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The recent progress of RISC technology has led to the feeling 
that a significant percentage of image processing applications, 
which in the past required the use of special purpose computer 
architectures or of “ad hoc” hardware, can now be implemented 
in software on low cost general purpose platforms. We decided to 
undertake the study described in this paper to understand the 
extent to which this feeling corresponds to reality . We selected a 
set of reference RISC based systems to represent RISC 
technology, and identified a set of basic image processing tasks to 
represent the image processing domain. We measured the 
performance and studied the behaviour of the reference systems in 
the execution of the basic image processing tasks by running a 
number of experiments based on different program organizations. 
The results of these experiments are summarized in a table, which 
can be used by image processing application designers to 
evaluate whether RISC based platforms are able to deliver the 
computing power required for a specific application. 

The study of the reference system behaviour led us to draw the 
following conclusions. First, unless special programming 
solutions are adopted, image processing  programs turn out to be 
extremely inefficient on RISC based systems. This is due to the 
fact that present generation optimizing compilers are not able to 
compile image processing programs into efficient machine code. 

Second, while computer architecture has evolved from the 
original flat organization towards a more complex organization, 
based, for example, on memory hierarchy and instruction level 
parallelism, the programming model upon which high level 
languages (e.g., C, Pascal) are based has not evolved 
accordingly. As a consequence programmers are forced to adopt 
special programming solutions and tricks to bridge the gap 
between architecture and programming model to improve 
efficiency. 

Third, although processing speed has grown up much faster 
than memory access speed, in current generation single processor 
RISC systems image processing can still be considered compute-
bound. As a consequence, improvements in processing speed 
(originated for example by a higher degree of parallelism) will 
yield improvements of an equal factor in applications. 

1 INTRODUCTION 

The rapid progress of RISC technology 
[13][41][33][46] has recently given a new impulse to image 
processing and pattern recognition (IPPR). The availability 
of a computing power of the same order of magnitude as 
that previously delivered by massively parallel computers 
on low cost RISC systems presently makes software based 
IPPR effective and convenient in a number of applications 
which were not even targeted in the past because of the 
prohibitive cost of the hardware required. As a 
consequence of this evolution, traditional high end 
applications of IPPR, for example in the area of automatic 
document recognition and classification, have been ported 
to RISC based platforms [1] and successfully installed in a 
number of small and medium size document processing 
centers, and novel applications of IPPR, based for example 
on digital video processing [23], have been introduced and 
have quickly found wide acceptance. 

IPPR is one of the traditional application domains of 
massively parallel computers [24][45] because of the size 
and of the regularity of the data structures involved, 
typically consisting of large two-dimensional arrays of 
picture elements (pixels), and because of the characteristics 
of the algorithms used, typically consisting of the execution 
of the same set of operations on all the pixels and of the 
combination of each pixel with a small set of pixels located 
at a short distance. 

It was indeed the characteristics of image processing 
that stimulated most of theoretical research and 
experiments in massively parallel computer architectures. 
Such research and experiments, which largely developed 
and progressed in the seventies and in the eighties, 
produced a variety of scientific results in the form of 
parallel algorithms [20], parallel architectures [42] and 
prototypes of parallel computers (e.g., CLIP  [10],  MPP  
[27], CM[16], IUA[44]). 

Unfortunately the cost and the programming complexity 
of massively parallel computers did not favour the diffusion 
of IPPR in real applications, as only a limited number of 
companies and institutions were able to afford the cost of 
dedicated parallel hardware and the cost of developing 
machine dependent algorithms and programs. It was in the 
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second half of the eighties that the technology of RISC 
microprocessors and systems, driven by the huge market of 
desktop workstations and servers, reached a point at which 
the performance of IPPR programs, coded in a standard 
sequential language such as C, became high enough to 
allow for the implementation of cost effective RISC based 
IPPR applications. 

The possibility of using a general purpose RISC system 
instead of an expensive special purpose massively parallel 
computer for IPPR soon cooled down the interest in special 
purpose parallel architectures. The feeling that any IPPR 
application could be run on a RISC, or at worst on a few 
RISCs, gradually pervaded the scientific community and 
led to the conclusion that special purpose parallel 
architectures were not going to be necessary any more for 
IPPR applications. 

Such a conclusion has not been substantiated so far by 
an analytical investigation of the performance and 
efficiency of RISC systems in IPPR applications, as it was 
done, on the contrary, in the application domain of 
scientific computing [7][19][8]. This is exactly the subject 
of this paper: the specific objectives of the study presented 
in this paper are i) the characterization of the level of 
performance of IPPR applications on RISC systems, ii) the 
analysis of the behaviour of the main components of RISC 
systems (i.e., CPU, primary memory, cache) in the 
execution of IPPR programs, and iii) the investigation of 
program organization techniques aimed at improving the 
performance of IPPR applications on RISC systems. 

The study was carried out as follows. We selected a set 
of reference families of RISC based desktop systems, 
among those commercially available, namely from Sun 
Microsystems, Digital Equipment Corp., Silicon Graphics 
Inc., International Business Machines, and Hewlett Packard 
and chose the top level models of these families as 
reference systems. We classified the reference systems in 
terms of their main architectural characteristics, which 
include general information on the CPU (for example clock 
speed and presence/absence of dedicated hardware units), 
specific information on the pipeline organization (for 
example instruction latency and throughput), and 
information on the memory hierarchy organization (for 
example cache size and throughput). 

We then selected four basic tasks to represent the IPPR 
application domain, namely Discrete Cosine Transform 
[28] and Full Search Block Matching [18][29], used in 
video compression [23], and Convolution [31] and Hough 
Transform [3], used in vision and pattern recognition. We 
programmed each basic task on each reference architecture 
starting from a plain derivation of the code from the task 
definition, and gradually adopting more and more 
sophisticated programming solutions to improve its 
performance. We studied the effect of such programming 
solutions on the behaviour and on the performance of the 
reference systems by measuring the throughput 
improvements and by inspecting the assembly code 
produced by the compiler in order to identify the sources of 
inefficiency. 

The experiments led to two results, which are the main 

contributions of this paper, namely i) the measurement of 
the performance of the basic IPPR tasks on the reference 
systems and ii) the analysis of the behaviour of such tasks, 
and by induction of IPPR in general, in RISC systems. The 
measurement of the performances of the basic IPPR tasks 
on the reference systems allows us to identify the class of 
IPPR applications that can be actually supported by RISC 
systems and the level of performance that can be achieved 
using current technology. The analysis of the behaviour of 
IPPR programs in RISC systems allows us to locate the 
main processing bottle-necks and leads to the identification 
of a number of source level program optimization 
techniques to improve efficiency. 

The paper is organized as follows. In Section 2 we 
present, analyze and compare the reference systems by 
means of a set of parameters which capture their 
architectural characteristics. In Section 3 we introduce the 
set of IPPR basic tasks. In Section 4 we describe the 
experiments and present the results of the performance 
analysis of the basic tasks on the reference systems. In 
Section 5 we discuss the results of the experiments, and in 
Section 6 we provide some concluding remarks. 

2 THE REFERENCE SYSTEMS 

We selected some of the top level models of high 
performance desktop workstations to represent RISC 
architecture and technology. We restricted our analysis to 
single processor systems as we are only interested in 
studying the behaviour of RISC architectures in IPPR and 
not how IPPR can be parallelized on RISC based 
multiprocessors. The reference systems selected are SUN 
Microsystems' SPARCstation 20 model 61 [40], Hewlett 
Packard's HP 9000 Series 700 model 735/125 [14], Digital 
Equipment Corporation's DEC 3000 model 800S [5], 
Silicon Graphics' Indigo2 Impact [34], and International 
Business Machines' RISC System/6000 model 43P [17]. In 
the rest of the paper we will refer to these systems by 
means of the name of their manufacturers, namely SUN, 
HP, DEC, SGI and IBM. 

The reference systems are based on five different CPUs, 
namely SuperSPARC [37][39], HPPA 7150  [15][2],  
DECchip 21064 (Alpha)  [6][26],  MIPS R4400  [12]  and  
PowerPC 604 
[36], which cover the two directions of instruction level 
parallelism, i.e. pipelining and scalarity, and feature 
different memory hierarchy organization. 

Table 1 summarizes the characteristics of the reference 
systems. The System Software Section includes the 
identification of the operating system under which we ran 
our experiments and of the compilers that we used to build 
the experimental programs. The General CPU Parameters 
Section includes the main CPU features, such as the CPU 
clock frequency, the number of general purpose and 
floating point registers available, the number of instructions 
that can be issued concurrently, the way floating point to 
integer and integer to floating point conversions are carried 
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out and the time such conversions require1. The Instruction 
Latency Section and the Instruction Throughput Section 
report the values of the parameters related to instruction 
processing such as the number of cycles necessary to 
complete a single operation and the maximum operation 
throughput. The Memory System Section reports the values 
                                                           

1 We decided to include this parameter, considering that in C 

programs, in which type conversions are implicit and not immediately 

visible, floating point to integer and integer to floating point conversions 

take a not negligible percentage of time. 

of the parameters related to the organization and to the 
performance of memory. 

3 THE IPPR BASIC TASKS 

The most typical tasks of IPPR are those which require 
the processing of images2 and of lists of pixels. Based on 

                                                           
2 In this paper the term image is referred to a two-

dimensional array of pixels. 

System Name HP 
735/125 

DEC 
AXP 3000/800S

IBM 
RS6000 43P 

SGI 
Indigo2 Impact 

SUN 
Sparc 20/61 

System Software      

1 Operating system HP UX 9.05 OSF1 v. 3.2 AIX 4.1.1 IRIX 5.3 SunOS 4.1.4 

2 C Compilers gcc 2.6/HP cc gcc 2.6/DEC cc gcc 2.6/IBM xlc gcc 2.6/MIPS cc gcc 2.6/SUN acc 

General CPU Parameters      

3 CPU name HPPA 7150 DECchip 21064 PowerPC 604 MIPS R4400 SuperSparc 

4 Year of availability 1994 1992 1994 1994 1992 

5 Clock frequency 125 MHz 200 MHz 100MHz 250 MHz 60 MHz 

6 CPU cycle time 8 ns 5 ns 10 ns 4 ns 16.6 ns 

7 Data path width 32 bits 64 bits 32 bits 64 bits 32 bits 

8 Number of general purpose registers 32×32 bits 32×32 bits 32×64 bits 32×32 bits 32×32 bits 

9 Number of floating point registers 64×32 or 32×64 bits 32×64 bits 32×64 bits 32×64 bits 32×32 or 16×64 bits

10 Number of instructions issued 2 2 4 1 3 

11 Integer-floating point unit interaction Through memory Through memory Through memory Direct Through memory 

12 Time for an int to float conversion 65 ns 56 ns 174 ns 24 ns 67 ns 

Instruction execution latency      

13 Integer (32 bits) sum 1 cycle 1 cycle 1 cycle 1 cycle 1 cycle 

14 Integer (32 bits) multiply 10 cycle 21 cycles 4 cycles 13 cycles 5 cycles 

15 Double (64 bits) sum 2 cycles 6 cycles 4 cycles 4 cycles 3 cycles 

16 Double (64 bits) multiply 2 cycles 6 cycles 5 cycles 8 cycles 3 cycles 

Instruction Throughput      

17 Integer (32 bits) sum 1 cycle 1 cycle ½ cycle 1 cycle ½ cycle 

18 Integer (32 bits) multiply 10 cycles 19 cycles 2 cycles 13 cycles 5 cycles 

19 Double (64 bits) sum 1 cycle 1 cycle 1 cycle 3 cycles 1 cycle 

20 Double (64 bits) multiply 1 cycle 1 cycle 1 cycle 4 cycles 1 cycle 

Memory system      

21 Primary memory 64 Mbytes 64 Mbytes 64 Mbytes 64 Mbytes 128 Mbytes 

22 RAM access time (read line) 360 ns 200 ns 366 ns 1162 ns 365 ns 

Instruction cache      

23 Size 256 Kbytes 8 Kbytes 16 Kbytes 16 Kbytes 20 Kbytes 

24 Organization Direct mapped Direct mapped Four way set 
associative 

Direct mapped Five way set 
associative 

25 Access Time 8 ns 5 ns 10 ns 4 ns 16.6 ns 

Data cache      

26 Size 256 Kbytes 8 Kbytes 16 Kbytes 16 Kbytes 16 Kbytes 

27 Line size 32 bytes 32 bytes 32 bytes 16 bytes 32 bytes 

28 Organization Direct mapped Direct mapped Four way set 
associative 

Direct mapped Four way set 
associative 

29 Access Time (read int) 16 ns 5 ns 10 ns 4 ns 16.6 ns 

30 Access Time (write int) 16 ns 5 ns 10 ns 4 ns 16.6 ns 

31 Access Time (read floating point) 24 ns 5 ns 10 ns 4 ns 16.6 ns 

32 Access Time (write floating point) 16 ns 5 ns 10 ns 4 ns 16.6 ns 

33 Data write protocol Copy back Write through Copy back Write through Copy back 

Second Level cache      

34 Size NA 2 Mbytes 256 Kbytes 2 Mbytes 1 Mbyte 

35 Line size NA 32 bytes 32 bytes 128 bytes 128 bytes 

36 Access Time NA 70 ns 153 ns 85 ns 151 ns 

Table 1 Reference systems feature summary. 
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such an assumption, we decided to restrict our analysis to 
low level and intermediate level image processing [3]: low 
level image processing tasks receive images at their input, 
process them, and produce images at their output whereas 
intermediate level image processing tasks receive images or 
lists of pixels at their input, process them, and produce a set 
of features, not necessarily in the form of an image, at their 
output. 

The operations that can be performed on images can be 
classified as point operations, if the value of every element 
of the output data set is a function only of the value of one 
pixel of the input image, local operations, if the value of 
every element of the output data set is a function only of 

the values of a limited number of pixels located inside a 
well defined area in the input image, or global operations, 
if the value of every element of the output data set is a 
function of all the pixels of the input image. We decided to 
neglect point operations, which are less computing 
demanding than the other two categories, and to focus on 
local operations and global operations. According to these 
guidelines, we selected the basic tasks shown in Table 2 for 
our analysis. 

Table 3 summarizes the characteristics, the complexity 
and the type of operations of the basics IPPR tasks. For 
each of them we now give a short description, show the 

 Low level Intermediate level 

Local processing Convolution [31] Full Search Block Matching [18] 

Global processing Discrete Cosine Transform [22] Hough Transform [3] 

Table 2 - Basic IPPR tasks. 
 

TASK Definition Complexity Operations 

 
Convolution 

O(n2m2) 
 
m = size of 
conv. mask 

 
int mul 
int add 

 

Discrete 
Cosine 

Transform 

 
 

O(n4) 

 

float mul 
float add 
cos, sin 

 
 

Hough 
Transform. 

O(ml) 
 
m = number 
of angles 
l = number of 
edge pixels 

float mul 
float add 
cos sin 

float-to-int 
conversion 

Full Search 
Block Matching 

O(n2d2) 
 
d = maximum 
displacement  

int sub 
abs 

int sum 

Table 3 - Basic IPPR tasks: definition, complexity and type of operations required. 
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basic sequential algorithm3, and report the computational 
complexity. 

3.1 Low Level Image Processing Tasks 
Two-dimensional convolution (hereafter CONV) and two-

dimensional Discrete Cosine Transform (hereafter DCT) were 
selected to represent low level image processing. CONV only 
requires local processing while DCT requires global 
processing. 

3.1.1 Two-dimensional Convolution (CONV) 
CONV performs the spatial linear filtering of an image. 

The effect of filtering is to reduce or to emphasize the 
amplitude of certain spatial frequencies. Applications of 
CONV include image enhancement in general as well as, 
depending on the convolution mask, edge detection [31], 
regularization [4], morphological operations [25]. In the 
implementation of CONV a matrix of coefficients or 
weights, called mask, slides over the input image, covering 
a different image region at each shift. At each shift, the 
coefficients of the mask are combined with the image to 
produce a weighted average value of the pixels currently 
covered: the result is assigned to the output pixel located in 
the center of the covered region. The basic sequential 
algorithm for CONV is the following4: 

for each mask position (x,y) 
 begin 
 for each mask element (i,j) 
  acc:=acc+input_image[x+i][y+j]*mask[i][j]; 
 output_image[x+mask_dim div 2] 
         [y+mask_dim div 2]:=acc; 
 end 

Indexes x and y control the shifting of the mask over the 
input image, whereas indexes i and j scan the portion of the 
input image which overlaps with the convolution mask. 
During such a scan the weighted average value of the input 
image pixels is computed and accumulated in acc: the 
result is then moved to output_image. The computational 
complexity of CONV is O(n2m2), where n×n is the image 
size and m×m is the mask size. 

3.1.2 Discrete Cosine Transform (DCT) 
 The Cosine Transform performs the computation of the 

coefficients of the different spatial frequency components 
of an image. Its advantage, with respect to the Fourier 
                                                           
3 In our terminology the term task is referred to a specific 

piece of work that must be performed, while the term 
algorithm is referred to the way a task is carried out.  
There are many algorithms that carry out a given task: 
the "basic sequential algorithm" is the algorithm which 
is most directly derivable from the task definition. 

4 We ignore the issues related to the processing of image 
borders, which require special processing, as we are 
interested in the computational issues and not in the 
completeness of the results of the algorithm. 

Transform, is that its discretization (i.e. the DCT) does not 
cause periodical discontinuities on the spatial domain as it 
happens in the Discrete Fourier Transform. 

DCT is used in image coding, both for still image 
compression, applied to the source image, and for full 
motion video compression, applied to the difference 
between a video frame and its prediction. The basic 
sequential algorithm for DCT is shown below. 

for each DCT element (i, j) 
 begin 
 for each image pixel (x, y) 
  acc:=acc+c[i]*c[j]*in_image[x][y]*cos[c2*j*x+c3] 
            *cos[c2*y*j+c3]; 
 out_image[i][j]:=acc; 
 end 

The computational complexity of DCT is O(n4), where 
n is the size of the image or of the image block to be 
transformed. 

3.2 Intermediate Level Image Processing 
Tasks 

Full Search Block Matching (in the following denoted by 
FSBM) and Hough Transform (in the following denoted by 
HT) were selected to represent intermediate level image 
processing. FSBM only requires local processing while HT 
requires global processing. 

3.2.1 Full Search Block Matching (FSBM) 
FSBM is the most straightforward way to implement 

motion estimation, which is the most time consuming part 
of interframe video compression. Motion estimation in a 
stream of video frames is carried out by partitioning the 
current frame in blocks of pixels of fixed size and, for each 
of these blocks, by looking for the most similar block of 
pixels in another frame, called reference frame. Once this 
search is completed , each block of the current frame can be 
coded by means of a vector associated to the difference 
between its position in the current frame and the position of 
the corresponding block in the reference frame5. This 
vector is named motion vector. 

FSBM is the basic technique used to compute the block 
most similar to a reference block of the current frame 
within a search area of the reference frame. It considers all 
the blocks, called candidate blocks, contained within a 

                                                           
5 To be precise the code includes the motion vector and 

the difference between the actual block and its 
estimation obtained applying the motion vector to the 
reference frame block. 
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search area of the reference frame for comparison6, as is 
shown in the following pseudo-code. 

for each block in the current frame 
 begin 
 mad := MAX_INT  /* mad stands for Mean Absolute 
 Difference */ 
 for each candidate block in the reference frame 
         within given displacement 
  for each pixel 

   curmad := curmad + |reference pixel 

            - candidate pixel| 
  if (curmad < mad) 
   begin 
   mad := curmad 
   update the motion vector 
   end 
 end 

For each reference block, all the surrounding blocks within 
a given search area are considered, and the position of the 
one that best matches the reference block is used to 
compute the motion vector. The matching criterion used to 
measure how well a candidate block matches the reference 
block is the Mean Absolute Difference (MAD), which 
requires the execution of simple operations (subtraction and 
absolute value). The computational complexity of FSBM is 
O(n

2
d

2
), where n is the size of the image and d is the 

maximum displacement considered. 

3.2.2 Hough Transform (HT) 
HT is a typical task of pattern recognition aimed at 

detecting lines and curves in binary images. In our 
formulation HT processes a list of edge pixels extracted 
from an image (for example by means of convolution) and 
produces a matrix H, each element of which corresponds to 
a straight line in the input image, as a result. In particular, 
element Hr,k corresponds to a straight line L identified by 
parameters r and k, where r is the distance between L and 
the origin and k is proportional to the angle between the x-
axis and a straight line orthogonal to L. Hr,k contains the 
number of edge pixels aligned along straight line L(r, k). 
The basic sequential algorithm for HT is shown below:  

for each angle k 
 begin 
 for each edge pixel (x,y) 
  begin 
  r:= y * sin (k) + x * cos (k); 
  inc(H[r][k]); 
  end 
 end 

                                                           
6 Since FSBM is highly computing intensive, other less 

computing demanding (and of course sub-optimal) 
algorithms have been proposed and are used in software 
implementations of compression algorithms on 
workstations. We focus on FSBM as we are interested 
only in the computational aspects of IPPR and not in 
innovative algorithmic solutions. 

For each angle k all the edge pixels are processed. 
For each edge pixel (x,y) the value of r such that straight 
line L(r,k ) intersects the pixel is found and the value of 
output matrix H at position (r,k) is incremented. The 
computational complexity of HT is O(ml), where m is the 
number of angles considered and l is the number of edge 
pixels. 

4 PERFORMANCE OF THE IPPR BASIC 

TASKS ON THE REFERENCE SYSTEMS 

We ran a number of experiments to measure the 
performance of the IPPR basic tasks on the reference 
systems and to observe their behaviour. A preliminary set 
of experiments led us to identify the following sources of 
inefficiency: 

1) The computing intensive parts of IPPR programs tend 
to be organized as processing loops of limited size: in 
such pieces of code the loop control processing 
overhead takes a significant percentage of the total 
processing time. 

2) The iterative organization of IPPR programs tends to 
generate a large number of data hazards7 in pipelined 
architectures. 

3) Because of the presence/absence of specific functional 
units (e.g., integer/floating point units) and data paths 
(e.g., from integer to floating point registers and 
viceversa), the use of the data types which naturally 
match the task characteristics in the source programs 
may turn out to be not the most convenient solution. 

4) The use of arrays to keep large tables of pre-computed 
functions (e.g., trigonometric functions) in memory for 
fast on line access may introduce unnecessary load/store 
instructions, which slow down program execution; the 
most effective mechanism to maintain these tables (e.g., 
arrays, variables or constants) depends both on the 
characteristics of the host architecture and on the 
compiler used. 

5) The possibility to plan the order in which the input data 
structures (e.g., the images), are accessed allows 
defining program and data partitioning strategies which 
depend on the size of the cache memory, aimed at 
reducing the average latency of memory accesses. 

We demonstrated, through a second set of experiments, 
that the native compilers of the reference systems and the 
GNU C compiler for the reference systems are not able to 
eliminate these sources of inefficiency. On the contrary, we 
demonstrated that the sources of inefficiency can be 
eliminated only through manual optimization of source 
programs. More specifically, we experimented with the 
following source level optimizations: 

1) Loop Unrolling - LU consists of transforming a loop in 

                                                           
7 Data hazards take place when an instruction needs the 

result of an immediately previous instruction as an 
input. 
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such a way to increase the loop body size and to 
decrease the number of iterations. LU reduces both the 
number of load/store instructions in the programs, 
thanks to a better utilization of the CPU registers, and 
the effect of the data hazards, by increasing the number 
of instructions in each loop iteration, thus allowing the 
compiler optimizer to schedule the instructions more 
efficiently. 

2) Data Type Optimization - DTO consists of choosing the 
data types for the variables in the program critical path 
using as a criterion the performance of the different 
functional units instead of using the data types naturally 
deriving from the task definition. DTO improves 
efficiency by forcing the data to flow through the fastest 
CPU data paths. 

3) Table Access Optimization - TAO consists of selecting 
the most convenient mechanism for keeping tables of 
pre-computed data in memory, thus reducing the time 
required to access such tables inside the program critical 
path. 

4) Cache Access Optimization - CAO consists of 
partitioning the programs in such a way to reduce the 
traffic between primary memory and cache memory.  

In the following subsections we describe the rationale 
of our experiments and the methodology adopted. We then 
describe the source level program optimizations in details 
and present the performance results obtained. 

4.1 Rationale 
First of all it is important to remark that the goal of our 

experiments is not to rank the reference systems in IPPR 
applications. The main reason why a ranking of that kind 
would make no sense is that the evolution of RISC 
technology is so fast and, as a consequence, the rate at 
which the families of reference systems are enriched with 
new models is so high that any ranking would be subject to 
a complete revision every few months (see [11] for an 
example of a new CPU which was announced during the 
development of our experiments). A second reason why 
ranking the reference systems in IPPR would make no 
sense is that the architecture of desktop workstations is 
presently migrating toward a more composite organization, 
in which dedicated devices take care of the processing of 
video and images instead of loading the CPU. 

Our investigation and experiments aim instead at 
observing the behaviour and evaluating the performance of 
the basic RISC architecture, which includes CPU and 
memory, with no support of hardware accelerators, in 
IPPR. Running IPPR applications on RISC systems not 
equipped with hardware accelerators allows the evaluation 
of the extent to which the RISC architectural concepts suit 
IPPR. The results of such an evaluation can be used, for 
example, to guide the design of RISC based hardware 
accelerators for IPPR. 

4.2 Methodology 
For each basic task and for each reference system we 

performed the following steps: 
1) we identified the algorithm most directly derivable from 

the basic task definition and wrote the corresponding C 
program; 

2) we compiled such a program using the most advanced 
compilers provided by the manufacturers as well as the 
GNU C compiler (see Table 1), activating the most 
aggressive optimization options [38][35]. 

3) we measured the performance of the object code on test 
input data set of fixed size: the performance 
measurements were based on the gettimeofday() system 
call provided by the Unix operating system, for each 
test repeating the measurements several times and 
selecting the minimum time obtained8; 

4) we analyzed the performance measurements, the source 
code and the assembly code generated by the compiler 
jointly, in order to identify the percentages of time spent 
in the different sections of the source program; 

5) we manipulated the source program in a variety of 
different ways which appeared to be convenient, to 
improve its performance;  

6) we repeated steps 3), 4) and 5)  until we found the best 
performance for that basic task; 

7) we interpreted the results of our measurements and 
actions. 
In the next Section we present the four source level 

optimizations using the four basic tasks as case studies. In 
particular LU is presented using FSBM as a case study, 
DTO is presented using CONV as a case study, TAO is 
presented using DCT as a case study, and CAO is presented 
using HT as a case study. 

4.3 Experiments 

4.3.1 Full Search Block Matching (FSBM) 
Fig. 1 shows the C program directly derived from the 

definition given in 3.2.1, which computes the mean 
absolute difference between a block of an image and the 
surrounding blocks, within displacement DISP. The code 

matches a block of size BLOCK_SIZE  BLOCK_SIZE 

of the current picture (variable cur_pic) with 2  
DISP+1 blocks of the same size in a reference picture 
(variable ref_pic) and produces the components of the 
motion vector (variables min_u and min_v) as a result. 
The code shown in Fig. 1 is supposed to be part of a loop 
which scans all the blocks of the current image. Table 4 
(row 1) shows the performance of the reference systems in 
the execution of such a code. 

4.3.1.1 Optimization of FSBM 
The code shown in Fig. 1 exhibits poor performance in 

RISC systems mainly because of the limited size of the 
internal loop body, which consists of only one statement 
and is executed a large number of times. Such a 

                                                           
8 Times larger than minimum include terms due to 

operating system overhead. 
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characteristic leads to the following two negative effects: 

1. it is not possible to take advantage of sophisticated 
instruction scheduling algorithms to generate the code 
corresponding to the loop body, considering the low 
number of machine instructions to be scheduled: as a 
consequence some of the data hazards cannot be 
eliminated and the utilization factor of the hardware 
functional units remains low. 

2. it is possible to take advantage only of a limited number 
of CPU registers to allocate variables or results of 
expressions repeatedly used: as a consequence most 
registers are not even accessed inside the loop and a 

large number of unnecessary memory accesses are 
performed. 

The first negative effect can be eliminated by Internal 
Loop Unrolling (ILU). ILU consists of collapsing some 
iterations of the most internal loop in one statement (see 
Figure 4.b for an example). This new statement is larger 
and more complex than the original loop body and requires 
a higher number of machine instructions to be executed. 
The higher number of machine instructions in the new loop 
body allows the optimizer to take advantage of its 
sophisticated scheduling algorithms and, as a consequence, 
to come up with a more efficient schedule. 
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1: min_v = 0; 
2: min_u = 0; 
3: mad = MAXINT;         /* Mean Absolute Difference */ 
4: for (u = -DISP; u <= DISP; u++) 
5:  for (v = -DISP; v <= DISP; v++) {  /*for each candidate block*/ 
6:   cur_mad = 0; 
7:   for (i = 0; i < BLOCK_SIZE; i++) 
8:    for (j = 0; j < BLOCK_SIZE; j++)  /* for each pixel */ 
9:     cur_mad+=abs(cur_pic[y+i][x+j]-ref_pic[y+DISP+i+u][x+DISP+j+v]); 
10:   if (cur_mad < mad ) { 
11:    mad = cur_mad; 
12:    min_v = v; 
13:    min_u = u; 
14:    } 
15:   } 

Figure 1 - FSBM: code directly derived from task definition. 

10: min_v = 0; 
11: min_u = 0; 
12: mad = MAXINT; 
13: for (u = -DISP; u <= DISP; u++) {  /* for each candidate 
                   out of 2*DISP+1 */ 
14:  cmad0 = .........= cmad16 = 0;  /*2*DISP+1 accumulators */ 
15:  for (i = 0; i < BLOCK_SIZE; i++) 
16:   for (j = 0; j < BLOCK_SIZE; j+=4) { /* for each pixel out of 4 */ 
17:    r0 = cur_pic[y+i][x+j]; /* 4 pixels per iteration*/ 
    .......... 
18:    r3 = cur_pic[y+i][x+j+3]; 
19:     cur_mad+=abs(cur_pic[y+i][x+j]-ref_pic[y+DISP+i+u][x+  +j]); 
 
20:    cmad0+=  (  abs(r0-ref_pic[y+DISP+i+u][x+  j]) 
21:         + abs(r1-ref_pic[y+DISP+i+u][x+1+j])) 
22:       + (  abs(r2-ref_pic[y+DISP+i+u][x+2+j]) 
23:         + abs(r3-ref_pic[y+DISP+i+u][x+3+j])); 
    ............... 
24:    cmad16+=  ( abs(r0-ref_pic[y+DISP+i+u][x+16+j]) 
25:         + abs(r1-ref_pic[y+DISP+i+u][x+17+j])) 
26:       + (  abs(r2-ref_pic[y+DISP+i+u][x+18+j]) 
27:         + abs(r3-ref_pic[y+DISP+i+u][x+19+j])); 
28:    } 
29:  if (cmad0 < mad) { /*selects the best new mad and motion vector*/ 
30:   mad = cmad0; 
31:   min_v = -8; 
32:   min_u = u; 
33:   } 
   ............ 
34:  if (cmad16 < mad) { 
35:   mad = cmad16; 
36:   min_v = 8; 
37:   min_u = u; 
38:   } 
39:  } 

Figure 2  - LU applied to FSBM. 

 HP DEC IBM SGI  SUN 

Code derived from task 
definition: 

7,467g ms 8,521c ms 3,631c ms 4,177g ms 8,287g ms 

Best performance of  
2,854g ms 2,205g ms 1,764g ms 1,202g ms 3,586g ms 

optimized code: 
LU: ELU 17 
 ILU 8 

LU: ELU 17 
 ILU 16 

LU: ELU 17 
 ILU 8 

LU: ELU 17 
 ILU 8 

LU: ELU 17 
 ILU 8 

 
Operating conditions: image size: 512×512 
 block size: 16×16 
 displacement: 8 
 compilers:: c = native compiler,  g = GNU compiler. 

Table 4 - Performance of FSBM. 
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The second negative effect can be eliminated by 
External Loop Unrolling (ELU). ELU consists of moving 
iterations from outer loops to inner loops (see Figure 4.a for 
an example). Using ELU, several threads of computations 
are created and simultaneously progress at every iteration 
of the internal loop: as long as there are registers available 
to be assigned to these threads of computation, the global 
efficiency improves. 

Fig. 2 shows the organization of the FSBM code 
resulting from the application of both ILU and ELU. The 
presence of more than one statement in the internal loop 
(cmad0+= ..., cmad1+=..., ...) is due to ELU, 
while the size of each of such statements is due to ILU. 

Table 4 (row 2) shows the best performance obtained in 
each reference system along with the loop unrolling factor. 
DTO, TAO and CAO are not applicable in FSBM. 

4.3.2 Convolution (CONV) 
Fig. 3 shows how the C program for two-dimensional 

convolution directly derived from the definition given in 
3.2. Table 5 (row 1) presents the performance of such a 
program on the reference systems. 

 

4.3.2.1 Optimization of CONV 
In order to improve the performance of convolution, LU 

can be effectively applied. The application of LU in CONV 
is not different from its application in FSBM, as presented 
in Section 4.3.1.1, and leads to a code which follows the 
general scheme shown in Fig. 4. The choice of different 
factors for ELU and ILU allows the derivation of specific 
programs from such a general scheme. 

In addition to LU, DTO can be used to speed up 
CONV. From Table 1 it appears that, in general, the 
reference systems are faster in floating point processing 
than in integer processing. This fact suggests to explore 
whether it may be convenient to carry out CONV in 
floating point rather than in integer, as it would seem 
natural. 

In an intrinsically integer task, such as CONV, the 
advantages of using integer types (int and unsigned 
char) derive from the faster execution of sums (in IBM 
and SUN) and the absence of type conversions9. On the 
contrary, the advantages of using floating point types 
(float or double) derive from the faster execution of 
products and from the availability of a higher number of 
registers. The availability of a higher number of registers is 
due to the fact that some of the general purpose integer 
registers cannot be assigned to program variables, as they 
are needed for housekeeping operations, such as array 
element address computation, run time stack handling, 
control variables and others. Using more registers allows 

                                                           
9 We assume that both the original input image and the 

output image are declared unsigned char arrays. 
As a consequence, type conversions would be needed to 
convert them to floating point, in case of floating point 
processing. 

the increase of the ELU factor, thus leading to a significant 
performance improvement: such a performance 
improvement can be considered an indirect effect of DTO. 

The question to be answered, to understand whether 
migrating to floating point processing is convenient, is 
whether the slow down due to the introduction of the 
unsigned char to float conversion, for the input 
image, and of the float to unsigned char 
conversion, for the convolution result, as well as to the 
execution of sums in floating point rather than integer, is so 
high to overcome the acceleration due both to the execution 
of products in floating point rather than in integer and to 
the increased ELU factor. In order to analyze these 
contributions we have run some experiments using 
programs derived from the scheme of Fig. 4. Table 5 shows 
the best performance measured for CONV in the reference 
systems along with the loop unrolling factor and the data 
types used10. TAO and CAO are not applicable in CONV. 

 

4.3.3 Discrete Cosine Transform (DCT) 
We investigated DCT as a basic building block of 

image compression standards, such as JPEG [43] and 
MPEG [18]. In such a context the following facts have to 
be considered: 
1. the DCT is not applied directly to images but to blocks 

of 88 pixels; 

2. the two-dimension DCT of an 88 pixel block can be 
computed by means of a sequence of two one-
dimension DCTs, namely a row-wise one-dimension 
DCT over each row of the input block and a column-
wise one-dimension DCT over each column of the 
result of the row-wise DCT; 

3. in each one-dimension DCT of a row of a 88 pixel 
block it is possible to identify a number of partial 
combinations of the inputs which are repeatedly used to 
compute the results [30]. The identification of such 
combinations allows to reduce the number of operations 
required to carry out the DCT from 56 sums and 64 
products, which corresponds to the case of a direct 
implementation of the DCT definition over eight 
elements, to 26 sums and 16 products (see Figure 5). 
The code in Figure 5 corresponds to the body of a loop 
which must be executed eight times, one for each row 
of the block, during the first one-dimensional 
convolution, and one for each column of the block 
during the second one-dimensional convolution. Two 
sections can be identified in the program, namely a 
Section in which the intermediate results to be used 
repeatedly are computed (statements 1-18), and a 
Section in which such intermediate results are combined 
to produce the final result (statements 19-26). 

                                                           
10 In the case of floating point, the performance 

measurements include the time required to carry out the 
input conversion from unsigned char to float 
and the output conversion from float to unsigned 
char 
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1. for(x=0;x<IM_SIZE;x++) 
2. for (y=0; y<IM_SIZE;y++){  
3.  temp=0; 
4.  for(i=0; i<MASK_SIZE; i++) 
5.   for(j=0; j<MASK_SIZE; j++) 
6.    temp+= source [x+i][y+j]*mask[i][j]; 
7.  dest[x+MASK_SIZE/2][y+MASK_SIZE/2]=temp/norm; 
8.  } 

Figure 3  -  CONV: code directly derived from task definition 
 
 
1. for(x=0;x<IM_SIZE;x++) 
2.  for (y=0; y<IM_SIZE;y+=N){  
3.   temp1=temp2=....=tempN=0; 
4.   for(i=0; i<MASK_SIZE; i++) 
5.    for(j=0; j<MASK_SIZE; j++){ 
6.    m=mask[i][j]; 
7.    temp0+= in_image[x+i][y+j]*m; 
8.    temp1+= in_image[x+i][y+j+1]*m; 
    ..... 
9.    tempN+= in_image[x+i][y+j+N]*m; 
10.    } 
11.  out_image[x+MASK_DIM/2][y+MASK_DIM/2]=temp0; 
12.  out_image[x+MASK_DIM/2][y+MASK_DIM/2+1]=temp1; 
   ..... 
13.  out_image[x+MASK_DIM/2][y+MASK_DIM/2+N]=tempN; 
  } 

a) ELU  
 

1. for(x=0;x<IM_DIM;x++) 
2. for (y=0; y<IM_DIM;y++){  
3.   out_im[x+MASK_DIM/2][y+MASK_DIM/2]=in_image[x][y]*mask[0][0]+ 
  .....+in_image[x][y+MASK_DIM]*mask[0][MASK_DIM]... 
 .....+in_image[x+MASK_DIM][y+MASK_DIM]*mask[MASK_DIM][MASK_DIM]; 
5.  } 

b) ILU 
Figure 4  - LU applied to CONV. 

 
 

 HP DEC IBM SGI SUN  

Code derived from task 
definition: 

1,430g ms 1,610c ms 330c ms 888g ms 1,360c ms 

Best performance of 
230g ms 220c ms 190c ms 225g ms 430g ms 

optimized code: 
LU: ILU 25 
DTO: float 

LU: ELU 24 
DTO: float 

LU: ILU 25 
DTO: int 

LU: ILU 25 
DTO: float 

LU: ILU 25 
DTO: float 

Operating conditions: image size: 512×512 
 mask size: 5×5 
 compilers: c = native compiler,  g = GNU compiler. 

Table 5 - Performance of CONV. 
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1. t0 = in[7] + in[0]; 
2. t1 = in[6] + in[1]; 
3. t2 = in[5] + in[2]; 
4. t3 = in[4] + in[3]; 
5. t4 = in[3] - in[4]; 
6. t5 = in[2] - in[5]; 
7. t6 = in[1] - in[6]; 
8. t7 = in[0] - in[7]; 
9. t10 = t3 + t0; 
10. t11 = t2 + t1; 
11. t12 = t1 - t2; 
12. t13 = t0 - t3; 
13. t14 = t4 + t15; 
14. t15 = (t6 - t5) * COS_4; 
15. t16 = (t6 + t5) * COS_4; 
16. t17 = t7 + t16; 
17. t25 = t4 - t15; 
18. t26 = t7 - t16; 
19. out[0] = (t10 + t11) *COS_4; 
20. out[2] = t13 * COS_2+ t12 * COS_6; 
21. out[4] = (t10 - t11) * COS_4; 
22. out[6] = t13 * COS_6 - t12 * COS_2; 
23. out[1] = t17 * COS_1 + t14 * COS_7; 
24. out[3] = t26 * COS_3 - t25 * COS_5; 
25. out[5] = t26 * COS_5 + t25 * COS_3; 
26. out[7] = t17 * COS_7 - t14 * COS_1; 
 

Figure 5  - DCT: fast data flow diagram and code [30]. 
 
 

 HP DEC IBM SGI SUN 

 
77g ms 86c ms 45c ms 73g ms 110c ms 

 

Best performance of 
optimized code: 

LU: NA 
DTO: float or 

double 
TAO: array or 

const or 
variables

LU: NA 
DTO: float or 

double 
TAO: const or 

variables

LU: NA 
DTO: int 
 
TAO: array or 

const or 
variables

LU: NA 
DTO: int 
 
TAO: const or 

variables 

LU: NA 
DTO: float 
 
TAO: array or 

variables

Operating conditions: image size 512×512 
 block size 8×8 
 compilers: c = native compiler,  g = GNU compiler. 

Table 6 - Performance of DCT. 
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It is important to remark that, due to the symmetry of 
cosine, only seven cosines, namely cos (k/16), k=1, .., 7, 

need to be computed for a 88 DCT. As it can be expected, 
these values are computed off line and repeatedly used in 
the computation loop. 

4.3.3.1 Optimization of DCT 
While explicit LU is not necessary, as a sort of ILU is 
implicit in the code transformation mentioned above under 
item 3, DTO does affect the performance of DCT. Our  
experiments have  shown that  the  best  performance  of 
DCT  in  DEC  and  HP is achieved  using  the float or 
double type. On SUN and SGI the best performance is 
obtained using the float type because the number of 
available single precision floating point registers (32) turns 
out to correspond to only 16 double precision floating point 
registers, which are not enough to hold all the temporary 
values required. On IBM, finally, the best performance 
results are obtained using the int data type (see Table 6 ). 

A significant performance improvement in DCT can be 
obtained by moving the computation of the cosines off the 
main computation loop and keeping the pre-computed 
values in a fast access Table. We examined three ways in 
which the cosine Table can be kept in memory, namely 
using an array, using constants, and using variables. Fig. 7 
shows how these three methods of Table access 
optimization (TAO) are implemented. The performance 
delivered using an array was shown to depend on the 
compiler: in particular while the SUN and HP native 
compilers are able to detect the absence of aliases and 
assign the array values to registers, the other compilers 
keep the array values in memory and thus require a 
load/store operation for each array access. Constants and 
variables turn out to be almost equivalent and deliver the 
best performance results. The cosine values are loaded from 
primary memory to registers the first time they are 
referenced and are never removed because the number of 
values necessary to complete the task is smaller than the 
number of available registers (in all the reference systems 
but SUN and SGI in double precision). When the number 

of values used is larger than the number of available 
registers (i.e., on SUN in double precision) the register 
compiler directive can be issued, when using variables, to 
suggest the compiler which variables are to be kept in 
registers and which variables can be removed. As a 
consequence, using variables is more efficient than using 
constants. Table 6 presents the best performance measured 
for DCT in the reference systems along with the data types 
used and the Table access methods adopted. CAO is not 
applicable to DCT. 

4.3.4 Hough Transform (HT) 
Fig. 6 shows the code derived from the Hough 

Transform definition presented in 3.2.2. Tab. 7 shows its 
execution time in each reference system, assuming 
MAX_ANGLES=180 and EDGE_PIX_NUM=2621411. 

4.3.4.1 Optimization of HT 
LU, DTO and TAO, definitely improve the performance 

of the HT code. LU improves the HT performance thanks 
to the explicit assignment of the CPU registers to the 
intermediate results of the computation. If R is the number 
of available registers, the best performance result is 
achieved by using (R-2) registers to hold the values of sin() 
and cos() of (R-2)/2 adjacent angles, and using the 
remaining 2 registers to hold the coordinates of the edge 
pixel that has to be processed at each iteration. After 
initialization, only two memory accesses (i.e. the 
coordinates of the next edge pixel) are necessary at each 
iteration to perform the computation of (R-2)/2 partial 
results, which have to be stored in memory12. In Fig. 8 is 
reported, as an example, the case of R=20. 

TAO  improves  the  HT  performance  by reducing the  
                                                           
11  We consider the case of an image of size 512 x 512 in 

which 10% of the pixels are edge pixels. 
12 Note that, in general, optimizing compilers 

automatically map a variables on a CPU register only if 
such a variable is local, is not an array element, and is 
never referenced through a & operator. 

1. for ( k=0; k<MAX_ANGLES; k++ ){ 
2.  for ( i=0; i<EDGE_PIX_NUM; i++ ) 
3.   H[k][OFFS+(int)(edge[i].x*cosine[k]+edge[i].y*sine[k])]++; 
4.  } 

Figure 6  - The HT code derived from its definition (arrays cosine[] and sine[] are assumed to be computed off-line) 

 
 #define COS_1 c[1] #define COS_1 0.980785 register int 
 #define COS_2 c[2] #define COS_2 0.923879 COS_1=0.980785, 
 ... .... COS_2=0.923879, 
 #define COS_7 c[7] #define COS_7 0.195090 ..., 
 float c[8];  COS_7=0.195090; 
 for(i=1;i<8;i++)  
    c[i]=cos(PI*i/16);  

 a) b) c) 

Figure 7  - TAO techniques: a) array, b) constants, c) variables. 
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1. for (k=0;k<MAX_ANGLES; k+=9) { 
2.  r_1 =cosine[k  ]; r_2=sine[k  ]; 
3.  r_3 =cosine[k+1]; r_4=sine[k+1];      /* TAO */ 
  .... 
4.  r_17=cosine[k+8]; r_18=sine[k+8]; 
5.  for (i=0; i<EDGE_PIX_NUM; i++){ 
6.   r_19=edge[i].x; r_20=edge[i].y;     /* ELU */ 
7.   H[k  ][(int)(r_19*r_1 + r_20*r_2 )]++; 
8.   H[k+1][(int)(r_19*r_3 + r_20*r_4 )]++; 
9.   ..... 
10.   H[k+8][(int)(r_19*r_17+ r_20*r_18)]++; 
11.   } 
12   } 

a) 

7.   H[k  ][(r_19*r_1 +  r_19*r_2 )>>GRANE]++;    /* DTO */ 
8.   H[k+1][(r_19*r_3 +  r_19*r_4 )>>GRANE]++; 
9.   ..... 
10.   H[k+8][(r_19*r_17 + r_19*r_18)>>GRANE]++; 
11.   } 

b) 

Figure 8  - LU, DTO and TAO applied to HT: a) all_float solution and b) all_int solution. 

 

(int) (((double) int_var)*double_var + ((double) int_var)*double_var) 

Figure 9  - Type conversions hidden in statement 3 of Fig. 6. 
1. while(subset_start != EDGE_PIX_NUM){ 
2.  subset_start = subset_end; /* Delimit next pixel subset */ 
3.  subset_end = max ( EDGE_PIX_NUM, (subset_end + SUBSET_SIZE) ); 
4.  for ( k = 0; k< MAX_ANGLES; k++ ){ 
5.   c=cosine[k]; 
6.   s=sine[k]; 
7.   for ( i=subset_start; i<subset_end; i++ ) /*HT on current subset*/ 
8.    H[k][OFFS+(int)(edge[i].x*c+edge[i].y*s)]++; 
9.  } 
10. } 

Figure 10  - CAO applied to HT. 
 

 HP DEC IBM SGI SUN 

Code derived from task 
definition: 

860c ms 850c ms 2,610c ms 960g ms 2,340c ms 

Best performance of  
340g ms 520g ms 320c ms 460g ms 600g ms 

optimized code: 
LU: ELU 10 
DTO: float 
TAO: variables 

LU: ELU 5 
DTO: float 
TAO: variables

LU: ELU 6 
DTO: int 
TAO: variables

LU: ELU 3 
DTO: float 
TAO: variables 

LU: ELU 6 
DTO: float 
TAO: variables

 
Operating conditions: image size: 512×512 
 number of angles: 180 
 number of edge pixels: 10% of image pixels 
 compilers: c = native compiler,  g = GNU compiler. 

Table 7 - Performance of HT. 
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time required to access the tables containing the pre-
computed values of sin() and cos(). Before entering the 
program internal loop the array values to be used within the 
loop body are loaded into variables (see Figure 8 statements 
2-4). 

DTO improves the HT performance thanks to the 
elimination of some type conversions (see Fig. 9)  and to 
the use of a larger number of registers. Two alternative 
DTO solutions, named all_float and all_int, are 
shown in the optimized code of Fig. 8. The all_int 
solution performs all the computations in fixed point and 
thus requires fixed point tabulation of sin() and cos(), while 
the all_float solution performs all the computations in 
floating point and thus requires a preliminary conversion of 
the edge point coordinates from integer to floating point 
before starting the HT computation. The most evident 
advantage of the all_int solution over the all_float 
solution is the elimination of the final float-to-int 
conversion (see Fig. 9), which is quite expensive, 
considering the absence of a direct path from the floating 
point registers to the integer registers (see Table 1). On the 
contrary the most evident advantages of the all_float 
solutions over the all_int solution are the execution of the 
multiplications in floating point (which are faster than in 
integer) and the elimination of the right shift implementing 
fixed point data alignment (see statements in Fig. 8(b)). 
In addition to LU, DTO and TAO, the structure of the HT 
code suggests to explore cache access optimization 
techniques (CAO) to improve efficiency. In particular, it 
would seem possible to plan the sequences of memory 
accesses to maximize locality: the set of edge pixels that 
have to be scanned repeatedly can be partitioned into 
subsets of size equal to that of cache memory, which are 
then processed one at a time. The resulting flow is 
presented in Figure 10. After initial loading, subset 
processing consists of looping over the edge pixels inside 
the cache with no access to primary memory. 
Unfortunately, this optimization is effective only under 

particular operating conditions (i.e., cache size, image size): 
in most cases, on the contrary, a set of negative effects 
(e.g., related to matrix H access) compensate the benefit of 
increased edge pixel access locality. In particular, in none 
of the reference systems the cache size and the image size 
allow taking advantage of CAO13. Table 7 presents the best 
performance measured for HT in the reference systems 
along with the unrolling factor, the data types used and the 
Table access method adopted. 

4.4 SUMMARY OF THE RESULTS OF THE 

EXPERIMENTS 

Table 8 summarizes the best performances of the basic 
IPPR tasks on the reference systems. A rough estimate of 
the level of performance that RISC systems can achieve in 
IPPR applications can be based on the observation that, 
under the operating conditions selected, the chain CONV-
HT, which might be regarded as a straight line recognition 
task, typical of pattern recognition, exhibits a throughput of 
0.6 to 2 recognitions per second, whereas the chain FSBM-
DCT, which might be regarded as a video compression 
task, typical of distributed multimedia, exhibits a 
throughput of 0.2 to 0.3 frames per second, depending on 
the reference system14. 

Table 9 shows the speed up factor due to the separate 
application of each source level optimization to the code 
derived from the task definition for each IPPR basic task. 

                                                           
13 On the contrary, we experimented the benefit of CAO 

in two other platforms, namely HP 725 (128Kbytes 
cache, direct mapped) and Alpha 600 (96Kbytes cache 
three-way set associative). 

14 Using suboptimal techniques such as Logarithmic 
Search [18], the speed of block matching improves of a 
factor between 5 and 10. 

 HP DEC IBM SGI SUN 

FSBM 2,854 ms 2,205 ms 1,764 ms 1.202 ms 3,586 ms 

CONV 230 ms 220 ms 190 ms 225 ms 430 ms 

DCT 77 ms 86 ms 45 ms 73 ms 110 ms 

HT 340 ms 520 ms 320 ms 460 ms 600 ms 

 
Operating conditions: image size: 512×512 one byte pixels. 
 CONV mask size: 5×5 
 FSBM displacement: 8 
 DCT block size: 8×8 
 HT number of edge pixels: 10% of image pixels 

Table 8 - Summary of the best performances. 
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The last column reports the speed up factors due to the best 
combination of the source level optimizations. A "NA" sign 
denotes that an optimization technique is not applicable to a 
task, while a "1" denotes the fact that an optimization 
technique has no effect on a task. It is worth noticing that: 
1) when no source level optimization is adopted, RISC 

systems run at about one third of the speed that they are 
actually able to achieve; 

2) loop unrolling (LU) is by far the most effective 
optimization technique. It has no effect on DCT because 
a sort of internal loop unrolling (ILU) is implicit in the 
adopted algorithm; 

3) data type optimization delivers no benefit on IBM for 
CONV and on HP and ALPHA for DCT because in 
these architectures the data types naturally deriving 
from the task definition (respectively int and float) 
already deliver the best performance; 

4) table access optimization (TAO) is beneficial only when 
the compiler does not optimally allocate table elements 
in registers; 

5) cache access optimization (CAO) has no effect on the 
basic tasks in the reference systems under the operating 
conditions selected. In FSBM, CONV and DCT CAO is 
not applicable due to the intrinsically local nature of the 
algorithms15, which matches the intrinsically local 
nature of caching. On the contrary in HT, which is not a 
local task, CAO delivers no benefit as it turns out to be 
in conflict with LU, which, as mentioned above, is more 
convenient. 

                                                           
15 Although DCT is in principle not local, when used in 

image compression standards, it can be considered local 
because of the small size of the data sets. 

5 DISCUSSION 

The discussion of the results of our study and of our 
experiments is organized as follows. In Section 5.1 we 
analyze the behaviour of the IPPR basic tasks on the RISC 
reference systems in order to identify the architecture 
bottlenecks. In Section 5.2 we discuss the limitations of the 
current generation programming models, which force 
programmers to adopt source level program optimization 
techniques to obtain an acceptable level of efficiency. 

5.1 Bottleneck identification 
The execution time of an IPPR task, on a RISC 

machine, can be computed by means of the following 
expression: 

 TEX  =  TIC + TCC + TMA + TOH - TOL  (1) 

in which, TIC (Image Computation) denotes the time spent 
in executing operations on image pixels, TCC (Control 
Computation) denotes the time spent in executing 
operations on loop control variables, array addresses and, 
more in general, for housekeeping, TMA (Memory Access) 
denotes the time for memory access, TOH (Overhead) 
denotes the time wasted due to inefficiencies, and TOL 
(Overlap) denotes the time saved due to superscalar 
execution of operations and instructions. 

The terms in expression (1) are affected by the 
optimizations presented in Section 4 as follows. TIC is 
affected by DTO, which adapts the algorithm data types to 
those supported most efficiently by the CPU. TCC is 
affected by TAO, which reduces the number of 
computations needed to compute the array addresses, and 

 LU DTO TAO CAO Global 

FSBM 2.1  3.9 NA NA NA 2.1  3.9 

CONV 1.7  5.0 1  1.7 NA NA 1.7  6.2 

DCT 1 1  1.7 1  1.4 NA 1  2.4 

HT 1.4 3.0 1.2  2.5 1  1.2 1 1.6  8.2 

Table 9 - Ranges of the speed up factors due to the optimizations. 
 

TIC TCC TMA TOH TOL 

103 ms 37 ms 
TCACHE;MA: 54 ms 

TPRIMARY;MA: 15 
ms 

24 ms 28 ms 

Table 10 - CONV on HP: times spent in the different activities 



BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 17 

by LU, which reduces the amount of loop control 
computations, due to the lower number of iterations, as well 
as the amount of array address computations, due to the 
allocation of a larger number of variables in CPU registers. 
TMA is affected by LU and TAO, both of which improve 
the use of CPU registers. TOH is affected by LU, which 
enlarges the size of the loops and thus allows to take 
advantage of more sophisticated instruction scheduling 
techniques. TOL is affected by DTO, which may lead to the 
use of different functional units for TIC and TCC (e.g., 
floating point and integer), and by LU, which increases the 
number of parallel activities inside the program most 
internal loop. 

A quantitative analysis of the terms of expression 1 was 
carried out for the specific case of CONV on HP to identify 
the main processing bottle-necks (see Table 10). TIC was 
obtained by dividing the number of image computations 
needed to perform CONV (multiplies and add) by the peak 
machine throughput for these computations (see Table 1). 
TMA, TCC and TOL were obtained respectively by counting 
the memory accesses (evaluating both TCACHE;MA and 
TPRIMARY;MA) and the housekeeping instructions and by 
considering the overlapping among the different terms in 
the CONV assembly code corresponding to the best 
performance obtained. These values were validated by 
experiments. The value of TOH was obtained by TOH =TEX - 
TIC - TCC - TMA + TOL. 

The experiments have shown that TOL is almost 
completely due to the overlapping between TIC and TMA, in 
particular TCACHE;MA , while only a very limited 
overlapping was observed between TCC and TIC and 
between TCC and TMA.This is due to a combination of two 
reasons, namely the intrinsic data dependencies appearing 
in the  CONV loop body, which require that some of the 
machine instructions be executed in sequence, and the 
limited number of functional units available (structural 
hazards), which do not allow the parallel execution of all 
the potentially parallel activities. 

We modified the order of instructions manually to 
further improve the performance of the assembly code 
produced by the compiler/optimizer. In the best case we 
achieved an almost complete overlap between cache 
memory accesses and image computations. This leads to 
the conclusion that, unlike expected, CONV on HP is a 
compute bound task, as memory accesses can be totally 
executed in parallel with computation. We observed the 
same behaviour, qualitatively, in all the basic tasks and in 
all the reference systems. As a consequence, CPU speed-
ups due, for example, to an increase of instruction level 
parallelism in the next generation CPUs, are expected to 
yield task speed-ups of the same factor, provided that TIC  
TCACHE;MA. 

As far as primary memory access is concerned, no 
overlapping was observed and, as a consequence, a term of 
15 ms, mainly due to the scanning of the input image, is to 
be added to the other terms to compute the global task 
execution time. The reason why no overlap can take place 
between primary memory accesses and other activities is 
that primary memory accesses are activated only at the 

occurrence of cache misses, that is exactly at the moment at 
which the missing data items are needed and therefore the 
CPU remains idle waiting for memory access completion. 
Prefetching techniques were proposed to reduce such a 
latency [33]. In IPPR, where memory accesses are known 
in advance, it would be possible to plan the loading of 
cache lines in advance to eliminate the latency of primary 
memory access, thus overlapping primary memory accesses 
with other system activities. This behaviour should be 
supported by proper architectural features, such as for 
example independent access to cache memory from the 
CPU side and from the primary memory side, as well as by 
special language directives. 

5.2 Programming model limitations 
Although it is true that present generation compilers use 

sophisticated techniques to optimize the use of hardware 
resources, to reduce the number of data dependencies, and 
more in general to schedule machine instructions in order to 
maximize efficiency, unfortunately in data intensive 
programs such as those belonging to the IPPR domain, the 
action of compilers is not sufficient to generate efficient 
code and must be complemented by a careful organization 
of the source code. 

As a consequence, writing an efficient program 
implementing an IPPR task on a RISC based architecture 
requires to take into account the characteristics of the 
specific RISC architecture for which the program is written 
and a careful analysis of the type of processing performed 
by the IPPR task, in order to identify the most convenient 
coding solutions. If, on the contrary, the program is coded 
as a plain transposition of the task definition, leaving the 
task of finding a convenient mapping on the RISC 
architecture to the compiler, then efficiency turns out to be 
unacceptable16 (see Section 4.4). 

The reason why manual source code optimization is 
necessary is that in compilers code generation and 
optimization take place after the analysis of the source 
program and, as a consequence, after the generation of the 
compiler internal representation. At that point several of the 
most relevant task characteristics, in particular some which 
might be used to improve the efficiency of the object code, 
are lost and cannot be exploited by the optimizer. In order 
to take advantage of the task characteristics, or at least of 
part of them, the optimizer should process the compiler 
internal representation to infer as much information as 
possible on the task structure, which was clear in the mind 
of the programmer, not so evident any more in the source 
program, and almost completely hidden in the program 
internal representation inside the compiler. 

The point is that unfortunately while current generation 
CPUs have moved apart from the flat execution model 
based on the fundamental Von Neumann abstraction 

                                                           
16 This is usually the case also in numerical analysis 

applications, which share with IPPR the characteristic 
of being  based on the processing of large data sets, most of 
the times organized as two-dimension arrays [9][21]. 
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(which does not include, for example, memory hierarchy 
and data dependencies), on the contrary the programming 
models upon which current generation high level languages 
(e.g., C, Pascal and their descendants) are based have not 
evolved along the same direction. While it can be argued 
that, generally speaking, programmers should not be aware 
of the specific characteristics of the architecture of the 
system in which programs are supposed to run, which 
implies that efficiency is not to be regarded as a goal of 
programming models, there are some domains, and IPPR is 
among them, in which, on the contrary, efficiency is a 
primary goal and in which, as a consequence, programmers 
cannot restrict their action to the development of high level, 
correct and portable code. In these domains the flatness of 
the available programming model forces programmers to 
optimize the code manually. 

6 CONCLUDING REMARKS 

In this paper we presented the results of a study on the 
performance and on the behaviour of RISC systems in 
image processing and pattern recognition (IPPR). The 
investigation was conducted experimentally as follows. We 
selected a set of high performance RISC based systems, 
from those presently commercially available, to represent 
RISC technology, and identified a set of IPPR tasks to 
represent the image processing domain. We studied the 
behaviour of the RISC systems selected in the execution of 
the IPPR tasks identified by running a set of experiments 
based on different program organizations.  

The main contributions of the paper are i) the 
performance evaluation of current generation RISC systems 
in the domain of IPPR tasks, ii) the analysis of the 
behaviour of RISC systems in the execution of IPPR tasks 
and iii) the identification of a set of source level program 
optimizations delivering a significant speed up over regular 
program implementation in the domain of IPPR. 

BIBLIOGRAPHY 
[1] Amano T. et al., DRS: a Workstation Based Document Recognition 

System for Text Entry, IEEE Computer, vol. 25, n. 7, pp. 67-71, July 
1992. 

[2] Asprey T., Averill G. S., DeLano E., Mason R., Weiner B. and 
Yetter J., Performance Features of the PA7100 Microprocessor, 
IEEE Micro, pp. 22-35, June 1993. 

[3] Ballard D. H. and Brown C. M., Computer Vision, Prentice Hall, 
1982. 

[4] Bertero M., Poggio T. A. and V. Torre, Ill-posed problems in Early 
Vision, Proceedings of the IEEE, vol. 76, n. 8, pp. 869-889, 1988. 

[5] Digital Equipment Corp., Alpha Workstation Summary, September 
1995. 

[6] Digital Equipment Corp., DECchip 21064 and DECchip 21064A 
Alpha AXP Microprocessors - Hardware Reference Manual, 1994. 

[7] Dixit D., The SPEC Benchmarks, Parallel Computing, vol. 17, n. 1, 
pp. 195-209, 1991. 

[8] Dongarra J. J. and Gentzcsh, eds., Computer Benchmarks, North-
Holland, Amsterdam, 1993. 

[9] Dowd K., High Performance Computing, O'Reilly Associates Inc., 
1993. 

[10] Fountain T. J., Matthew K. N. and Duff M. J. B., The CLIP7A image 
Processor, IEEE Transaction on Pattern Analysis and Machine 

Intelligence, vol. 10, no. 3, pp. 310-319, 1988. 
[11] Greenley D. et al., UltraSPARC: The next Generation Superscalar 

64-bit SPARC, CompCon Spring 95, March 1995. 
[12] Heinrich J., MIPS R4000 Microprocessor Users's Manual, MIPS 

Technologies Inc., 1994. 
[13] Hennessy J. L. and Patterson D. A., Computer Architecture: a 

Quantitative Approach, Morgan-Kauffman, 1990. 
[14] Hewlett Packard, HP 9000 series 700 models 735/125, September 

1995. 
[15] Hewlett Packard, PA-RISC 1.1 Architecture and Instruction Set 

Reference Manual, February 1994. 
[16] Hillis W. D., The Connection Machine, The MIT Press, 1985 
[17] IBM Corp., RISC System/6000 Overview, September 1995. 
[18] ISO/IEC JTC1/SC29/WG11, Coding of Moving Pictures and 

Associated audio for Digital Storage Media at up to about 1.5 
Mbits/s, ISO/IEC CD11172-2, 1993. 

[19] Jain R., The Art of Computer Systems Performance Analysis: 
Techniques for Experimental Design, Measurement, Simulation and 
Modeling, Jonh Wiley & Sons, New York, 1991. 

[20] JàJà J., Introduction to Parallel Algorithms, Addison-Wesley, 1992. 
[21] Kacmarcik G., Optimizing PowerPC Code, Addison-Wesley, 1995. 
[22] Lee B. G. L., A new algorithm to Compute the Discrete Cosine 

Transform, IEEE Trans. on Acoustic, Speech, Signal Processing, 
vol. ASSP-32, n. 6, pp. 1243-1245, December 1984. 

[23] Legall D., MPEG - A video Compression Standard for Multimedia 
Applications, Communications of the ACM, vol. 34, no. 4, pp. 47-
58, April 1991. 

[24] Maresca M. and Fountain T. J., eds., Special Issue on Massively 
Parallel Computers, Proceedings of the IEEE, 1991. 

[25] Maresca M. and Li H., Morphological Operations on Mesh 
Connected Architectures: a generalized convolution algorithm, Proc. 
IEEE Conference on Computer Vision and Pattern Recognition, 
Miami Beach (FL), pp. 199-304, June 1986. 

[26] McLellan E., The Alpha AXP Architecture and 21064 Processor, 
IEEE Micro, pp. 36-47, June 1993. 

[27] Potter J. L., ed., The Massively Parallel Processor, The MIT Press, 
1980. 

[28] Pratt W. K., Digital Image Processing, John Wiley & Sons, 1991. 
[29] Puri A. and Aravind R., Motion-Compensated Video Coding, IEEE 

Trans. on Circuits and Systems for Video Technology, vol. 1, n. 4, 
pp. 351-361, December 1991. 

[30] Rao K. R. and YipP., Discrete Cosine Transform - Algorithms, 
Advantages, Applications, Academic Press, London, 1990. 

[31] Rosenfeld A. and Kak A. C., Digital Picture Processing, Academic 
Press, 1982. 

[32] Saavedra R. H. and. Smith A. J, Performance Charcterization of 
Optimizing Compilers, IEEE Transactions on Software Engineering, 
vol.21, no. 7, pp. 615-628, July 1995. 

[33] Saavedra R. H. and. Smith A. J, Measuring Cache and TLB 
Performance and Their Effect on Benchmark Runtimes, IEEE 
Transactions on Computers, vol.44, no. 10, pp. 1223-1235, Oct. 
1995. 

[34] Silicon Graphics Inc., Product Overview, September 1995. 
[35] Silicon Graphics Inc., Indigo2 and Power Indigo Technical Report, 

1994. 
[36] Song S. P., Denman M. and Chang J., The PowerPC 604 RISC 

Microprocessor, IEEE Micro pp. 8-17, October 1994. 
[37] SPARC International Inc., The SPARC Architecture Manual 

Version 8, - Prentice Hall, 1992. 
[38] Stallman R. M., Using and Porting GNU CC, GNU Software 

Foundation, September 1994. 
[39] SUN Microsystems, The SuperSPARC Microprocessor - White 

Paper, 1992. 
[40] SUN Microsystems, Workstation Overview, September 1995. 
[41] Tremblay M., P. Tirumalai, Partners in Platform Design, IEEE 

Spectrum, vol.32, no. 4, pp. 20-26, April 1995. 
[42] Uhr L., ed., Multicomputer Vision, Academic Press, 1988. 
[43] Wallace G. K., The JPEG Still Picture Compression Standard, 

Communication of the ACM, vol 34, n. 4, pp. 30-44, April 1991. 
[44] Weems C. C., Architectural Requirements of Image Understanding 

with respect to parallel processing, Proceedings of the IEEE, vol. 79, 
no. 4, pp. 537-547, April 1991. 

[45] Weems C. C., Riseman E., Hanson A. and Rosenfeld A., The 
DARPA Image Understanding Benchmark for Parallel Computers, J. 



BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 19 

of Parallel and Distributed Computing, vol. 11, pp. 1-24, 1991. 
[46] White S. W., Hester P. D., Kemp J. W. and McWilliams G. J., How 

Does Processor Performance MHz Relate to End-User 
Performance?, IEEE Micro, vol. 13, n. 4, pp. 8-16, August 1993. 

 
 
 
 

 
 

Pierpaolo Baglietto was born in 
Varazze, Italy, in 1963. He received a 
Laurea Degree in electrical 
engineering in 1990 from the 
University of Genoa, Italy and a 
Ph.D. in computer engineering in 
1994 from the same University. He 
was a Visiting Scientist at the MasPar 
Computers Corp., Sunnyvale, CA, in 

1991 and at the NTT Communication Science Laboratories, 
Kyoto, Japan in 1992. He is currently a Researcher at the 
University of Genoa, Italy. His research interests include 
computer architecture and performance evaluation, 
operating systems and computer networks. 

 
 
 
Massimo Maresca was born in 

Genoa, Italy, in 1956. He received a 
Laurea Degree in electrical 
engineering in 1980 and a Ph.D. in 
computer engineering in 1986, all 
from the University of Genoa, Italy. 
He was a Research Staff Member at 
Elsag SpA, Genova, from 1980 to 
1982, a Visiting Scientist at the IBM 

T.J. Watson Research Center, Yorktown Heights, NY, in 
1985-1986, a Visiting Scientist at the International 
Computer Science Institute, Berkeley, CA, in 1990-91, a 
Researcher at the University of Genoa in 1990-92, and an 
Associate Professor at the University of Genoa in 1993. 
Currently he is a Full Professor at the University of Padova, 
Italy. His research interests are in the area of Computer 
architecture, operating systems and networking. 

 
 
 
Mauro Migliardi is born in 

Genova (Italy) on April the 19th 
1966. In June 1991 he took a Laurea 
degree in electrical engineering from 
University of Genoa. In November 
1995 he took a PhD in computer 
engineering from the University of 
Genova. Currently he is a Post 
Doctoral Fellow at the University of 

Genova where he collaborates with Prof. M. Maresca in EU 
funded research projects dedicated to the investigation of 
mixed mode (SIMD-MIMD) image processing. His main 
research interests are computing architectures for image 
and signal processing and coding, architectural support for 

multimedia systems and parallel and distributed high 
performance computers. 

 
 
 
Nicola Zingirian received the 

Laurea degree in electrical 
engineering summa cum laude in 
1994 from the Universtity of Genoa, 
Italy. He is currently a PhD student in 
computer engineering at the 
University of Padova, Italy. His 
research interests include 
performance evaluation, computer 

architectures and networking. He is associate member of 
the IEEE Computer society. 

 

 

 

 


