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Abstract
Once-daily (od), low-dose aspirin (75–100 mg) is recommended to reduce the thrombotic risk of patients with
essential thrombocytemia (ET). This practice is based on data extrapolated from other high-risk patients and an aspirin
trial in polycythemia vera, with the assumption of similar aspirin pharmacodynamics in the two settings. However, the
pharmacodynamics of low-dose aspirin is impaired in ET, reflecting accelerated renewal of platelet cyclooxygenase
(COX)-1. ARES is a parallel-arm, placebo-controlled, randomized, dose-finding, phase II trial enrolling 300 ET patients to
address two main questions. First, whether twice or three times 100 mg aspirin daily dosing is superior to the standard
od regimen in inhibiting platelet thromboxane (TX)A2 production, without inhibiting vascular prostacyclin
biosynthesis. Second, whether long-term persistence of superior biochemical efficacy can be safely maintained with
multiple vs. single dosing aspirin regimen. Considering that the primary study end point is serum TXB2, a surrogate
biomarker of clinical efficacy, a preliminary exercise of reproducibility and validation of this biomarker across all the 11
participating centers was implemented. The results of this preliminary phase demonstrate the importance of
controlling reproducibility of biomarkers in multicenter trials and the feasibility of using serum TXB2 as a reliable end
point for dose-finding studies of novel aspirin regimens.

Introduction and rationale
Essential thrombocythemia (ET) is a myeloproliferative

neoplasm (MPN) characterized by clonal thrombocytosis
and enhanced risk of arterial and venous thrombosis1–3.
The discovery of the JAK2 V617F mutation in 2005 and
the revised 2008 World Health Organization (WHO)
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guidelines4 indicating a lower platelet count threshold for
diagnosing ET, led to an apparent increase in ET inci-
dence5. Nowadays, ET incidence approximates 1.0–1.7
per 100 000 individuals per year, with a likely increase in
the near future due to the continuous rise of occasional,
asymptomatic diagnoses, and an estimated prevalence of
approximately 20 per 100 000 individuals6–8. ET is usually
diagnosed between the fifth and sixth decade, and has a
longer life expectancy and a lower leukemic transforma-
tion rate as compared to other MPN1. However, up to
50% of ET patients experience a thrombotic event,
including myocardial infarction, ischemic stroke, transient
ischemic attack, or venous thromboembolism1, with an
estimated incidence of 1.3–6.6% per year in spite of
cytoreductive agents and/or antiplatelet drugs9.
Thrombosis-related mortality in ET approximates 0.5%
per year9, which ranks higher than the general popula-
tion10. Accordingly, an optimal use of antiplatelet agents
seems of outmost clinical relevance.
Several groups have reported increased in vivo platelet

activation in ET11–13. In particular, we have previously
described persistently enhanced urinary excretion of 11-
dehydro-thromboxane (TX)B2 (TXM) in ET
patients11,12,14. TXM is the major enzymatic metabolite of
TXA2 in humans and is largely of platelet origin15,
therefore its urinary excretion represents a widely used
biomarker of platelet activation9, which is consistently
increased in different clinical settings at high cardiovas-
cular (CV) risk, and predicts CV events in aspirin-treated
high-risk patients16. Thus, data in ET suggest a pathoge-
netic link between persistently enhanced platelet activa-
tion and thrombotic complications, requiring an effective
antiplatelet therapy. Low-dose aspirin (75–100 mg once
daily [od]17) is currently recommended for both second-
ary and primary CV prevention in the majority of ET
patients1,9, with the exception of young patients without
traditional CV risk factors, defined at “low risk”, in whom
aspirin in primary prophylaxis remains controversial18

and possibly dependent on the mutation profile19.
The recommendation of using low-dose aspirin in ET

patients is mainly based on retrospective, observational
analyses3,9 and on the extrapolation from an aspirin trial
for CV prevention in polycythemia vera20. However,
controlled trials formally assessing the efficacy and safety
of low-dose aspirin in ET are lacking. Thus, the recom-
mendation of the same aspirin dose range (75–100mg)
and dosing regimen (od) for ET patients as for non-ET
patients implies assuming similar antiplatelet
pharmacodynamics.
The unique pharmacodynamics of low-dose aspirin

relies on the irreversible acetylation of platelet cycloox-
ygenase (COX)-1 and the resulting long-lasting inhibition
of TXA2 biosynthesis21. In spite of aspirin short half-life
(20 min in the human circulation), blockade of platelet

COX-1 activity lasts for the entire platelet life span due to
the limited platelet capacity for new COX-1 synthesis,
thus allowing od dosing21. Moreover, aspirin acetylates a
variable fraction of COX isozymes in the bone marrow
megakaryocytes and pro-platelets, as suggested by a
24–48 h delay between aspirin withdrawal and reappear-
ance of COX-1-dependent TXA2 biosynthesis in periph-
eral platelets22. Thus, under normal thrombopoiesis, a 24-
h dosing interval of a short-lived drug is ensured by a
unique combination of irreversible inactivation of a slowly
renewable drug target (platelet COX-1) and an effect on
platelet progenitors, leading to a new platelet progeny
with a largely non-functioning enzyme throughout the 24-
h dosing interval21. Therefore, at steady state, low-dose
aspirin inhibits platelet COX-1 activity by >97% in healthy
subjects22, as assessed by a surrogate biomarker of effi-
cacy, i.e., the measurement of ex vivo TXB2 production
during whole-blood clotting23.
Low-dose aspirin reduces by ≈25% the rate of major CV

events, in a variety of high-risk clinical settings21,24.
However, at variance with non-ET patients, a standard od
regimen of low-dose aspirin administration is inadequate
to fully inhibit platelet TXA2 production in ≈80% of ET
patients12,14,25. A faster renewal of the drug target, due to
enhanced megakaryopoiesis, is both biologically and
pharmacologically plausible in ET14,26. Accelerated pla-
telet turnover is associated with a higher-than-normal
fraction of newly released platelets with unacetylated
COX-1 and/or COX-212, which would account for
incomplete inhibition as well as partial recovery of TXA2-
dependent platelet function during the 24-h dosing
interval9. Two independent studies have shown that the
duration of the antiplatelet effect of low-dose aspirin is
shortened in the majority of aspirin-treated ET patients,
and incomplete suppression of platelet TXA2 production
during the 24-h dosing interval can be largely rescued by a
twice daily (bid) low-dose aspirin regimen14,25. However,
approximately one-third of a small group (8 of 22) of ET
patients treated with aspirin 100 mg bid still had persis-
tently high serum TXB2 values14. Interestingly, an
increased number of circulating immature platelets
represents an independent determinant of poor anti-
platelet drug response in non-ET disorders at high CV
risk22[,27,28.
Thus, the abnormal megakaryopoiesis that characterizes

ET appears to account for a shorter duration of the
antiplatelet effect of low-dose aspirin due to a faster
renewal of platelet COX-1, an abnormality that could be
rescued by shortening the aspirin dosing interval, but not
by increasing the od dose14,25. Based on the two small,
proof-of-concept studies14,25, bid low-dose aspirin is
currently considered in the most recent treatment algo-
rithm for low- to high-risk ET patients1. However, the
clinical efficacy and safety of a bid low-dose aspirin
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regimen in ET remains to be investigated. Moreover, it
should be considered that multiple daily dosing of any
drug is usually associated with a lower patient’s com-
pliance29. Although a bid low-dose aspirin regimen has
been successfully tested in stroke patients30, nevertheless
this issue should be addressed when proposing multiple
daily drug intake for further clinical evaluation.
The potential inhibitory effect of aspirin on vascular

prostacyclin (PGI2) biosynthesis should also be con-
sidered. In fact, the COX-2 isozyme constitutively
expressed in vascular endothelial cells largely accounts for
PGI2 biosynthesis under physiological shear conditions

31.
In humans, PGI2 has vasodilator and platelet-inhibiting
effects, counteracting pro-thrombotic signals, including
platelet TXA2

31. Od low-dose aspirin within the low-dose
range has limited inhibitory effects on in vivo PGI2 bio-
synthesis, while it fully inhibits platelet TXA2 production,
possibly because of differential rates of recovery of
endothelial COX-2 vs. platelet COX-1 during the 24-h
dosing interval21,32,33. It is unknown whether shortening
the aspirin dosing interval may affect endothelial PGI2
production. A pilot study in 50 ET patients suggests that
aspirin 100mg bid does not significantly affect PGI2
biosynthesis33. However, the potential impact of a shorter
dosing interval of low-dose aspirin administration on
in vivo PGI2 biosynthesis should be investigated.
To address the open questions outlined above, we

designed the Aspirin Regimens in Essential Thrombo-
cythemia (ARES: EudraCT 2016-002885-30) trial as a
phase II dose-finding study of aspirin in ET to select the
optimal dosing regimen for an international phase III trial
in ET. The ARES trial has been approved and funded by
the Italian Medicines Agency (AIFA), study code
FARM12Y8H.

Study objectives
The ARES study has two primary objectives:
1. To investigate whether aspirin regimens based on

bid or three times daily (tid) administration of
100 mg result in a more complete suppression of
platelet-derived TXA2 throughout the dosing
interval, without significantly affecting in vivo PGI2
biosynthesis, as compared to the standard od
regimen. Serum TXB2 will be measured as an index
of platelet COX-1 activity, specifically reflecting the
antiplatelet pharmacodynamics of aspirin
(biochemical efficacy) (http://www.ema.europa.eu/
docs/en_GB/document_library/Scientific_guideline/
2009/09/WC500003340.pdf). A major urinary PGI2
metabolite, 2,3-dinor-6-keto-PGF1alfa (PGIM) will be
measured to assess the impact of different aspirin
regimens on vascular COX-2 activity (biochemical
safety)32. The comparison between aspirin 100 mg
bid or tid vs. 100 mg od will test a superiority

hypothesis in terms of serum TXB2 levels associated
with each experimental vs. standard regimens.
PGIM comparisons will assess the non-inferiority of
any multiple daily dosing regimen vs. the standard
od regimen. This objective will be addressed by a
randomized, parallel-arm, double-blind, controlled
study of 2-week aspirin treatment (part A) aimed at
identifying the aspirin regimen to be further
evaluated during long-term follow-up in the second
part (part B) of the study.

2. To evaluate the long-term persistence of superior
biochemical efficacy of an optimized, multiple daily
dosing regimen, as compared to the aspirin 100 mg
od regimen. Biochemical efficacy will be assessed by
repeated measurements of serum TXB2 (every
3 months over 20 months). A multiple daily dosing
regimen will be tested for superiority vs. od dosing in
terms of biochemical efficacy throughout the dosing
interval, in an open-label, randomized study
comparing aspirin 100 mg od vs. the optimal
multiple daily dosing regimen identified in part A,
with a follow-up of 20 months. This long-term
follow-up will also provide an estimate of
compliance with the experimental dosing regimen.

The secondary exploratory objectives will be:
1. To assess the safety of the multiple daily aspirin

regimen by recording: major bleeding and clinically
relevant non-major bleeding events defined
according to the Scientific and Standardization
Committee of the International Society on
Thrombosis and Haemostasis34,35, as well as any
upper gastrointestinal non-bleeding adverse events,
which may be considered attributable to aspirin (e.g.,
ulcer or perforation > grade 2).

2. To record any thrombotic complication, as
previously defined3. Briefly, major arterial
thrombosis will include the following: acute
coronary syndrome; any ischemic stroke (major and
minor); and peripheral arterial thrombosis, including
thrombotic digital ischemia and retinal arterial
thrombosis. Major venous thrombosis will include
thrombosis in the following districts: deep veins of
the limb and/or abdomen; cerebral and splanchnic
veins; retinal vein, as well as pulmonary embolism.
Splanchnic venous thrombosis will include hepatic,
portal, mesenteric, and splenic veins. Transient
ischemic attack and superficial vein thrombosis of
the limbs will be considered as minor thrombosis.

3. To assess the tolerability of the experimental dosing
regimen by recording the gastrointestinal symptoms
by the severity of dyspepsia assessment
questionnaire36.

4. To evaluate the potential benefit of multiple doses of
aspirin on the MPN-related symptom burden by a
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questionnaire aimed to capture all microvascular
symptoms37, including the MPN Symptom
Assessment and a pain numeric rating scale for
erythromelalgia.

5. To assess the stability over time of in vivo platelet
activation, as assessed by urinary TXM excretion, in
a subset of patients, in a non-invasive substudy.

6. To assess whether the pre-fibrotic/early primary
myelofibrosis (pre-PMF) phenotype now
distinguished in the revised 2016 WHO
classification38 has a higher incidence in the patients
who will develop major or clinically relevant non-
major bleeding during follow-up.

These secondary assessments will be performed in part
B of the study, over 20-month treatment.

Design of the study
The ARES study consists of two sequential parts, “A”

and “B” (Fig. 1). Three-hundred ET eligible patients, after
signing an informed consent, will start a run-in phase,
whereby they will be instructed to take their aspirin tablet
at breakfast (7–9 a.m.) for 7–10 consecutive days, thus
allowing synchronizing aspirin intake. Upon run-in
completion, patients will enter study part A.

Part A
Patients will be randomized (1:1:1) in a double-blind

fashion to aspirin 100 mg od (standard of care), 100mg
bid (i.e. breakfast and dinner), or 100mg tid (i.e., break-
fast, lunch, and dinner). Matching placebo will be used so
that all patients will take active drug and placebo tablets
tid. At randomization and after 2 weeks of study treat-
ment, patients will undergo blood and urine sampling for
serum TXB2 and urinary PGIM and TXM measurements
at 8 a.m., immediately before aspirin dosing; thereafter,
they will resume their open-label, standard aspirin regi-
men for the time interval necessary to assay serum and
urine samples and analyze the data. The primary end
points of part A will assess the biochemical efficacy, as
reflected by the degree of suppression of serum TXB2
throughout the dosing interval, and biochemical safety, as
assessed by urinary PGIM excretion, of the two experi-
mental dosing regimens as compared to the standard
regimen of aspirin administration. The secondary end
point will assess their impact on in vivo platelet activation,
as reflected by the urinary excretion of TXM.

Part B
The experimental aspirin regimen associated with a

significantly lower serum TXB2 level and non-inferior
urinary PGIM excretion rate (i.e., ≤30% reduction) as
compared to aspirin 100 mg od, will be selected for part B,
and patients will be randomized in an open-label fashion
to the standard vs. the optimized multiple dosing regimen

for 20 months. The primary end point of part B will assess
the long-term persistence of the superior biochemical
efficacy of the optimized vs. standard aspirin regimen, in
at least 6 out of 10 determinations of serum TXB2 that
will be performed over 20 months. Secondary end points
of part B will explore the following: (i) the safety of the
experimental aspirin regimen, as reflected by any major
bleeding and gastrointestinal symptoms considered attri-
butable to aspirin; (ii) effectiveness in reducing MPN-
specific symptom burden and pain attributable to
microcirculatory disturbances; and (iii) stability over
20 months of the degree of platelet activation in vivo, as
assessed by urinary TXM. The stability of TXM will be
assessed in a subgroup of 150 patients.

Study population and patient eligibility
Three-hundred ET patients will be enrolled by 11 Ita-

lian hematological centers. Both patients with newly
diagnosed and previously diagnosed disease were eligible.
Inclusion and exclusion criteria are listed in Table 1. The
following characteristics will be recorded at study entry:

Fig. 1 Trial design. The flow chart depicts the design and phases of
the ARES study
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age at diagnosis; history of thrombosis or major bleeding;
mutational profile (i.e., JAK2, CALR, and MPL muta-
tions); blood count; spleen size; constitutional symptoms;
and cytoreductive agents. Of note, the study was designed
and approved by the AIFA and Ethic Committees before
the publication of the revised 2016 WHO classification for
tumors of the hematopoietic and lymphoid tissues38,
therefore the inclusion criteria reflect the WHO classifi-
cation at the time of study approvals.
Cytoreductive drugs, namely hydroxyurea, pipobroman,

busulphan, interferon, and anagrelide will be allowed to
control platelet count. Patients will be prescribed proton
pump inhibitors according to the Italian regulatory indi-
cations. In case of the occasional need of analgesic/anti-
pyretic drugs, patients will be instructed to take
paracetamol (up to 2000 mg daily) and to avoid traditional
nonsteroidal anti-inflammatory drugs (NSAIDs) known to
have a pharmacodynamic interaction with low-dose
aspirin that may limit the extent of platelet COX-1 acet-
ylation21. Patients will be instructed to take paracetamol
for a maximum of 3 days/week, if necessary

Study end points and statistical analysis
The co-primary end points of part A are as follows: (1)

platelet TXA2 production ex vivo, as reflected by serum
TXB2, measured in samples collected in the morning,
before the next aspirin intake; and (2) vascular PGI2
biosynthesis in vivo, as reflected by urinary PGIM excre-
tion in a urine sample collected in the morning before the

next aspirin intake. Urinary TXM excretion represents a
secondary end point. These biomarkers will be measured
at randomization and at 14 ± 2 days thereafter.
The primary end point of part B is represented by serum

TXB2 measured 10 times in samples collected in the
morning, before the next aspirin intake. The secondary
end points are related to exploratory assessment of safety
and tolerability of the experimental aspirin dosing regi-
men, and stability over time of in vivo platelet activation,
as detailed above.
Based on previous findings12,14, we expect the mean ±

standard deviation (SD) serum TXB2 in ET patients on
aspirin 100mg od and 100mg bid to be 22 ± 33 and 5.0 ±
6.0 ng/ml, respectively. We plan to test with α-error of
0.05 and a β-error of 0.2 (power 80%) the following
hypotheses:
a. 100 mg bid is superior to 100 mg od, with a ≥50%

reduction in serum TXB2 (required sample size 70
patients/arm)

b. 100 mg tid is superior to 100 mg bid, with a ≥50%
reduction in serum TXB2 (required sample size 70
patients/arm)

Anticipating a 30% dropout over the entire study
duration, we plan to enroll 100 patients/arm to ensure
adequate statistical power. For urinary PGIM, we expect
the mean ± SD PGIM excretion rate in ET patients on
aspirin 100mg od to be 195 ± 119 pg/mg creatinine33.
Using the above sample size (n= 70 patients/arm),
the study has 80% power to test the hypothesis that

Table 1 Inclusion and exclusion criteria

Main inclusion criteria Main exclusion criteria

All of the following:

Age between 18 and 75 years

A WHO 2008-defined ET diagnosis

Ongoing aspirin 100 mg daily since at least 3 months, according to the

judgment of the referring hematologist

The patient understands and voluntarily signs an informed consent

Any of the following:

Platelet count > 1 000 000/μl on three occasions over the 2 months

before enrollment

Diabetes according to American Diabetes Association criteria

Creatinine level > 1.5× upper limit of normal

Liver disease defined as AST and/or ALT values > 3× upper limit of

normal

Active gastrointestinal disease

Obesity (BMI > 30 kg/m2)

Smoking habits (>5 cigarettes/day)

History of major bleeding

History of cancer in the previous 3 years, except for treated early-stage

squamous or basal cell skin carcinomas

Pregnancy or lactation

Use of nonsteroidal anti-inflammatory drugs >3 times/week

Use of antiplatelet agents other than aspirin 100 mg

Use of oral anticoagulants including anti-vitamin K, anti-Xa, or -IIa agents

Use of heparins or fondaparinux

Chronic use of steroids (prednisone > 5mg/day or equivalent)
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any experimental treatment may reduce urinary PGIM
to <140 pg/mg creatinine, i.e., by >30%. This threshold
of PGIM inhibition vs. the standard dosing regimen
can be considered reasonably safe based on the following
considerations: urinary PGIM excretion is minimally
affected by low-dose aspirin in healthy subjects32,33; in
ET subjects, aspirin 100 mg bid did not significantly
modify PGIM as compared to 100 mg od33; and this
threshold corresponds to the intra-subject coefficient of
variation on repeated measurements of PGIM excretion
over time39.
The same 300 ET patients will be randomized in part B

of the study that will test the long-term persistence of
superior biochemical efficacy of the optimized vs. stan-
dard dosing regimen. In all, 112 patients/arm will be
needed to assess with an α-error of 0.05 and 80% power, a
reduction of at least 50% in serum TXB2 with the opti-
mized regimen (100 mg bid or tid) vs. the standard aspirin
regimen (100 mg od), in at least 6 out of 10 determina-
tions performed over 20 months.
Differences in mean serum TXB2 values will be eval-

uated by one-way analysis of variance, using Scheffe
multiple-comparison test to allow comparisons of the
three different treatments in part A. Analysis of covar-
iance using multiple regression with dummies for the
different treatments will be used if, at single univariate
analysis, major differences (p < 0.05) in the distribution of
gender, age, platelet count, JAK2 mutational status, spleen
size, aspartate aminotransferase, alanine aminotransfer-
ase, or creatinine, and type of cytoreductive drug (if any)
will be present between the three treatment subgroups.
Both intention-to-treat and per-protocol analyses will be
carried out.
It can be reasonably anticipated that a portion of the ET

patients recruited in this trial according to the 2008 WHO
diagnostic criteria4 might fall into the category of the pre-
PMF according to the revised 2016 WHO criteria38. In a
large international study of 1104 ET patients, diagnosis
was revised to pre-PMF in 16%;40 these patients have been
reported having an increased tendency toward bleeding41.
Therefore, we will perform a pre-specified secondary
analysis in the group of patients who will develop major
and/or non-major clinically relevant bleeding in com-
parison with the patients with an uneventful course. All
the bone marrow biopsies of the recruited patients will be
revised by an ad hoc committee formed by the pathologist
of the Coordinating Center and the pathologist of the
Center where the patient had been recruited in order to
assess whether patients had a true-ET or a pre-PMF
according to the revised WHO classification;38 both the
pathologists involved in the bone marrow revision will be
blinded to the clinical characteristics of the patients. If the
pathologists will provide different opinions, we will con-
sult with a qualified third pathologist. The incidence of

pre-PMF in patients with bleeding events will be com-
pared to that found in non-bleeders.

Study organization: feasibility and
implementation of the serum TXB2 assay
The measurement of TXB2 generated ex vivo during

whole-blood clotting at 37 °C is a highly specific bio-
marker to characterize the pharmacodynamics of low-
dose aspirin as an inhibitor of platelet COX-123,42. This
assay relies on the physiological generation of endogenous
thrombin during whole-blood clotting at 37 °C, which
triggers the release of arachidonic acid from platelet
membrane phospholipids43. Arachidonic acid is then
metabolized by COX-1 to the unstable intermediates
prostaglandin (PG)G2 and PGH2, which is converted to
TXA2 by TX-synthase21. TXA2 is not a circulating sub-
stance (max estimated plasma concentration: 1–2 pg/
ml)15, is rapidly hydrolyzed to TXB2 in an aqueous milieu,
and its abundant presence in serum (300–400 ng/ml in
the absence of aspirin) reflects its platelet COX-1-
dependent biosynthesis during whole-blood clotting, as
the end product of a chain of enzymatic reactions that are
both time- and temperature-dependent23. Thus, serum
TXB2 reflects the maximal biosynthetic capacity of blood
platelets to generate TXA2 in a COX-1-dependent fash-
ion. This assay was used to characterize the clinical
pharmacology of platelet COX-1 inactivation by low-dose
aspirin in health and disease44.
In order for the serum TXB2 assay to reflect the max-

imal biosynthetic capacity of blood platelets and its
blockade by COX-1 inhibitors in a reproducible fashion,
initiation of whole-blood clotting at 37 °C must rapidly
follow peripheral blood sampling. However, a repro-
ducible implementation of this procedure in multicenter
studies might face practical hurdles, such as logistic delays
between blood withdrawal from patients and access to a
thermostatic bath, as well as the lack of appreciation of
the time- and temperature-dependence of TXB2 produc-
tion during blood clotting. Consistent with this expecta-
tion, a comparison of serum TXB2 values in two large,
multicenter cohorts of aspirin-treated patients45,46

showed up to 10-fold difference in median TXB2 levels (7
and 0.6 ng/ml in the ADRIE46 and BOSTON45 studies,
respectively) that could not be explained by patient
characteristics or analytical biases47. Two recent in vitro
studies showed that even a minor delay in starting 37 °C
incubation can time-dependently underestimate serum
TXB2 levels

17,48, and thus potentially account for variable
aspirin responsiveness across studies and centers. Thus,
we assessed the feasibility of obtaining reliable serum
TXB2 measurements across the ARES study centers. All
participating investigators were given a detailed operative
manual for the pre-analytical procedures, and all centers
were supplied with the same disposable material for
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collecting and processing blood. Each center recruited five
healthy, non-smoker subjects not being treated with any
medication, and with normal hematochemistry, who did
not take any NSAID or aspirin in the previous 10 days.
The reason for including healthy, aspirin-naive subjects
were as follows: the high absolute values of serum TXB2;
the lack of influence of pharmacological interventions;
and the possibility of detecting even small differences in
absolute serum TXB2 values. The study was conducted in
accordance with the Declaration of Helsinki and received
ethics committee’s approvals in all participating centers.
Peripheral blood was withdrawn using a Vacutainer®

system into a Vacuette® tube (Z Serum Clot Activator,
Geiner Bio-One GmbH, Kremsmünster, Austria). Physi-
cians and nurses were instructed to place the tubes within
3 min maximum after blood withdrawal into a 37 °C water
bath located in the proximity of the outpatient Unit. After
1-h incubation, all blood samples were centrifuged at
1200 × g for 10 min, the serum supernatant was collected
and stored at −20 °C until shipment. All centers recorded
the anonymized subject ID, the timing of blood sampling,
start and end of incubation, and storage at 20 °C in a data
sheet. All samples were shipped frozen to a Core Lab,
where centralized measurements were performed. Serum
TXB2 was measured by enzyme immunoassay (EIA) as
previously described17,23. This EIA method has a limit of
detection calculated as 80% B/B0 of 3 ± 2 pg/ml, an inter-
assay coefficient of variation of 6% (n= 75 determina-
tions), and has been validated against gas chromato-
graphy/mass spectrometry17.
The reference range of serum TXB2 values was calcu-

lated as the mean ± 1 SD of 101 serum samples from
healthy volunteers (43% females, median age 33 [30–49,

interquartile range] years) from previously published
studies17,22,39, which were measured in the same labora-
tory (Dept. of Pharmacology, Catholic University School
of Medicine, Rome, Italy), using the same pre- and post-
analytical procedures14. We considered the inter-assay
coefficient of variation, calculated as SD/mean × 100 of
the same sample measured in different assays. Thus, given
a mean serum TXB2 value of 295 ± 121 ng/ml, and 6%
inter-assay variability, we considered as lower limit of the
normal range a concentration of 184 ng/ml. We con-
sidered a center as compliant with the procedure if it
provided at least 4 out of 5 samples measuring ≥184 ng/
ml. Centers who provided ≥2 samples out of range were
interviewed about the procedure and were asked to repeat
blood sampling and the pre-analytical procedure a second
time.
Fifty-five healthy volunteers (60% females, median age

34 [29–48] years) were recruited in 11 centers. The logged
time interval between blood sampling and 37 °C incuba-
tion was 1 [1–3.5] min (n= 55) and the time between the
end of incubation of the samples and serum freezing was
31 [13–75] min (n= 55) without any statistically sig-
nificant differences between centers. There was no cor-
relation between each of these time intervals and the final
serum TXB2 values (all p > 0.5). The serum TXB2 values
of the first series of measurements are shown in Fig. 2a,
and 3 out of 11 centers had ≥2 values ≤184 ng/ml. These
centers were further queried regarding their procedures
and instrumentation to assess the conditions of 37 °C
incubation of the blood samples. One center used a dry
heating instrument (cell incubator) rather than a water
bath, to incubate whole blood (Fig. 2, center 4), one center
had a water bath not reaching the correct temperature in

Fig. 2 Individual serum TXB2 values across different ARES centers. a Individual serum TXB2 values measured in samples obtained from 55
healthy subjects in 11 centers. The lower limit of the normal range is indicated by the horizontal line. b The second serum TXB2 determination in
6 selected centers, with the 3 centers showing out-of-range values in the first set of determinations, and 3 other centers, which had appropriate
values and were repeated for assessing data reproducibility. Center numbering is the same in a and b
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spite of the displayed value (Fig. 2, center 2), one center
used to wrap up the tubes with rubber before placing
them in the water bath (Fig. 2, center 3). These conditions
are likely to have caused an actual incubation temperature
of the samples <37 °C or a delay in reaching the correct
temperature in the sample. These three centers then
modified their incubation conditions and repeated the
procedure. As a control for internal reproducibiliy, three
centers with appropriate serum TXB2 values repeated the
procedure as well. Figure 2b shows the results of the
second series of measurements in the six centers. All
centers had values within the expected range (Fig. 2b).

Conclusions
Despite considerable progress in understanding the

pathophysiology of ET complications, substantial uncer-
tainty remains concerning the optimal antiplatelet ther-
apy, largely reflecting the following: (1) the lack of
randomized clinical trials of antiplatelet prophylaxis in
this setting; (2) the widely held assumption that a standard
low-dose aspirin regimen is adequate for all ET patients,
while in fact a od dosing regimen has been shown
inadequate to achieve persistent inhibition of platelet
TXA2 in the vast majority of ET patients14,25; (3) a sub-
stantial residual risk of major vascular events in spite of
aspirin treatment3,9; and (4) a treatment recommendation
of considering aspirin bid in low- to high-risk patients1, in
the absence of a formal dose-finding study and efficacy
trial.
The ARES study will be the first, multicenter, phase II

randomized trial testing the hypothesis that the current
standard antiplatelet regimen (low-dose aspirin od) is
inadequate to ensure effective and persistent blockade of
platelet COX-1 activity in ET patients, with the ultimate
goal of optimizing antiplatelet therapy in intermediate- to
high-risk ET patients who have a clear indication for long-
term antiplatelet prophylaxis. ARES will provide essential
information on the required dosing regimen to achieve
this goal, as well as a preliminary assessment of its tol-
erability and safety that will inform the design of a
properly sized phase III efficacy trial. The assessment of
the reproducibility of the whole-blood TXB2 assay among
centers, which we tested before starting patient enroll-
ment, appears as an essential step to ensure the reliability
of the main study results.
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