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We consider a Dirichlet problem in a planar domain with a hole of diameter 
proportional to a real parameter ε and we denote by uε the corresponding solution. 
The behavior of uε for ε small and positive can be described in terms of real analytic 
functions of two variables evaluated at (ε, 1/ log ε). We show that under suitable 
assumptions on the geometry and on the boundary data one can get rid of the 
logarithmic behavior displayed by uε for ε small and describe uε by real analytic 
functions of ε. Then it is natural to ask what happens when ε is negative. The case of 
boundary data depending on ε is also considered. The aim is to study real analytic 
families of harmonic functions which are not necessarily solutions of a particular 
boundary value problem.

© 2014 Published by Elsevier Inc.

. Introduction

This paper continues the work begun by the authors in [1]. Indeed, in [1], the case of harmonic function in 
 perforated domain of Rn, with n ≥ 3, has been investigated. Here instead we focus on the two-dimensional 
ase. We begin by introducing some notation. We fix once for all

α ∈ ]0, 1[.

hen we fix two sets Ωo and Ωi in the two-dimensional Euclidean space R2. The letter ‘o’ stands for 
outer domain’ and the letter ‘i’ stands for ‘inner domain’. We assume that Ωo and Ωi satisfy the following 
ondition.
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Ωo and Ωi are open bounded connected subsets of R2 of

class C1,α such that R
2 \ clΩo and R

2 \ clΩi are connected (1)

and such that the origin 0 of R2 belongs both to Ωo and Ωi.

Here and in the sequel cl denotes the closure. For the definition of functions and sets of the usual Schauder
classes C0,α and C1,α, we refer for example to Gilbarg and Trudinger [5, §6.2]. We note that condition (1)
implies that Ωo and Ωi have no holes and that there exists a real number ε0 such that

ε0 > 0 and ε clΩi ⊆ Ωo for all ε ∈ ]−ε0, ε0[.

Then we denote by Ω(ε) the perforated domain defined by

Ω(ε) ≡ Ωo \
(
ε clΩi

)
∀ε ∈ ]−ε0, ε0[.

A simple topological argument shows that Ω(ε) is an open bounded connected subset of R2 of class C1,α

for all ε ∈ ]−ε0, ε0[ \ {0}. Moreover, the boundary ∂Ω(ε) of Ω(ε) has exactly the two connected components
∂Ωo and ε∂Ωi, for all ε ∈ ]−ε0, ε0[. We also note that Ω(0) = Ωo \ {0}.

Now let go ∈ C1,α(∂Ωo) and gi ∈ C1,α(∂Ωi). For all ε ∈ ]−ε0, ε0[ \ {0}, let uε be the unique function of
C1,α(clΩ(ε)) such that

⎧⎨
⎩

Δuε = 0 in Ω(ε),
uε(x) = go(x) for x ∈ ∂Ωo,

uε(x) = gi(x/ε) for x ∈ ε∂Ωi.

(2)

Let u0 be the unique function of C1,α(clΩo) such that
{

Δu0 = 0 in Ωo,

u0(x) = go(x) for x ∈ ∂Ωo.
(3)

We fix a point p in Ωo \ {0} and take εp ∈ ]0, ε0[ such that p ∈ Ω(ε) for all ε ∈ ]−εp, εp[. Then uε(p) is
defined for all ε ∈ ]−εp, εp[ and we can ask, for example, the following question.

What can be said of the function from ]0, εp[ to R which takes ε to uε(p)?

Questions of this type are typical in the frame of asymptotic analysis and are usually investigated by means
of asymptotic expansion methods (see for example Maz’ya, Nazarov, and Plamenevskij [13, §2.4.1]). The
techniques of asymptotic analysis usually aim at representing the behavior of uε(p) as ε → 0+ in terms
of regular functions of ε plus a remainder which is smaller than a known infinitesimal function of ε. In
this paper, instead, we adopt the functional analytic approach proposed by Lanza de Cristoforis. By such
an approach, one can prove that there exist εp ∈ ]0, ε0], εp < 1, and a real analytic function Up from
]−εp, εp[ × ]1/ log εp, −1/ log εp[ to R such that

uε(p) = Up[ε, 1/ log ε] ∀ε ∈ ]0, εp[ (4)

and that u0(p) = Up[0, 0] (cf., e.g., Lanza de Cristoforis [10]). We observe that the logarithmic behavior
displayed by uε for ε small only arises in dimension two and does not appear in higher dimensions (cf., e.g.,
Lanza de Cristoforis [10]). Also, if instead of considering a Dirichlet boundary value problem we considered
a mixed boundary value problem with a Dirichlet condition in the inner component of the boundary and
a Neumann condition in the outer component, then one can prove that the logarithmic behavior appears
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nly for Neumann data with non-zero integral (cf. Maz’ya, Nazarov, and Plamenevskij [13, §2.4.2]). Such a 
ituation is convenient because we have a condition on the boundary data which ensures that uε will not 
isplay a logarithmic behavior. The first purpose of this paper is to find a similar condition also for the 
irichlet problem. Namely, we want to find a condition on go and gi which ensures that for all p ∈ Ωo \ {0}

he function uε(p) can be expanded into powers of ε, i.e., that

uε(p) = Vp[ε] ∀ε ∈ ]0, εp[ (5)

here Vp is a real analytic function from ]−εp, εp[ to R. In Theorem 3.6 we exhibit such a condition (see 
lso condition (c) here below). Moreover, we show that the existence of at least one point p for which (5)
olds is equivalent to the fact that it holds for all the points p ∈ Ωo \ {0}.
Then we observe that both the left hand side uε(p) and the right hand side Vp[ε] of equality (5) are 

efined for all ε ∈ ]−εp, εp[. However, the validity of the equality is stated only for ε positive. Thus it is 
atural to ask the following question.

What happens to equality uε(p) = Vp[ε] for ε negative?

oreover, one would like to understand if, for ε negative, Vp[ε] is related to the value attained at the point 
of some harmonic function defined on the set Ω(ε). In Theorem 3.6 we answer by proving that the validity 
f (5) for ε positive implies that

uε(p) = Vp[ε] ∀ε ∈ ]−εp, εp[. (6)

lso, the validity of (5) for at least one point p implies the validity of (6) for all the points p ∈ Ωo \ {0}. We 
tress that in order to prove (6) it is not sufficient to verify an analog of (5) for ε negative, namely it is not 
ufficient to show that there exists a real analytic function V −

p from ]−εp, εp[ to R such that uε(p) = V −
p [ε]

or all ε ∈ ]−εp, 0[. The reason is that the functions V −
p and Vp may not coincide in a neighborhood of 0

nd a gluing argument may fail to be applicable, as it actually occurs in dimension n ≥ 3 odd when the 
oundary data are not trivial (cf. [1]). Furthermore, equality (6) together with some symmetry assumptions 
nsuring that uε = u−ε implies that uε(p) can be represented in terms of a convergent power series of ε2. As 
ointed out in [1], this is also what happens when the dimension n is even and bigger than or equal to 4, 
n contrast to the case of odd dimension.

Our strategy is the following. First we apply a functional analytic approach which stems from that of 
anza de Cristoforis [10] to investigate equality (4). We consider also the case of boundary data which 
epend real analytically on (ε, 1/ log |ε|). Moreover, we analyze what we call the ‘macroscopic’ behavior of 
he family {uε}ε∈]−ε0,ε0[. Indeed, if ΩM ⊆ Ωo is open, and 0 /∈ clΩM , and εM ∈ ]0, ε0], εM < 1, is such that 
lΩM ∩ (ε clΩi) = ∅ for all ε ∈ ]−εM , εM [, then clΩM ⊆ clΩ(ε) for all ε ∈ ]−εM , εM [. Thus it makes sense 
o consider the restriction uε|cl ΩM

for all ε ∈ ]−εM , εM [. In particular, it makes sense to consider the map 
rom ]−εM , εM [ to C1,α(clΩM ) which takes ε to uε|cl ΩM

. In Theorem 3.1 below we show that there exist 
n open neighborhood UM of {(ε, 1/ log |ε|) : ε ∈ ]−εM , εM [ \ {0}} ∪ {(0, 0)} in R2 and a real analytic map 

M from UM to C1,α(clΩM ) such that

uε|cl ΩM
= UM [ε, 1/ log |ε|] ∀ε ∈ ]−εM , εM [ \ {0} (7)

for the definition and properties of real analytic maps in Banach space see, e.g., Deimling [3, §15]). Here 
he letter ‘M ’ stands for ‘macroscopic’.

It is worth noting that the real analytic map UM from UM to C1,α(clΩM ) is univocally determined by the 
quality in (7) restricted to the positive interval ]0, εM [ (see Lemma 3.3 below). Moreover, for all fixed ε∗ in 
he negative interval ]−εM , 0[, uε∗ coincides with the unique real analytic extension of UM [ε∗, 1/ log |ε∗|]|ΩM
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to Ω(ε∗). In this sense, the definition of uε for ε negative can be seen as a consequence of the analytic
dependence on ε displayed by uε for ε positive.

Some further consequences of (7) are presented in Proposition 3.4, where we investigate the coefficients
of the power series expansion of UM around (0, 0) under certain symmetry assumptions.

Then we turn to consider the possibility of choosing boundary data go and gi such that the following
condition (a1) holds.

(a1) For all ΩM ⊆ Ωo open and such that 0 /∈ clΩM and all εM ∈ ]0, ε0[ such that clΩM ∩ ε clΩi = ∅ for
all ε ∈ ]−εM , εM [, there exists a real analytic map VM from ]−εM , εM [ to C1,α(clΩM ) such that

uε|cl ΩM
= VM [ε] ∀ε ∈ ]−εM , εM [.

Here we are asking to get rid of the logarithmic behavior displayed by uε for ε small. In Theorem 3.6 below
we show that condition (a1) is equivalent to the following condition (b1).

(b1) There exist xo ∈ Ωo \ {0}, εo ∈ ]0, ε0[, and a real analytic map V o from ]−εo, εo[ to R such that
xo ∈ Ω(ε) for all ε ∈ ]−εo, εo[ and

uε

(
xo

)
= V o[ε] ∀ε ∈ ]0, εo[.

As a consequence, either uε(xo) displays a logarithmic behavior for every point xo ∈ Ωo \ {0}, or uε(xo)
does not display a logarithmic behavior for any point xo ∈ Ωo \ {0}. Also, there exists a pair of functions
(ρo[ε], ρi[ε]) ∈ C0,α(∂Ωo) × C0,α(∂Ωi) which depends only on ε, ∂Ωo, and ∂Ωi (cf. Proposition 2.6), such
that (a1) and (b1) are equivalent to the following condition (c).

(c) It holds 
∫
∂Ωo g

oρo[ε] dσ +
∫
∂Ωi g

iρi[ε] dσ = 0 for all ε ∈ ]−ε0, ε0[.

The advantage of condition (c) with respect to (a1) and (b1) is that (c) can be verified on the boundary data
(go, gi) and does not require the knowledge of the solution uε of (2). In some simple cases, one can make such
a condition much more explicit. For example, if go and gi are both constant functions, then condition (c) is
equivalent to the fact that go and gi are identically equal to the same real number (cf. Example 3.7). If both
Ωo and Ωi coincide with the unit ball B2 of R2, then condition (c) is equivalent to 

∫
∂B2

go dσ =
∫
∂B2

gi dσ

(cf. Example 3.8).
We observe that in Theorem 3.6 the case in which the boundary data are given by real analytic functions of

ε is also investigated. Moreover, one can also consider the ‘microscopic’ behavior of the family {uε}ε∈]−ε0,ε0[
near the boundary of the hole. To do so, one denotes by uε(ε ·) the rescaled function which takes x ∈
(1/ε) clΩ(ε) to uε(εx), for all ε ∈ ]−ε0, ε0[ \ {0}. If Ωm ⊆ R

2 \ clΩi is open and bounded, and εm ∈ ]0, ε0],
εm < 1, is such that ε clΩm ⊆ Ωo for all ε ∈ ]−εm, εm[, then it makes sense to consider the map from
]−εm, εm[ to C1,α(clΩm) which takes ε to uε(ε ·)|cl Ωm

. Here the letter ‘m’ stands for ‘microscopic’. Then, by
the equivalence of (a1) and (b1) and by an argument based on the Kelvin transform one can deduce that
the following conditions (a2) and (b2) are equivalent one to the other.

(a2) For all Ωm ⊆ R
2 \ clΩi open and bounded and all εm ∈ ]0, ε0[ such that ε clΩm ⊆ Ωo for all

ε ∈ ]−εm, εm[, there exists a real analytic map Vm from ]−εm, εm[ to C1,α(clΩm) such that

uε(ε ·)|cl Ωm
= Vm[ε] ∀ε ∈ ]−εm, εm[ \ {0}. (8)
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b2) There exist xi ∈ R
2 \ clΩi, εi ∈ ]0, ε0[, and a real analytic function V i from ]−εi, εi[ to R such that 

εxi ∈ Ωo for all ε ∈ ]−εi, εi[ and

uε

(
εxi

)
= V i[ε] ∀ε ∈ ]0, εi[.

e note that we do not require in condition (a2) that the equality in (8) holds for ε = 0. In particular, 
0(0 ·)|cl Ωm

is necessarily a constant function on clΩm, while Vm[0] may be non-constant (see (3)).
Now we can consider families {wε}ε∈]0,ε0[ consisting of functions which are not required to be solutions of 

 particular boundary value problem in Ω(ε), but which satisfy the following conditions (d0), (d1), and (d2).

d0) wε ∈ C1,α(clΩ(ε)) and Δwε = 0 in Ω(ε) for all ε ∈ ]0, ε0[.
d1) For all ΩM ⊆ Ωo open and such that 0 /∈ clΩM there exist ε′M ∈ ]0, ε0[ and a real analytic map WM

from ]−ε′M , ε′M [ to C1,α(clΩM ) such that clΩM ∩ ε clΩi = ∅ for all ε ∈ ]0, ε′M [ and such that

wε|cl ΩM
= WM [ε] ∀ε ∈ ]0, ε′M [.

d2) For all Ωm ⊆ R
2 \ clΩi open and bounded there exist ε′m ∈ ]0, ε0[ and a real analytic map Wm from 

]−ε′m, ε′m[ to C1,α(clΩm) such that ε clΩm ⊆ Ωo for all ε ∈ ]0, ε′m[ and such that

wε(ε ·)|cl Ωm
= Wm[ε] ∀ε ∈ ]0, ε′m[.

e say that {wε}ε∈]0,ε0[ as above is a right real analytic family of harmonic functions on Ω(ε) (see also 
1, §1], where the analogous definition is given for the n-dimensional case with n ≥ 3). Then we say that 
vε}ε∈]−ε0,ε0[ is a real analytic family of harmonic functions on Ω(ε) if

a0) v0 ∈ C1,α(clΩo) and Δv0 = 0 in Ωo, vε ∈ C1,α(clΩ(ε)) and Δvε = 0 in Ω(ε) for all ε ∈ ]−ε0, ε0[ \ {0}

nd in addition {vε}ε∈]−ε0,ε0[ satisfies the conditions in (a1) and (a2) with uε replaced by vε (see also [1, §1], 
here the analogous definition is given for the n-dimensional case with n ≥ 3). Then, by the equivalence 
f (a1) and (b1) and by the equivalence of (a2) and (b2) (which hold also for boundary data depending 
nalytically on ε), we deduce the validity of the following statement.

∗) If n = 2 and if {wε}ε∈]0,ε0[ is a right real analytic family of harmonic functions on Ω(ε), then there exists 
a real analytic family of harmonic functions {vε}ε∈]−ε0,ε0[ on Ω(ε) such that wε = vε for all ε ∈ ]0, ε0[.

e note that an analog of statement (∗) has been proved in [1] in the case of families of harmonic functions 
n a perforated domain of Rn, with n ≥ 4 even. In this sense, one can say that statement (∗) here above 
xtends the validity of the analogous statement (j) in [1, §1] to the two-dimensional case. The case of 
imension n ≥ 3 and odd is also studied in [1], but in this case an analog of statement (∗) does not hold 
nd we have a completely different phenomenon (cf. [1, (jj) of §1 and Thm. 3.2]).

The paper is organized as follows. Section 2 is a section of preliminaries where we introduce some notions of 
otential theory (cf. Subsection 2.1) and we transform the boundary value problem in (2) into an equivalent 
ystem of integral equations on ∂Ωo and ∂Ωi which we analyze by exploiting the implicit function theorem 
cf. Subsections 2.2–2.4). In Section 3 we derive our main results. First we consider in Subsection 3.1 the case 
n which the boundary data of problem (2) are given by real analytic functions evaluated at (ε, 1/ log |ε|) and 
e prove Theorem 3.1, which in particular implies the validity of (7). Then, in Subsection 3.2 we consider 
he case in which the boundary data are given by analytic functions of ε and we prove Theorem 3.6, which 
n particular implies the equivalence of conditions (a1), (b1), and (c), and the validity of statement (∗).
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Finally, we observe that the results of this paper can be exploited in the computation of the power series
expansions of the real analytic maps which describe uε for ε close to 0. In forthcoming papers we will
show that the coefficients of such series can be obtained by a fully constructive method which is rigorously
justified on the basis of the present paper (cf., e.g., [2]).

2. Preliminaries

2.1. Classical notions of potential theory

Let S be the function from R2 \ {0} to R defined by

S(x) ≡ 1
2π log |x| ∀x ∈ R

2 \ {0}.

As is well known, S is a fundamental solution of the Laplace operator on R2.
Let Ω be an open bounded subset of R2 of class C1,α. Let φ ∈ C0,α(∂Ω). Then v[∂Ω, φ] denotes the

single layer potential with density φ. Namely,

v[∂Ω, φ](x) ≡
∫
∂Ω

φ(y)S(x− y) dσy ∀x ∈ R
2,

where dσ denotes the arc length element on ∂Ω. As is well known, v[∂Ω, φ] is a continuous function from
R

2 to R and the restrictions v+[∂Ω, φ] ≡ v[∂Ω, φ]|cl Ω and v−[∂Ω, φ] ≡ v[∂Ω, φ]|R2\Ω belong to C1,α(clΩ)
and C1,α

loc (R2 \Ω), respectively. Here C1,α
loc (R2 \Ω) denotes the space of functions on R2 \Ω which restrict

to a function of C1,α(clO) for all open bounded subsets O of R2 \Ω.
Let ψ ∈ C1,α(∂Ω). Then w[∂Ω, ψ] denotes the double layer potential with density ψ. Namely,

w[∂Ω,ψ](x) ≡ −
∫
∂Ω

ψ(y)νΩ(y) · ∇S(x− y) dσy ∀x ∈ R
2,

where νΩ denotes the outer unit normal to ∂Ω. As is well known, the restriction w[∂Ω, ψ]|Ω extends to
a function w+[∂Ω, ψ] ∈ C1,α(clΩ) and the restriction w[∂Ω, ψ]|R2\cl Ω extends to a function w−[∂Ω, ψ] ∈
C1,α

loc (R2 \Ω).
Let

WΩ [ψ](x) ≡ −
∫
∂Ω

ψ(y)νΩ(y) · ∇S(x− y) dσy ∀x ∈ ∂Ω,

for all ψ ∈ C1,α(∂Ω), and

W ∗
Ω[φ](x) ≡

∫
∂Ω

φ(y)νΩ(x) · ∇S(x− y) dσy ∀x ∈ ∂Ω,

for all φ ∈ C0,α(∂Ω). Then WΩ is a compact operator from C1,α(∂Ω) to itself and W ∗
Ω is a compact operator

from C0,α(∂Ω) to itself (cf., e.g., Schauder [14,15]). The operators WΩ and W ∗
Ω are adjoint one to the other

with respect to the duality on C1,α(∂Ω) × C0,α(∂Ω) induced by the inner product of the Lebesgue space
L2(∂Ω) (cf., e.g., Kress [7, Chap. 4]). Moreover,
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w±[∂Ω,ψ]|∂Ω = ±1
2ψ + WΩ[ψ] ∀ψ ∈ C1,α(∂Ω),

νΩ · ∇v±[∂Ω, φ]|∂Ω = ∓1
2φ + W ∗

Ω[φ] ∀φ ∈ C0,α(∂Ω). (9)

We now introduce some more notation which we shall use in the sequel.
If Ω is an open bounded subset of R2 of class C1,α and X is a subspace of L1(∂Ω), then X0 denotes the 

ubspace of X consisting of those functions f such that 
∫
∂Ω

f dσ = 0.
If O is an open subset of R2 of class C1,α, then RO denotes the set of the functions from O to R which are 

onstant, RO,loc denotes the set of functions from O to R which are constant on each connected component 
f O, (RO)|∂O denotes the set of the functions on ∂O which are traces on ∂O of functions of RO, and 
RO,loc)|∂O denotes the set of the functions on ∂O which are traces on ∂O of functions of RO,loc.

Then one has the following classical lemma (cf., e.g., Folland [4, Chap. 3]).

emma 2.1. Let Ω be an open bounded subset of R2 of class C1,α. Then the following statements hold.

i) The operator from Ker( 1
2I +W ∗

Ω) to Ker(1
2I +WΩ) which takes μ to v[∂Ω, μ]|∂Ω is a linear homeomor-

phism.
ii) Ker(1

2I +WΩ) consists of those functions of (RR2\cl Ω,loc)|∂(R2\cl Ω) which vanish on the boundary of the 
unbounded connected component of R2 \ clΩ.

iii) Ker(−1
2I + WΩ) = (RΩ,loc)|∂Ω.

iv) If φ ∈ Ker(1
2I + W ∗

Ω) and 
∫
∂Ω

φψ dσ = 0 for all ψ ∈ Ker(1
2I + WΩ), then φ = 0.

v) If φ ∈ Ker(−1
2I + W ∗

Ω) and 
∫
∂Ω

φψ dσ = 0 for all ψ ∈ Ker(−1
2I + WΩ), then φ = 0.

efinition 2.2. If ε ∈ ]−ε0, ε0[ \ {0}, we denote by χε the function from ∂Ω(ε) to R defined by

χε(x) ≡
{

0 if x ∈ ∂Ωo,

1 if x ∈ ε∂Ωi.

We observe that χε is a generator of Ker( 1
2I + WΩ(ε)) (cf. Lemma 2.1 (ii)).

.2. The map M and the pair of functions (ρo[ε], ρi[ε])

We introduce in this subsection the pair of functions (ρo[ε], ρi[ε]) which is related to the generator of the 
ne dimensional space Ker(1

2I+W ∗
Ω(ε)) (see Lemma 2.1 (i), (ii) and Proposition 2.4 here below). To do so, we 

efine the map M ≡ (Mo, M i, M c) from ]−ε0, ε0[×C0,α(∂Ωo) ×C0,α(∂Ωi) to C0,α(∂Ωo) ×C0,α(∂Ωi)0 ×R

y setting

Mo
[
ε, ρo, ρi

]
(x) ≡ 1

2ρ
o(x) + W ∗

Ωo

[
ρo
]
(x) +

∫
∂Ωi

ρi(y)νΩo(x) · ∇S(x− εy) dσy ∀x ∈ ∂Ωo,

M i
[
ε, ρo, ρi

]
(x) ≡ 1

2ρ
i(x) −W ∗

Ωi

[
ρi
]
(x) − ε

∫
∂Ωo

ρo(y)νΩi(x) · ∇S(εx− y) dσy ∀x ∈ ∂Ωi,

M c
[
ε, ρo, ρi

]
≡

∫
∂Ωi

ρi dσ − 1,

or all (ε, ρo, ρi) ∈ ]−ε0, ε0[ × C0,α(∂Ωo) × C0,α(∂Ωi).

emark 2.3. Here one has to verify that M has values in the product space C0,α(∂Ωo) ×C0,α(∂Ωi)0×R. By 
tandard properties of integral operators with real analytic kernels and with no singularity and by classical 
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mapping properties of layer potentials, one deduces that M has values in C0,α(∂Ωo) ×C0,α(∂Ωi) ×R (see also
Subsection 2.1). To show that 

∫
∂Ωi M

i[ε, ρo, ρi] dσ = 0 for all (ε, ρo, ρi) ∈ ]−ε0, ε0[×C0,α(∂Ωo) ×C0,α(∂Ωi)
one observes that

∫
∂Ωi

(
1
2ρ

i −W ∗
Ωi

[
ρi
])

dσ = 0

by the orthogonality of Ker(−1
2I + WΩi) = (RΩi)|∂Ωi and of Ran(−1

2I + W ∗
Ωi) (cf. statement (iii) of

Lemma 2.1). Moreover,

∫
∂Ωi

ε

∫
∂Ωo

ρo(y)νΩi(x) · ∇S(εx− y) dσy dσx =
∫

∂Ωi

νΩi(x) · ∇x

( ∫
∂Ωo

ρo(y)S(εx− y) dσy

)
dσx = 0,

where the second equality is trivial for ε = 0 and follows by the divergence theorem for ε ∈ ]−ε0, ε0[ \ {0}.

The following Propositions 2.4 and 2.5 concern the equation M [ε, ρo, ρi] = 0 for ε ∈ ]−ε0, ε0[ \ {0} and
for ε = 0, respectively. A proof can be effected by exploiting the standard theorem on change of variables
in integrals.

Proposition 2.4. Let ε ∈ ]−ε0, ε0[\{0}. Let (ρo, ρi) ∈ C0,α(∂Ωo) ×C0,α(∂Ωi). Let τ ∈ C0,α(∂Ω(ε)) be defined
by

τ(x) ≡
{
ρo(x) if x ∈ ∂Ωo,

|ε|−1ρi(x/ε) if x ∈ ε∂Ωi.

Then M [ε, ρo, ρi] = 0 if and only if

1
2τ + W ∗

Ω(ε)[τ ] = 0 and
∫

ε∂Ωi

τ dσ = 1. (10)

Proposition 2.5. Let (ρo, ρi) ∈ C0,α(∂Ωo) × C0,α(∂Ωi). Then M [0, ρo, ρi] = 0 if and only if

1
2ρ

o + W ∗
Ωo

[
ρo
]

= −νΩo · (∇S)|∂Ωo , −1
2ρ

i + W ∗
Ωi

[
ρi
]

= 0 and
∫

∂Ωi

ρi dσ = 1.

Then we have the following.

Proposition 2.6. For all ε ∈ ]−ε0, ε0[ there exists a unique pair (ρo[ε], ρi[ε]) ∈ C0,α(∂Ωo) × C0,α(∂Ωi) such
that M [ε, ρo[ε], ρi[ε]] = 0.

Proof. If ε ∈ ]−ε0, ε0[ \ {0}, then the existence and uniqueness of (ρo[ε], ρi[ε]) is equivalent to the existence
and uniqueness of the solution τ of Eq. (10) (cf. Proposition 2.4). By statement (ii) of Lemma 2.1 and by
standard Fredholm theory, Ker(1

2I + W ∗
Ω(ε)) has dimension one. Hence, the first equation in (10) admits

at least one non-zero solution. Then, statements (ii) and (iv) of Lemma 2.1 imply that the function which
satisfies both the equations in (10) exists and is unique. If ε = 0, then the existence and uniqueness of
ρo[0] follows by Proposition 2.5, by statement (ii) of Lemma 2.1, and by standard Fredholm theory. By
statement (iii) of Lemma 2.1 and by standard Fredholm theory, Ker(−1

2I + W ∗
Ωi) has dimension one.

Hence, the existence and uniqueness of ρi[0] follows by Proposition 2.5 and by statement (iii) and (v) of
Lemma 2.1. �
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In Lemma 2.7 below we show that M is real analytic and that the partial differential of M with respect 
o (ρo, ρi) is a linear homeomorphism.

emma 2.7. The map M is real analytic. For all (ε, ρo, ρi) ∈ ] − ε0, ε0[×C0,α(∂Ωo) ×C0,α(∂Ωi) the partial 
ifferential ∂(ρo,ρi)M [ε, ρo, ρi] is a linear homeomorphism from C0,α(∂Ωo) × C0,α(∂Ωi) to C0,α(∂Ωo) ×
0,α(∂Ωi)0 × R.

roof. By standard properties of integral operators with real analytic kernels and with no singularity and 
y classical mapping properties of layer potentials, one deduces that M is real analytic (cf. [12, §4]). The 
artial differential ∂(ρo,ρi)M [ε, ρo, ρi] at (ε, ρo, ρi) ∈ ]−ε0, ε0[ × C0,α(∂Ωo) × C0,α(∂Ωi) is delivered by

∂(ρo,ρi)M
[
ε, ρo, ρi

](
ρ̄o, ρ̄i

)
=

(
Mo

[
ε, ρ̄o, ρ̄i

]
,M i

[
ε, ρ̄o, ρ̄i

]
,

∫
∂Ωi

ρ̄i dσ

)

or all (ρ̄o, ρ̄i) ∈ C0,α(∂Ωo) × C0,α(∂Ωi). Now fix (fo, f i, c) ∈ C0,α(∂Ωo) × C0,α(∂Ωi)0 × R. We show that 
here exists unique (ρ̄o, ρ̄i) ∈ C0,α(∂Ωo) × C0,α(∂Ωi) such that

∂(ρo,ρi)M
[
ε, ρo, ρi

](
ρ̄o, ρ̄i

)
=

(
fo, f i, c

)
. (11)

f ε ∈ ]−ε0, ε0[ \ {0} then (11) is equivalent to

1
2 τ̄ + W ∗

Ω(ε)[τ̄ ] = f and
∫

ε∂Ωi

τ̄ dσ = c, (12)

ith τ̄|∂Ωo ≡ ρ̄o, τ̄|ε∂Ωi ≡ |ε|−1ρ̄i(·/ε), f|∂Ωo ≡ fo, and f|ε∂Ωi ≡ f i(·/ε). The first equation in (12) has at 
east a solution τ̄ because 

∫
∂Ω(ε) fχε dσ = 0 and χε is a generator of Ker(1

2I + WΩ(ε)). Then, by statement 
iv) of Lemma 2.1 one deduces the existence and uniqueness of the solution τ̄ of the equations in (12). If 
nstead ε = 0, then equality (11) is equivalent to

1
2 ρ̄

o + W ∗
Ωo

[
ρ̄o
]

= −cνΩo · (∇S)|∂Ωo + fo,

−1
2 ρ̄

i + W ∗
Ωi

[
ρ̄i
]

= −f i and
∫

∂Ωi

ρ̄i dσ = c.

hen the existence and uniqueness of ρ̄o follows by statement (ii) of Lemma 2.1, and by standard Fredholm 
heory. The existence and uniqueness of ρ̄i follows by the orthogonality of f i and Ker(−1

2I + WΩi) =
R

2
Ωi)|∂Ωi (cf. statement (iii) of Lemma 2.1), by standard Fredholm theory, and by statement (v) of 

emma 2.1. Now the validity of the proposition follows by the open mapping theorem. �
Then by Proposition 2.6 and Lemma 2.7, and by the implicit function theorem for real analytic maps 

cf., e.g., Deimling [3, §15]) one deduces the validity of the following.

roposition 2.8. The map from ]−ε0, ε0[ to C0,α(∂Ωo) × C0,α(∂Ωi) which takes ε to (ρo[ε], ρi[ε]) is real 
nalytic.

We introduce the following definition.
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Definition 2.9. If ε ∈ ]−ε0, ε0[ \ {0}, then we denote by τ [ε] the function of C0,α(∂Ω(ε)) defined by

τ [ε](x) ≡
{
ρo[ε](x) if x ∈ ∂Ωo,

|ε|−1ρi[ε](x/ε) if x ∈ ε∂Ωi.

We observe that τ [ε] is a generator of Ker(1
2I + W ∗

Ω(ε)) and 
∫
ε∂Ωi τ [ε] dσ = 1 and that the function

v[∂Ω(ε), τ [ε]]|∂Ω(ε) is a generator of Ker( 1
2I + WΩ(ε)) (cf. Propositions 2.4 and 2.6 and statement (i) of

Lemma 2.1). Hence, there exists cε ∈ R \ {0} such that

v
[
∂Ω(ε), τ [ε]

]
|∂Ω(ε) = cεχε (13)

(cf. statement (ii) of Lemma 2.1).

2.3. The map Λ and the pair of functions (θo[ε, go, gi], θi[ε, go, gi])

Now we introduce the map Λ ≡ (Λo, Λi) related to the boundary value problem
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δw = 0 in Ω(ε),
w(x) = go(x) for all x ∈ ∂Ωo,

w(x) = gi(x/ε) −
∫

∂Ωo

goρo[ε] dσ −
∫

∂Ωi

giρi[ε] dσ for all x ∈ ε∂Ωi,

for ε ∈ ]−ε0, ε0[ \ {0}. The first component Λo corresponds to the boundary condition on ∂Ωo and the
second component Λi corresponds to the boundary condition on ε∂Ωi. The map Λ ≡ (Λo, Λi) is defined
from ]−ε0, ε0[ × C1,α(∂Ωo) × C1,α(∂Ωi) × C1,α(∂Ωo) × C1,α(∂Ωi)0 to C1,α(∂Ωo) × C1,α(∂Ωi) by setting

Λo
[
ε, go, gi, θo, θi

]
(x) ≡ 1

2θ
o(x) + WΩo

[
θo
]
(x)

+ ε

∫
∂Ωi

θi(y)νΩi(y) · ∇S(x− εy) dσy − go(x) ∀x ∈ ∂Ωo,

Λi
[
ε, go, gi, θo, θi

]
(x) ≡ 1

2θ
i(x) −WΩi

[
θi
]
(x) + w

[
∂Ωo, θo

]
(εx)

− gi(x) +
∫

∂Ωo

goρo[ε] dσ +
∫

∂Ωi

giρi[ε] dσ ∀x ∈ ∂Ωi,

for all (ε, go, gi, θo, θi) in ]−ε0, ε0[×C1,α(∂Ωo) ×C1,α(∂Ωi) ×C1,α(∂Ωo) ×C1,α(∂Ωi)0. The following Proposi-
tions 2.10 and 2.11 concern the equation Λ[ε, go, gi, θo, θi] = 0 for ε ∈ ]−ε0, ε0[\{0} and for ε = 0, respectively.
A proof of Proposition 2.10 can be effected by exploiting the classical theorem on change of variables in
integrals.

Proposition 2.10. Let ε ∈ ]−ε0, ε0[ \ {0}. Let (go, gi) ∈ C1,α(∂Ωo) × C1,α(∂Ωi). Let (θo, θi) ∈ C1,α(∂Ωo) ×
C1,α(∂Ωi)0. Let g ∈ C1,α(∂Ω(ε)) be defined by

g(x) ≡
{
go(x) if x ∈ ∂Ωo,

gi(x/ε) if x ∈ ε∂Ωi.

Let θ ∈ C1,α(∂Ω(ε)) be defined by

θ(x) ≡
{
θo(x) if x ∈ ∂Ωo,
i i
θ (x/ε) if x ∈ ε∂Ω .
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hen Λ[ε, go, gi, θo, θi] = 0 if and only if

1
2θ + WΩ(ε)[θ] = g −

∫
∂Ω(ε)

gτ [ε] dσ χε.

roposition 2.11. Let (go, gi) ∈ C1,α(∂Ωo) × C1,α(∂Ωi). Let (θo, θi) ∈ C1,α(∂Ωo) × C1,α(∂Ωi)0. Then 
[0, go, gi, θo, θi] = 0 if and only if

1
2θ

o + WΩo

[
θo
]

= go and − 1
2θ

i + WΩi

[
θi
]

= −gi +
∫

∂Ωi

giρi[0] dσ. (14)

roof. The equivalence of Λo[0, go, gi, θo, θi] = 0 and of the first equation in (14) follows by the definition 
f Λ. Then one observes that Λi[0, go, gi, θo, θi] = 0 if and only if

−1
2θ

i + WΩi

[
θi
]

= w
[
∂Ωo, θo

]
(0) − gi +

∫
∂Ωo

goρo[0] dσ +
∫

∂Ωi

giρi[0] dσ.

y Proposition 2.5, by standard properties of adjoint operators, and by the first equation in (14) one has

w
[
∂Ωo, θo

]
(0) =

∫
∂Ωo

θoνΩo · ∇S dσ

= −
∫

∂Ωo

θo
(

1
2ρ

o[0] + W ∗
Ωo

[
ρo[0]

])
dσ

= −
∫

∂Ωo

(
1
2θ

o + WΩo

[
θo
])

ρo[0] dσ = −
∫

∂Ωo

goρo[0] dσ.

hen the equivalence of Λi[0, go, gi, θo, θi] = 0 and of the second equation in (14) follows by a straightforward 
alculation. �

Then we have the following.

roposition 2.12. For all (ε, go, gi) ∈ ]−ε0, ε0[ × C1,α(∂Ωo) × C1,α(∂Ωi) there exists a unique pair 
θo[ε, go, gi], θi[ε, go, gi]) ∈ C1,α(∂Ωo) × C1,α(∂Ωi)0 such that Λ[ε, go, gi, θo[ε, go, gi], θi[ε, go, gi]] = 0.

roof. If ε ∈ ]−ε0, ε0[ \ {0}, then χε generates Ker(1
2I + WΩ(ε)), τ(ε) generates Ker(1

2I + W ∗
Ω(ε)), and 

ε∂Ωi τ [ε] dσ = 1. Hence, the existence and uniqueness of (θo[ε, go, gi], θi[ε, go, gi]) follows by Proposition 2.10, 
y standard Fredholm theory, and by condition 

∫
∂Ωi θ

i[ε, go, gi] dσ = 0. If ε = 0, then the existence and 
niqueness of θo[0, go, gi] follows by Proposition 2.11, by statement (ii) of Lemma 2.1, and by standard 
redholm theory. Then one observes that Ker(−1

2I+W ∗
Ωi) has dimension one by statement (iii) of Lemma 2.1

nd by standard Fredholm theory, and that ρi[0] is a generator of Ker(−1
2I +W ∗

Ωi) and 
∫
∂Ωi ρ

i[0] dσ = 1 by 
ropositions 2.5 and 2.6. Hence, the existence and uniqueness of θi[0, go, gi] follows by Proposition 2.11, by 
ondition 

∫
∂Ωi θ

i[0, go, gi] dσ = 0, by statement (iii) of Lemma 2.1, and by standard Fredholm theory. �
In Lemma 2.13 below we show that Λ[ε, go, gi, θo, θi] is orthogonal to (ρo[ε], ρi[ε]) in L2(∂Ωo) ×L2(∂Ωi).
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Lemma 2.13. For all (ε, go, gi, θo, θi) ∈ ]−ε0, ε0[ × C1,α(∂Ωo) × C1,α(∂Ωi) × C1,α(∂Ωo) × C1,α(∂Ωi)0 the
following equality holds

∫
∂Ωo

Λo
[
ε, go, gi, θo, θi

]
ρo[ε] dσ +

∫
∂Ωi

Λi
[
ε, go, gi, θo, θi

]
ρi[ε] dσ = 0.

Proof. If ε ∈ ]−ε0, ε0[ \ {0}, then by definition of Λ and by the classical theorem on change of variables in
integrals one has

Λ
[
ε, go, gi, θo, θi

]
= 1

2θ + WΩ(ε)[θ] − g +
∫

∂Ω(ε)

gτ [ε] dσχε

(see also Proposition 2.10). Then the validity of the statement follows by the orthogonality of Ran(1
2I+WΩ(ε))

and Ker( 1
2I + W ∗

Ω(ε)), by equality 
∫
ε∂Ωi τ [ε] dσ = 1, and by a straightforward calculation. If instead ε = 0,

then

Λo
[
0, go, gi, θo, θi

]
= 1

2θ
o + WΩo

[
θo
]
− go,

Λi
[
0, go, gi, θo, θi

]
= 1

2θ
i −WΩi

[
θi
]
+ w

[
∂Ωo, θo

]
(0) − gi +

∫
∂Ωo

goρo[0] dσ +
∫

∂Ωi

giρi[0] dσ.

So that
∫

∂Ωo

Λo
[
0, go, gi, θo, θi

]
ρo[0] dσ =

∫
∂Ωo

(
1
2θ

o + WΩo

[
θo
])

ρ[0] dσ −
∫

∂Ωo

goρ[0] dσ

=
∫

∂Ωo

θo
(

1
2ρ

o[0] + W ∗
Ωo

[
ρo[0]

])
dσ −

∫
∂Ωo

goρo[0] dσ

= −
∫

∂Ωo

θoνΩo · ∇S dσ −
∫

∂Ωo

goρo[0] dσ

= −w
[
∂Ωo, θo

]
(0) −

∫
∂Ωo

goρo[0] dσ

(see also Proposition 2.5). By the orthogonality of Ran(−1
2I +WΩi) and Ker(−1

2I +W ∗
Ωi) and by equality∫

∂Ωi ρ
i[0] dσ = 1 one has

∫
∂Ωi

Λi
[
0, go, gi, θo, θi

]
ρi[0] dσ = w

[
∂Ωo, θo

]
(0) +

∫
∂Ωo

goρo[0] dσ.

Then the validity of the statement follows by a straightforward calculation. �
In Lemma 2.14 below we show that Λ is real analytic and that the partial differential of Λ with respect to

(θo, θi) is a linear homeomorphism from C1,α(∂Ωo) ×C1,α(∂Ωi)0 onto a suitable subspace of C1,α(∂Ωo) ×
C1,α(∂Ωi).

Lemma 2.14. The map Λ is real analytic. For all (ε, go, gi, θo, θi) ∈ ]−ε0, ε0[ × C1,α(∂Ωo) × C1,α(∂Ωi) ×
C1,α(∂Ωo) × C1,α(∂Ωi)0 the partial differential ∂(θo,θi)Λ[ε, go, gi, θo, θi] is a linear homeomorphism from
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1,α(∂Ωo) × C1,α(∂Ωi)0 to the subspace of C1,α(∂Ωo) × C1,α(∂Ωi) consisting of those pairs (ψo, ψi) such 
hat

∫
∂Ωo

ψoρo[ε] dσ +
∫

∂Ωi

ψiρi[ε] dσ = 0. (15)

roof. By standard properties of integral operators with real analytic kernels and with no singularity and 
y classical mapping properties of layer potentials, it follows that Λ is real analytic (cf. [12, §4]). Then the 
artial differential ∂(θo,θi)Λ[ε, go, gi, θo, θi] is delivered by

∂(θo,θi)Λ
[
ε, go, gi, θo, θi

](
θ̄o, θ̄i

)
= Λ

[
ε, 0, 0, θ̄o, θ̄i

]

or all (θ̄o, θ̄i) ∈ C1,α(∂Ωo) × C1,α(∂Ωi)0. Then ∂(θo,θi)Λ[ε, go, gi, θo, θi](θ̄o, θ̄i) = (ψo, ψi) is equivalent to 
[ε, ψo, ψi, θ̄o, θ̄i] = 0 for all (ψo, ψi) ∈ C1,α(∂Ωo) × C1,α(∂Ωi) such that (15) holds. Hence the validity of 
he lemma follows by the open mapping theorem and by Proposition 2.12. �

We now introduce in the following Lemma 2.15 a technical corollary of the implicit function theorem for 
eal analytic maps. For a proof we refer to Lanza de Cristoforis [8, Thm. 13].

emma 2.15. Let X , Y, Z, Z1 be Banach spaces. Let O be an open set of X × Y such that (x∗, y∗) ∈ O. 
et F be a real analytic map from O to Z such that F (x∗, y∗) = 0. Let the partial differential ∂yF (x∗, y∗)
ith respect to the variable y be a homeomorphism from Y onto its image V ≡ Ran(∂yF (x∗, y∗)). Assume 
hat there exists a closed subspace V1 of Z such that Z = V ⊕ V1 algebraically. Let O1 be an open subset of 
× Y × Z containing (x∗, y∗, 0) and such that (x, y, F (x, y)) and (x, y, 0) belong to O1 for all (x, y) ∈ O. 

et G be a real analytic map from O1 to Z1 such that G(x, y, F (x, y)) = 0 for all (x, y) ∈ O, G(x, y, 0) = 0
or all (x, y) ∈ O, and such that the partial differential ∂zG(x∗, y∗, 0) is surjective onto Z1 and has kernel 
qual to V . Then there exist an open neighborhood U of x∗ in X , an open neighborhood V of y∗ in Y with 
×V ⊆ O, and a real analytic map T∗ from U to V such that the set of zeros of F in U ×V coincides with 

he graph of T∗.

Then we have the following.

roposition 2.16. The function from ]−ε0, ε0[ × C1,α(∂Ωo) × C1,α(∂Ωi) to C1,α(∂Ωo) × C1,α(∂Ωi)0 which 
akes (ε, go, gi) to (θo[ε, go, gi], θi[ε, go, gi]) is real analytic.

roof. Let (ε∗, go∗, gi∗, θo∗, θi∗) ∈ ]−ε0, ε0[ × C1,α(∂Ωo) × C1,α(∂Ωi) × C1,α(∂Ωo) × C1,α(∂Ωi)0 be such that 
[ε∗, go∗, gi∗, θo∗, θi∗] = 0. Let X ≡ R ×C1,α(∂Ωo) ×C1,α(∂Ωi), Y ≡ C1,α(∂Ωo) ×C1,α(∂Ωi)0, Z ≡ C1,α(∂Ωo) ×
1,α(∂Ωi), Z1 ≡ R, O ≡ ]−ε0, ε0[ × C1,α(∂Ωo) × C1,α(∂Ωi) × C1,α(∂Ωo) × C1,α(∂Ωi)0. Let F ≡ Λ. 
et x∗ ≡ (ε∗, go∗, gi∗) and y∗ ≡ (θo∗, θi∗). Let V be the subspace of C1,α(∂Ωo) × C1,α(∂Ωi) consisting of 
hose pairs (ψo, ψi) which satisfy the condition in (15) with ε = ε∗, let V1 be the 1-dimensional subspace 
f C1,α(∂Ωo) × C1,α(∂Ωi) generated by (ρo[ε∗], ρi[ε∗]). Let O1 ≡ ]−ε0, ε0[ × C1,α(∂Ωo) × C1,α(∂Ωi) ×
1,α(∂Ωo) × C1,α(∂Ωi)0 × C1,α(∂Ωo) × C1,α(∂Ωi). Let

G
(
ε, go, gi, θo, θi, ψo, ψi

)
≡

∫
∂Ωo

ψoρo[ε] dσ +
∫

∂Ωi

ψiρi[ε] dσ

or all (ε, go, gi, θo, θi, ψo, ψi) ∈ O1. Then Lemma 2.15 implies that there exist an open neighborhood of 
of (ε∗, go∗, gi∗) in ]−ε0, ε0[ × C1,α(∂Ωo) × C1,α(∂Ωi), an open neighborhood V of (θo∗, θi∗) in C1,α(∂Ωo) ×

1,α(∂Ωi)0, and a real analytic map T∗ ≡ (T o
∗ , T

i
∗) from U to V such that the set of zeros of Λ in U × V
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coincides with the graph of T∗. Then Proposition 2.12 implies that (θo[ε, go, gi], θi[ε, go, gi]) = T∗[ε, go, gi]
for all (ε, go, gi) ∈ U and the validity of the proposition follows. �
2.4. Solution of the Dirichlet boundary value problem

In the following Proposition 2.17 we write a representation formula for uε(x) in terms of the functions
ρo[ε], ρi[ε], θo[ε, go, gi], and θi[ε, go, gi] introduced in the previous Subsections 2.2 and 2.3. The validity
of Proposition 2.17 follows by equalities (9) and (13), by Propositions 2.4, 2.6, 2.10, and 2.12, and by a
straightforward calculation.

Proposition 2.17. Let ε ∈ ]−ε0, ε0[ \ {0}. Let (go, gi) ∈ C1,α(∂Ωo) × C1,α(∂Ωi). Let uε ∈ C1,α(clΩ(ε)) be
the unique solution of (2). Then

uε(x) = w+[∂Ωo, θo
[
ε, go, gi

]]
(x) + ε

∫
∂Ωi

θi
[
ε, go, gi

]
(y)νΩi(y) · ∇S(x− εy) dσy

+
( ∫
∂Ωo

goρo[ε] dσ +
∫

∂Ωi

giρi[ε] dσ
)

×
(
v+[∂Ωo, ρo[ε]

]
(x) +

∫
∂Ωi

ρi[ε](y)S(x− εy) dσy

)

×
(

1∫
∂Ωi dσ

∫
∂Ωi

v
[
∂Ωo, ρo[ε]

]
(εy) + v

[
∂Ωi, ρi[ε]

]
(y) dσy + log |ε|

2π

)−1

for all x ∈ clΩo \ ε clΩi.

Remark 2.18. Under the assumptions of Proposition 2.17, one has

1∫
∂Ωi dσ

∫
∂Ωi

v
[
∂Ωo, ρo[ε]

]
(εy) + v

[
∂Ωi, ρi[ε]

]
(y) dσy + log |ε|

2π

= 1∫
ε∂Ωi dσ

∫
ε∂Ωi

v
[
∂Ω(ε), τ [ε]

]
dσ = cε �= 0 ∀ε ∈] − ε0, ε0[\{0}

(cf. equality (13)).

3. Real analytic families of harmonic functions

3.1. Harmonic functions depending analytically on (ε, 1/ log |ε|)

In this subsection we prove Theorem 3.1, where we examine a family of solutions of a Dirichlet problem
with boundary data depending analytically on (ε, 1/ log |ε|).

Theorem 3.1. Let ε∗0 ≡ min{ε0, 1}. Let ε1 ≡ −1/ log |ε∗0| if ε∗0 < 1 and ε1 ≡ +∞ if ε∗0 = 1. Let G ≡ (Go, Gi)
be a real analytic map from ]−ε∗0, ε

∗
0[ × ]−ε1, ε1[ to C1,α(∂Ωo) × C1,α(∂Ωi). For all ε ∈ ]−ε∗0, ε

∗
0[ \ {0}, let

u[ε] be the unique function in C1,α(clΩ(ε)) such that

Δu[ε] = 0 in Ω(ε), u[ε]|∂Ωo = Go
[
ε, 1/ log |ε|

]
, u[ε]|ε∂Ωi = Gi

[
ε, 1/ log |ε|

]
(·/ε).

Original text:
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et ΩM ⊆ Ωo be open and 0 /∈ clΩM . Let εM ∈ ]0, ε∗0[ be such that clΩM ∩ ε clΩi = ∅ for all ε ∈
−εM , εM [. Then there exist an open neighborhood UM of {(ε, 1/ log |ε|) : ε ∈ ]−εM , εM [ \ {0}} ∪ {(0, 0)} in 
−εM , εM [ × ]−ε1, ε1[ and a real analytic map UM from UM to C1,α(clΩM ) such that

u[ε]|cl ΩM
= UM

[
ε, 1/ log |ε|

]
∀ε ∈ ]−εM , εM [ \ {0}. (16)

roof. We set

C
[
ε, ε′

]
≡ ε′∫

∂Ωi dσ

∫
∂Ωi

v
[
∂Ωo, ρo[ε]

]
(εy) + v

[
∂Ωi, ρi[ε]

]
(y) dσy + 1

2π

∀
(
ε, ε′

)
∈ ]−ε0, ε0[×R,

nd we note that cε = log |ε|C[ε, 1/ log |ε|] for all ε ∈ ]−ε∗0, ε
∗
0[ \ {0} (cf. equality (13)). By Remark 2.18, 

y Proposition 2.8, by standard properties of integral operators with real analytic kernels and with no 
ingularity, and by classical mapping properties of layer potentials, we deduce that C is a real analytic 
unction from ]−ε0, ε0[×R to R and that there exists an open neighborhood UC of {(ε, 1/ log |ε|) : ε ∈
−ε∗0, ε

∗
0[ \ {0}} ∪ {(0, 0)} in ]−ε∗0, ε

∗
0[ × ]−ε1, ε1[ where C does not vanish (cf. [12, §4]). Now let UM be an 

pen neighborhood of {(ε, 1/ log |ε|) : ε ∈ ]−εM , εM [ \ {0}} ∪ {(0, 0)} in UC . We introduce the map UM by 
etting

UM

[
ε, ε′

]
(x) ≡ w+[∂Ωo, θo

[
ε,Go

[
ε, ε′

]
, Gi

[
ε, ε′

]]]
(x)

+ ε

∫
∂Ωi

θi
[
ε,Go

[
ε, ε′

]
, Gi

[
ε, ε′

]]
(y)νΩi(y) · ∇S(x− εy) dσy

+ ε′
( ∫
∂Ωo

Go
[
ε, ε′

]
ρo[ε] dσ +

∫
∂Ωi

Gi
[
ε, ε′

]
ρi[ε] dσ

)

×
(
v+[∂Ωo, ρo[ε]

]
(x) +

∫
∂Ωi

ρi[ε]S(x− εy) dσy

)
C
[
ε, ε′

]−1

(17)

or all x ∈ clΩM and all (ε, ε′) ∈ UM . By the definition of UM and Proposition 2.17, we have u[ε]| cl ΩM
=

M [ε, 1/ log |ε|] for all ε ∈ ]−εM , εM [ \ {0}. Moreover, by classical mapping properties of layer potentials, by 
ropositions 2.8 and 2.16, by standard calculus in Banach spaces, and by standard properties of functions 

n Schauder spaces, we verify that UM is a real analytic map from UM to C1,α(clΩM ) (cf. [12, §3] and [1, 
roof of Thm. 3.1]). Thus the validity of the theorem is proved. �
emark 3.2. By (17), by Propositions 2.11 and 2.12, and by (9), one has UM [0, 0] = u[0]|cl ΩM

, where u[0]
s the unique function of C1,α(clΩo) such that Δu[0] = 0 in Ωo and u[0]|∂Ωo = Go[0, 0].

By Lemma 3.3 below, one readily deduces that equality (16) univocally identifies the map UM . The 
alidity of Lemma 3.3 is known and is related to the non-subanalyticity of the curve (ε, 1/ log ε) for ε ∈ ]0, 1[
cf., e.g., Krantz and Parks [6, Chap. 5]). For the sake of completeness we present here an elementary proof 
ased on standard properties of real analytic functions.

emma 3.3. Let U ⊆ R
2 be an open connected neighborhood of (0, 0). Let U be a real analytic function from 

to R. Assume that U(ε, 1/ log ε) = 0 for all (ε, 1/ log ε) ∈ U with ε > 0. Then U(ε, ε′) = 0 for all (ε, ε′) ∈ U .
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Proof. Since U is real analytic, there exist δ, δ′ > 0 and a family of real numbers {a(i,j)}(i,j)∈N2 such that
] − δ, δ[ × ]−δ′, δ′[⊆ U and that U(ε, ε′) =

∑
(i,j)∈N2 a(i,j)ε

iε′ j for all (ε, ε′) ∈ ]−δ, δ[ × ]−δ′, δ′[, where the
series converges absolutely and uniformly. We now prove that a(i,j) = 0 for all (i, j) ∈ N

2. Then the validity
of the lemma follows by the Identity Principle for real analytic functions. Possibly shrinking δ, one can
assume that 1/ log ε ∈ ]−δ′, 0[ for all ε ∈ ]0, δ[. Hence, 

∑
(i,j)∈N2 a(i,j)ε

i(1/ log ε)j = U(ε, 1/ log ε) = 0 for
all ε ∈ ]0, δ[. It follows that a(0,0) = limε→0+ U(ε, 1/ log ε) = 0. Then, an induction argument on j shows
that a(0,j) = 0 for all j ∈ N. Indeed, if k ∈ N and a(0,j) = 0 for all j ≤ k, then (log ε)k+1U(ε, 1/ log ε) =∑

(i,j)∈N2 a(i,j)ε
i(1/ log ε)j−k−1 = 0 for all ε ∈ ]0, δ[ and thus a(0,k+1) = limε→0+(log ε)k+1U(ε, 1/ log ε) = 0.

Now we argue by induction on i. Let k ∈ N and assume that a(i,j) = 0 for all (i, j) ∈ N
2 with i ≤ k.

Let Uk+1 denote the function from ] − δ, δ[×] − δ′, δ′[ to R defined by Uk+1(ε, ε′) = ε−(k+1)U(ε, ε′) for all
(ε, ε′) ∈ ]−δ, δ[ × ]−δ′, δ′[. Then Uk+1(ε, ε′) =

∑
(i,j)∈N2 b(i,j)ε

iε′ j for all (ε, ε′) ∈ ]−δ, δ[ × ]−δ′, δ′[, where
b(i,j) = a(i+k+1,j) for all (i, j) ∈ N

2 and where the series converges absolutely and uniformly. Moreover,
Uk+1(ε, 1/ log ε) = 0 for all ε ∈ ]0, δ[. Then, by arguing as above for U , one verifies that b(0,j) = a(k+1,j) = 0
for all j ∈ N. Hence a(i,j) = 0 for all (i, j) ∈ N

2 and the proof is completed. �
Then we have the following Proposition 3.4 whose validity can be deduced by a slight modification of the

proof of [1, Prop. 4.2] and by exploiting Lemma 3.3.

Proposition 3.4. Let the assumptions and notation of Theorem 3.1 hold. Let ζ ∈ {−1, 1}. If Ωi = −Ωi and

Go
[
ε, 1/ log |ε|

]
(x) = ζGo

[
−ε, 1/ log |ε|

]
(x) ∀x ∈ ∂Ωo,

Gi
[
ε, 1/ log |ε|

]
(x) = ζGi

[
−ε, 1/ log |ε|

]
(−x) ∀x ∈ ∂Ωi,

for all ε ∈ ]−ε∗0, ε
∗
0[ \ {0}, then there exist ε̃M ∈ ]0, εM [ and a family {uM,(i,j)}(i,j)∈N2 in C1,α(clΩM ) such

that

u[ε]|cl ΩM
= ε(1−ζ)/2

∑
(i,j)∈N2

uM,(i,j)ε
2i(1/ log |ε|

)j ∀ε ∈ ]−ε̃M , ε̃M [ \ {0},

where the series converges absolutely and uniformly in C1,α(clΩM ).

3.2. Harmonic functions depending analytically on ε

In this subsection we prove Theorem 3.6, where we investigate a family of solution of a Dirichlet problem
with boundary data depending analytically on ε. We first introduce in the following Lemma 3.5 an elementary
consequence of the asymptotic behavior of log ε and of standard properties of real analytic functions.

Lemma 3.5. Let ε∗ > 0. Let A and B be real analytic functions from ]−ε∗, ε∗[ to R such that A[ε] log ε = B[ε]
for all ε ∈ ]0, ε∗[. Then A = B = 0.

Theorem 3.6. Let F ≡ (F o, F i) be a real analytic map from ]−ε0, ε0[ to C1,α(∂Ωo) × C1,α(∂Ωi). For all
ε ∈ ]−ε0, ε0[ \ {0}, let v[ε] be the unique function in C1,α(clΩ(ε)) such that

Δv[ε] = 0 in Ω(ε), v[ε]|∂Ωo = F o[ε], v[ε]|ε∂Ωi = F i[ε](·/ε).

Let v[0] ∈ C1,α(clΩo) be such that Δv[0] = 0 in Ωo and v[0]|∂Ωo = F o[0]. Then the following statements
are equivalent.

Original text:
Inserted Text:
Subsection
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(

P
T
o
p

T
D

s

(

H

f
w
m
o

(i) For all ΩM ⊆ Ωo open and such that 0 /∈ clΩM and all εM ∈ ]0, ε0[ such that clΩM ∩ ε clΩi = ∅ for 
all ε ∈ ]−εM , εM [, there exists a real analytic map VM from ]−εM , εM [ to C1,α(clΩM ) such that

v[ε]|cl ΩM
= VM [ε] ∀ε ∈ ]−εM , εM [.

(ii) There exist xo ∈ Ωo \ {0}, εo ∈ ]0, ε0[, and a real analytic function V o from ]−εo, εo[ to R such that 
xo ∈ Ω(ε) for all ε ∈ ]−εo, εo[ and

v[ε]
(
xo

)
= V o[ε] ∀ε ∈

]
0, εo

[
.

iii)
∫
∂Ωo F

o[ε]ρo[ε] dσ +
∫
∂Ωi F

i[ε]ρi[ε] dσ = 0 for all ε ∈ ]−ε0, ε0[.

roof. Clearly (i) implies (ii). The proof that (iii) implies (i) can be effected by arguing as in the proof of 
heorem 3.1 with Go and Gi replaced by F o and F i and by noting that the last term in the right hand side 
f the equality corresponding to (17) is identically zero by condition (iii) (see Remark 3.2). To complete the 
roof we show that (ii) implies (iii).
Assume that (ii) holds. Set

Ao[ε] ≡
∫

∂Ωo

F o[ε]ρo[ε] dσ +
∫

∂Ωi

F i[ε]ρi[ε] dσ,

Bo[ε] ≡ v
[
∂Ωo, ρo[ε]

](
xo

)
+

∫
∂Ωi

ρi[ε]S
(
xo − εy

)
dσy,

Co[ε] ≡ V o[ε] − w
[
∂Ωo, θo

[
ε, F o[ε], F i[ε]

]](
xo

)
− ε

∫
∂Ωi

θi
[
ε, F o[ε], F i[ε]

]
(y)νΩi(y) · ∇S

(
xo − εy

)
dσy,

Do[ε] ≡ 1∫
∂Ωi dσ

∫
∂Ωi

v
[
∂Ωo, ρo[ε]

]
(εy) + v

[
∂Ωi, ρi[ε]

]
(y) dσy, ∀ε ∈

]
−εo, εo

[
.

hen, by classical mapping properties of layer potentials and by Propositions 2.8 and 2.16, Ao, Bo, Co, and 
o are real analytic functions from ]−εo, εo[ to R (cf. [12, §4]). Also, a straightforward calculation based on 

tatement (ii) and Proposition 2.17 shows that

Ao[ε]Bo[ε] − Co[ε]Do[ε] = Co[ε] log ε
2π ∀ε ∈

]
0, εo

[

see also Remark 2.18). Thus, Lemma 3.5 implies that

Ao[ε]Bo[ε] − Co[ε]Do[ε] = 0 and Co[ε] = 0 ∀ε ∈
]
−εo, εo

[
.

ence Ao[ε]Bo[ε] = 0 and one deduces that
( ∫
∂Ωo

F o[ε]ρo[ε] dσ +
∫

∂Ωi

F i[ε]ρi[ε] dσ
)
v
[
∂Ω(ε), τ [ε]

](
xo

)
= 0

or all ε ∈ ]−εo, εo[\{0} (see also Definition 2.9). Let now ε ∈ ]−εo, εo[\{0}. Since v[∂Ω(ε), τ [ε]]|∂Ω(ε) = cεχε

ith cε ∈ R \ {0} (cf. Definition 2.2 and (13)), then the maximum principle implies that 0 is a maximum or 
inimum value for v[∂Ω(ε), τ [ε]] in clΩ(ε) and v[∂Ω(ε), τ [ε]] can attain the value 0 only on the boundary 

f Ω(ε). Hence v[∂Ω(ε), τ [ε]](xo) �= 0 because xo belongs to Ω(ε). It follows that
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∫
∂Ωo

F o[ε]ρo[ε] dσ +
∫

∂Ωi

F i[ε]ρi[ε] dσ = 0 ∀ε ∈
]
−εo, εo

[
\ {0}

and by continuity one deduces the validity of (iii). �
In the following Examples 3.7 and 3.8 we consider some simple cases for which we can obtain more

explicit equivalent conditions for (i)–(iii) of Theorem 3.6. The following Example 3.7 concerns the case of
ε-dependent boundary data which are constant on ∂Ω(ε).

Example 3.7. Let the notation of Theorem 3.6 hold. Assume that there exist two real analytic functions co
and ci from ]−ε0, ε0[ to R such that

F o[ε](x) = co[ε] and F i[ε](y) = ci[ε] ∀ε ∈ ]−ε0, ε0[, x ∈ ∂Ωo, y ∈ ∂Ωi.

Then v[ε] satisfies the (equivalent) conditions in (i)–(iii) if and only if co[ε] = ci[ε] for all ε ∈ ]−ε0, ε0[.

Proof. If co = ci then v[ε](x) = co[ε] for all ε ∈ ]−ε0, ε0[ and all x ∈ clΩ(ε). Then one immediately verifies
the validity of (i), and accordingly of (ii),(iii) by Theorem 3.6. In particular, if co[ε] = ci[ε] = 1 for all
ε ∈ ]−ε0, ε0[, then

∫
∂Ωo

ρo[ε] dσ +
∫

∂Ωi

ρi[ε] dσ = 0 ∀ε ∈ ]−ε0, ε0[ (18)

by (iii). Now we prove that (i)–(iii) imply that co = ci. Assume by contradiction that co �= ci and v[ε]
satisfies the condition in (iii). Then there exists ε∗ ∈ ]−ε0, ε0[ such that co[ε∗] �= ci[ε∗] and

co[ε∗]
∫

∂Ωo

ρo[ε∗] dσ + ci[ε∗]
∫

∂Ωi

ρi[ε∗] dσ = 0. (19)

But then, equalities (18) (which does not depend on co, ci) and (19) imply that 
∫
∂Ωi ρ

i[ε∗] dσ = 0. A con-
tradiction, because 

∫
∂Ωi ρ

i[ε] dσ = 1 for all ε ∈ ]−ε0, ε0[ (cf. Propositions 2.4, 2.5, and 2.6). �
In Example 3.8 here below we consider the case where the domain Ω(ε) is a circular annulus.

Example 3.8. Let the notation of Theorem 3.6 hold. Assume that Ωo = Ωi = B2. Let Ω(ε) = B2 \ ε clB2 for
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all ε ∈ ]−1, 1[. Then v[ε] satisfies the (equivalent) conditions in (i)–(iii) if and only if
∫

∂B2

F o[ε] dσ =
∫

∂B2

F i[ε] dσ ∀ε ∈ ]−ε0, ε0[. (20)

Proof. By Propositions 2.4–2.6 and by a standard symmetry argument one verifies that ρo[ε](x) = ρo[ε](Tx)
and ρo[ε](x) = ρo[ε](Tx) for all x ∈ ∂Ωo = ∂Ωo = ∂B2 and for all orthogonal transformation T on R

2. It 
follows that ρo[ε] and ρo[ε] are constant functions on ∂B2. Then, by equalities 

∫
∂B2

ρi[ε] dσ = 1 (cf. Propo-
sitions 2.4–2.6) and (18) one deduces that

ρo[ε](x) = − 1
2π and ρi[ε](x) = 1

2π ∀x ∈ ∂B2, ε ∈ ]−1, 1[.

Hence, the conditions in (iii) of Theorem 3.6 and in (20) are equivalent. �
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