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Target detection
have been widely applied in the study of human cognitive functions, particularly
those associated with arousal, attention, stimulus processing and memory. In EEG recordings, the detection
of task-relevant stimuli elicits the P300 component, a transient response with latency around 300 ms. The
P300 response has been shown to be affected by the amount of mental effort and learning, as well as
habituation. Furthermore, trial-by-trial variability of the P300 component has been associated with inter-
stimulus interval, target-to-target interval or target probability; however, understanding the mechanisms
underlying this variability is still an open question. In order to investigate whether it could be related to the
distinct cortical networks in which coherent intrinsic activity is organized, and to understand the
contribution of those networks to target detection processes, we carried out a simultaneous EEG–fMRI study,
collecting data from 13 healthy subjects during a visual oddball task. We identified five large-scale networks,
that largely overlap with the dorsal attention, the ventral attention, the core, the visual and the sensory-
motor networks. Since the P300 component has been consistently associated with target detection, we
concentrated on the first two brain networks, the time-course of which showed a modulation with the P300
response as detected in simultaneous EEG recordings. A trial-by-trial EEG–fMRI correlation approach
revealed that they are involved in target detection with different functional roles: the ventral attention
network, dedicated to revealing salient stimuli, was transiently activated by the occurrence of targets; the
dorsal attention network, usually engaged during voluntary orienting, reflected sustained activity, possibly
related to search for targets.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Target detection studies have been widely applied in the study of
cognitive functions, since they have been shown to reflect arousal,
attention, stimulus processing and memory operations (Polich and
Herbst, 2000). They are performed by means of acoustic, visual or
somatosensory oddball tasks, in which the subject responds to target
stimuli that occur infrequently and irregularly within a series of
standard stimuli. The detection of these task-relevant stimuli is
associated in the EEG recordings with the P300 component, a
transient activity with latency between 250 and 550 ms (Picton,
1992). The amplitude of the P300 component has been shown to be
generally affected, in healthy subjects, by the amount of mental effort
and learning, as well as habituation (Lew and Polich, 1993; Polich and
Kok, 1995). In addition, although the underlying mechanisms for the
rights reserved.
abnormal P300 component are unknown, this evoked response has
proved to be an important tool in neuropsychiatric research for the
investigation of many disorders that influence the central nervous
system (CNS) function, including schizophrenia (Blackwood, 2000),
Alzheimer's disease (Muscoso et al., 2006), and Parkinson's disease
(Katsarou et al., 2004).

In order to define which cerebral structures are involved in the
P300 generation, several methodologies have been employed, among
which intracranial recordings (Halgren et al., 1998), EEG/MEG (Basile
et al., 1997; Tarkka and Stokic, 1998) and fMRI (Clark et al., 2000; Kiehl
et al., 2005). It has been suggested that the large number of activated
areas, mainly found in frontal, temporal and parietal cortices, might
belong to different functional systems that are simultaneously active
during target detection (Bledowski et al., 2004a; Horn et al., 2003). In
the perspective of gaining further information about the dynamics of
these systems, the fusion of EEG and fMRI has been recently
suggested, because it might in principle allow to combine the high
spatial and temporal resolution of fMRI and EEG respectively (Mulert
et al., 2004; Calhoun et al., 2006; Eichele et al., 2008).
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The most common approach for the EEG–fMRI integration is based
on the use of spatial constraints, where information from the location
of fMRI activation is used for event-related potential (ERP) source
reconstruction (Bledowski et al., 2004b; Mulert et al., 2004). An
interesting method for direct ERP/fMRI fusion has been recently
proposed by Calhoun et al. (2006). However, methods based on ERP
analysis do not use the valuable information that can be provided by
concurrent EEG and fMRI data (Debener et al., 2006; Eichele et al.,
2005, 2008; Benar et al., 2007; Strobel et al., 2008). In fact, only
simultaneous recordings protocols capture the temporal dynamics in
bothmodalities, and therefore provide a uniquemeans for the study of
EEG–fMRI coupling. From this standpoint, simultaneous EEG–fMRI
can be considered a promising technique for the analysis of single-trial
responses to rare and frequent events during the oddball task (Benar
et al., 2007).

Recent fMRI studies on cerebral connectivity have shown that it is
possible to identify multiple highly specific functional networks,
which largely account for intrinsic activity (De Luca et al., 2006;
Damoiseaux et al., 2006; Mantini et al., 2007b) and are related to trial-
by-trial variability in evoked responses (Fox et al., 2006). In target
detection studies, activations within the ventral attention network,
specialized for the detection of behaviorally relevant stimuli, were
consistently observed when comparing the brain responses to target
and non-target events (Bledowski et al., 2004a; Calhoun et al., 2006).
We further hypothesized that the dorsal attention network, recently
found to be dedicated to adaptive task control in a resting state
functional connectivity study (Dosenbach et al., 2007), might be
engaged during search for targets, hence playing an important role in
target detection performance. From this standpoint, the trial-by-trial
variability of the P300 amplitude, documented in several EEG studies
(Barry et al., 2000; Croft et al., 2003; Gonsalvez and Polich, 2002),
might be considered an electrophysiological correlate of ongoing
adaptive processes associated with target detection. In addition, other
neuroimaging studies provided evidence for the existence of the core
network, a functional system dedicated to stable task control and
primarily including insula and anterior cingulate cortex (Dosenbach et
al., 2006, 2007), which can be assumed to be engaged during target
detection as well.

Despite the large number of studies on ongoing and task-related
brain activity in different behavioral conditions, little is known on how
intrinsic variability relates to and is comparable with event-related
responses, both in EEG (Arieli et al., 1996; Makeig et al., 2002, 2004)
and fMRI (Fair et al., 2007; Fox et al., 2006, 2007; Fox and Raichle,
2007). Nonetheless, recent oddball studies suggested that a better
understanding of the cerebral processes underlying target detection
could be achieved by means of the single-trial analysis of the P300
responses (Benar et al., 2007; Eichele et al., 2005, 2008). On the basis
of the above findings, we propose that this variability could be related
to the distinct cortical networks in which coherent intrinsic activity is
organized, and particularly to the ventral and dorsal attention
networks. In order to understand their different contribution to target
detection, as well as their link to the P300 response fluctuations, we
investigated the ongoing cerebral responses during a visual oddball
paradigm by means of simultaneous EEG–fMRI.

Material and methods

Subjects and task design

Thirteenhealthy subjects (all right-handedmale, age 23.2±4.6 years)
with no prior history of neurological injury were enrolled. Before
undergoing the examination, they gave theirwritten informed consent
to the experimental procedures, which were approved by the local
Institutional Ethics Committee. The study consisted of a visual oddball
paradigm, with the presentation of 80% of frequent stimuli and 20% of
rare stimuli respectively. The subjects were asked to count the rare
events and to report their number at the end of the session. The stimuli
consisted of yellow (frequent events) and blue (rare events) disks,
appearing on a black backgroundwith 200ms duration, and presented
in random order every 2.5 s (supplementary Fig. 1). The visual images
were prepared using the Cogent 2000 toolbox (www.vislab.ucl.ac.uk),
running in the MATLAB (The Mathworks Inc., Natick, MA, USA)
programming environment. They were generated by a NEC projector
(NEC Corporation, Tokyo, Japan) working at 60 Hz refreshment rate,
projected outside the scanner onto a translucent screen placed at the
end of the scanner bore, and visible to the subject via amirror attached
to the head coil. Since the time instant of the stimulus presentation
could be delayed with respect to the trigger delivery (time range 50–
100 ms), the exact stimulation timing was monitored by means of a
photoelectric cell placed onto the screen. The simultaneous EEG–fMRI
recording lasted about 8 min.

EEG–fMRI acquisition

The EEG recordings were acquired with a 32-channel MR-
compatible BrainAmp system (Brainproducts, Munich, Germany). All
the electrodes, integrated into the BrainCap cap, were ring-type
sintered nonmagnetic Ag/AgCl electrodes. Twenty-nine EEG electro-
des were placed on the scalp according to the 10% system. The
reference electrode was positioned in correspondence of the Fcz
electrode, between electrodes Fz and Cz. The ground electrode was
placed between electrodes Fpz and Fz. Three additional electrodes
were dedicated to the acquisition of electrocardiogram (EKG) and
electrooculogram (EOG). The impedancewasmaintained close to 5 kΩ
by means of an electrode paste. The resolution and dynamic range of
the EEG acquisition system were 100 nV and±3.2 mV, respectively.
Data were collected with a sampling rate of 5 kHz; band-pass filtering
from 0.016 to 250 Hz was applied.

Magnetic resonance imaging was performed using a 1.5 T Siemens
Magnetom Vision Scanner with a standard quadrature head coil.
Functional images were acquired by means of T2⁎-weighted echo
planar imaging (EPI) free induction decay (FID) sequences with the
following parameters: TE 60 ms, matrix size 64×64, FOV 256 mm, in-
plane voxel size 4 mm×4mm, flip angle 90°, slice thickness 7 mm and
no gap. Each fMRI volume, acquired with a volume TR of 2500 ms and
a scan time of 1620 ms, consisted of 16 bicommissural slices. After the
functional study, a high resolution structural volume was acquired via
a 3DMPRAGE sequence (sagittal slices, matrix 256×256, FOV 256mm,
slice thickness 1 mm, no gap, in-plane voxel size 1 mm×1 mm, flip
angle 12°, TR=9.7 ms, TE=4 ms) in order to provide the anatomical
reference for the functional scan.

Artifact attenuation in EEG data

The EEG recordings were re-referenced to the average of TP9 and
TP10 channels, positioned close to the subject's mastoids (digitally
linked mastoids reference). A modified version of the adaptive artifact
subtraction (AAS) algorithm was used for off-line correction of
imaging artifact (Allen et al., 2000; Gonçalves et al., 2007): after the
detection of each fMRI slice onset from EEG data, slice artifact
waveformswere segmented, averaged, and iteratively subtracted from
the EEG signals (Gonçalves et al., 2007). Subsequently, the EEG data
were downsampled to 1 kHz and filtered between 0.5 and 40 Hz by
means of a Chebychev II-type filter with 40 dB attenuation and zero-
phase distortion. Simulated signals for ballistocardiographic (BCG),
slice MRI and volume MRI artifacts were generated, using information
from acquired data. An average BCG waveform was constructed by
differentiating the EKG signal, detecting QRS peak timing, and
averaging with respect to QRS peaks. The BCG template was then
obtained by replicating the same averaged waveform across heart
beats, shifted by a fixed delay of 150 ms in order to take into account
the typical difference in timing between EKG and BCG signals. Volume

http://www.vislab.ucl.ac.uk
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MRI and slice MRI artifact templates were created by means of signal
peaks, positioned in correspondence of volume and slice onset times,
respectively (Fig. 1). Independent component analysis (ICA) was used
for the for the decomposition of the EEG data into a set of independent
spatio-temporal patterns (independent components, ICs) (Hyvärinen
and Oja, 2000), and the subsequent removal of BCG, imaging and
ocular artifacts (Fig. 1). The FastICA algorithm (Hyvärinen et al., 1999)
was run on the 29 EEG signals for the decomposition into 29 ICs
(Makeig et al., 1997), which were then automatically classified into
brain signals and artifacts, on the basis of the correlation coefficient rt
with the set of EEG artifact templates, including EKG and EOG
recordings, simulated BCG, volume MRI and slice MRI artifacts. A
specific IC was considered artifactual in case of rtN0.2 for at least an
EEG artifact template. With this procedure, from 8 to 14 artifactual ICs
were typically detected, and subtracted from the EEG recordings using
the weights provided by the ICA decomposition (Mantini et al.,
2007a). The artifact-corrected EEG signals were averaged with respect
to rare and frequent event instants (100 ms pre-stimulus and 600 ms
post-stimulus time), in order to obtain ERPs. The resulting ERPs were
used to calculate, for each electrode, an ERP signal-to-noise ratio
(SNR), defined as the ratio between the maximum amplitude in the
post-stimulus interval and the root mean square (RMS) in the pre-
stimulus interval.
Fig.1. ICA-based procedure for EEG artifact correction. (1) Pre-processed EEG signals are obtai
and filtering in the band 0.5–40 Hz; (2) EEG artifact templates for subsequent artifact detect
signals for BCG, slice MRI and volume MRI artifacts; (3) ICA full decomposition is performed
artifacts on the basis of the correlations with the EEG artifact templates; (4) Artifact-corre
provided by the ICA decomposition.
P300 response time-course

After artifact attenuation, the EEG traces were used to measure the
variations of the P300 response across trials. We used signals from a
region of interest (ROI) over the scalp, including electrodes Cz, CP1,
CP2, Pz, P3, P4, because they proved to consistently reflect this event-
related activity (Picton, 1992). A P300 response time-course was
calculated for each subject and each EEG signal, according to the
procedure described hereafter. For the i-th trial, with i=1,…N, the
time instant ti corresponding to a maximum in the EEG signal was
detected in the 300–400ms post-stimulus interval; then, a P300 wave
template p was calculated averaging the single-trial responses ki
across the time window [ti−150 ms; ti+150 ms], selecting only those
corresponding to rare stimuli. Then, the template p was compared
with each trial response ki, including both rare and frequent events, in
the time window [ti−150 ms; ti+150 ms], and the P300 response
intensity ai was estimated by means of a least-squares fit of ai·p with
respect to ki. After calculating the P300 response time-courses for
each of the 6 selected electrodes, a global P300 response time-course
was calculated by averaging them. In order to obtain a P300 reference
time-course for EEG–fMRI correlation analysis, the global P300
response time-course was convolved with a canonical hemodynamic
response function (HRF), generated using a gamma function (delay
ned by slice-based AASmethod for imaging artifact attenuation, downsampling to 1 kHz
ion are prepared using the simultaneously recorded EOG and EKG, as well as simulated
on the pre-processed EEG data, and the resulting ICs are classified into brain signals and
cted EEG signals are obtained by subtracting the detected artifacts using the weights
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time, 2 s; rise time, 4 s; fall time, 6 s; undershoot, 0.2; restore time,
2 s). Finally, the P300 reference time-course was normalized by
subtracting the minimum value and dividing by the difference of
maximum and minimum values.

Separation of BOLD spatio-temporal patterns

Brain Voyager QX 1.9 (Brain Innovation, Maastricht, The Neder-
lands) was used for image data preparation and processing. The first 3
functional volumes were discarded to ensure steady-state long-
itudinal magnetization. The remaining functional image time-series
were first corrected for the differences in slice acquisition times,
detrended, realigned with T1-volumes and transformed into the
standard Talairach anatomical space (Talairach and Tournoux, 1988).
For each dataset, spatial ICA was applied to the fMRI time-series
(McKeown at al., 1998). After data reduction by means of principal
component analysis (PCA), ICs were estimated bymeans of the FastICA
algorithm (Hyvärinen, 1999). Each fMRI IC consisted of a waveform
and a spatial map: the waveform corresponded to the time-course of
the specific pattern; the intensity of this activity across voxels was
expressed by the associated spatial map. To display voxels contribut-
ing most strongly to a particular IC and to allow inter-subject
comparison, the intensity values in each map were scaled to z-scores
(McKeown et al., 1998). In general, the spatial maps were character-
ized by areas with positive and negative z-scores, assumed to reflect
stimulation-induced activation and deactivation, respectively.

In order to extend the ICA analysis from single-subject to multi-
subject study, the ICs estimated from each subject were clustered,
matching the most similar spatial patterns across subjects. The self-
organizing group ICA (sogICA) method, implemented in Brain Voyager
QX, was used (Esposito et al., 2005). Once the ICs belonging to a cluster
had been retrieved, the average spatial map was computed and
assumed as representative for the cluster. The consistency of the
clusters was expressed in terms by an intra-cluster similarity index s,
defined as the average of the pair-wise spatial correlations between
the constituting IC maps. The condition sN0.10 was used to select the
clusters with reproducible maps across subjects. The remaining
clusters were checked, analyzing also their single-subject maps. The
exclusion of clusters that could be associated with artifacts was
performed on the basis of the IC-fingerprintmethod (DeMartino et al.,
2007), as implemented in BrainVoyager QX.

With the intention of appreciating the different activations
revealed by the EEG–fMRI analysis in terms of spatial maps, we also
analyzed BOLD data with a classical approach (Linden et al., 1999),
based on a rare/frequent contrast, and also with a more recent
approach based on direct P300-BOLD correlation (Eichele et al., 2005;
Horovitz et al., 2002). A general linearmodel (GLM) analysis (Friston et
al., 1995) was performed for both of them, using different predictors.
In the first case, the predictor was created convolving a time-course
containing 0 for frequent events and 1 for rare events with the same
HRF defined previously. In the second case, the P300 reference time-
course was used as predictor. Fixed-effect analysis was used for
obtaining group-level maps for both the rare/frequent contrast and
P300-BOLD correlation methods. This allowed comparing the result-
ing maps, by means of the spatial correlation coefficient, with the ICA
group maps, which were intrinsically based on a fixed-effect analysis.

Identification of brain networks linked to P300

The correspondence between the fluctuation of the P300 response
and the activity of the fMRI networks was analyzed, estimating the
similarity between the P300 reference time-course and the network
time-courses. Specifically, the correlation coefficient rp was computed
for each subject. Since the correlation coefficients of the ICs that
composed a specific cluster were not normally distributed, they were
converted to z values using Fisher's r-to-z transformation (Zar, 1996).
They were averaged, and the resulting value was back-transformed to
r-values. A minimum correlation coefficient level to ensure statistical
significance was determined using the two-tailed Pearson test
(pb0.05 corrected). Accordingly, only the fMRI networks with
rpN0.20, were considered to be significantly related to the P300
response. In addition, we performed for each network a random-effect
analysis on the z-scores by means of t-statistics, to measure the
consistency of the correlations across subjects (Zar, 1996).

Results

The subjects recruited for the present study underwent a simple
target detection experiment, consisting of a visual oddball paradigm
(supplementary Fig. 1), with mental counting of the occurrence of rare
events. After the simultaneous EEG–fMRI acquisition, they all correctly
reported the number of visual targets.

After the attenuation of BCG, imaging and ocular artifacts (Fig. 1),
single-subject EEG data collected during simultaneous fMRI scanning
were analyzed. ERP scalp topography and scalp maps at P300 latency
showed a major contribution of the P300 component over the centro-
parietal region, with latency in the 300–400ms range (Fig. 2). Early N1
and P1 components could also be observed in the ERP, although they
were weaker than the P300 component. The analysis of the ERP SNR
across subjects, in line with the spatial distribution of the P300
component, showed a bilateral pattern, more prominent at P3 and P4
electrodes (supplementary Fig. 2). Electrophysiological measures of
the ongoing cerebral activity related to target detectionwere obtained
by single-trial analysis of the P300 responses (Fig. 3 and supplemen-
tary Fig. 3). Raster plots of time-locked responses at electrode Pz were
generated for all trials together, and for rare and frequent events
separately (Figs. 3a and b, respectively). The latter clearly revealed
differences among the two groups in terms of event-related electric
activity at the latency of about 350 ms, which corresponded to the
P300 component. The P300 response across trials, obtained compar-
ing the single epochs with the ERP (supplementary Fig. 3), showed
significantly larger intensity for rare than for frequent events (Fig. 3c).
A P300 reference time-course for EEG–fMRI correlation analysis could
be obtained from the P300 response variations by convolution with a
canonical HRF (Fig. 3d). The P300 response time-course calculated
using a selection of electrodes over the centro-parietal region showed
a large correspondence with those separately extracted from the
constituting electrodes (supplementary Fig. 4), with an average
correlation across subjects ranging between 0.90 and 0.94.

With regard to fMRI data analysis, we identified five fMRI IC
clusters, which were associated with the dorsal attention, the ventral
attention, the core, the visual and the sensory-motor networks (Fig. 4
and supplementary Fig. 5). Their spatial patterns were consistent
across subjects, with intra-cluster similarity ranging between 0.15 and
0.28. Other fMRI clusters were produced by our analysis, but were not
further analyzed because they were associated with artifacts, or were
almost inconsistent across subjects (supplementary Fig. 6). The
ventral attention network mainly included the right temporo-parietal
junction, inferior and middle frontal gyrus, and anterior cingulate; the
areas of this network showed to be anti-correlated with posterior–
lateral andmidline regions that are commonly more active at rest, and
correspond to the default-mode network (supplementary Table 1).
The dorsal attention networkmainly included the intraparietal sulcus,
the frontal eye field (FEF), and the middle frontal gyrus (supplemen-
tary Table 2). The core networkmainly included the anterior cingulate,
the bilateral insular and dorso-lateral prefrontal cortices. The visual
network included the retinotopic occipital cortex and temporal–
occipital regions dedicated to visual processing. The sensory-motor
network included the precentral, postcentral, and medial frontal gyri,
the primary sensory-motor cortices, and the supplementary motor
area. Among these five brain networks, only the ventral and the dorsal
attention networks were found to be significantly correlated with the



Fig. 2. Single-subject ERP analysis of artifact-corrected EEG signals. (Top panel) Scalp topography of ERPs associated with rare and frequent events; (Bottom panel) Scalp maps
showing the temporal evolution of the P300 response.
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P300 reference time-course (Table 1). Analysis of the time-averaged
network response (fMRI activation) to the presentation of targets
showed that only the ventral attention network consistently
responded to the rare stimuli, whereas the averaging procedure
seemed to attenuate the signals of the dorsal attention network (Fig.
4). In addition, event-related responses were observed for the visual
network and the core network, with larger intensity and shorter
duration for the former one, whereas the activity of the sensory-motor
network did not seem to be time-locked to the stimulus presentation.

Analyzing the fMRI data with the classical approach based on a
rare/frequent contrast, as well as with the P300-BOLD correlation
approach, we obtained spatialmaps that seemed to be quite consistent



Fig. 3. Single-subject single-trial analysis of artifact-corrected EEG signals. (a) Raster plot of all trials at electrode Cz, aligned to stimulus onset, with electric potential expressed in
color scale; (b) separate raster plots of trials at electrode Pz, corresponding to rare and frequent events; (c) reconstructed fluctuations of the P300 response across trials, with red bars
placed in correspondence of rare events; (d) P300 reference time-course obtained from the convolution of the P300 response fluctuations with a canonical HRF.
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with the ICA results (supplementary Fig. 7). The rare/frequent
contrast map included brain activations in the thalamus, the
midbrain, the middle/superior frontal gyrus, the supplementary
motor area, the precentral gyrus, the middle temporal gyrus, the
inferior and superior parietal lobules, the precuneus and the cuneus
(supplementary Table 3). Conversely, the P300-BOLD correlation map
mainly showed the involvement of the insula, the middle frontal
gyrus, the anterior cingulate, the supplementary motor area, the
precentral gyrus, the middle temporal gyrus, and the inferior parietal
lobule, the precuneus and the cuneus (supplementary Table 4).
Comparing the ICA network maps with that of the rare/frequent
contrast analysis, we observed a large correspondence areas for
activations in the ventral attention network, with a spatial correlation
of 0.51 (pb0.001), and a minor overlap for those in the dorsal
attention network, with a spatial correlation of 0.10 (pb0.001). By
contrast, the P300-fMRI correlation map showed stronger correspon-
dence with the dorsal thanwith the ventral attention network, with a
correlation of 0.34 (pb0.001) and 0.21 (pb0.001) respectively.
Activations obtained with the classical and the correlation-based
approaches within visual and motor areas were found to be present in



Fig. 4. Spatio-temporal analysis of the five networks consistently found across subjects. The first two networks, markedwith a star, are significantly correlatedwith the P300 response
fluctuations. For each network, sagittal, coronal and axial maps are shown, along with the average time-courses in response to rare events. The maps contain regions with positive
(warm colors, yellow-orange) or negative (cool colors, azure-blue) z-scores. The average time-courses are normalized because they refer to the average activity of the brain patterns.
The thick red line in each graph represents the best-fit to all data points.

271D. Mantini et al. / NeuroImage 44 (2009) 265–274



Table 1
Statistics on the correlations between the P300 reference time-course and the fMRI
network time-courses

Ventral
attention
network

Dorsal
attention
network

Core
network

Visual
network

Somatomotor
network

Average correlation 0.27⁎ 0.23⁎ 0.04 −0.06 −0.04
Standard deviation 0.14 0.12 0.29 0.22 0.22
T-score 1.97⁎⁎ 1.98⁎⁎ 0.13 −0.25 −0.18

For each network, the average and the standard deviation across subjects is provided,
along with the corresponding t-score value.
⁎ Significant correlation value (pb0.05, corrected for multiple comparison).
⁎⁎ Significant t-score value (pb0.05).
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the two corresponding networks separated by ICA, but our EEG–fMRI
analysis revealed them as not significantly correlated with the P300
response fluctuations (Table 1).

Discussion

Brain activity during target detection was decomposed into
coherent spatio-temporal patterns, that were investigated using a
data-driven approach, linking P300 response variations and BOLD
coherent fluctuations.

Methodological considerations

Since the EEG recordings collected in the MRI scanner were
contaminated by imaging, BCG, and ocular artifacts, we applied
artifact attenuation techniques to obtain signals that could be useful
for EEG–fMRI integration. Given that EEG and fMRI were recorded
simultaneously, we used the slice-based AAS method for artifact
imaging subtraction (Gonçalves et al., 2007), thus avoiding a possible
P300 attenuation induced by the classical gradient-based AASmethod
(Allen et al., 2000). The residual imaging contamination in our EEG
data, as well as the BCG and ocular artifacts, were then removed by
means of an ICA-based procedure, which was already tested and used
in our previous EEG–fMRI studies (Mantini et al., 2007a,b).

In previous studies, after artifact attenuation the EEG data were
typically used for ERP analysis, based on electromagnetic source
localizations at different latencies (Goldstein et al., 2002). Accordingly,
the single epochs were averaged, and therefore their variability was
not taken into account. In our study, this analysis revealed an
important contribution of the P300 component to the ERP, in
particular at the centro-parietal electrodes, whereas we generally
observed weak P1 and N1 responses, probably due to our specific
experimental paradigm. Since we observed a SNR sufficient for single-
trial analysis of the P300 component, we measured its trial-by-trial
response fluctuations. This information, considered to indirectly allow
off-line monitoring of target detection performance (Debener et al.,
2005), was particularly valuable. Other authors reported that the P300
amplitude variability was affected by inter-stimulus interval (Sambeth
et al., 2004), target-to-target interval (Gonsalvez and Polich, 2002), or
target probability (Croft et al., 2003). However, no clear indication
about the cerebral mechanisms accounting for the P300 response
fluctuations observed during the oddball task could be provided in
these studies. We analyzed the trial-by-trial responses recorded by
EEG–fMRI to obtain an indirect measure of both the electrophysiolo-
gical and the hemodynamic correlates of brain activity linked to target
detection. In our study, the P300 reference time-course from EEG
single trials (Horovitz et al., 2002) was primarily used to interpret the
results from the fMRI data.

In order to identify and characterize cortical responses to the
stimuli, traditional fMRI data-analysis methods require knowledge
of stimulus timing, or of a region of interest (Friston et al. 1995). In
the perspective of EEG–fMRI integration, we aimed at developing a
method for the fusion of information from electrophysiological and
hemodynamic measures of ongoing cerebral processes. To this pur-
pose, we analyzed fMRI images by means of ICA, a signal processing
method able to separate independent spatio-temporal patterns of
brain activity (Hyvärinen and Oja, 2000; James and Hesse, 2005). ICA
allowed the decomposition of observations into independent patterns,
without any prior knowledge about their activity waveforms or
locations (McKeown et al., 1998). Due to its characteristics, ICA
demonstrated to be a powerful tool for the extraction of functional
connectivity patterns of synchronized neural activity, and in particular
for the retrieval of functionally distinct cerebral networks (Bartels and
Zeki, 2005; Beckmann et al., 2005).

Since the ICA method permitted the separation of a number of
functionally distinct coherence patterns for each dataset, we used the
sogICA method, in order to produce group inferences in a multi-
subject analysis (Esposito et al., 2005). By means of this second-level
analysis, we could also find reproducible spatial patterns across
subjects. Moreover, information in the time-domain was not dis-
carded during the clustering process; rather, the time-courses of brain
activation for the ICs belonging to the same cluster were grouped and
jointly analyzed for measuring the correlation of the specific network
with the P300 reference time-course.

Our EEG–fMRI method based on ICA for fMRI analysis allowed
linking information from EEG and fMRI data according to a data-
driven approach. Therefore, it can be assumed to be unbiased by the
use of an incomplete model for the fusion of EEG and fMRI data. For
example, although we extracted only the most prominent feature
from the EEG data (the P300 component), we could relate the P300
response variationswith the network ongoing activity. Conversely, the
use of the P300 reference time-course in a hypothesis-driven EEG-
based GLM analysis would not generally provide complete informa-
tion, because it would strictly require, instead, a set of EEG predictors
capable to comprehensively account for the fMRI time-courses. The
present study showed that the EEG-informed fMRI analysis can be
effectively conducted by ICA of fMRI data, just as previous studies by
Debener showed that it can benefit from ICA of EEG data (Debener et
al., 2005, 2006). The next logical step would be to use ICA on both EEG
and fMRI. From this standpoint, Eichele suggested to use ICA in
parallel on simultaneously acquired EEG and fMRI data, and to match
the ICA results by correlating the EEG and fMRI IC trial-to-trial
modulations (Eichele et al., 2008). Subsequently, Moosmannproved in
a simulation study that the decomposition of simultaneously recorded
single-trial EEG–fMRI data in the same ICA model might be feasible
(Moosmann et al., 2008). It is our opinion that a possible methodo-
logical development in the perspective of simultaneous EEG–fMRI
integration may be the use of self-organized clustering with both the
EEG ICs and the fMRI ICs, and then the association of the EEG and fMRI
clusters using spatial and temporal information.

Neurobiological considerations

Itwas recently observed that the local field potential (LFP) correlates
with the BOLD signal (Leopold et al., 2003; Logothetis et al., 2001). Since
the LFP is the basis for scalp EEG, a non-invasivemethod formultimodal
integration could be achieved by investigating correlations between
BOLD and EEG responses (Horovitz et al., 2002; Benar et al., 2007). Our
approach provided additional information with respect to previous
EEG–fMRI studies based on fMRI-constrained source localization of
ERPs (Moores et al., 2003; Mulert et al., 2004), or on direct ERP/fMRI
integration (Calhoun et al., 2006), and complemented the results of
classical fMRI statistical analyses (Linden et al., 1999). These showed a
large number of P300 generators, specifically in the supplementary
motor area, the anterior cingulate, the middle and superior frontal
cortex, the insula, the posterior parietal cortex, and the right temporo-
parietal junction, which were suggested to belong to different
functional systems (Bledowski et al., 2004a; Horn et al., 2003).
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Using information from concurrent EEG and fMRI, our method
permitted separating and charactering the activity of the ventral
attention, the dorsal attention, the core, the visual and the sensory-
motor networks, as previously defined in neuroimaging studies on
active and passive behavioral tasks (Corbetta and Shulman, 2002;
Dosenbach et al., 2006; Fox et al., 2006; Nir et al., 2006). Among them,
the first two proved to be consistently related to target detection
processes. The ventral attention network included brain areas that
were activated by the presentation of the rare stimuli, and other areas
that were concurrently deactivated. Activation in the ventral attention
systemwas associated with the detection of behaviorally relevant and
unexpected stimuli, and, more generally, of changes in the sensory
environment (Corbetta and Shulman, 2002; Downar et al., 2000). It
was reported to be independent of the presentation modality, and to
be significantly right-lateralized (Downar et al., 2000). The same set of
brain areas was also specifically and consistently found to be
associated with transient responses at task onset and offset (Fox et
al., 2005; Konishi et al., 2001), an effect thought to be related to
transitions from and to a state of readiness (Corbetta and Shulman,
2002; Shulman et al., 2002). Deactivations were mainly found in
precuneus, medial prefrontal cortex and medial parietal cortex,. All
these areas, typically associated with the default-mode system, were
shown to be more active during rest, and to be transiently or
consistently deactivated during many different types of cognitive
tasks (Shulman et al., 1997; Binder et al., 1999). The dorsal attention
network, characterized by the involvement of parietal and prefrontal
regions, was usually engaged during voluntary orienting (Corbetta and
Shulman, 2002). Interestingly, our analysis revealed that the time-
course of this network reflected a modulation that was averaged out if
time-locked to the presentation of targets, but was nevertheless
correlated with the P300 response fluctuations across trials. This
specific system was previously found to be related to P300 responses
by Eichele and colleagues, who combined the ERP response at
different latencies with the simultaneously acquired BOLD signals by
means of a modified auditory oddball paradigm (Eichele et al., 2005).
This result was also confirmed by our findings: the high spatial
correlation between the maps of the dorsal attention network and the
P300-BOLD correlation analysis is an indication that the P300
response fluctuations were modulated by brain intrinsic activity (Fox
et al., 2006; 2007). This activity was suggested to be driven, to some
extent, by behavioral conditions (Fox et al., 2007; Fox and Raichle,
2007). In particular the dorsal attention network was supposed to be
influenced by voluntary attention shifts during search for salient
stimuli (Shulman et al., 2003). Furthermore, other neuroimaging
studies demonstrated that the activation of this specific network
largely reflected sustained activity during continuous cognitive and
behavioral tasks (Fox et al., 2005; Visscher et al., 2003), presumably
related to adaptive task control (Dosenbach et al., 2007).

In conclusion, in this studywe linked the cerebral dynamics observed
through EEG and fMRI, for investigating the different contribution of
distinct cortical networks to target detection. It is our opinion that the
analysis of single trials, as supported by this study, may provide
information beyond what can be revealed by the analysis of trial
averages. This information can be potentially valuable, mostly when
applied to the trial-by-trial coupling of concurrent electrophysiological
and hemodynamic cerebral measures, for further investigations on
cognitive functions related to sensory processing, attention andmemory.
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