I, ηi, ξi) := (I1, · · · , Iν , η1, · · · , ηmi
, ξ1, · · · , ξmi

);(D.137)

(iii) the following “smallness” conditions hold. If

(D.138) ci := e(1 + �ie+mie)/2, di := min{rs, ε2, ρiρ
′
i}

with e denoting Neper number, then

‖fi‖W (i)
vi,s,ε

≤ Ei,

N∑
i=1

7

6

(9
8

)i−1 27ciKs

adi
Ei < 1.(D.139)
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Then, one can find a real-analytic and symplectic transformation

Φ : Wv/6N ,s/6N ,ε/6N → Wv,σ,ε

which conjugates H to

H∗(u, ϕ, p, q) := H ◦ Φ = h(I, p, q) +
N∑
i=1

gi(ui, ϕ, p, q) +
N∑
i=1

f∗
i (u, ϕ, p, q),

where gi, fi verify

gi = ΠZi∩LTKgi

‖gi −ΠZi∩LTKfi‖vi/6N ,σ/6N ,ε/6N ≤ (
9

8
)2(i−1)

27ci ‖fi‖2vi,s,ε
adi

+
7

6
(
9

8
)2(i−1)

i−1∑
j=1

27cj ‖fj‖vj ,s,ε
adj

‖fi‖vi,s,ε

+
i−1∑
k=1

(
9

8
)i−1−k 2

4ck‖fk‖vk,s,εKs

adk
‖fi‖vi,s,ε

‖f∗
i ‖vi/6N ,s/6N ,ε/6N ≤

(9
8

)N−1
e−Ks/6i‖fi‖vi,s,ε

Finally, Φ is close to the identity in the following sense. Given F , real-analytic on

W
(i)
vi/6N ,s/6N ,ε/6N

,

‖F ◦ Φ− F‖v/6N ,s/6N ,ε/6N ≤
N∑

k=1

(
9

8
)N−k 2

4ck‖fk‖vk,s,εKs

adk,i
‖F‖vi/6N ,s/6N ,ε/6N

with dk,i := max{dk, di}.

The proof of Proposition D.1 is based on the following

Lemma D.1. Let N̄ ∈ N, ν, �, mi, A, B, Ci, C
′
i, r, s, ρi, ρ

′
i, U

(i)
vi , W

(i)
vi,s,ε, ci,

di, with i = 1, · · · , N̄ + 1, be as in Proposition D.1;

v := (r, ρ1, · · · , ρN̄+1, ρ
′
1, · · · , ρ′N̄+1), Uv := U (N̄+1)

vN̄+1
,Wv,s,ε := W (N̄+1)

vN̄+1,s,ε
.

Let

(D.140) H(p, q, I, ϕ, η, ξ) = h(p, q, I) + g(p, q, I, ϕ, η, ξ) + f(p, q, I, ϕ, η, ξ)

be real-analytic for (u, ϕ, p, q) ∈ Wv,s,ε. Suppose assumption (i) of Proposition D.1
and, moreover, the following ones

(ii) g is a sum

(D.141) g =
N̄∑
i=1

gi(ui, ϕ, p, q)

where gi is real-analytic on W
(i)
vi,s,ε and ui is as in (D.137);

(iii) g1, · · · , gN̄ and f satisfy

gi = ΠLgi, f = ΠZf
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and

N̄∑
i=1

27ciKs

adi
‖gi‖vi,si,εi < 1, ‖f‖v,s,ε <

adN̄+1

27cN̄+1Ks
.(D.142)

Then, one can find a real-analytic and symplectic transformation

Φ : (u′, ϕ′, p′, q′) ∈ Wv/6,s/6,ε/6 → (u, ϕ, p, q) ∈ Wv,σ,ε

such that

H∗ := H ◦ Φ = h+ g + g∗ + f∗,

where g∗ = ΠZ∩LTKg∗ is Z ∩ L-resonant and the following bounds hold

‖g∗ − TKΠZ∩Lf‖v/6,σ/6,ε/6 ≤
(27cN̄+1 ‖f‖v,s,ε

adN̄+1

+

n∑
i=1

27ci ‖gi‖vi,s,ε
adi

)
‖f‖v,s,ε

≤ ‖f‖v,s,ε
6

‖f∗‖v/6,σ/6,ε/6 ≤ e−Ks/6‖f‖v,s,ε.
Finally, Φ is close to the identity in the following sense: for any F which is real-

analytic on W
(i)
v,s,ε,

(D.143) ‖F ◦ Φ− Φ‖v/6,s/6,ε/6 ≤ 24cN̄+1‖f‖v,s,εKs

adi
‖F‖vi,s,ε <

1

8
‖F‖v,s,ε.

The following Lemma is a trivial extension1 of [31, Iterative Lemma]. Its proof is
omitted.

Lemma D.2. Let s = (s1, · · · , sν), r = (r1, · · · , rν), ε = (ε1, · · · , ε�), ρ =
(ρ1, · · · , ρm), ρ′ = (ρ′1, · · · , ρ′m), v := (r, ρ, ρ′), v̂ := (r̂, ρ̂, ρ̂′) < v/2, ŝ < s/2,
ε̂ < ε/2,

δ := min
i=1,··· ,ν
j=1,··· ,�
k=1,··· ,m

{r̂iŝi, ε̂2j , ρ̂kρ̂
′
k}.

Let

H(u, ϕ, p, q) = h(I, p, q)+g(u, ϕ, p, q)+f(u, ϕ, p, q) g(u, ϕ, p, q) =

m∑
i=1

gi(u, ϕ, p, q)

be real-analytic on Wv,s,ε. Assume that inequality (D.134) and

‖f‖v,s,ε <
aδ

c
(D.144)

are satisfied. Then one can find a real-analytic and symplectic transformation

Φ : Wv−2v̂,s−2ŝ,ε−2ε̂ → Wv,s,ε

1In order to obtain the extension it is sufficient to replace φ of [31, Appendix A] with

φ =
∑

(α−β,k)∈K\L
|(α,β)|≤K, |k|≤K

fk,α,β(u)

i(α− β, k) · ω
eik·ϕ

�∏
j=1

(
pj − iqj√

2
)αj (

pj + iqj

i
√
2

)βj
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defined by the time-one flow2 X1
φf := f ◦ Φ of a suitable φ verifying

‖φ‖v,s,ε ≤ ‖f‖v,s,ε
a

such that
H+ := H ◦ Φ = h+ g +ΠL∩Zf + f+

and, moreover, the following bounds hold

‖f+‖v−2v̂,s−2ŝ,ε−2ε̂ ≤
(
1− c

aδ
‖f‖v,s,ε

)−1
[ c

aδ
‖f‖2v,s,ε

+e−Kŝ‖f‖v,s,ε +
(ε− ε̂

ε

)K‖f‖v,s,ε + ‖
{
φ, g

}
‖v−v̂,s−ŝ,ε−ε̂

]
Finally, for any real-analytic function F on Wv,s,ε,

‖F ◦ Φ− F‖v−2v̂,s−2ŝ,ε−2ε̂ ≤ ‖{φ, F}‖v−v̂,s−ŝ,ε−ε̂

1− c‖f‖v,s,ε
aδ

.

Proof of Lemma D.1. Following [31], the proof is obtained via iterate ap-
plications of Lemma D.2.

To avoid too many indices, we shall prove this lemma taking, in (D.141), N̄ = 1;
the extension to N̄ ≥ 1 being straightforward. Namely, we take

ρ1 = · · · = ρm1
= ρ̄, ρ′1 = · · · = ρ′m1

= ρ̄′

ρm1+1 = · · · = ρm = ρ, ρ′m1+1 = · · · = ρ′m = ρ(D.145)

where 1 ≤ m1 < m. Letting

v := (r, ρ, ρ′), v̄ := (r, ρ̄, ρ̄′), E := ‖f‖v,s,ε, G := ‖g‖v̄,s,ε,
c̄ = c1, c = c2, d̄ := min{rs, ε2, ρ̄ρ̄′}, d := {rs, ε2, ρρ′},

we rewrite the assumptions in (D.142) as

(D.146)
27c̄GKs

ad̄
< 1,

27cEKs

ad
< 1.

The inequality on the right clearly implies (D.144). So, we apply Lemma D.2
to the Hamiltonian (D.140), taking r1 = · · · = rν = r, s1 = · · · = sν = s,
ε1 = · · · = ε� = ε, ρk, ρ

′
k as in (D.145) and

v̂ = v̂0 := v/6, ŝ = ŝ0 := s/6, ε̂ = ε̂0 := ε/6

ˆ̄v = ˆ̄v0 := v̄/6, ˆ̄s := ˆ̄s0 := s̄/6, ˆ̄ε := ˆ̄ε0 := ε̄/6

δ := {r̂ŝ, ε̂2, ρ̂ρ̂} =
d

36
.

Letting

v1 := v − 2v̂0 = 3/4v, s1 := s− 2ŝ = 2/3s, ε1 := ε− 2ε̂ = 2/3ε

by Lemma D.2, we find a canonical transformation Φ0 = Xφ0
which is real-analytic

on Wv1,s1,ε1 and conjugates H to H1 = h+ g + g1 + f1, where g1 = ΠL∩ZTKf and

2The time-one flow generated by φ is defined as the differential operator

X1
φ :=

∞∑
k=0

Lk
φ

k!

where L0
φf := f and Lk

φf :=
{
φ,Lk−1

φ f
}
, with k = 1, 2, · · · .
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‖f1‖v1,s1,ε1 ≤ (1− 36cE

ad
)−1

[36cE
ad

+ e−Ks/6 +
(5
6

)K]
E

+ (1− 36cE

ad
)−1 36c̄G

ad̄
E

where

δ̄ := min{r̂ŝ, ε̂2, ˆ̄ρ ˆ̄ρ′} =
d̄

36
.

Here, we have used

‖
{
φ, g

}
I,ϕ,η,ξ

‖v−v̂.s−ŝ,ε−ε̂ = ‖
{
φ, g

}
I,ϕ,η1,ξ1

‖v̄−ˆ̄v,s−ŝ,ε−ε̂

≤ c̄G

aδ̄
= 36

c̄G

ad̄
(D.147)

since g depends on η, ξ only via η1 = (η1, · · · , ηm1
), ξ1 = (ξ1, · · · , ξm1

). It is
sufficient to consider the case

e−Ks/6 +
(5
6

)K ≤ 18cE

ad

since otherwise the Lemma is proved. In such case, using (D.146) we can write

E1 = ‖f1‖v1,s1,ε1 ≤ 32

23

( 9

32

27cEKs

ad
+

9

64

27cEKs

ad
+

9

32

27c̄GKs

ad̄

) E

Ks

<
E

Ks
max

{27cEKs

ad
,
27c̄GKs

ad̄

}
<

E

4
(D.148)

Let

L :=
[ Ks

12 log 2

]
.

Note that

(D.149) L ≥ 1, Ks > 8L,

since we have assumed Ks ≥ 12. We want to prove that Lemma D.2 can be applied
L times with parameters

(D.150) v̂i =
v

4L
, ε̂i =

ε

4L
, ŝi =

s

4L
, δi =

d

16L2
, i = 1, · · · , L.

For L = 1, this follows from (D.148):

E1 := ‖f1‖v1,s1,ε1 ≤ E

Ks
≤ 2−7 ad

c(Ks)2
< 2−13 aδ1

c

which is implied by the inequality in (D.148) and assumption (D.142). We then
assume L ≥ 2. Suppose, by induction, that, for a certain 1 ≤ i ≤ L − 1, and any
1 ≤ j ≤ i, we have conjugated H to

Hj = h + g + ḡj + fj

where ḡj =
∑j−1

k=0ΠL∩ZTKfk

(D.151) Ej := ‖fj‖vj ,sj ,εj ≤ min
{E

4j
, 2−6 aδj

c

}
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where v̂0, ŝ0, ε̂0 are as above, v0 := v, s0 := s, ε0 := ε and vj = vj−1−2v̂j−1. Then
by Lemma D.2, on the domain Wvj+1,sj+1,εj+1

, we fined a real-analytic transforma-
tion Φi = Xφi

, which conjugates Hi to

Hi+1 = h + g + ḡi+1 + fi+1

where ḡi+1 = ḡi + ΠL∩Kfi =
∑i

k=0 ΠL∩ZTKfk. We prove that (D.151) is satisfied
for j = i+1. Using3 the assumption on the right in (D.146), (D.148), the inequality
for Ks in (D.149) and the definition of δi in (D.150), we have

‖
{
ḡi, φi

}
‖vi−v̂i,si−ŝi,εi−ε̂i ≤

[ c

aδi

(
E1 +

E

L

)]
Ei ≤

[ c

aδi

E

Ks
+

c

aδi

E

L

]
Ei <

Ei

32
.

Moreover, by a similar argument as in (D.147) and since g is actually real-analytic
in the larger domain

Wv̄,s,ε ⊃ Wv̄i−ˆ̄vi+v̄,si−ŝi+ŝ,εi−ε̂i+ε̂,

we have

‖
{
g, φi

}
‖vi−v̂i,si−ŝi,εi−ε̂i = ‖

{
g, φi

}
‖v̄i−ˆ̄vi,si−ŝi,εi−ε̂i ≤

c̄Ei

aδ̄i

G

L
<

Ei

64
,

where

δ̄i := min{r̂iŝi, ¯̂ρi ˆ̄ρ′i} =
d̄

16L2
, i = 1, · · · , L.

Then we find4

Ei+1 = ‖fi+1‖vi+1,si+1,εi+1
≤ (1− cEi

aδ1
)−1

[cEi

aδ1
+ e−Kŝi +

(εi − ε̂i
εi

)K]
Ei

+ (1− cEi

aδ1
)−1‖

{
ḡi, φi

}
‖vi−v̂i,si−ŝi,εi−ε̂i

+ (1− cEi

aδ1
)−1‖

{
g, φi

}
‖v̄i−¯̂vi,si−ŝi,εi−ε̂i

≤ 64

63

[ 1

64
+

1

8
+ (

4

7
)16 +

1

32
+

1

64

]
Ei

<
Ei

4
< E1 < 2−6 aδ1

c
.

since i ≥ 1. Then we let Φ := Φ0 ◦ · · · ◦ ΦL, H∗ := H ◦ Φ = h+ g + ḡL+1 + fL+1,
g∗ := gL+1, f∗ := fL+1 and we have, by telescopic inequalities and (D.148),

‖g∗ −ΠL∩KTKf‖v/6,s/6,ε/6 =

L∑
i=1

‖ΠL∩KTKfi‖ ≤
L∑

i=1

Ei ≤ E1

L∑
i=1

1

4i−1

=
4

3
E1 ≤ (

27cE

ad
+

27c̄G

ad̄
)E

3For the proof of inequality ‖
{
gi, φi

}
‖vi−v̂i,si−ŝi,εi−ε̂i ≤ cEi

aδ1

(
E1 +

E
L

)
, compare [31, Proof

of the Normal Form Lemma].
4Since K > 8L and L ≥ 2, one has (1− 3

2L
)K ≤ 1

(1+ 3
2L

)8L
with the r.h.s bounded above by

(4/7)16 (it decreases to e−12 as L → +∞).
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Now we prove (D.143). Let F ∈ Wv̄,s,ε, F−1 := F , Fi := F ◦ Φ0 ◦ · · · ◦ Φi, i = 0,
· · · , L. Then

‖F ◦ Φ− F‖v̄/6,s/6,ε/6 = ‖FL − F‖v̄L+1,sL+1,εL+1

≤
L∑

i=0

‖Fi−1 ◦ Φi − Fi−1‖v̄i+1,si+1,εi+1

≤
L∑

i=0

c̄Ei

aδ̄i

(1− c̄Ei

aδ̄i
)
‖F‖v̄i,si,εi ≤

∑L
i=0

c̄Ei

aδ̄i∏L
i=0(1− c̄Ei

aδ̄i
)
‖F‖v̄,s,ε

≤
L∑

i=0

c̄Ei

aδ̄i
e

5
4

∑L
i=0

c̄Ei
aδ̄i ‖F‖v̄,s,ε ≤

25c̄E0Ks

ad
‖F‖v̄,s,ε

where we have used c̄Ei

aδ̄i
< 1/24 that, for 0 ≤ x ≤ 1/24, log(1− x)−1 < 5

4x and

L∑
i=0

c̄Ei

aδ̄i
=

c̄E0

aδ̄0
+

L∑
i=1

c̄Ei

aδ̄i
≤ 26c̄E0

ad
+

c̄E1

aδ̄1

L∑
i=1

1

4i−1

≤ 26c̄E0

ad
+

4

3

c̄E1

aδ̄1
<

24c̄E0Ks

ad
.

The proof for F ∈ Wv,s,ε is similar. �
Proof of Proposition D.1. For simplicity of notations, we prove Proposition

D.1 in the case ν = � = 1; the generalization to any ν, � being straightforward.
Consider the Hamiltonian

H0(u1, ϕ, p, q) := h(I, p, q) + f1(u1, ϕ, p, q), (u1, ϕ, p, q) ∈ W (1)
v1,s,ε.

To this Hamiltonian let us apply Lemma D.1, with g ≡ 0, so as to conjugate it to

H1 := H0 ◦ Φ1 = h+ g1 + f
(1)
∗1 , (u1, ϕ, p, q) ∈ W

(1)
v1/6,s/6,ε/6

where g1, f
(1)
∗1 correspond to g∗, f∗, hence satisfy

‖f (1)
∗1 ‖v1/6,s/6,ε/6 ≤ e−Ks/6‖f (i)

1 ‖v1,s,ε

‖g1‖v1/6,s/6,ε/6 ≤ 7

6
‖f1‖v1,s,ε

‖g1 −ΠL∩ZTKf1‖v1/6,s/6,ε/6 ≤
27c1 ‖f1‖2v1,s,ε

ad1
Then we have

H(1)(u, ϕ, p, q) := H ◦ Φ1 = H0 ◦ Φ1 +

N∑
j=2

fj ◦ Φ1 = h + g1 + f
(1)
1∗ +

N∑
j=2

f
(1)
j

where f
(1)
j := fj ◦ Φ1. Assume, inductively, that, for some 1 ≤ i ≤ N − 1 and any

1 ≤ j ≤ i we have conjugated H to

H(j)(u, ϕ, p, q) = H ◦ Φ1 ◦ · · · ◦ Φj = h +

j∑
k=1

gk +

j∑
k=1

f
(j)
k∗ +

N∑
k=j+1

f
(j)
k

where
Φj : W

(j)
v/6j ,s/6j ,ε/6j → W

(j−1)
v/6j−1,s/6j−1,ε/6j−1
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transforms

Hj−1 := h +

j−1∑
k=1

gk + f
(j−1)
j

into

Hj−1 ◦ Φj = h +

j∑
k=1

gk + f
(j)
∗j .

The Hamiltonian

Hi(ui+1, ϕ, p, q) := h +
i∑

k=1

gk(uk, ϕ, p, q) + f
(i)
i+1(ui+1, ϕ, p, q)

is real-analytic for (ui+1, ϕ, p, q) ∈ W
(i+1)
vi+1/6i,s/6i,ε/6i

and satisfies the assumptions

of Lemma D.1, with N̄ = i. Then one can find Φi+1 : W
(i+1)
vi+1/6i+1,s/6i+1,ε/6i+1 →

W
(i+1)
vi+1/6i,s/6i,ε/6i

such that Hi ◦ Φi+1 = h +
∑i+1

k=1 gk + f
(i+1)
∗i+1 , where

‖f (i+1)
∗i+1 ‖vi+1/6i+1,s/6i+1,ε/6i+1

≤ e−Ks/6i+1‖f (i)
i+1‖vi+1/6i,s/6i,ε/6i

≤
(9
8

)i
e−Ks/6i+1‖fi+1‖vi+1,s,ε

‖gi+1‖vi+1/6i+1,s/6i+1,ε/6i+1

≤ 7

6
‖f (i)

i+1‖vi+1/6i,s/6i,ε/6i ≤
7

6

(9
8

)i‖fi+1‖vi+1,s,ε

‖gi+1 −ΠL∩ZTKfi+1‖vi+1/6i+1,s/6i+1,ε/6i+1

≤ ‖gi+1 −ΠL∩ZTKf
(i)
i+1‖vi+1/6i+1,s/6i+1,ε/6i+1

+ ‖ΠL∩ZTKf
(i)
i+1 −ΠL∩ZTKfi+1‖vi+1/6i+1,s/6i+1,ε/6i+1

≤ ‖gi+1 −ΠL∩ZTKf
(i)
i+1‖vi+1/6i+1,s/6i+1,ε/6i+1

+ ‖f (i)
i+1 − fi+1‖vi+1/6i+1,s/6i+1,ε/6i+1

≤ (
9

8
)2i

27ci+1 ‖fi+1‖2vi+1,s,ε

adi+1

+
7

6
(
9

8
)2i

i∑
j=1

27cj ‖fj‖vj ,s,ε
adj

‖fi+1‖vi+1,s,ε

+

i∑
k=1

(
9

8
)i−k 2

4ck‖fk‖vk,s,εKs

adk
‖fi+1‖vi+1,s,ε
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with f
(i+1)
k∗ := f

(i)
k∗ ◦Φi+1 for 1 ≤ k ≤ i+1 and f

(i+1)
k := f

(i)
k ◦Φi+1 for i+2 ≤ k ≤ N .

Then we find

H(i+1) := H(i) ◦ Φi+1 = (h +

i∑
k=1

gk +

i∑
k=1

f
(i)
k∗ +

N∑
k=i+1

f
(i)
k ) ◦ Φi+1

= Hi ◦ Φi+1 + (

i∑
k=1

f
(i)
k∗ +

N∑
k=i+2

f
(i)
k ) ◦ Φi+1

= h +
i+1∑
k=1

gk +
i+1∑
k=1

f
(i+1)
k∗ +

N∑
k=i+2

f
(i+1)
k

and hence, after N steps,

H(N) := H ◦ Φ1 · · · ◦ ΦN = h +
N∑

k=1

gk +
i+1∑
k=1

f
(N)
k∗

satisfies the thesis of Proposition D.1. �

D.2. A slightly-perturbed integrable system

The following result is well known in the literature of close-to be integrable
systems, hence its proof is omitted. Note that it deals with an integrable system,
close to another integrable one.

Theorem D.1. One can find a number c0 such that, for any real-analytic,
one-dimensional, system

H(P,Q) = h(
P 2 +Q2

2
) + f(P,Q) (P,Q) ∈ B = B2

ε (0) ⊂ C2

and any 0 < ε̄ < ε, such that

(D.152) inf
B2

ε

|∂h| ≥ a, sup
B2

ε

|f | ≤ e,
1

c0

e

aε̄2
< 1,

one can find a real-analytic transformation

φ∗ : (P∗, Q∗) ∈ B2
ε−ε̄ → (P,Q) ∈ B2

ε

which conjugates H to a function H∗ = H ◦ φ∗ depending only on
P 2

∗+Q2
∗

2 . The as-
sertion can be extended to the case that h, f are functions of other canonical coor-

dinates (P ′, Q′, y, x), depending on them only via Y = (y,
P ′

1
2+Q′

1
2

2 , · · · , P ′
m

2+Q′
m

2

2 ),

with y ∈ Yρ, (P ′
j , Q

′
j) ∈ B2

ε′j
. In this case, letting (P∗, Q∗) → φ∗(P∗, Q∗; Y) the

transformation obtained for any fixed value of Y, there exists a canonical, real-
analytic, transformation Φ∗ of the form

Φ∗ : (P,Q) = φ∗(P∗, Q∗; Y∗) y = y∗, x = x∗+ϕ(Y∗), P
′
j+iQ′

j = eiψj(Y∗)(P ′
∗j+iQ′

∗j)

which conjugates H to a function H∗ = H ◦ Φ∗ depending only on
P 2

∗+Q2
∗

2 and Y∗.
In this case, the functions ϕj, ψj verify

|ϕj | ≤
1

c0

e

aρj
, |ψj | ≤

1

c0

e

aε′j
2 .
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APPENDIX E

More on the geometrical structure of the
P-coordinates, compared to Deprit’s coordinates

In this chapter we aim to point out differences and similarities between the
P-coordinates and the coordinates denoted as (Ψ,Γ,Λ, ψ, γ, �) in [7,9,27].

We recall that the “planetary” coordinates (Ψ,Γ,Λ, ψ, γ, �) may be derived (after a
canonical transformation) from a more general set of canonical coordinates studied
by A. Deprit. In their planetary form, the coordinates (Ψ,Γ,Λ, ψ, γ, �) have been
rediscovered1 by the author during her PhD, under the strong motivation of their
application to the planetary problem [9,27].

Let us recall their definition2, in the spirit of Kepler maps (Definition 2.2).

Let C
(i)
E , S

(i)
E be as in (2.8) of Chapter 2 and define the Dep-nodes

ni :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k(3) × S

(1)
E i = 0

S
(i)
E × S

(i+1)
E = −S

(i)
E × C

(i)
E i = 1, · · · , n− 1.

−nn−1 i = n

(E.153)

Then let

EDep :=
{
((E1, · · · ,En) ⊂ E3×· · ·×E3) : 0 < ei < 1, ni−1 = 0 ∀ i = 1, · · · , n

}
.

On EDep, define the map

τ−1
Dep : (E1, · · · ,En) ∈ EDep → XDep ∈ XDep = τ−1

Dep(EDep)

where

XDep = (Ψ,Γ,Λ, ψ, γ) ∈ Rn × Rn
+ × Rn

+ × Tn × Tn

where

Ψ = (Ψ−1,Ψ0, Ψ̄) ∈ R+ × R+ × Rn−2
+ ψ = (ψ−1, ψ0, Ψ̄) ∈ T× T× Tn−2

Γ = (Γ1, · · · ,Γn) ∈ Rn
+ γ = (γ1, · · · , γn) ∈ Tn

Λ = (Λ1, · · · ,Λn) ∈ Rn
+

with

Ψ̄ = (Ψ1, · · · ,Ψn−2) ψ̄ = (ψ1, · · · , ψn−2)

1The proof of their symplectic character found in [27] has been published in [7]. Another
proof has been given in [36].

2For sake of uniformity, we use slightly different notations with respect to the ones in [7],
actually closer to the ones of the paper [12]).

87
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are defined as follows. The coordinates Λj are as in (2.11), while (Ψ,Γ, ψ, γ) are
defined as

Ψi−2 =

⎧⎪⎨⎪⎩
Z := S

(1)
E · k(3)

|S(i)E |
ψi−2 =

⎧⎨⎩
ζ := αk(3)(k(1), n0)

α
S
(i−1)
E

(ni−2, ni−1)

i = 1

2 ≤ i ≤ n

Γi := |C(i)
E | γi := α

C
(i)
E
(ni, P

(i)) 1 ≤ i ≤ n

(E.154)

Then τ−1
Dep is a bijection [7,12,27,36].

Definition E.1. We call Deprit’s map, or Dep map, the Kepler map

Dep : Dep = (XDep, �) ∈ DDep = XDep × Tn → (y, x) ∈ R3n × R3n

associated to τDep.

Comparing P and Dep

a) Both the P andDep-coordinates reduce the system to (3n−2) degrees of freedom.
They share the following three coordinates (two actions and an angle)

Ψ−1 = Z = Θ0, ψ−1 = ζ = ϑ0, Ψ0 = G = χ0

which are integrals of the system. As a consequence, the coordinates (Z, ζ) and,
respectively,

g := ψ0, g := κ0

do not appear into the Hamiltonian. Note that Dep and P share also the fixed
node n0 = ν1.

b) The angle g for the set Dep describes the motion of the node n1 in (E.153) and,
by the cyclic character of g, this motion is negligible. Its counterpart in the set P
is the node n1 in (2.10), the negligible motion of which is governed by g.

c) Compare the diagrams in (2.20) and (2.21) with the two ones associated to the
Dep-map, respectively:
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n0 n1

... nn−2 nn−1

⇑ ⇑
... ⇑ ⇑

k(3) → S
(1)
E → S

(2)
E → · · · → S

(n−1)
E → S

(n)
E = C

(n)
E

↓ ↓
... ↓

C
(1)
E C

(2)
E

... C
(n−1)
E

⇓ ⇓
... ⇓

−n1 −n2

... −nn−1

and

F0 → F∗
1 → · · · → F∗

i → · · · → F∗
n = G∗

n

↓
... ↓

... ↓

G∗
1 G∗

i G∗
n

where

F∗
i = (ni−1, ·, S(i)E ) G∗

i = (−ni, ·,C(i)
E ) i = 1, · · · , n.

Note that, analogously to (2.20), ni in (E.153) is the skew-product of its two pre-
vious vectors in the tree (2.20).

d) While Dep is not defined for the planar problem, P is, and, in that case, the
coordinates (Θ, χ, ϑ, κ) in (2.11) reduce to3

Θi =

⎧⎨⎩ χ0

0
ϑi =

⎧⎨⎩ 0

π
κi =

⎧⎪⎨⎪⎩
argP (1) − π

2

̂P (i)P (i+1) + π

i = 0

i = 1, · · · , n− 1

χi =

n∑
j=i+1

‖C(j)
E ‖

while the (Λ, �) remain unchanged.

e) The P-map is singular when some eccentricity ei vanishes or some of the following
relations hold

S
(1)
E ‖ k(3) P (i) ‖ S

(i)
E S

(i+1)
E ‖ P (i).

3Here by “planar case” we mean C
(1)
E ‖ · · · ‖ C

(n)
E ‖ k(3). Note that, to be more precise, ϑ0

and κ0 would not exist in that case (since ν1 = 0). However, since they are both cyclic angles, we

can fix them to an arbitrary value. The choice above corresponds to replace ν1 with k(1).
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The former of such relations is negligible, while the other ones have no physical
meaning. Therefore, the only physically relevant singularities of P are for zero-
eccentric motions.
The Dep-map is singular when some eccentricity ei vanishes or some of the following
relations hold

S
(1)
E ‖ k(3) S

(i+1)
E ‖ S

(i)
E i = 1, · · · , n− 1.

The configurations S
(i)
E ‖ S

(i+1)
E have a relevant physical meaning, since the planar

case corresponds to the intersection of all such configurations. A complete regular-
ization of all the singularities of the Dep-map has been obtained in [9,27], which
allowed to overcome the problem of the rotational degeneracy (see [8] for informa-
tion) of the planetary problem and to construct the Brkhoff normal form of it. It
works at expenses of one extra-degree of freedom.

f) The Euclidean lengths ‖C(i)
E ‖ of the planets’ angular momenta are the actions Γi

among Dep-coordinates: see (E.154). In terms of the P-coordinates they have more
involved expressions in (2.17). As mentioned in the previous item, this makes more
difficult regularizing singular configurations with zero eccentricity. The formula
simplifies in the planar case:

‖C(i)
E ‖ =

⎧⎨⎩ |χi−1 − χi| i = 1, · · · , n− 1

χn−1 i = n

where |w| :=
√
w2, for a given w ∈ C.

g) Reflections are not well described in the framework of the Dep-reduction: Com-
pare, e.g., [29, Section 4.4]. Instead, in the framework of the P-reduction, the
transformation

(Θ̄, ϑ̄) → (−Θ̄, 2kπ − ϑ̄) k ∈ Zn−1

corresponds to changing the sign of the second component of any y(i) and any x(i).
Therefore, any of the points

(Θ̄, ϑ̄) = (0, kπ) k ∈ Zn−1

is an equilibrium point for the Hamiltonian, corresponding to a co-planar configu-
ration. Compare Proposition 2.2.
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[16] J. Féjoz. On ”Arnold’s theorem” in celestial mechanics -a summary with an appendix on the
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[35] F. Tisserand. Traité de mécanique céleste. Gauthier-Villars, I, 1889-1896
[36] L. Zhao, Partial reduction and Delaunay/Deprit variables, Celestial Mech. Dynam. As-

tronom. 120 (2014), no. 4, 423–432, DOI 10.1007/s10569-014-9584-1. MR3277249

http://www.ams.org/mathscinet-getitem?mr=0068687
http://www.ams.org/mathscinet-getitem?mr=1364477
http://www.ams.org/mathscinet-getitem?mr=1935017
http://www.ams.org/mathscinet-getitem?mr=0147741
http://www.ams.org/mathscinet-getitem?mr=3146595
http://www.ams.org/mathscinet-getitem?mr=3343379
http://www.ams.org/mathscinet-getitem?mr=1221713
http://www.ams.org/mathscinet-getitem?mr=1508550
http://www.ams.org/mathscinet-getitem?mr=1364478
http://www.ams.org/mathscinet-getitem?mr=1843664
http://www.ams.org/mathscinet-getitem?mr=3277249


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Editorial Information

To be published in the Memoirs, a paper must be correct, new, nontrivial, and sig-
nificant. Further, it must be well written and of interest to a substantial number of
mathematicians. Piecemeal results, such as an inconclusive step toward an unproved ma-
jor theorem or a minor variation on a known result, are in general not acceptable for
publication.

Papers appearing in Memoirs are generally at least 80 and not more than 200 published
pages in length. Papers less than 80 or more than 200 published pages require the approval
of the Managing Editor of the Transactions/Memoirs Editorial Board. Published pages are
the same size as those generated in the style files provided for AMS-LATEX or AMS-TEX.

Information on the backlog for this journal can be found on the AMS website starting
from http://www.ams.org/memo.

A Consent to Publish is required before we can begin processing your paper. After
a paper is accepted for publication, the Providence office will send a Consent to Publish
and Copyright Agreement to all authors of the paper. By submitting a paper to the
Memoirs, authors certify that the results have not been submitted to nor are they un-
der consideration for publication by another journal, conference proceedings, or similar
publication.

Information for Authors

Memoirs is an author-prepared publication. Once formatted for print and on-line
publication, articles will be published as is with the addition of AMS-prepared frontmatter
and backmatter. Articles are not copyedited; however, confirmation copy will be sent to
the authors.

Initial submission. The AMS uses Centralized Manuscript Processing for initial sub-
missions. Authors should submit a PDF file using the Initial Manuscript Submission form
found at www.ams.org/submission/memo, or send one copy of the manuscript to the follow-
ing address: Centralized Manuscript Processing, MEMOIRS OF THE AMS, 201 Charles
Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS,
indicate that it is for Memoirs and include the name of the corresponding author, contact
information such as email address or mailing address, and the name of an appropriate
Editor to review the paper (see the list of Editors below).

The paper must contain a descriptive title and an abstract that summarizes the article
in language suitable for workers in the general field (algebra, analysis, etc.). The descrip-
tive title should be short, but informative; useless or vague phrases such as “some remarks
about” or “concerning” should be avoided. The abstract should be at least one com-
plete sentence, and at most 300 words. Included with the footnotes to the paper should
be the 2010 Mathematics Subject Classification representing the primary and secondary
subjects of the article. The classifications are accessible from www.ams.org/msc/. The
Mathematics Subject Classification footnote may be followed by a list of key words and
phrases describing the subject matter of the article and taken from it. Journal abbrevi-
ations used in bibliographies are listed in the latest Mathematical Reviews annual index.
The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To
help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool
for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. The AMS encourages electronically pre-
pared manuscripts, with a strong preference for AMS-LATEX. To this end, the Society
has prepared AMS-LATEX author packages for each AMS publication. Author packages
include instructions for preparing electronic manuscripts, samples, and a style file that gen-
erates the particular design specifications of that publication series. Though AMS-LATEX
is the highly preferred format of TEX, author packages are also available in AMS-TEX.

Authors may retrieve an author package for Memoirs of the AMS from www.ams.org/

journals/memo/memoauthorpac.html. The AMS Author Handbook is available in PDF
format from the author package link. The author package can also be obtained free

www.ams.org/submission/memo
www.ams.org/msc/
www.ams.org/msnhtml/serials.pdf
www.ams.org/mrlookup/
www.ams.org/journals/memo/memoauthorpac.html
www.ams.org/journals/memo/memoauthorpac.html


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

of charge by sending email to tech-support@ams.org or from the Publication Division,
American Mathematical Society, 201 Charles St., Providence, RI 02904-2294, USA. When
requesting an author package, please specify AMS-LATEX or AMS-TEX and the publication
in which your paper will appear. Please be sure to include your complete mailing address.

After acceptance. The source files for the final version of the electronic manuscript
should be sent to the Providence office immediately after the paper has been accepted for
publication. The author should also submit a PDF of the final version of the paper to the
editor, who will forward a copy to the Providence office.

Accepted electronically prepared files can be submitted via the web at www.ams.org/
submit-book-journal/, sent via FTP, or sent on CD to the Electronic Prepress Depart-
ment, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294
USA. TEX source files and graphic files can be transferred over the Internet by FTP to
the Internet node ftp.ams.org (130.44.1.100). When sending a manuscript electronically
via CD, please be sure to include a message indicating that the paper is for the Memoirs.

Electronic graphics. Comprehensive instructions on preparing graphics are available
at www.ams.org/authors/journals.html. A few of the major requirements are given
here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics
originated via a graphics application as well as scanned photographs or other computer-
generated images. If this is not possible, TIFF files are acceptable as long as they can be
opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the
use of any lines thinner than 0.5 points in width. Many graphics packages allow the user
to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed
on a typical laser printer. However, when produced on a high-resolution laser imagesetter,
hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this
range are too light or too dark to print correctly. Variations of screens within a graphic
should be no less than 10%.

Any graphics created in color will be rendered in grayscale for the printed version unless
color printing is authorized by the Managing Editor and the Publisher. In general, color
graphics will appear in color in the online version.

Inquiries. Any inquiries concerning a paper that has been accepted for publication
should be sent to memo-query@ams.org or directly to the Electronic Prepress Department,
American Mathematical Society, 201 Charles St., Providence, RI 02904-2294 USA.

www.ams.org/submit-book-journal/
www.ams.org/submit-book-journal/
www.ams.org/authors/journals.html


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Editors

This journal is designed particularly for long research papers, normally at least 80 pages in
length, and groups of cognate papers in pure and applied mathematics. Papers intended for
publication in the Memoirs should be addressed to one of the following editors. The AMS uses
Centralized Manuscript Processing for initial submissions to AMS journals. Authors should follow
instructions listed on the Initial Submission page found at www.ams.org/memo/memosubmit.html.

1. GEOMETRY, TOPOLOGY & LOGIC
Coordinating Editor: Richard Canary, Department of Mathematics, University of Michigan, Ann
Arbor, MI 48109-1043 USA; e-mail: canary@umich.edu

Algebraic topology, Michael Hill, Department of Mathematics, University of California Los Angeles,
Los Angeles, CA 90095 USA; e-mail: mikehill@math.ucla.edu

Differential geometry, Chiu-Chu Melissa Liu, Department of Mathematics, Columbia University,
New York, NY 10027 USA; e-mail: ccliu@math.columbia.edu

Logic, Noam Greenberg, School of Mathematics and Statistics, Victoria University of Wellington,
Wellington 6140, New Zealand; e-mail: greenberg@msor.vuw.ac.nz

Low-dimensional topology and geometric structures, Richard Canary

2. ALGEBRA AND NUMBER THEORY
Coordinating Editor: Henri Darmon, Department of Mathematics, McGill University, Montreal,
Quebec H3A 0G4, Canada; e-mail: darmon@math.mcgill.ca

Algebra, Michael Larsen, Department of Mathematics, Rawles Hall, Indiana University, 831 E 3rd
St., Bloomington, IN 47405 USA; e-mail: mjlarsen@indiana.edu

Algebraic geometry, Lucia Caporaso, Department of Mathematics and Physics, Roma Tre
University, Largo San Leonardo Murialdo, I-00146 Rome, Italy; e-mail: LCedit@mat.uniroma3.it

Arithmetic geometry, Ted C. Chinburg, Department of Mathematics, University of Pennsylvania,
Philadelphia, PA 19104-6395 USA; e-mail: ted@math.upenn.edu

Commutative algebra, Irena Peeva, Department of Mathematics, Cornell University, Ithaca, NY
14853 USA; e-mail: irena@math.cornell.edu

Number theory, Henri Darmon

3. GEOMETRIC ANALYSIS & PDE
Coordinating Editor: Tatiana Toro, Department of Mathematics, University of Washington, Box
354350, Seattle, WA 98195-4350 USA; e-mail: toro@uw.edu

Geometric analysis, Tatiana Toro

Harmonic analysis and partial differential equations, Monica Visan, Department of Math-
ematics, University of California Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095 USA;
e-mail: visan@math.ucla.edu

Partial differential equations and functional analysis, Alexander A. Kiselev, Department of
Mathematics, MS-136, Rice University, 6100 Main Street, Houston, TX 77005 USA; e-mail: kiselev@
rice.edu

Real analysis and partial differential equations, Wilhelm Schlag, Department of Mathematics,
The University of Chicago, 5734 South University Avenue, Chicago, IL 60637 USA; e-mail: schlag@
math.uchicago.edu

4. ERGODIC THEORY, DYNAMICAL SYSTEMS & COMBINATORICS
Coordinating Editor: Vitaly Bergelson, Department of Mathematics, Ohio State University, 231 W.
18th Avenue, Columbus, OH 43210 USA; e-mail: vitaly@math.ohio-state.edu

Algebraic and enumerative combinatorics, Jim Haglund, Department of Mathematics, Univer-
sity of Pennsylvania, Philadelphia, PA 19104 USA; e-mail: jhaglund@math.upenn.edu

Probability theory, Robin Pemantle, Department of Mathematics, University of Pennsylvania, 209
S. 33rd Street, Philadelphia, PA 19104 USA; e-mail: pemantle@math.upenn.edu

Dynamical systems and ergodic theory, Ian Melbourne, Mathematics Institute, University of
Warwick, Coventry CV4 7AL, United Kingdom; e-mail: I.Melbourne@warwick.ac.uk

Ergodic theory and combinatorics, Vitaly Bergelson

5. ANALYSIS, LIE THEORY & PROBABILITY
Coordinating Editor: Stefaan Vaes, Department of Mathematics, Katholieke Universiteit Leuven,
Celestijnenlaan 200B, B-3001 Leuven, Belgium; e-mail: stefaan.vaes@wis.kuleuven.be

Functional analysis and operator algebras, Stefaan Vaes

Harmonic analysis and complex analysis, Malabika Pramanik, Department of Mathematics,
University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia V6T 1Z2,
Canada; e-mail: malabika@math.ubc.ca

Langlands conjectures, Marie-France Vigneras, 8 Rue des Ecoles, 75005 Paris, France; e-mail:
marie-france.vigneras@imj-prg.fr

Probability and statistics, Patrick J. Fitzsimmons, Department of Mathematics, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112 USA; e-mail: pfitzsim@ucsd.edu

All other communications to the editors, should be addressed to the Managing Editor, ALE-
JANDRO ADEM, Department of Mathematics, The University of British Columbia, Room 121, 1984
Mathematics Road, Vancouver, B.C., Canada V6T 1Z2; e-mail: adem@math.ubc.ca

www.ams.org/memo/memosubmit.html


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SELECTED PUBLISHED TITLES IN THIS SERIES

1212 Roelof Bruggeman, Youngju Choie, and Nikolaos Diamantis, Holomorphic
Automorphic Forms and Cohomology, 2018

1211 Shouhei Honda, Elliptic PDEs on Compact Ricci Limit Spaces and Applications, 2018

1210 Zhou Gang, Dan Knopf, and Israel Michael Sigal, Neckpinch Dynamics for
Asymmetric Surfaces Evolving by Mean Curvature Flow, 2018
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