
 0018-9219/96$05.00  1996 IEEE

Proceedings of the IEEE, VOL. xx, N. x, xxx 1996 1

Image Processing on High Performance
RISC Systems

PIERPAOLO BAGLIETTO, MASSIMO MARESCA, MAURO MIGLIARDI,
AND NICOLA ZINGIRIAN, ASSOCIATE MEMBER, IEEE

Invited Paper

The recent progress of RISC technology has led to the feeling
that a significant percentage of image processing applications,
which in the past required the use of special purpose computer
architectures or of “ad hoc” hardware, can now be implemented
in software on low cost general purpose platforms. We decided to
undertake the study described in this paper to understand the
extent to which this feeling corresponds to reality . We selected a
set of reference RISC based systems to represent RISC
technology, and identified a set of basic image processing tasks to
represent the image processing domain. We measured the
performance and studied the behaviour of the reference systems in
the execution of the basic image processing tasks by running a
number of experiments based on different program organizations.
The results of these experiments are summarized in a table, which
can be used by image processing application designers to
evaluate whether RISC based platforms are able to deliver the
computing power required for a specific application.

The study of the reference system behaviour led us to draw the
following conclusions. First, unless special programming
solutions are adopted, image processing programs turn out to be
extremely inefficient on RISC based systems. This is due to the
fact that present generation optimizing compilers are not able to
compile image processing programs into efficient machine code.

Second, while computer architecture has evolved from the
original flat organization towards a more complex organization,
based, for example, on memory hierarchy and instruction level
parallelism, the programming model upon which high level
languages (e.g., C, Pascal) are based has not evolved
accordingly. As a consequence programmers are forced to adopt
special programming solutions and tricks to bridge the gap
between architecture and programming model to improve
efficiency.

Third, although processing speed has grown up much faster
than memory access speed, in current generation single processor
RISC systems image processing can still be considered compute-
bound. As a consequence, improvements in processing speed
(originated for example by a higher degree of parallelism) will
yield improvements of an equal factor in applications.

1 INTRODUCTION

The rapid progress of RISC technology
[13][41][33][46] has recently given a new impulse to image
processing and pattern recognition (IPPR). The availability
of a computing power of the same order of magnitude as
that previously delivered by massively parallel computers
on low cost RISC systems presently makes software based
IPPR effective and convenient in a number of applications
which were not even targeted in the past because of the
prohibitive cost of the hardware required. As a
consequence of this evolution, traditional high end
applications of IPPR, for example in the area of automatic
document recognition and classification, have been ported
to RISC based platforms [1] and successfully installed in a
number of small and medium size document processing
centers, and novel applications of IPPR, based for example
on digital video processing [23], have been introduced and
have quickly found wide acceptance.

IPPR is one of the traditional application domains of
massively parallel computers [24][45] because of the size
and of the regularity of the data structures involved,
typically consisting of large two-dimensional arrays of
picture elements (pixels), and because of the characteristics
of the algorithms used, typically consisting of the execution
of the same set of operations on all the pixels and of the
combination of each pixel with a small set of pixels located
at a short distance.

It was indeed the characteristics of image processing
that stimulated most of theoretical research and
experiments in massively parallel computer architectures.
Such research and experiments, which largely developed
and progressed in the seventies and in the eighties,
produced a variety of scientific results in the form of
parallel algorithms [20], parallel architectures [42] and
prototypes of parallel computers (e.g., CLIP [10], MPP
[27], CM[16], IUA[44]).

Unfortunately the cost and the programming complexity
of massively parallel computers did not favour the diffusion
of IPPR in real applications, as only a limited number of
companies and institutions were able to afford the cost of
dedicated parallel hardware and the cost of developing
machine dependent algorithms and programs. It was in the

Manuscript received xxxx, 1995; revised February 1996. This work
was supported in part by research grants from the European Community
under the ESPRIT BRA Project 8849-SM-IMP.

P. Baglietto, M. Migliardi are with DIST - University of Genova,
Genova, Italy.

M. Maresca and N. Zingirian are with DEI - University of Padova,
Padova, Italy.

Publisher Item Identifier S 0018-9219(96)04995-X.

 PROCEEDINGS OF THE IEEE, VOL. 84, N.X, XXXX 1996 2

second half of the eighties that the technology of RISC
microprocessors and systems, driven by the huge market of
desktop workstations and servers, reached a point at which
the performance of IPPR programs, coded in a standard
sequential language such as C, became high enough to
allow for the implementation of cost effective RISC based
IPPR applications.

The possibility of using a general purpose RISC system
instead of an expensive special purpose massively parallel
computer for IPPR soon cooled down the interest in special
purpose parallel architectures. The feeling that any IPPR
application could be run on a RISC, or at worst on a few
RISCs, gradually pervaded the scientific community and
led to the conclusion that special purpose parallel
architectures were not going to be necessary any more for
IPPR applications.

Such a conclusion has not been substantiated so far by
an analytical investigation of the performance and
efficiency of RISC systems in IPPR applications, as it was
done, on the contrary, in the application domain of
scientific computing [7][19][8]. This is exactly the subject
of this paper: the specific objectives of the study presented
in this paper are i) the characterization of the level of
performance of IPPR applications on RISC systems, ii) the
analysis of the behaviour of the main components of RISC
systems (i.e., CPU, primary memory, cache) in the
execution of IPPR programs, and iii) the investigation of
program organization techniques aimed at improving the
performance of IPPR applications on RISC systems.

The study was carried out as follows. We selected a set
of reference families of RISC based desktop systems,
among those commercially available, namely from Sun
Microsystems, Digital Equipment Corp., Silicon Graphics
Inc., International Business Machines, and Hewlett Packard
and chose the top level models of these families as
reference systems. We classified the reference systems in
terms of their main architectural characteristics, which
include general information on the CPU (for example clock
speed and presence/absence of dedicated hardware units),
specific information on the pipeline organization (for
example instruction latency and throughput), and
information on the memory hierarchy organization (for
example cache size and throughput).

We then selected four basic tasks to represent the IPPR
application domain, namely Discrete Cosine Transform
[28] and Full Search Block Matching [18][29], used in
video compression [23], and Convolution [31] and Hough
Transform [3], used in vision and pattern recognition. We
programmed each basic task on each reference architecture
starting from a plain derivation of the code from the task
definition, and gradually adopting more and more
sophisticated programming solutions to improve its
performance. We studied the effect of such programming
solutions on the behaviour and on the performance of the
reference systems by measuring the throughput
improvements and by inspecting the assembly code
produced by the compiler in order to identify the sources of
inefficiency.

The experiments led to two results, which are the main

contributions of this paper, namely i) the measurement of
the performance of the basic IPPR tasks on the reference
systems and ii) the analysis of the behaviour of such tasks,
and by induction of IPPR in general, in RISC systems. The
measurement of the performances of the basic IPPR tasks
on the reference systems allows us to identify the class of
IPPR applications that can be actually supported by RISC
systems and the level of performance that can be achieved
using current technology. The analysis of the behaviour of
IPPR programs in RISC systems allows us to locate the
main processing bottle-necks and leads to the identification
of a number of source level program optimization
techniques to improve efficiency.

The paper is organized as follows. In Section 2 we
present, analyze and compare the reference systems by
means of a set of parameters which capture their
architectural characteristics. In Section 3 we introduce the
set of IPPR basic tasks. In Section 4 we describe the
experiments and present the results of the performance
analysis of the basic tasks on the reference systems. In
Section 5 we discuss the results of the experiments, and in
Section 6 we provide some concluding remarks.

2 THE REFERENCE SYSTEMS

We selected some of the top level models of high
performance desktop workstations to represent RISC
architecture and technology. We restricted our analysis to
single processor systems as we are only interested in
studying the behaviour of RISC architectures in IPPR and
not how IPPR can be parallelized on RISC based
multiprocessors. The reference systems selected are SUN
Microsystems' SPARCstation 20 model 61 [40], Hewlett
Packard's HP 9000 Series 700 model 735/125 [14], Digital
Equipment Corporation's DEC 3000 model 800S [5],
Silicon Graphics' Indigo2 Impact [34], and International
Business Machines' RISC System/6000 model 43P [17]. In
the rest of the paper we will refer to these systems by
means of the name of their manufacturers, namely SUN,
HP, DEC, SGI and IBM.

The reference systems are based on five different CPUs,
namely SuperSPARC [37][39], HPPA 7150 [15][2],
DECchip 21064 (Alpha) [6][26], MIPS R4400 [12] and
PowerPC 604
[36], which cover the two directions of instruction level
parallelism, i.e. pipelining and scalarity, and feature
different memory hierarchy organization.

Table 1 summarizes the characteristics of the reference
systems. The System Software Section includes the
identification of the operating system under which we ran
our experiments and of the compilers that we used to build
the experimental programs. The General CPU Parameters
Section includes the main CPU features, such as the CPU
clock frequency, the number of general purpose and
floating point registers available, the number of instructions
that can be issued concurrently, the way floating point to
integer and integer to floating point conversions are carried

BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 3

out and the time such conversions require1. The Instruction
Latency Section and the Instruction Throughput Section
report the values of the parameters related to instruction
processing such as the number of cycles necessary to
complete a single operation and the maximum operation
throughput. The Memory System Section reports the values

1 We decided to include this parameter, considering that in C

programs, in which type conversions are implicit and not immediately

visible, floating point to integer and integer to floating point conversions

take a not negligible percentage of time.

of the parameters related to the organization and to the
performance of memory.

3 THE IPPR BASIC TASKS

The most typical tasks of IPPR are those which require
the processing of images2 and of lists of pixels. Based on

2 In this paper the term image is referred to a two-

dimensional array of pixels.

System Name HP
735/125

DEC
AXP 3000/800S

IBM
RS6000 43P

SGI
Indigo2 Impact

SUN
Sparc 20/61

System Software

1 Operating system HP UX 9.05 OSF1 v. 3.2 AIX 4.1.1 IRIX 5.3 SunOS 4.1.4

2 C Compilers gcc 2.6/HP cc gcc 2.6/DEC cc gcc 2.6/IBM xlc gcc 2.6/MIPS cc gcc 2.6/SUN acc

General CPU Parameters

3 CPU name HPPA 7150 DECchip 21064 PowerPC 604 MIPS R4400 SuperSparc

4 Year of availability 1994 1992 1994 1994 1992

5 Clock frequency 125 MHz 200 MHz 100MHz 250 MHz 60 MHz

6 CPU cycle time 8 ns 5 ns 10 ns 4 ns 16.6 ns

7 Data path width 32 bits 64 bits 32 bits 64 bits 32 bits

8 Number of general purpose registers 32×32 bits 32×32 bits 32×64 bits 32×32 bits 32×32 bits

9 Number of floating point registers 64×32 or 32×64 bits 32×64 bits 32×64 bits 32×64 bits 32×32 or 16×64 bits

10 Number of instructions issued 2 2 4 1 3

11 Integer-floating point unit interaction Through memory Through memory Through memory Direct Through memory

12 Time for an int to float conversion 65 ns 56 ns 174 ns 24 ns 67 ns

Instruction execution latency

13 Integer (32 bits) sum 1 cycle 1 cycle 1 cycle 1 cycle 1 cycle

14 Integer (32 bits) multiply 10 cycle 21 cycles 4 cycles 13 cycles 5 cycles

15 Double (64 bits) sum 2 cycles 6 cycles 4 cycles 4 cycles 3 cycles

16 Double (64 bits) multiply 2 cycles 6 cycles 5 cycles 8 cycles 3 cycles

Instruction Throughput

17 Integer (32 bits) sum 1 cycle 1 cycle ½ cycle 1 cycle ½ cycle

18 Integer (32 bits) multiply 10 cycles 19 cycles 2 cycles 13 cycles 5 cycles

19 Double (64 bits) sum 1 cycle 1 cycle 1 cycle 3 cycles 1 cycle

20 Double (64 bits) multiply 1 cycle 1 cycle 1 cycle 4 cycles 1 cycle

Memory system

21 Primary memory 64 Mbytes 64 Mbytes 64 Mbytes 64 Mbytes 128 Mbytes

22 RAM access time (read line) 360 ns 200 ns 366 ns 1162 ns 365 ns

Instruction cache

23 Size 256 Kbytes 8 Kbytes 16 Kbytes 16 Kbytes 20 Kbytes

24 Organization Direct mapped Direct mapped Four way set
associative

Direct mapped Five way set
associative

25 Access Time 8 ns 5 ns 10 ns 4 ns 16.6 ns

Data cache

26 Size 256 Kbytes 8 Kbytes 16 Kbytes 16 Kbytes 16 Kbytes

27 Line size 32 bytes 32 bytes 32 bytes 16 bytes 32 bytes

28 Organization Direct mapped Direct mapped Four way set
associative

Direct mapped Four way set
associative

29 Access Time (read int) 16 ns 5 ns 10 ns 4 ns 16.6 ns

30 Access Time (write int) 16 ns 5 ns 10 ns 4 ns 16.6 ns

31 Access Time (read floating point) 24 ns 5 ns 10 ns 4 ns 16.6 ns

32 Access Time (write floating point) 16 ns 5 ns 10 ns 4 ns 16.6 ns

33 Data write protocol Copy back Write through Copy back Write through Copy back

Second Level cache

34 Size NA 2 Mbytes 256 Kbytes 2 Mbytes 1 Mbyte

35 Line size NA 32 bytes 32 bytes 128 bytes 128 bytes

36 Access Time NA 70 ns 153 ns 85 ns 151 ns

Table 1 Reference systems feature summary.

 PROCEEDINGS OF THE IEEE, VOL. 84, N.X, XXXX 1996 4

such an assumption, we decided to restrict our analysis to
low level and intermediate level image processing [3]: low
level image processing tasks receive images at their input,
process them, and produce images at their output whereas
intermediate level image processing tasks receive images or
lists of pixels at their input, process them, and produce a set
of features, not necessarily in the form of an image, at their
output.

The operations that can be performed on images can be
classified as point operations, if the value of every element
of the output data set is a function only of the value of one
pixel of the input image, local operations, if the value of
every element of the output data set is a function only of

the values of a limited number of pixels located inside a
well defined area in the input image, or global operations,
if the value of every element of the output data set is a
function of all the pixels of the input image. We decided to
neglect point operations, which are less computing
demanding than the other two categories, and to focus on
local operations and global operations. According to these
guidelines, we selected the basic tasks shown in Table 2 for
our analysis.

Table 3 summarizes the characteristics, the complexity
and the type of operations of the basics IPPR tasks. For
each of them we now give a short description, show the

 Low level Intermediate level

Local processing Convolution [31] Full Search Block Matching [18]

Global processing Discrete Cosine Transform [22] Hough Transform [3]

Table 2 - Basic IPPR tasks.

TASK Definition Complexity Operations

Convolution

O(n2m2)

m = size of
conv. mask

int mul
int add

Discrete
Cosine

Transform

O(n4)

float mul
float add
cos, sin

Hough
Transform.

O(ml)

m = number
of angles
l = number of
edge pixels

float mul
float add
cos sin

float-to-int
conversion

Full Search
Block Matching

O(n2d2)

d = maximum
displacement

int sub
abs

int sum

Table 3 - Basic IPPR tasks: definition, complexity and type of operations required.

BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 5

basic sequential algorithm3, and report the computational
complexity.

3.1 Low Level Image Processing Tasks
Two-dimensional convolution (hereafter CONV) and two-

dimensional Discrete Cosine Transform (hereafter DCT) were
selected to represent low level image processing. CONV only
requires local processing while DCT requires global
processing.

3.1.1 Two-dimensional Convolution (CONV)
CONV performs the spatial linear filtering of an image.

The effect of filtering is to reduce or to emphasize the
amplitude of certain spatial frequencies. Applications of
CONV include image enhancement in general as well as,
depending on the convolution mask, edge detection [31],
regularization [4], morphological operations [25]. In the
implementation of CONV a matrix of coefficients or
weights, called mask, slides over the input image, covering
a different image region at each shift. At each shift, the
coefficients of the mask are combined with the image to
produce a weighted average value of the pixels currently
covered: the result is assigned to the output pixel located in
the center of the covered region. The basic sequential
algorithm for CONV is the following4:

for each mask position (x,y)
 begin
 for each mask element (i,j)
 acc:=acc+input_image[x+i][y+j]*mask[i][j];
 output_image[x+mask_dim div 2]
 [y+mask_dim div 2]:=acc;
 end

Indexes x and y control the shifting of the mask over the
input image, whereas indexes i and j scan the portion of the
input image which overlaps with the convolution mask.
During such a scan the weighted average value of the input
image pixels is computed and accumulated in acc: the
result is then moved to output_image. The computational
complexity of CONV is O(n2m2), where n×n is the image
size and m×m is the mask size.

3.1.2 Discrete Cosine Transform (DCT)
 The Cosine Transform performs the computation of the

coefficients of the different spatial frequency components
of an image. Its advantage, with respect to the Fourier

3 In our terminology the term task is referred to a specific

piece of work that must be performed, while the term
algorithm is referred to the way a task is carried out.
There are many algorithms that carry out a given task:
the "basic sequential algorithm" is the algorithm which
is most directly derivable from the task definition.

4 We ignore the issues related to the processing of image
borders, which require special processing, as we are
interested in the computational issues and not in the
completeness of the results of the algorithm.

Transform, is that its discretization (i.e. the DCT) does not
cause periodical discontinuities on the spatial domain as it
happens in the Discrete Fourier Transform.

DCT is used in image coding, both for still image
compression, applied to the source image, and for full
motion video compression, applied to the difference
between a video frame and its prediction. The basic
sequential algorithm for DCT is shown below.

for each DCT element (i, j)
 begin
 for each image pixel (x, y)
 acc:=acc+c[i]*c[j]*in_image[x][y]*cos[c2*j*x+c3]
 *cos[c2*y*j+c3];
 out_image[i][j]:=acc;
 end

The computational complexity of DCT is O(n4), where
n is the size of the image or of the image block to be
transformed.

3.2 Intermediate Level Image Processing
Tasks

Full Search Block Matching (in the following denoted by
FSBM) and Hough Transform (in the following denoted by
HT) were selected to represent intermediate level image
processing. FSBM only requires local processing while HT
requires global processing.

3.2.1 Full Search Block Matching (FSBM)
FSBM is the most straightforward way to implement

motion estimation, which is the most time consuming part
of interframe video compression. Motion estimation in a
stream of video frames is carried out by partitioning the
current frame in blocks of pixels of fixed size and, for each
of these blocks, by looking for the most similar block of
pixels in another frame, called reference frame. Once this
search is completed , each block of the current frame can be
coded by means of a vector associated to the difference
between its position in the current frame and the position of
the corresponding block in the reference frame5. This
vector is named motion vector.

FSBM is the basic technique used to compute the block
most similar to a reference block of the current frame
within a search area of the reference frame. It considers all
the blocks, called candidate blocks, contained within a

5 To be precise the code includes the motion vector and

the difference between the actual block and its
estimation obtained applying the motion vector to the
reference frame block.

 PROCEEDINGS OF THE IEEE, VOL. 84, N.X, XXXX 1996 6

search area of the reference frame for comparison6, as is
shown in the following pseudo-code.

for each block in the current frame
 begin
 mad := MAX_INT /* mad stands for Mean Absolute
 Difference */
 for each candidate block in the reference frame
 within given displacement
 for each pixel

 curmad := curmad + |reference pixel

 - candidate pixel|
 if (curmad < mad)
 begin
 mad := curmad
 update the motion vector
 end
 end

For each reference block, all the surrounding blocks within
a given search area are considered, and the position of the
one that best matches the reference block is used to
compute the motion vector. The matching criterion used to
measure how well a candidate block matches the reference
block is the Mean Absolute Difference (MAD), which
requires the execution of simple operations (subtraction and
absolute value). The computational complexity of FSBM is
O(n

2
d

2
), where n is the size of the image and d is the

maximum displacement considered.

3.2.2 Hough Transform (HT)
HT is a typical task of pattern recognition aimed at

detecting lines and curves in binary images. In our
formulation HT processes a list of edge pixels extracted
from an image (for example by means of convolution) and
produces a matrix H, each element of which corresponds to
a straight line in the input image, as a result. In particular,
element Hr,k corresponds to a straight line L identified by
parameters r and k, where r is the distance between L and
the origin and k is proportional to the angle between the x-
axis and a straight line orthogonal to L. Hr,k contains the
number of edge pixels aligned along straight line L(r, k).
The basic sequential algorithm for HT is shown below:

for each angle k
 begin
 for each edge pixel (x,y)
 begin
 r:= y * sin (k) + x * cos (k);
 inc(H[r][k]);
 end
 end

6 Since FSBM is highly computing intensive, other less

computing demanding (and of course sub-optimal)
algorithms have been proposed and are used in software
implementations of compression algorithms on
workstations. We focus on FSBM as we are interested
only in the computational aspects of IPPR and not in
innovative algorithmic solutions.

For each angle k all the edge pixels are processed.
For each edge pixel (x,y) the value of r such that straight
line L(r,k) intersects the pixel is found and the value of
output matrix H at position (r,k) is incremented. The
computational complexity of HT is O(ml), where m is the
number of angles considered and l is the number of edge
pixels.

4 PERFORMANCE OF THE IPPR BASIC

TASKS ON THE REFERENCE SYSTEMS

We ran a number of experiments to measure the
performance of the IPPR basic tasks on the reference
systems and to observe their behaviour. A preliminary set
of experiments led us to identify the following sources of
inefficiency:

1) The computing intensive parts of IPPR programs tend
to be organized as processing loops of limited size: in
such pieces of code the loop control processing
overhead takes a significant percentage of the total
processing time.

2) The iterative organization of IPPR programs tends to
generate a large number of data hazards7 in pipelined
architectures.

3) Because of the presence/absence of specific functional
units (e.g., integer/floating point units) and data paths
(e.g., from integer to floating point registers and
viceversa), the use of the data types which naturally
match the task characteristics in the source programs
may turn out to be not the most convenient solution.

4) The use of arrays to keep large tables of pre-computed
functions (e.g., trigonometric functions) in memory for
fast on line access may introduce unnecessary load/store
instructions, which slow down program execution; the
most effective mechanism to maintain these tables (e.g.,
arrays, variables or constants) depends both on the
characteristics of the host architecture and on the
compiler used.

5) The possibility to plan the order in which the input data
structures (e.g., the images), are accessed allows
defining program and data partitioning strategies which
depend on the size of the cache memory, aimed at
reducing the average latency of memory accesses.

We demonstrated, through a second set of experiments,
that the native compilers of the reference systems and the
GNU C compiler for the reference systems are not able to
eliminate these sources of inefficiency. On the contrary, we
demonstrated that the sources of inefficiency can be
eliminated only through manual optimization of source
programs. More specifically, we experimented with the
following source level optimizations:

1) Loop Unrolling - LU consists of transforming a loop in

7 Data hazards take place when an instruction needs the

result of an immediately previous instruction as an
input.

BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 7

such a way to increase the loop body size and to
decrease the number of iterations. LU reduces both the
number of load/store instructions in the programs,
thanks to a better utilization of the CPU registers, and
the effect of the data hazards, by increasing the number
of instructions in each loop iteration, thus allowing the
compiler optimizer to schedule the instructions more
efficiently.

2) Data Type Optimization - DTO consists of choosing the
data types for the variables in the program critical path
using as a criterion the performance of the different
functional units instead of using the data types naturally
deriving from the task definition. DTO improves
efficiency by forcing the data to flow through the fastest
CPU data paths.

3) Table Access Optimization - TAO consists of selecting
the most convenient mechanism for keeping tables of
pre-computed data in memory, thus reducing the time
required to access such tables inside the program critical
path.

4) Cache Access Optimization - CAO consists of
partitioning the programs in such a way to reduce the
traffic between primary memory and cache memory.

In the following subsections we describe the rationale
of our experiments and the methodology adopted. We then
describe the source level program optimizations in details
and present the performance results obtained.

4.1 Rationale
First of all it is important to remark that the goal of our

experiments is not to rank the reference systems in IPPR
applications. The main reason why a ranking of that kind
would make no sense is that the evolution of RISC
technology is so fast and, as a consequence, the rate at
which the families of reference systems are enriched with
new models is so high that any ranking would be subject to
a complete revision every few months (see [11] for an
example of a new CPU which was announced during the
development of our experiments). A second reason why
ranking the reference systems in IPPR would make no
sense is that the architecture of desktop workstations is
presently migrating toward a more composite organization,
in which dedicated devices take care of the processing of
video and images instead of loading the CPU.

Our investigation and experiments aim instead at
observing the behaviour and evaluating the performance of
the basic RISC architecture, which includes CPU and
memory, with no support of hardware accelerators, in
IPPR. Running IPPR applications on RISC systems not
equipped with hardware accelerators allows the evaluation
of the extent to which the RISC architectural concepts suit
IPPR. The results of such an evaluation can be used, for
example, to guide the design of RISC based hardware
accelerators for IPPR.

4.2 Methodology
For each basic task and for each reference system we

performed the following steps:
1) we identified the algorithm most directly derivable from

the basic task definition and wrote the corresponding C
program;

2) we compiled such a program using the most advanced
compilers provided by the manufacturers as well as the
GNU C compiler (see Table 1), activating the most
aggressive optimization options [38][35].

3) we measured the performance of the object code on test
input data set of fixed size: the performance
measurements were based on the gettimeofday() system
call provided by the Unix operating system, for each
test repeating the measurements several times and
selecting the minimum time obtained8;

4) we analyzed the performance measurements, the source
code and the assembly code generated by the compiler
jointly, in order to identify the percentages of time spent
in the different sections of the source program;

5) we manipulated the source program in a variety of
different ways which appeared to be convenient, to
improve its performance;

6) we repeated steps 3), 4) and 5) until we found the best
performance for that basic task;

7) we interpreted the results of our measurements and
actions.
In the next Section we present the four source level

optimizations using the four basic tasks as case studies. In
particular LU is presented using FSBM as a case study,
DTO is presented using CONV as a case study, TAO is
presented using DCT as a case study, and CAO is presented
using HT as a case study.

4.3 Experiments

4.3.1 Full Search Block Matching (FSBM)
Fig. 1 shows the C program directly derived from the

definition given in 3.2.1, which computes the mean
absolute difference between a block of an image and the
surrounding blocks, within displacement DISP. The code

matches a block of size BLOCK_SIZE  BLOCK_SIZE

of the current picture (variable cur_pic) with 2 
DISP+1 blocks of the same size in a reference picture
(variable ref_pic) and produces the components of the
motion vector (variables min_u and min_v) as a result.
The code shown in Fig. 1 is supposed to be part of a loop
which scans all the blocks of the current image. Table 4
(row 1) shows the performance of the reference systems in
the execution of such a code.

4.3.1.1 Optimization of FSBM
The code shown in Fig. 1 exhibits poor performance in

RISC systems mainly because of the limited size of the
internal loop body, which consists of only one statement
and is executed a large number of times. Such a

8 Times larger than minimum include terms due to

operating system overhead.

 PROCEEDINGS OF THE IEEE, VOL. 84, N.X, XXXX 1996 8

characteristic leads to the following two negative effects:

1. it is not possible to take advantage of sophisticated
instruction scheduling algorithms to generate the code
corresponding to the loop body, considering the low
number of machine instructions to be scheduled: as a
consequence some of the data hazards cannot be
eliminated and the utilization factor of the hardware
functional units remains low.

2. it is possible to take advantage only of a limited number
of CPU registers to allocate variables or results of
expressions repeatedly used: as a consequence most
registers are not even accessed inside the loop and a

large number of unnecessary memory accesses are
performed.

The first negative effect can be eliminated by Internal
Loop Unrolling (ILU). ILU consists of collapsing some
iterations of the most internal loop in one statement (see
Figure 4.b for an example). This new statement is larger
and more complex than the original loop body and requires
a higher number of machine instructions to be executed.
The higher number of machine instructions in the new loop
body allows the optimizer to take advantage of its
sophisticated scheduling algorithms and, as a consequence,
to come up with a more efficient schedule.

BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 9

1: min_v = 0;
2: min_u = 0;
3: mad = MAXINT; /* Mean Absolute Difference */
4: for (u = -DISP; u <= DISP; u++)
5: for (v = -DISP; v <= DISP; v++) { /*for each candidate block*/
6: cur_mad = 0;
7: for (i = 0; i < BLOCK_SIZE; i++)
8: for (j = 0; j < BLOCK_SIZE; j++) /* for each pixel */
9: cur_mad+=abs(cur_pic[y+i][x+j]-ref_pic[y+DISP+i+u][x+DISP+j+v]);
10: if (cur_mad < mad) {
11: mad = cur_mad;
12: min_v = v;
13: min_u = u;
14: }
15: }

Figure 1 - FSBM: code directly derived from task definition.

10: min_v = 0;
11: min_u = 0;
12: mad = MAXINT;
13: for (u = -DISP; u <= DISP; u++) { /* for each candidate
 out of 2*DISP+1 */
14: cmad0 == cmad16 = 0; /*2*DISP+1 accumulators */
15: for (i = 0; i < BLOCK_SIZE; i++)
16: for (j = 0; j < BLOCK_SIZE; j+=4) { /* for each pixel out of 4 */
17: r0 = cur_pic[y+i][x+j]; /* 4 pixels per iteration*/

18: r3 = cur_pic[y+i][x+j+3];
19: cur_mad+=abs(cur_pic[y+i][x+j]-ref_pic[y+DISP+i+u][x+ +j]);

20: cmad0+= (abs(r0-ref_pic[y+DISP+i+u][x+ j])
21: + abs(r1-ref_pic[y+DISP+i+u][x+1+j]))
22: + (abs(r2-ref_pic[y+DISP+i+u][x+2+j])
23: + abs(r3-ref_pic[y+DISP+i+u][x+3+j]));

24: cmad16+= (abs(r0-ref_pic[y+DISP+i+u][x+16+j])
25: + abs(r1-ref_pic[y+DISP+i+u][x+17+j]))
26: + (abs(r2-ref_pic[y+DISP+i+u][x+18+j])
27: + abs(r3-ref_pic[y+DISP+i+u][x+19+j]));
28: }
29: if (cmad0 < mad) { /*selects the best new mad and motion vector*/
30: mad = cmad0;
31: min_v = -8;
32: min_u = u;
33: }

34: if (cmad16 < mad) {
35: mad = cmad16;
36: min_v = 8;
37: min_u = u;
38: }
39: }

Figure 2 - LU applied to FSBM.

 HP DEC IBM SGI SUN

Code derived from task
definition:

7,467g ms 8,521c ms 3,631c ms 4,177g ms 8,287g ms

Best performance of
2,854g ms 2,205g ms 1,764g ms 1,202g ms 3,586g ms

optimized code:
LU: ELU 17
 ILU 8

LU: ELU 17
 ILU 16

LU: ELU 17
 ILU 8

LU: ELU 17
 ILU 8

LU: ELU 17
 ILU 8

Operating conditions: image size: 512×512
 block size: 16×16
 displacement: 8
 compilers:: c = native compiler, g = GNU compiler.

Table 4 - Performance of FSBM.

 PROCEEDINGS OF THE IEEE, VOL. 84, N.X, XXXX 1996 10

The second negative effect can be eliminated by
External Loop Unrolling (ELU). ELU consists of moving
iterations from outer loops to inner loops (see Figure 4.a for
an example). Using ELU, several threads of computations
are created and simultaneously progress at every iteration
of the internal loop: as long as there are registers available
to be assigned to these threads of computation, the global
efficiency improves.

Fig. 2 shows the organization of the FSBM code
resulting from the application of both ILU and ELU. The
presence of more than one statement in the internal loop
(cmad0+= ..., cmad1+=..., ...) is due to ELU,
while the size of each of such statements is due to ILU.

Table 4 (row 2) shows the best performance obtained in
each reference system along with the loop unrolling factor.
DTO, TAO and CAO are not applicable in FSBM.

4.3.2 Convolution (CONV)
Fig. 3 shows how the C program for two-dimensional

convolution directly derived from the definition given in
3.2. Table 5 (row 1) presents the performance of such a
program on the reference systems.

4.3.2.1 Optimization of CONV
In order to improve the performance of convolution, LU

can be effectively applied. The application of LU in CONV
is not different from its application in FSBM, as presented
in Section 4.3.1.1, and leads to a code which follows the
general scheme shown in Fig. 4. The choice of different
factors for ELU and ILU allows the derivation of specific
programs from such a general scheme.

In addition to LU, DTO can be used to speed up
CONV. From Table 1 it appears that, in general, the
reference systems are faster in floating point processing
than in integer processing. This fact suggests to explore
whether it may be convenient to carry out CONV in
floating point rather than in integer, as it would seem
natural.

In an intrinsically integer task, such as CONV, the
advantages of using integer types (int and unsigned
char) derive from the faster execution of sums (in IBM
and SUN) and the absence of type conversions9. On the
contrary, the advantages of using floating point types
(float or double) derive from the faster execution of
products and from the availability of a higher number of
registers. The availability of a higher number of registers is
due to the fact that some of the general purpose integer
registers cannot be assigned to program variables, as they
are needed for housekeeping operations, such as array
element address computation, run time stack handling,
control variables and others. Using more registers allows

9 We assume that both the original input image and the

output image are declared unsigned char arrays.
As a consequence, type conversions would be needed to
convert them to floating point, in case of floating point
processing.

the increase of the ELU factor, thus leading to a significant
performance improvement: such a performance
improvement can be considered an indirect effect of DTO.

The question to be answered, to understand whether
migrating to floating point processing is convenient, is
whether the slow down due to the introduction of the
unsigned char to float conversion, for the input
image, and of the float to unsigned char
conversion, for the convolution result, as well as to the
execution of sums in floating point rather than integer, is so
high to overcome the acceleration due both to the execution
of products in floating point rather than in integer and to
the increased ELU factor. In order to analyze these
contributions we have run some experiments using
programs derived from the scheme of Fig. 4. Table 5 shows
the best performance measured for CONV in the reference
systems along with the loop unrolling factor and the data
types used10. TAO and CAO are not applicable in CONV.

4.3.3 Discrete Cosine Transform (DCT)
We investigated DCT as a basic building block of

image compression standards, such as JPEG [43] and
MPEG [18]. In such a context the following facts have to
be considered:
1. the DCT is not applied directly to images but to blocks

of 88 pixels;

2. the two-dimension DCT of an 88 pixel block can be
computed by means of a sequence of two one-
dimension DCTs, namely a row-wise one-dimension
DCT over each row of the input block and a column-
wise one-dimension DCT over each column of the
result of the row-wise DCT;

3. in each one-dimension DCT of a row of a 88 pixel
block it is possible to identify a number of partial
combinations of the inputs which are repeatedly used to
compute the results [30]. The identification of such
combinations allows to reduce the number of operations
required to carry out the DCT from 56 sums and 64
products, which corresponds to the case of a direct
implementation of the DCT definition over eight
elements, to 26 sums and 16 products (see Figure 5).
The code in Figure 5 corresponds to the body of a loop
which must be executed eight times, one for each row
of the block, during the first one-dimensional
convolution, and one for each column of the block
during the second one-dimensional convolution. Two
sections can be identified in the program, namely a
Section in which the intermediate results to be used
repeatedly are computed (statements 1-18), and a
Section in which such intermediate results are combined
to produce the final result (statements 19-26).

10 In the case of floating point, the performance

measurements include the time required to carry out the
input conversion from unsigned char to float
and the output conversion from float to unsigned
char

BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 11

1. for(x=0;x<IM_SIZE;x++)
2. for (y=0; y<IM_SIZE;y++){
3. temp=0;
4. for(i=0; i<MASK_SIZE; i++)
5. for(j=0; j<MASK_SIZE; j++)
6. temp+= source [x+i][y+j]*mask[i][j];
7. dest[x+MASK_SIZE/2][y+MASK_SIZE/2]=temp/norm;
8. }

Figure 3 - CONV: code directly derived from task definition

1. for(x=0;x<IM_SIZE;x++)
2. for (y=0; y<IM_SIZE;y+=N){
3. temp1=temp2=....=tempN=0;
4. for(i=0; i<MASK_SIZE; i++)
5. for(j=0; j<MASK_SIZE; j++){
6. m=mask[i][j];
7. temp0+= in_image[x+i][y+j]*m;
8. temp1+= in_image[x+i][y+j+1]*m;

9. tempN+= in_image[x+i][y+j+N]*m;
10. }
11. out_image[x+MASK_DIM/2][y+MASK_DIM/2]=temp0;
12. out_image[x+MASK_DIM/2][y+MASK_DIM/2+1]=temp1;

13. out_image[x+MASK_DIM/2][y+MASK_DIM/2+N]=tempN;
 }

a) ELU

1. for(x=0;x<IM_DIM;x++)
2. for (y=0; y<IM_DIM;y++){
3. out_im[x+MASK_DIM/2][y+MASK_DIM/2]=in_image[x][y]*mask[0][0]+
 +in_image[x][y+MASK_DIM]*mask[0][MASK_DIM]...
+in_image[x+MASK_DIM][y+MASK_DIM]*mask[MASK_DIM][MASK_DIM];
5. }

b) ILU
Figure 4 - LU applied to CONV.

 HP DEC IBM SGI SUN

Code derived from task
definition:

1,430g ms 1,610c ms 330c ms 888g ms 1,360c ms

Best performance of
230g ms 220c ms 190c ms 225g ms 430g ms

optimized code:
LU: ILU 25
DTO: float

LU: ELU 24
DTO: float

LU: ILU 25
DTO: int

LU: ILU 25
DTO: float

LU: ILU 25
DTO: float

Operating conditions: image size: 512×512
 mask size: 5×5
 compilers: c = native compiler, g = GNU compiler.

Table 5 - Performance of CONV.

 PROCEEDINGS OF THE IEEE, VOL. 84, N.X, XXXX 1996 12

1. t0 = in[7] + in[0];
2. t1 = in[6] + in[1];
3. t2 = in[5] + in[2];
4. t3 = in[4] + in[3];
5. t4 = in[3] - in[4];
6. t5 = in[2] - in[5];
7. t6 = in[1] - in[6];
8. t7 = in[0] - in[7];
9. t10 = t3 + t0;
10. t11 = t2 + t1;
11. t12 = t1 - t2;
12. t13 = t0 - t3;
13. t14 = t4 + t15;
14. t15 = (t6 - t5) * COS_4;
15. t16 = (t6 + t5) * COS_4;
16. t17 = t7 + t16;
17. t25 = t4 - t15;
18. t26 = t7 - t16;
19. out[0] = (t10 + t11) *COS_4;
20. out[2] = t13 * COS_2+ t12 * COS_6;
21. out[4] = (t10 - t11) * COS_4;
22. out[6] = t13 * COS_6 - t12 * COS_2;
23. out[1] = t17 * COS_1 + t14 * COS_7;
24. out[3] = t26 * COS_3 - t25 * COS_5;
25. out[5] = t26 * COS_5 + t25 * COS_3;
26. out[7] = t17 * COS_7 - t14 * COS_1;

Figure 5 - DCT: fast data flow diagram and code [30].

 HP DEC IBM SGI SUN

77g ms 86c ms 45c ms 73g ms 110c ms

Best performance of
optimized code:

LU: NA
DTO: float or

double
TAO: array or

const or
variables

LU: NA
DTO: float or

double
TAO: const or

variables

LU: NA
DTO: int

TAO: array or

const or
variables

LU: NA
DTO: int

TAO: const or

variables

LU: NA
DTO: float

TAO: array or

variables

Operating conditions: image size 512×512
 block size 8×8
 compilers: c = native compiler, g = GNU compiler.

Table 6 - Performance of DCT.

BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 13

It is important to remark that, due to the symmetry of
cosine, only seven cosines, namely cos (k/16), k=1, .., 7,

need to be computed for a 88 DCT. As it can be expected,
these values are computed off line and repeatedly used in
the computation loop.

4.3.3.1 Optimization of DCT
While explicit LU is not necessary, as a sort of ILU is
implicit in the code transformation mentioned above under
item 3, DTO does affect the performance of DCT. Our
experiments have shown that the best performance of
DCT in DEC and HP is achieved using the float or
double type. On SUN and SGI the best performance is
obtained using the float type because the number of
available single precision floating point registers (32) turns
out to correspond to only 16 double precision floating point
registers, which are not enough to hold all the temporary
values required. On IBM, finally, the best performance
results are obtained using the int data type (see Table 6).

A significant performance improvement in DCT can be
obtained by moving the computation of the cosines off the
main computation loop and keeping the pre-computed
values in a fast access Table. We examined three ways in
which the cosine Table can be kept in memory, namely
using an array, using constants, and using variables. Fig. 7
shows how these three methods of Table access
optimization (TAO) are implemented. The performance
delivered using an array was shown to depend on the
compiler: in particular while the SUN and HP native
compilers are able to detect the absence of aliases and
assign the array values to registers, the other compilers
keep the array values in memory and thus require a
load/store operation for each array access. Constants and
variables turn out to be almost equivalent and deliver the
best performance results. The cosine values are loaded from
primary memory to registers the first time they are
referenced and are never removed because the number of
values necessary to complete the task is smaller than the
number of available registers (in all the reference systems
but SUN and SGI in double precision). When the number

of values used is larger than the number of available
registers (i.e., on SUN in double precision) the register
compiler directive can be issued, when using variables, to
suggest the compiler which variables are to be kept in
registers and which variables can be removed. As a
consequence, using variables is more efficient than using
constants. Table 6 presents the best performance measured
for DCT in the reference systems along with the data types
used and the Table access methods adopted. CAO is not
applicable to DCT.

4.3.4 Hough Transform (HT)
Fig. 6 shows the code derived from the Hough

Transform definition presented in 3.2.2. Tab. 7 shows its
execution time in each reference system, assuming
MAX_ANGLES=180 and EDGE_PIX_NUM=2621411.

4.3.4.1 Optimization of HT
LU, DTO and TAO, definitely improve the performance

of the HT code. LU improves the HT performance thanks
to the explicit assignment of the CPU registers to the
intermediate results of the computation. If R is the number
of available registers, the best performance result is
achieved by using (R-2) registers to hold the values of sin()
and cos() of (R-2)/2 adjacent angles, and using the
remaining 2 registers to hold the coordinates of the edge
pixel that has to be processed at each iteration. After
initialization, only two memory accesses (i.e. the
coordinates of the next edge pixel) are necessary at each
iteration to perform the computation of (R-2)/2 partial
results, which have to be stored in memory12. In Fig. 8 is
reported, as an example, the case of R=20.

TAO improves the HT performance by reducing the

11 We consider the case of an image of size 512 x 512 in

which 10% of the pixels are edge pixels.
12 Note that, in general, optimizing compilers

automatically map a variables on a CPU register only if
such a variable is local, is not an array element, and is
never referenced through a & operator.

1. for (k=0; k<MAX_ANGLES; k++){
2. for (i=0; i<EDGE_PIX_NUM; i++)
3. H[k][OFFS+(int)(edge[i].x*cosine[k]+edge[i].y*sine[k])]++;
4. }

Figure 6 - The HT code derived from its definition (arrays cosine[] and sine[] are assumed to be computed off-line)

 #define COS_1 c[1] #define COS_1 0.980785 register int
 #define COS_2 c[2] #define COS_2 0.923879 COS_1=0.980785,
 COS_2=0.923879,
 #define COS_7 c[7] #define COS_7 0.195090 ...,
 float c[8]; COS_7=0.195090;
 for(i=1;i<8;i++)
 c[i]=cos(PI*i/16);

 a) b) c)

Figure 7 - TAO techniques: a) array, b) constants, c) variables.

 PROCEEDINGS OF THE IEEE, VOL. 84, N.X, XXXX 1996 14

1. for (k=0;k<MAX_ANGLES; k+=9) {
2. r_1 =cosine[k]; r_2=sine[k];
3. r_3 =cosine[k+1]; r_4=sine[k+1]; /* TAO */

4. r_17=cosine[k+8]; r_18=sine[k+8];
5. for (i=0; i<EDGE_PIX_NUM; i++){
6. r_19=edge[i].x; r_20=edge[i].y; /* ELU */
7. H[k][(int)(r_19*r_1 + r_20*r_2)]++;
8. H[k+1][(int)(r_19*r_3 + r_20*r_4)]++;
9.
10. H[k+8][(int)(r_19*r_17+ r_20*r_18)]++;
11. }
12 }

a)

7. H[k][(r_19*r_1 + r_19*r_2)>>GRANE]++; /* DTO */
8. H[k+1][(r_19*r_3 + r_19*r_4)>>GRANE]++;
9.
10. H[k+8][(r_19*r_17 + r_19*r_18)>>GRANE]++;
11. }

b)

Figure 8 - LU, DTO and TAO applied to HT: a) all_float solution and b) all_int solution.

(int) (((double) int_var)*double_var + ((double) int_var)*double_var)

Figure 9 - Type conversions hidden in statement 3 of Fig. 6.
1. while(subset_start != EDGE_PIX_NUM){
2. subset_start = subset_end; /* Delimit next pixel subset */
3. subset_end = max (EDGE_PIX_NUM, (subset_end + SUBSET_SIZE));
4. for (k = 0; k< MAX_ANGLES; k++){
5. c=cosine[k];
6. s=sine[k];
7. for (i=subset_start; i<subset_end; i++) /*HT on current subset*/
8. H[k][OFFS+(int)(edge[i].x*c+edge[i].y*s)]++;
9. }
10. }

Figure 10 - CAO applied to HT.

 HP DEC IBM SGI SUN

Code derived from task
definition:

860c ms 850c ms 2,610c ms 960g ms 2,340c ms

Best performance of
340g ms 520g ms 320c ms 460g ms 600g ms

optimized code:
LU: ELU 10
DTO: float
TAO: variables

LU: ELU 5
DTO: float
TAO: variables

LU: ELU 6
DTO: int
TAO: variables

LU: ELU 3
DTO: float
TAO: variables

LU: ELU 6
DTO: float
TAO: variables

Operating conditions: image size: 512×512
 number of angles: 180
 number of edge pixels: 10% of image pixels
 compilers: c = native compiler, g = GNU compiler.

Table 7 - Performance of HT.

BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 15

time required to access the tables containing the pre-
computed values of sin() and cos(). Before entering the
program internal loop the array values to be used within the
loop body are loaded into variables (see Figure 8 statements
2-4).

DTO improves the HT performance thanks to the
elimination of some type conversions (see Fig. 9) and to
the use of a larger number of registers. Two alternative
DTO solutions, named all_float and all_int, are
shown in the optimized code of Fig. 8. The all_int
solution performs all the computations in fixed point and
thus requires fixed point tabulation of sin() and cos(), while
the all_float solution performs all the computations in
floating point and thus requires a preliminary conversion of
the edge point coordinates from integer to floating point
before starting the HT computation. The most evident
advantage of the all_int solution over the all_float
solution is the elimination of the final float-to-int
conversion (see Fig. 9), which is quite expensive,
considering the absence of a direct path from the floating
point registers to the integer registers (see Table 1). On the
contrary the most evident advantages of the all_float
solutions over the all_int solution are the execution of the
multiplications in floating point (which are faster than in
integer) and the elimination of the right shift implementing
fixed point data alignment (see statements in Fig. 8(b)).
In addition to LU, DTO and TAO, the structure of the HT
code suggests to explore cache access optimization
techniques (CAO) to improve efficiency. In particular, it
would seem possible to plan the sequences of memory
accesses to maximize locality: the set of edge pixels that
have to be scanned repeatedly can be partitioned into
subsets of size equal to that of cache memory, which are
then processed one at a time. The resulting flow is
presented in Figure 10. After initial loading, subset
processing consists of looping over the edge pixels inside
the cache with no access to primary memory.
Unfortunately, this optimization is effective only under

particular operating conditions (i.e., cache size, image size):
in most cases, on the contrary, a set of negative effects
(e.g., related to matrix H access) compensate the benefit of
increased edge pixel access locality. In particular, in none
of the reference systems the cache size and the image size
allow taking advantage of CAO13. Table 7 presents the best
performance measured for HT in the reference systems
along with the unrolling factor, the data types used and the
Table access method adopted.

4.4 SUMMARY OF THE RESULTS OF THE

EXPERIMENTS

Table 8 summarizes the best performances of the basic
IPPR tasks on the reference systems. A rough estimate of
the level of performance that RISC systems can achieve in
IPPR applications can be based on the observation that,
under the operating conditions selected, the chain CONV-
HT, which might be regarded as a straight line recognition
task, typical of pattern recognition, exhibits a throughput of
0.6 to 2 recognitions per second, whereas the chain FSBM-
DCT, which might be regarded as a video compression
task, typical of distributed multimedia, exhibits a
throughput of 0.2 to 0.3 frames per second, depending on
the reference system14.

Table 9 shows the speed up factor due to the separate
application of each source level optimization to the code
derived from the task definition for each IPPR basic task.

13 On the contrary, we experimented the benefit of CAO

in two other platforms, namely HP 725 (128Kbytes
cache, direct mapped) and Alpha 600 (96Kbytes cache
three-way set associative).

14 Using suboptimal techniques such as Logarithmic
Search [18], the speed of block matching improves of a
factor between 5 and 10.

 HP DEC IBM SGI SUN

FSBM 2,854 ms 2,205 ms 1,764 ms 1.202 ms 3,586 ms

CONV 230 ms 220 ms 190 ms 225 ms 430 ms

DCT 77 ms 86 ms 45 ms 73 ms 110 ms

HT 340 ms 520 ms 320 ms 460 ms 600 ms

Operating conditions: image size: 512×512 one byte pixels.
 CONV mask size: 5×5
 FSBM displacement: 8
 DCT block size: 8×8
 HT number of edge pixels: 10% of image pixels

Table 8 - Summary of the best performances.

 PROCEEDINGS OF THE IEEE, VOL. 84, N.X, XXXX 1996 16

The last column reports the speed up factors due to the best
combination of the source level optimizations. A "NA" sign
denotes that an optimization technique is not applicable to a
task, while a "1" denotes the fact that an optimization
technique has no effect on a task. It is worth noticing that:
1) when no source level optimization is adopted, RISC

systems run at about one third of the speed that they are
actually able to achieve;

2) loop unrolling (LU) is by far the most effective
optimization technique. It has no effect on DCT because
a sort of internal loop unrolling (ILU) is implicit in the
adopted algorithm;

3) data type optimization delivers no benefit on IBM for
CONV and on HP and ALPHA for DCT because in
these architectures the data types naturally deriving
from the task definition (respectively int and float)
already deliver the best performance;

4) table access optimization (TAO) is beneficial only when
the compiler does not optimally allocate table elements
in registers;

5) cache access optimization (CAO) has no effect on the
basic tasks in the reference systems under the operating
conditions selected. In FSBM, CONV and DCT CAO is
not applicable due to the intrinsically local nature of the
algorithms15, which matches the intrinsically local
nature of caching. On the contrary in HT, which is not a
local task, CAO delivers no benefit as it turns out to be
in conflict with LU, which, as mentioned above, is more
convenient.

15 Although DCT is in principle not local, when used in

image compression standards, it can be considered local
because of the small size of the data sets.

5 DISCUSSION

The discussion of the results of our study and of our
experiments is organized as follows. In Section 5.1 we
analyze the behaviour of the IPPR basic tasks on the RISC
reference systems in order to identify the architecture
bottlenecks. In Section 5.2 we discuss the limitations of the
current generation programming models, which force
programmers to adopt source level program optimization
techniques to obtain an acceptable level of efficiency.

5.1 Bottleneck identification
The execution time of an IPPR task, on a RISC

machine, can be computed by means of the following
expression:

 TEX = TIC + TCC + TMA + TOH - TOL (1)

in which, TIC (Image Computation) denotes the time spent
in executing operations on image pixels, TCC (Control
Computation) denotes the time spent in executing
operations on loop control variables, array addresses and,
more in general, for housekeeping, TMA (Memory Access)
denotes the time for memory access, TOH (Overhead)
denotes the time wasted due to inefficiencies, and TOL
(Overlap) denotes the time saved due to superscalar
execution of operations and instructions.

The terms in expression (1) are affected by the
optimizations presented in Section 4 as follows. TIC is
affected by DTO, which adapts the algorithm data types to
those supported most efficiently by the CPU. TCC is
affected by TAO, which reduces the number of
computations needed to compute the array addresses, and

 LU DTO TAO CAO Global

FSBM 2.1  3.9 NA NA NA 2.1  3.9

CONV 1.7  5.0 1  1.7 NA NA 1.7  6.2

DCT 1 1  1.7 1  1.4 NA 1  2.4

HT 1.4 3.0 1.2  2.5 1  1.2 1 1.6  8.2

Table 9 - Ranges of the speed up factors due to the optimizations.

TIC TCC TMA TOH TOL

103 ms 37 ms
TCACHE;MA: 54 ms

TPRIMARY;MA: 15
ms

24 ms 28 ms

Table 10 - CONV on HP: times spent in the different activities

BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 17

by LU, which reduces the amount of loop control
computations, due to the lower number of iterations, as well
as the amount of array address computations, due to the
allocation of a larger number of variables in CPU registers.
TMA is affected by LU and TAO, both of which improve
the use of CPU registers. TOH is affected by LU, which
enlarges the size of the loops and thus allows to take
advantage of more sophisticated instruction scheduling
techniques. TOL is affected by DTO, which may lead to the
use of different functional units for TIC and TCC (e.g.,
floating point and integer), and by LU, which increases the
number of parallel activities inside the program most
internal loop.

A quantitative analysis of the terms of expression 1 was
carried out for the specific case of CONV on HP to identify
the main processing bottle-necks (see Table 10). TIC was
obtained by dividing the number of image computations
needed to perform CONV (multiplies and add) by the peak
machine throughput for these computations (see Table 1).
TMA, TCC and TOL were obtained respectively by counting
the memory accesses (evaluating both TCACHE;MA and
TPRIMARY;MA) and the housekeeping instructions and by
considering the overlapping among the different terms in
the CONV assembly code corresponding to the best
performance obtained. These values were validated by
experiments. The value of TOH was obtained by TOH =TEX -
TIC - TCC - TMA + TOL.

The experiments have shown that TOL is almost
completely due to the overlapping between TIC and TMA, in
particular TCACHE;MA , while only a very limited
overlapping was observed between TCC and TIC and
between TCC and TMA.This is due to a combination of two
reasons, namely the intrinsic data dependencies appearing
in the CONV loop body, which require that some of the
machine instructions be executed in sequence, and the
limited number of functional units available (structural
hazards), which do not allow the parallel execution of all
the potentially parallel activities.

We modified the order of instructions manually to
further improve the performance of the assembly code
produced by the compiler/optimizer. In the best case we
achieved an almost complete overlap between cache
memory accesses and image computations. This leads to
the conclusion that, unlike expected, CONV on HP is a
compute bound task, as memory accesses can be totally
executed in parallel with computation. We observed the
same behaviour, qualitatively, in all the basic tasks and in
all the reference systems. As a consequence, CPU speed-
ups due, for example, to an increase of instruction level
parallelism in the next generation CPUs, are expected to
yield task speed-ups of the same factor, provided that TIC 
TCACHE;MA.

As far as primary memory access is concerned, no
overlapping was observed and, as a consequence, a term of
15 ms, mainly due to the scanning of the input image, is to
be added to the other terms to compute the global task
execution time. The reason why no overlap can take place
between primary memory accesses and other activities is
that primary memory accesses are activated only at the

occurrence of cache misses, that is exactly at the moment at
which the missing data items are needed and therefore the
CPU remains idle waiting for memory access completion.
Prefetching techniques were proposed to reduce such a
latency [33]. In IPPR, where memory accesses are known
in advance, it would be possible to plan the loading of
cache lines in advance to eliminate the latency of primary
memory access, thus overlapping primary memory accesses
with other system activities. This behaviour should be
supported by proper architectural features, such as for
example independent access to cache memory from the
CPU side and from the primary memory side, as well as by
special language directives.

5.2 Programming model limitations
Although it is true that present generation compilers use

sophisticated techniques to optimize the use of hardware
resources, to reduce the number of data dependencies, and
more in general to schedule machine instructions in order to
maximize efficiency, unfortunately in data intensive
programs such as those belonging to the IPPR domain, the
action of compilers is not sufficient to generate efficient
code and must be complemented by a careful organization
of the source code.

As a consequence, writing an efficient program
implementing an IPPR task on a RISC based architecture
requires to take into account the characteristics of the
specific RISC architecture for which the program is written
and a careful analysis of the type of processing performed
by the IPPR task, in order to identify the most convenient
coding solutions. If, on the contrary, the program is coded
as a plain transposition of the task definition, leaving the
task of finding a convenient mapping on the RISC
architecture to the compiler, then efficiency turns out to be
unacceptable16 (see Section 4.4).

The reason why manual source code optimization is
necessary is that in compilers code generation and
optimization take place after the analysis of the source
program and, as a consequence, after the generation of the
compiler internal representation. At that point several of the
most relevant task characteristics, in particular some which
might be used to improve the efficiency of the object code,
are lost and cannot be exploited by the optimizer. In order
to take advantage of the task characteristics, or at least of
part of them, the optimizer should process the compiler
internal representation to infer as much information as
possible on the task structure, which was clear in the mind
of the programmer, not so evident any more in the source
program, and almost completely hidden in the program
internal representation inside the compiler.

The point is that unfortunately while current generation
CPUs have moved apart from the flat execution model
based on the fundamental Von Neumann abstraction

16 This is usually the case also in numerical analysis

applications, which share with IPPR the characteristic
of being based on the processing of large data sets, most of
the times organized as two-dimension arrays [9][21].

 PROCEEDINGS OF THE IEEE, VOL. 84, N.X, XXXX 1996 18

(which does not include, for example, memory hierarchy
and data dependencies), on the contrary the programming
models upon which current generation high level languages
(e.g., C, Pascal and their descendants) are based have not
evolved along the same direction. While it can be argued
that, generally speaking, programmers should not be aware
of the specific characteristics of the architecture of the
system in which programs are supposed to run, which
implies that efficiency is not to be regarded as a goal of
programming models, there are some domains, and IPPR is
among them, in which, on the contrary, efficiency is a
primary goal and in which, as a consequence, programmers
cannot restrict their action to the development of high level,
correct and portable code. In these domains the flatness of
the available programming model forces programmers to
optimize the code manually.

6 CONCLUDING REMARKS

In this paper we presented the results of a study on the
performance and on the behaviour of RISC systems in
image processing and pattern recognition (IPPR). The
investigation was conducted experimentally as follows. We
selected a set of high performance RISC based systems,
from those presently commercially available, to represent
RISC technology, and identified a set of IPPR tasks to
represent the image processing domain. We studied the
behaviour of the RISC systems selected in the execution of
the IPPR tasks identified by running a set of experiments
based on different program organizations.

The main contributions of the paper are i) the
performance evaluation of current generation RISC systems
in the domain of IPPR tasks, ii) the analysis of the
behaviour of RISC systems in the execution of IPPR tasks
and iii) the identification of a set of source level program
optimizations delivering a significant speed up over regular
program implementation in the domain of IPPR.

BIBLIOGRAPHY
[1] Amano T. et al., DRS: a Workstation Based Document Recognition

System for Text Entry, IEEE Computer, vol. 25, n. 7, pp. 67-71, July
1992.

[2] Asprey T., Averill G. S., DeLano E., Mason R., Weiner B. and
Yetter J., Performance Features of the PA7100 Microprocessor,
IEEE Micro, pp. 22-35, June 1993.

[3] Ballard D. H. and Brown C. M., Computer Vision, Prentice Hall,
1982.

[4] Bertero M., Poggio T. A. and V. Torre, Ill-posed problems in Early
Vision, Proceedings of the IEEE, vol. 76, n. 8, pp. 869-889, 1988.

[5] Digital Equipment Corp., Alpha Workstation Summary, September
1995.

[6] Digital Equipment Corp., DECchip 21064 and DECchip 21064A
Alpha AXP Microprocessors - Hardware Reference Manual, 1994.

[7] Dixit D., The SPEC Benchmarks, Parallel Computing, vol. 17, n. 1,
pp. 195-209, 1991.

[8] Dongarra J. J. and Gentzcsh, eds., Computer Benchmarks, North-
Holland, Amsterdam, 1993.

[9] Dowd K., High Performance Computing, O'Reilly Associates Inc.,
1993.

[10] Fountain T. J., Matthew K. N. and Duff M. J. B., The CLIP7A image
Processor, IEEE Transaction on Pattern Analysis and Machine

Intelligence, vol. 10, no. 3, pp. 310-319, 1988.
[11] Greenley D. et al., UltraSPARC: The next Generation Superscalar

64-bit SPARC, CompCon Spring 95, March 1995.
[12] Heinrich J., MIPS R4000 Microprocessor Users's Manual, MIPS

Technologies Inc., 1994.
[13] Hennessy J. L. and Patterson D. A., Computer Architecture: a

Quantitative Approach, Morgan-Kauffman, 1990.
[14] Hewlett Packard, HP 9000 series 700 models 735/125, September

1995.
[15] Hewlett Packard, PA-RISC 1.1 Architecture and Instruction Set

Reference Manual, February 1994.
[16] Hillis W. D., The Connection Machine, The MIT Press, 1985
[17] IBM Corp., RISC System/6000 Overview, September 1995.
[18] ISO/IEC JTC1/SC29/WG11, Coding of Moving Pictures and

Associated audio for Digital Storage Media at up to about 1.5
Mbits/s, ISO/IEC CD11172-2, 1993.

[19] Jain R., The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation and
Modeling, Jonh Wiley & Sons, New York, 1991.

[20] JàJà J., Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[21] Kacmarcik G., Optimizing PowerPC Code, Addison-Wesley, 1995.
[22] Lee B. G. L., A new algorithm to Compute the Discrete Cosine

Transform, IEEE Trans. on Acoustic, Speech, Signal Processing,
vol. ASSP-32, n. 6, pp. 1243-1245, December 1984.

[23] Legall D., MPEG - A video Compression Standard for Multimedia
Applications, Communications of the ACM, vol. 34, no. 4, pp. 47-
58, April 1991.

[24] Maresca M. and Fountain T. J., eds., Special Issue on Massively
Parallel Computers, Proceedings of the IEEE, 1991.

[25] Maresca M. and Li H., Morphological Operations on Mesh
Connected Architectures: a generalized convolution algorithm, Proc.
IEEE Conference on Computer Vision and Pattern Recognition,
Miami Beach (FL), pp. 199-304, June 1986.

[26] McLellan E., The Alpha AXP Architecture and 21064 Processor,
IEEE Micro, pp. 36-47, June 1993.

[27] Potter J. L., ed., The Massively Parallel Processor, The MIT Press,
1980.

[28] Pratt W. K., Digital Image Processing, John Wiley & Sons, 1991.
[29] Puri A. and Aravind R., Motion-Compensated Video Coding, IEEE

Trans. on Circuits and Systems for Video Technology, vol. 1, n. 4,
pp. 351-361, December 1991.

[30] Rao K. R. and YipP., Discrete Cosine Transform - Algorithms,
Advantages, Applications, Academic Press, London, 1990.

[31] Rosenfeld A. and Kak A. C., Digital Picture Processing, Academic
Press, 1982.

[32] Saavedra R. H. and. Smith A. J, Performance Charcterization of
Optimizing Compilers, IEEE Transactions on Software Engineering,
vol.21, no. 7, pp. 615-628, July 1995.

[33] Saavedra R. H. and. Smith A. J, Measuring Cache and TLB
Performance and Their Effect on Benchmark Runtimes, IEEE
Transactions on Computers, vol.44, no. 10, pp. 1223-1235, Oct.
1995.

[34] Silicon Graphics Inc., Product Overview, September 1995.
[35] Silicon Graphics Inc., Indigo2 and Power Indigo Technical Report,

1994.
[36] Song S. P., Denman M. and Chang J., The PowerPC 604 RISC

Microprocessor, IEEE Micro pp. 8-17, October 1994.
[37] SPARC International Inc., The SPARC Architecture Manual

Version 8, - Prentice Hall, 1992.
[38] Stallman R. M., Using and Porting GNU CC, GNU Software

Foundation, September 1994.
[39] SUN Microsystems, The SuperSPARC Microprocessor - White

Paper, 1992.
[40] SUN Microsystems, Workstation Overview, September 1995.
[41] Tremblay M., P. Tirumalai, Partners in Platform Design, IEEE

Spectrum, vol.32, no. 4, pp. 20-26, April 1995.
[42] Uhr L., ed., Multicomputer Vision, Academic Press, 1988.
[43] Wallace G. K., The JPEG Still Picture Compression Standard,

Communication of the ACM, vol 34, n. 4, pp. 30-44, April 1991.
[44] Weems C. C., Architectural Requirements of Image Understanding

with respect to parallel processing, Proceedings of the IEEE, vol. 79,
no. 4, pp. 537-547, April 1991.

[45] Weems C. C., Riseman E., Hanson A. and Rosenfeld A., The
DARPA Image Understanding Benchmark for Parallel Computers, J.

BAGLIETTO et al.: IMAGE PROCESSING ON HIGH -PERFORMANCE RISC SYSTEMS 19

of Parallel and Distributed Computing, vol. 11, pp. 1-24, 1991.
[46] White S. W., Hester P. D., Kemp J. W. and McWilliams G. J., How

Does Processor Performance MHz Relate to End-User
Performance?, IEEE Micro, vol. 13, n. 4, pp. 8-16, August 1993.

Pierpaolo Baglietto was born in
Varazze, Italy, in 1963. He received a
Laurea Degree in electrical
engineering in 1990 from the
University of Genoa, Italy and a
Ph.D. in computer engineering in
1994 from the same University. He
was a Visiting Scientist at the MasPar
Computers Corp., Sunnyvale, CA, in

1991 and at the NTT Communication Science Laboratories,
Kyoto, Japan in 1992. He is currently a Researcher at the
University of Genoa, Italy. His research interests include
computer architecture and performance evaluation,
operating systems and computer networks.

Massimo Maresca was born in

Genoa, Italy, in 1956. He received a
Laurea Degree in electrical
engineering in 1980 and a Ph.D. in
computer engineering in 1986, all
from the University of Genoa, Italy.
He was a Research Staff Member at
Elsag SpA, Genova, from 1980 to
1982, a Visiting Scientist at the IBM

T.J. Watson Research Center, Yorktown Heights, NY, in
1985-1986, a Visiting Scientist at the International
Computer Science Institute, Berkeley, CA, in 1990-91, a
Researcher at the University of Genoa in 1990-92, and an
Associate Professor at the University of Genoa in 1993.
Currently he is a Full Professor at the University of Padova,
Italy. His research interests are in the area of Computer
architecture, operating systems and networking.

Mauro Migliardi is born in

Genova (Italy) on April the 19th
1966. In June 1991 he took a Laurea
degree in electrical engineering from
University of Genoa. In November
1995 he took a PhD in computer
engineering from the University of
Genova. Currently he is a Post
Doctoral Fellow at the University of

Genova where he collaborates with Prof. M. Maresca in EU
funded research projects dedicated to the investigation of
mixed mode (SIMD-MIMD) image processing. His main
research interests are computing architectures for image
and signal processing and coding, architectural support for

multimedia systems and parallel and distributed high
performance computers.

Nicola Zingirian received the

Laurea degree in electrical
engineering summa cum laude in
1994 from the Universtity of Genoa,
Italy. He is currently a PhD student in
computer engineering at the
University of Padova, Italy. His
research interests include
performance evaluation, computer

architectures and networking. He is associate member of
the IEEE Computer society.

