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Abstract 19 

Knowledge about the mechanisms underlying canine vision is far from being exhaustive, especially that concerning 20 

post-retinal elaboration. One aspect that has received little attention is motion perception, and in spite of the common 21 

belief that dogs are extremely apt at detecting moving stimuli, there is no scientific support to such assumption. In fact, 22 

we recently showed that dogs have higher thresholds than humans for coherent motion detection (Kaniszar et al. 2017). 23 

This term refers to the ability of the visual system to perceive several units moving in the same direction, as one, coher-24 

ently moving global unit. Coherent motion perception is commonly investigated using random dot displays, containing 25 

variable proportions of coherently moving dots. Here, we investigated the relative contribution of local and global inte-26 

gration mechanisms to coherent motion perception, and changes in detection thresholds as a result of repeated exposure 27 

to the experimental stimuli. Dogs who had been involved in the previous study were administered a conditioned dis-28 

crimination task, in which we systematically manipulated dot density and duration and, eventually, we re-assessed our 29 

subjects’ threshold after extensive exposure to the stimuli. Decreasing dot duration impacted on dogs’ accuracy in de-30 

tecting coherent motion only at very low duration values, revealing the efficacy of local integration mechanisms. Den-31 
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sity impacted on dogs’ accuracy in a linear fashion, indicating less efficient global integration. There was limited evi-32 

dence of improvement in the re-assessment but, with an average threshold at re-assessment of 29%, dogs’ ability to de-33 

tect coherent motion remains much poorer than that of humans. 34 

 35 
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INTRODUCTION 43 

 44 

Dogs make extensive use of visual information, in tasks as simple as recognizing their owner (Mongillo et al. 2017b), to 45 

more cognitively complex activities, such as understanding human communicative signs (reviewed by Kaminsky and 46 

Nitzchener 2013), attentional states (Gácsi et al. 2004; Virányi et al. 2004) and emotions (Albuquerque et al. 2016; Na-47 

gasawa et al. 2011). Notwithstanding the demonstrated importance of such sensory modality, research on the mecha-48 

nisms underlying canine vision is far from being exhaustive (Byosiere et al. 2017a). Most of the studies on the topic 49 

focused on the functional properties of eye structures, and their impact on basic characteristics of sight, like acuity, light 50 

sensitivity, and color discrimination. A much smaller number of studies looked at higher level (i.e. post-retinal) visual 51 

elaboration processes, like the perception and the discrimination of object shapes and sizes (e.g. Byosiere et al. 2017b; 52 

Milgram et al. 1994) or the spatial integration of local elements into a global percept (Mongillo et al. 2017a; Pitteri et al. 53 

2014a, b).  54 

One aspect that has received very little attention is dogs’ perception of motion. However, the ability to detect and en-55 

code information about moving stimuli is likely to be involved in many aspects of the life of a dog. For instance, it 56 

could play a fundamental role in predatory behavior, with its desirable (e.g. for hunting dogs) or undesirable (for dogs 57 

expressing predation as a problematic behavior) consequences. In spite of common belief holding that dogs are ex-58 

tremely apt at detecting moving stimuli, there is no scientific data supporting such assumption. In fact, to date, the only 59 

study that dealt with dogs’ ability to perceive motion, recently conducted by our research group, suggests that the oppo-60 

site is the case (Kaniszar et al. 2017).  61 

In such study, we specifically dealt with dogs’ ability to detect coherent motion, that is the ability to perceive several 62 

local units moving with the same direction and speed as a single, coherently moving unit (Braddick 1993; Williams and 63 

Brannan 1994). According to a widely accepted theory, the perception of coherent motion represents the second of a 64 

two-stage motion processing mechanism, whereby higher order neurons integrate the local component of motion ana-65 

lyzed by neurons in the initial stage, providing a global percept (Rust et al. 2006). Such mechanism represents a crucial 66 

step to an organisms’ ability to extrapolate complex information about relevant stimuli from motion cues (Berental and 67 

Pinto 1994; Blanke et al. 2007). The physiological boundaries of coherent motion perception are commonly investi-68 

gated via discrimination tasks using random dot displays (Newsome and Pare, 1988), where a given number of dots 69 

moves in the same direction (signal dots), among a number of dots moving in random directions (noise). The smaller 70 

the proportion of signal dots that the subject needs in order to detect the coherent motion, the lower is the individual’s 71 

threshold. Using this paradigm, we found that dogs have an average threshold of coherent motion detection of 42%, 72 

considerably higher than the 5% thresholds found in human subjects assessed in the same experimental condition 73 

(Kanizsar et al. 2017), and also higher than thresholds reported for other species, including monkeys (Newsome and 74 
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Pare 1988), seals (Weiffen et al. 2014) and cats (Huxlin and Pasternak 2004; Rudolph and Pasternak 1996). Thus, dogs’ 75 

coherent motion perception abilities seem to be rather poor, not just compared to primates, but even to phylogenetically 76 

closer species. 77 

One factor that could have contributed to our dog’s high thresholds, is their relatively little experience with the experi-78 

mental stimuli. It has been widely demonstrated that the performance in many visual tasks improves after experience 79 

with the stimuli. Motion detection tasks make no exception, and improvement in detection thresholds through practice 80 

have been documented in humans, mice, monkeys and seals (Britten et al. 1992; Douglas et al. 2006; Watanabe et al. 81 

2001; Weiffen et al. 2014). The dogs who took part in our previous study were privately owned, and, although they had 82 

received extensive training, their overall exposure to the experimental stimuli was limited if compared to studies em-83 

ploying animals housed in experimental facilities. It therefore remains a viable hypothesis that thresholds observed in 84 

our dogs did not represent their lower asymptote, and that such thresholds could be improved by giving dogs additional 85 

experience with the stimuli. 86 

The thresholds of motion detection are also greatly influenced by the characteristics of the experimental stimuli. For 87 

instance, both a shorter duration (i.e. the amount of a dot remains visible before disappearing and being replaced by an-88 

other dot elsewhere in the display)1 and a lower density of dots in the display result in higher thresholds of coherent mo-89 

tion detection in both human and non-human subjects (Snowden and Kavanagh 2006; Talcott et al. 2000; Weiffen et al. 90 

2014). It is unlikely that changing the duration or dot density used in our previous experiment (Kanizsar et al. 2017) 91 

would improve our dogs’ thresholds, since stimuli were designed in order to maximize the dogs’ performance and both 92 

parameters were set around the upper range end, in comparison with those used in other studies. Nonetheless, manipu-93 

lating these parameters would still be useful in the attempt to clarify the relative contribution of different mechanisms to 94 

coherent motion perception (e.g. Bischof et al. 1999). Indeed, there are at least two basic processes through which co-95 

herent motion detection can be attained, that is the integration of single motion units moving in the same direction 96 

across multiple time frames (local integration), which would be more greatly affected by shorter dots’ duration, and the 97 

integration of multiple motion units moving in the same direction, across as few as two subsequent frames (global inte-98 

gration), which would be more greatly affected by lower dot densities. Although the role of local and global integration, 99 

and their neurophysiological substrates, have been largely addressed in the primate literature, there are substantial dif-100 

ferences between primates and carnivoran (Aguirre et al. 2007; Djavadian and Harutiunian-Kozak 1983), to suggest that 101 

the mechanisms leading to te detection of coherent motion may differ between these taxa. 102 

The experiments described in this paper represent an extension of our previous study (Kanizsar et al. 2017) and were 103 

aimed at investigating the relative contribution of local and global integration mechanisms and the role of experience in 104 

                                                 
1In the vision literature this parameter is also called lifetime 
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determining dogs’ coherent motion detection thresholds. To these aims, the same dogs who took part in our previous 105 

experiment underwent a two-alternative forced choice discrimination task using random dot displays, in which we sys-106 

tematically varied the dot density or duration. After the dogs completed these tasks we re-assessed the subjects’ thresh-107 

olds using the same testing procedure and parameters as described in Kanizsar et al. (2017), to investigate the effects of 108 

extensive stimulus exposure on dogs’ coherent motion detection thresholds. 109 

 110 

MATERIALS AND METHODS 111 

 112 

Subjects 113 

 114 

Our sample included five mesocephalic pet dogs, three females (1 Mongrel, 1 Mudi, 1 Siberian Husky) and two males 115 

(1 Cocker Spaniel, 1 Labrador-Poodle Mix), between 3 and 11 years of age. All of these dogs had participated in the 116 

previous study that investigated dogs’ thresholds of coherent motion detection (Kanizsar et al. 2017). Dogs belonged to 117 

private owners who participated in the experiments on a voluntary basis. The subjects underwent a veterinary examina-118 

tion before the enrollment in the experiments to exclude health conditions that would prevent them from participation. 119 

Dogs were selected upon the requirement that they were highly motivated for food and willing to cooperate, while feel-120 

ing comfortable with being in the laboratory.  121 

 122 

Experimental setting 123 

 124 

All the experiments took place in the Laboratory of Applied Ethology of the Department of Biomedicine and Food Sci-125 

ence (University of Padova, Italy). A testing area of 2.5 x 3 m was established in a laboratory room. Stimuli were pre-126 

sented on two identical monitors (VG248QE, ASUSTeK Computer Inc., Taipei, Taiwan). Their refresh rate was set at 127 

100 Hz, to prevent possible biases on motion detection, due to dogs’ higher flicker fusion frequency (Miller and Mur-128 

phy 1995). Monitors were connected to a PC (Optiplex 960, Dell Inc., Round Rock, Texas, USA). They were placed 129 

side by side at 25 cm from each other. During presentations, the dog viewed the monitors from a distance of 70 cm. 130 

Monitors were attached to height-adjustable stands, so that their height could be set at eye level for each subject. 131 

Presentations were controlled by the experimenter with a Bluetooth® keyboard (K400 Plus, Logitech International 132 

S.A., Lausanne, Switzerland). 133 

 134 

Stimuli 135 

 136 
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All experimental stimuli were created with MATLAB (MATLAB version 7.10.0. Natick, Massachusetts: The Math-137 

Works Inc., 2010), using features of the Psychtoolbox (Brainard 1997; Pelli 1997). The stimuli were displayed on a 138 

black area of 31.1 cm x 31.1 cm (24.0 x 24.0 deg, from the viewing distance of 70 cm), where white dots with a diame-139 

ter of 0.16 cm moved towards the left side of the monitor at a speed of 19.4 cm/s (15.0 deg/s). For all the training trials 140 

(including those used in the test phases), the positive stimulus was set at a coherence of 80%, i.e. 80% of the dots 141 

moved in the same direction, whereas the remaining 20% moved in random directions. In all test and training trials, the 142 

negative stimulus had a coherence level of 0%, that is all of the dots moved in random directions. In training trials, there 143 

was a total of 5000 dots moving in the display, for a density of 5.9 dots/cm2 (8.7 dots/deg2) and dots had a duration of 144 

1000 ms. Dot density, dot duration and the percentage of coherence of the display were manipulated in the test trials of 145 

the respective experiments, for which a detailed description of the stimuli is given below. 146 

 147 

Training phase and general test procedure 148 

 149 

Each dog underwent three tests, aimed at assessing respectively the effect of dot duration, dot density and experience on 150 

their coherent motion detection threshold. The latter was defined as the percentage of coherently moving dots in the 151 

positive stimulus at which dogs’ accuracy in discriminating such stimulus reached an estimated value of 75%. 152 

Prior to each test, dogs underwent a training phase, identical in all respects to the one they had already undergone in the 153 

previous study (Kanizsar et al. 2017). Briefly, such phase consisted in a two-alternative forced choice discrimination 154 

task, where dogs had to discriminate a random dot display with a coherence of 80% (positive stimulus), from one with a 155 

coherence of 0%. Training sessions were composed of 20 trials, in each of which dogs were presented with the positive 156 

and negative stimuli, and, after an inspection time of 4 s, they had to choose one of the two stimuli by approaching and 157 

touching one of the two monitors with their snout. The side of presentation of negative and positive stimuli were ran-158 

domly determined by the software, with the constraint that they were counterbalanced within a session. After touching 159 

one of the two monitors, the stimuli disappeared, and dogs were reinforced with food (pieces of sausage of about 1cm3) 160 

if they chose the positive stimulus; immediately after finishing eating, dogs were called to the starting position and the 161 

next trial began. If dogs chose the negative stimulus, they received no reward and after an interval of approximately 7 s 162 

they were called back to the starting position for the next trial. Training was completed when dogs reached a criterion of 163 

90% or better accuracy (i.e. at least 18 correct choices out of 20 trials), in 6 consecutive sessions. In this phase, as well 164 

in the tests, dogs underwent a maximum of 4 sessions per day. 165 

In the tests dogs underwent several sessions composed of a certain number of ‘training’ trials, in which the two stimuli 166 

were identical to those presented in the training phase, and ‘test’ trials, where the characteristics of the stimuli were ma-167 
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nipulated, according to the specifics of each test (described below in detail). The first 4 trials of every session were al-168 

ways of the training type, serving as a ‘warm-up’, whereas in rest of the session a set number of training and test trials 169 

were intermingled in random order. The side of presentation of the positive stimulus was also randomized and counter-170 

balanced within each session. In test trials, dogs were never reinforced regardless of their choice. The inclusion of train-171 

ing trials in test sessions was meant to maintain dogs’ motivation throughout, and to allow an assessment of subjects’ 172 

discriminative performance during tests; if a dog failed to maintain a criterion of 85% correct responses in the training 173 

trials of the test phase (e.g. more than 2 errors in the 14 training trials), it was sent back to the training phase.  174 

 175 

Dot density test 176 

 177 

This test was meant to investigate whether the manipulation of dots density in the presented displays affected individual 178 

thresholds of coherent motion detection. The test comprised 10 test sessions, each including 14 training trials and 6 test 179 

trials. In the latter, the density of dots in both the positive and negative stimuli was set to one of 3 different levels (8.7 180 

dots/deg2, 1.74 dots/deg2 and 0.17 dots/deg2), so that every density level was shown twice per session, and 20 times in 181 

the entire test. The choice of the density levels was based on the comparative literature and on pilot testing, with the aim 182 

of maximizing the sensitivity of the assay. In test trials, the level of coherence of signal dots in the positive stimulus 183 

was set for each dog to its individual threshold, as resulting from the previous study, where dot density was set to 8.7 184 

dots/deg2, (Kaniszar et al. 2017); the dots’ duration was the same as in the training stimuli (1000 ms).  185 

 186 

Dot duration test 187 

 188 

This test was meant to investigate whether the manipulation of dots’ duration affected individual thresholds of coherent 189 

motion detection. The test comprised 10 test sessions, each including 14 training trials and 6 test trials. In the latter, the 190 

duration of dots in both the positive and negative stimuli was set to one of 3 different levels (1000 ms, 200 ms, and 50 191 

ms), so that every duration level was shown twice per session, and 20 times in the entire test. The choice of the duration 192 

levels was based on the comparative literature and on pilot testing, with the aim of maximizing the sensitivity of the 193 

assay. In test trials, the level of coherence of signal dots in the positive stimulus was set for each dog to its individual 194 

threshold, as resulting from the previous study, where dot duration was set to 1 s (Kaniszar et al. 2017); the dots’ den-195 

sity was the same as in the training stimuli (8.7 dots/deg2).  196 

 197 

Re-assessment of coherent motion detection thresholds 198 

 199 
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This test was meant to assess the effects of experience on the thresholds of coherent motion detection of dogs, by re-200 

peating the assessment procedure that the same dogs had previously undergone (Kanizsar et al. 2017), after having be-201 

ing exposed to the positive training stimulus in (at least) additional 640 trials since the first threshold assessment. The 202 

interval between the two assessments was on average 2 months.  203 

The test consisted of 10 sessions, each composed of 14 training trials and 10 test trials. In the latter, the coherence of the 204 

positive stimulus was varied across 5 different levels (i.e. 60%, 50%, 40%, 30%, and 20% coherently moving signal 205 

dots); each of these levels was shown twice within the same session, and 20 times in the entire test.  206 

 207 

Data collection and statistical Analysis 208 

 209 

Linear regression analyses were run to find the best model for describing the relationships between the dots density and 210 

duration and the proportion of correct responses, respectively in the dot duration and in the dot density tests. Choice of 211 

the best fitting model was based on visual inspection of the data and on the comparison of the R2. After that, a two-tail 212 

one sample t-test was run to determine whether the mean slope of the functions was significantly different from zero, 213 

indicating better (> 0) or worse (< 0) performance when the independent variable increases. 214 

For the re-assessment of coherent motion detection thresholds, data of each dog were fitted with a logistic function by 215 

using the routines provided by Palamedes (Prins and Kingdom 2009), which consider a proportion of correct response 216 

for the level of coherence given by as: 217 

 218 

As the task was a 2-alternative forced-choice, the lower asymptote for guess (Gamma) was set to 0.5, while the upper 219 

asymptote (Lambda) was fixed by setting the lapse rate (probability of an incorrect response, independent of stimulus 220 

intensity) to 0.02. The parameters Alpha and Beta were left free. Alpha refers to the threshold, i.e. the value along the 221 

abscissa corresponding to the coherence level at which the function attains its steepest point. Beta is a discrimination 222 

parameter often referred to as the ‘slope’. Then, a one-tail paired t-test was run for threshold, slope and upper asymp-223 

tote, regardless the small sample size, in order to investigate whether the parameters differed between the thresholds 224 

assessment performed in Kaniszar et al. (2107) and the re-assessment of the current study. 225 

Finally, to determine whether improvements in thresholds after experience depended on the initial performance level, 226 

an analysis of correlations was run between the thresholds reported for each dog by Kaniszar et al. (2017), and the dif-227 

ference between such threshold and that observed for the same dog in the re-assessment test of the current study. 228 

 229 

RESULTS 230 
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All dogs rapidly reached the learning criterion in the training phases preceding each test phase (median N of sessions 231 

needed to reach the learning criterion = 6; min = 6, max = 8). In test sessions, all dogs maintained the criterion of 85% 232 

accuracy in the training trials, thus no dog was retroceded to training once started any of the test phases. 233 

 234 

Effect of dot density 235 

 236 

Figure 1 shows the proportion of correct choices as a function of dot density. An optimum way to fit these data is a sim-237 

ple linear model (see Table 1 for individual slopes, intercepts and R2). A two-tailed, one-sample t-test showed that the 238 

slope of the linear regression was significantly higher than zero (t4 = 3.58, P = 0.023, Cohen’s d = 2.58), indicating that 239 

dog’s performance linearly improves with increasing dot density. 240 

 241 

Effect of dot duration 242 

 243 

Figure 2 shows the proportion of individual correct choices as a function of dot’s duration. The dog’s performance in-244 

creases rapidly as the dot duration increases. In four out of five dogs, R2 is higher than 0.7 (see Table 3). Furthermore, a 245 

two-tails one-sample t-test showed that the slope of the logarithmic regression was significantly higher than zero (t4 = 246 

4.68, P = 0.008, Cohen’s d = 3.3). This indicates that dog’s performance increases rapidly as the dot duration increases, 247 

but then it stabilizes for duration above 200 ms. 248 

 249 

Effect of repeated exposition to the stimuli 250 

 251 

Figure 3 shows the individual psychometric functions and the proportion of correct choices as a function of coherence, 252 

comparing the results reported in Kanizsar et al. (2017) with those of the re-assessment performed on the same dogs in 253 

the current study. Table 3 shows the Alpha (threshold) and Beta (slope) parameters for each dog. The mean threshold of 254 

coherent motion detection in dogs in the re-assessment was 29.3%, while the mean slope was 0.06; comparatively, the 255 

mean threshold assessed by Kanizsar et al. (2017) in the same dogs was 42.2%, whereas the mean slope was 0.08. The 256 

difference in thresholds between the two assessments approached significance (t4=2.08, P = 0.104, Cohen’s d = 1.53) as 257 

well as the difference in slope (t4=1.85, P = 0.12, Cohen’s d = 0.97). There was a significant correlation between the 258 

threshold observed in the first assessment, and the degree of improvement in the re-assessment (r = 0.94, P = 0.014), so 259 

that larger improvement was seen in dogs who had initially shown the higher thresholds. 260 

 261 

DISCUSSION 262 
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 263 

In this study, we assessed dogs’ threshold of coherent motion detection as a function of dot density, dot duration and of 264 

the dogs’ experience with the experimental stimuli. The results show that dogs’ ability to detect coherent motion is neg-265 

atively affected by dots’ duration only at very short duration values, while changes in density impact on dogs’ thresh-266 

olds of motion detection in a linear fashion. Finally, re-assessment of the dogs’ thresholds of motion detection after ex-267 

tensive practice with the experimental stimuli produced variable results within our sample, with indications of improve-268 

ment.  269 

The dogs’ ability to detect coherent motion as a function of dots’ duration decreased according to a logarithmic curve: 270 

dogs’ performance showed only a trivial, if any, decrement when duration was lowered from 1000 to 200 ms, with four 271 

out of five dogs still performing with an accuracy at or above 70%; however, when duration was further reduced to 50 272 

ms, dogs’ performance clearly dropped, with accuracy falling below 60% for all dogs. A short duration affects the pos-273 

sibility to rely on local integration, that is to detect the direction of movement of few, closely-spaced dots, which is a 274 

prerequisite to detect coherent motion. The mechanism has been found to contribute to coherent motion detection in 275 

humans as well as in other animal species, although to a different extent (e.g. Bischof et al. 1999; Talcott et al. 2000; 276 

Weiffen et al. 2014). How do dogs compare to humans or other animal species? Talcott et al. (2000) found that humans’ 277 

motion detection improved when duration was increased from 200 ms up to about 900 ms, and remained unchanged 278 

above such values. This would suggest a higher efficiency of local motion integration mechanism in dogs’ than in hu-279 

mans, as our dogs’ performance had already reached its asymptote with a dots’ duration of 200 ms. However, when 280 

stimuli are presented on a monitor, where the sensation of movement is provided by discrete image changes, the possi-281 

bility to determine a dot’s displacement also depends on the number of frames displayed. In this respect, in Talcott et al. 282 

(2000), the 200 ms and 900 ms conditions contained 4 and 18 frames, values that are respectively much more similar to 283 

our 50 ms (5 frames) and 200 ms (20 frames) conditions than to the 200 and 1000 ms. Thus, if frame number rather 284 

than time is considered, the improvement in performance of our dogs as a function of dots’ duration is very similar to 285 

that of humans. Regardless of which of the two parameters is considered, the results indicate that dogs’ local integration 286 

mechanisms are at least as efficient as they are in humans, and are therefore unlikely to play a major role in determining 287 

dogs’ higher threshold of coherent motion detection. In addition, the efficiency in local integration mechanisms is in 288 

line with dogs’ alleged skillfulness in detecting locally moving stimuli, such as a prey moving in the distance (Miller 289 

and Murphy 1995). 290 

Our results on local motion integration are less directly comparable to those obtained in other animal species, due to 291 

relevant methodological differences. For instance, Weiffen et al. (2014) assessed a seal’s motion detection sensitivity to 292 

varying duration at 125, 250, and 500 ms (frame rates were not provided); across these values, the seals’ decrement in 293 
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threshold appeared to be linear, with no indication of a stabilization. This may suggest that seal’s local motion integra-294 

tion still had space for improvement (i.e. it is less efficient than that of our dogs) but without an assessment of the ani-295 

mals’ sensitivity in a wider range, and considered other differences in the characteristics of the presented stimuli be-296 

tween the two studies, this remains only a speculative hypothesis. 297 

Dogs’ ability to detect coherent motion decreased in a linear fashion when dot density was reduced from 8.7 to 0.17 298 

dots/deg2, with four of the five dogs performing with < 60% accuracy at the lowest density level. The dependency of 299 

coherent motion detection from dot density is thought to reflect mechanisms of global integration: the higher total num-300 

ber of dots moving in a consistent direction determines the recruitment of a higher number of low-level motion detec-301 

tors sensitive to that specific direction, while inhibiting those sensitive to other directions, thereby increasing the possi-302 

bility to identify a set of coherently moving stimuli as a single entity. Our results indicate progressive improvement in 303 

dogs’ reliance on such global integration mechanisms as density increases, at least within the range of densities that we 304 

investigated. By way of comparison, adult humans tested across a range of densities roughly spanning our two highest 305 

levels showed very little improvement in their detection threshold (Talcott et al. 2000) and the seal in the study of 306 

Weiffen et al. (2014) only showed improvement when density was increased up to 0.77 dots/deg2, but no further im-307 

provement with higher density values. Although proper comparisons are hindered by methodological differences, the 308 

results suggest that dogs’ global integration mechanisms for motion detection are less efficient than in humans and also 309 

other species; in turn, such lower efficiency in global motion detection may be responsible for the higher thresholds of 310 

coherent motion detection found in dogs. 311 

As far as nervous structures are concerned, local integration is thought to rely on low-level direction-sensitive detectors, 312 

found in the primary visual cortex. The sensitivity to a specific direction of local motion units emerges at this level in 313 

both primates (Wurtz and Kandel 2000) and cats (Humphrey and Saul 2002). By contrast, global integration occurs at a 314 

higher level, in specialized areas of the extra-striate cortex. As opposed to primary visual cortex, there is substantial 315 

difference in the neuro-functional organization of these areas between primates, where global motion detection occurs 316 

in the middle-temporal area (Newsome and Pare 1988), and other mammals, such as the cat, where the same processes 317 

occur in the lateral suprasylvian area (Gizzi et al. 1990; Rudolph and Pasternak 1996); although dogs’ visual cortex has 318 

not been studied as thoroughly as that of the cat, and no data directly comparable to our results exists in the cat litera-319 

ture, there seems to be a good degree of correspondence in the neuro-functional organization of these areas between the 320 

two species (Aguirre et al. 2007). Thus, the difference in the functions and organization of these areas between dogs and 321 

primates could be responsible for the different abilities of global integration between dogs and humans. The larger vari-322 

ability observed in the effect of dot density than duration is also in agreement with the higher-level origin (i.e. further 323 

from sensory origin) of processes that affect dogs’ performance. 324 
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After the extensive exposure to random dots motion displays, dogs’ thresholds of coherent motion perception were re-325 

assessed using the same procedure they underwent earlier (Kanizsar et al. 2017) and dogs’ average thresholds passed 326 

from 42% of the first study, to about 29%. The analysis did not result in a significant difference; however, for three out 327 

of the five dogs the improvement seemed to be very clear (>10%); the remaining two dogs showed little change from 328 

the first assessment. 329 

This suggests that some of the dogs had not reached their lower asymptote in threshold in the course of the first experi-330 

ment, but needed further exposition to the stimuli in order to optimize their performance. Similar effects of experience 331 

in improving coherent motion detection have been reported in many other species, including rodents (Douglas et al. 332 

2006), seals (Weiffen et al. 2014), monkeys (Britten et al. 1992) and humans (Sagi 2011). Most likely, such improve-333 

ment is the result of perceptual learning, a well-known effect often observed in visual tasks, which is believed to reflect 334 

improvement in low-level cortical processes, consequent to extensive exposure to specific stimuli. In the context of 335 

global motion detection, the neurobiological substrate of such improvement has been localized in the middle-temporal 336 

area of primates’ brain (Thomson and Liu 2006). The improvement in threshold in our dogs showed some inter-individ-337 

ual variability, and their degree of improvement was correlated to the threshold observed in the first test, so that dogs 338 

with the highest detection thresholds, also showed the largest improvement in the present study. Both variability in the 339 

degree of perceptual learning and its dependency on the initial performance have been observed before in visual tasks in 340 

humans and are consistent with perceptual learning processes (Dosher and Lu 2005; Fahle and Henke-Fahle 1996).  341 

The difference in average threshold between the first assessment and that done in the present did not reach statistical 342 

significance; however, considered the small number of subjects and the extent of the improvement observed in some of 343 

them, it seems sensible to conclude that experience had an effect in improving detection thresholds. In spite of such im-344 

provement, final thresholds for all dogs were still markedly higher than those observed in humans in our first experi-345 

ment. 346 

 347 

Conclusions 348 

 349 

This study confirms our previous findings that dogs coherent motion perception is less efficient than that of humans, and 350 

suggests that the source of such differences is to be found in dogs’ less efficient global integration mechanisms. By 351 

contrast, dogs’ local motion integration seems to be highly efficient, possibly more than the corresponding mechanism in 352 

humans. These findings bear on some relevant practical aspects. For instance, it would be important to determine how 353 

the mechanisms of motion detection contribute to prey drive, or whether the efficiency of dogs’ local motion integration 354 

mechanisms allows them to be particularly good at spotting movements in the distance, as it was earlier suggested. 355 
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The study also shows that the performance of dogs in motion detection tasks can be improved through perceptual learning, 356 

although the presence and the extent of such improvement are variable, with larger improvements seen in subjects with 357 

the worst initial performance. In any case, such improvement is not sufficient to bring dogs’ thresholds near the level of 358 

human ones. Whether dogs’ poor ability to detect coherent motion extends to other aspects of motion detection (for 359 

instance, the ability to detect minimum amounts of global motion) remains an aspect to be addressed by future studies. 360 

 361 
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Figure 1. Dot density test: proportion of correct choices performed by each dog as a function of dot density. Symbols 462 

indicate the proportion of correct choices; lines represent the linear regression of the data of each subject.  463 

 464 

Figure 2. Dot duration test: proportion of correct choices performed by each dog as a function of dot’s duration. Sym-465 

bols are indicating the proportion of correct choices while lines represent the linear regression of the data of each sub-466 

ject. 467 

 468 

Figure 3. Psychometric curves and proportion of correct choices as a function of coherence, assessed in Kanizsar et al. 469 

(2017) (dotted line, empty circles) and in present study (black line, filled circles) on the same five dogs.  470 
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 1 

Table 1. Dot density test: values of slope, intercept and R2 of the linear regression of the data of each of the 1 

five dogs.  2 

 Slope Intercept R2 

Dog 1 0.046 0.46 0.92 

Dog 2 0.023 0.57 0.92 

Dog 3 0.023 0.56 0.83 

Dog 4 0.006 0.69 0.97 

Dog 5 0.018 0.54 0.81 

 3 



 1 

Table 2. Dot lifetime test: values of slope, intercept and R2 of the linear regression of the data of each of the 1 

five dogs.  2 

 3 

 Slope intercept R2 

Dog 1 0.14 0.91 0.75 

Dog 2 0.08 0.76 0.97 

Dog 3 0.09 0.88 0.84 

Dog 4 0.06 0.81 0.71 

Dog 5 0.03 0.66 0.28 

 4 



 1 

Table 3. Values of the Alpha (threshold) and Beta (slope) parameters for each of the five dogs in the first 1 

assessment (Kanizsar et al., 2017) and in the current study’s re-assessment 2 

 3 

 4 

 Alpha 

1st assessment 

Beta 

1st assessment 

Alpha 

 re-assessment 

Beta  

re-assessment 

Dog 1 37.6 0.095 33.72 0.058 

Dog 2 37.4 0.048 39.42 0.048 

Dog 3 40.5 0.068 24.19 0.069 

Dog 4 41.8 0.086 29.42 0.075 

Dog 5 53.9 0.104 19.63 0.05 

 5 

 6 
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