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Abstract. This paper presents a class of evolutive Mean Field Games with multiple solutions

for all time horizons T and convex but non-smooth Hamiltonian H, as well as for smooth H and

T large enough. The phenomenon is analysed in both the PDE and the probabilistic setting.
The examples are compared with the current theory about uniqueness of solutions. In particular,

a new result on uniqueness for the MFG PDEs with small data, e.g., small T , is proved. Some

results are also extended to MFGs with two populations.

Contents

1. Introduction 1
2. Multiple solutions of the MFG system of PDEs 3
2.1. Non-uniqueness for any time horizon 4
2.2. Eventual non-uniqueness with smooth Hamiltonian 6
3. Probabilistic approach to multiple MFG solutions 6
3.1. The mean field game 7
3.2. Multiple solutions 9
3.3. Simple example with regular Hamiltonian 11
4. Comparing the examples of non-uniqueness with some uniqueness results 13
4.1. Uniqueness under monotonicity conditions 13
4.2. Uniqueness for short time horizon 14
5. Uniqueness and non-uniqueness for two populations 19
Appendix A. Density estimate 22
References 27
Bibliography 27

1. Introduction

In this paper, we study the existence of multiple solutions of Mean Field Games (briefly, MFGs)
with finite horizon and of the evolutive system of PDEs associated to them, and compare the results
to some uniqueness theorems. The systems of PDEs we consider are backward-forward parabolic
and have the form

(1.1)

 −vt +H(Dv) = 1
2σ

2(x)∆v + F (x,m(t, ·)) in (0, T )× Rd, v(T, x) = G(x,m(T ))),

mt − div(DH(Dv)m) = 1
2∆(σ2(x)m) in (0, T )× Rd, m(0, x) = ν(x),

in the unknowns (v,m), where m(t, ·) is a probability density for each t, and the given running and
terminal costs F,G map a subset of Rd×P(Rd) into R. In the probabilistic formulation of a Mean
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Field Game, the solution is, instead, a pair (u,m) with m as above and u either an open-loop or
a feedback control satisfying an optimality and a mean field condition, see the precise definitions
in Section 3.1.

There are two regimes under which there is uniqueness of a classical solution to (1.1). The first
and best known is the case of H convex and F,G increasing with respect to m in the L1 sense,
which means that imitating the other agents is costly, see [39, 10] for the PDE proof and [1, 14]
for probabilistic proofs, which also cover MFGs with a common noise. The second regime is for
the length T of the time horizon short enough and H smooth: it was presented in a lecture of
Lions on January 9th, 2009 [40], but to our knowledge it does not appear in print anywhere.

The main results in the first part of the paper give counterexamples to uniqueness when either
one of these two regimes is violated. More precisely, we describe an explicit class of problems in
dimension d = 1, with costs F , G describing a mild preference for imitating the other agents, H
convex and not differentiable at one point, where multiple classical solutions exist for all T > 0.
We also provide a variant with smooth H and T larger than a certain threshold. This is done
for the PDE problem (1.1) in Section 2, and for its probabilistic formulation in Section 3 under
somewhat weaker assumptions (e.g., the volatility σ may vanish).

Explicit examples of finite horizon MFGs with multiple solutions are rare. In the probabilistic
literature, based on the FBSDE approach to mean field games, examples of MFGs with multiple
solutions that fall into the class of problems considered here are given in Section 5.1 of Carmona,
Delarue, Lachapelle [13] and Section 4.2 of Tchuendom [43], where the author shows that adding
a common noise restores uniqueness. The “illuminating example” in Lacker [38, Section 3.3] also
provides an MFG with explicitly known multiple solutions; cf. Example 3.4 below.

The second part of the paper is devoted to comparing the previous non-uniqueness examples
with the assumptions of some uniqueness results. We argue that the monotone regime is close to
being sharp, since, for instance, for costs of the form

F (x, µ) = αx

∫
y dµ(y) + f(µ), G(x, µ) = βx

∫
y dµ(y) + g(µ),

with f, g continuous, the costs are increasing in a suitable sense and uniqueness holds if

α > 0, β ≥ 0,

whereas there are multiple solutions if

α ≤ 0, β < 0.

We recall that the need of a monotonicity condition for having uniqueness for all T > 0 and
T →∞ was discussed at length in [40]. Some explicit counterexamples, very different from ours,
were shown recently by Briani and Cardaliaguet [9] and Cirant and Tonon [17]. An interesting
analysis of multiple oscillating solutions via bifurcations was done very recently by Cirant [16].
For stationary MFG with ergodic cost functional, examples of non-uniqueness are known since the
pioneering paper of Lasry and Lions [39], and others more explicit appear in [29, 4, 7, 25].

For the short horizon regime we prove a uniqueness theorem inspired by Lions [40] but under
weaker assumptions, different boundary and terminal conditions, and with estimates in different
function spaces (see Remark 4.5 for more details on the differences with [40]). It does not require
any convexity of H nor monotonicity of F and G. Our example of non-uniqueness fails to satisfy
more than one assumption of this theorem, but the crucial one seems to be the smoothness of the
Hamiltonian (at least C1,1). Some remarkable points of the proof of the uniqueness theorem are
the following:
- it is largely self-contained and elementary, since the main estimates are got by energy methods;
- it shows that uniqueness holds also for any T , provided some other data are sufficiently small,
such as the Lipschitz constant of DH, or the Lipschitz constants of F and DxG with respect to
the density m (Remarks 4.7 and 4.8);
- it incorporates an a-priori estimate of ‖m(t, ·)‖∞ that is proved in the Appendix by a probabilistic
argument.
Moreover, it appears flexible enough to be applied in different settings, e.g., Neumann boundary
conditions and several populations, see [5]. A different proof of uniqueness for a particular economic
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model under a smallness assumption on a parameter is in [28]. More references to papers with
related results are in Remark 4.10.

Finally, Section 5 extends some of the preceding results to Mean Field Games describing two
populations of homogeneous agents, where the PDE system involves two Hamilton-Jacobi-Bellman
and two Kolmogorov-Fokker-Planck equations instead of one. In this case the monotonicity con-
ditions are more restrictive: in addition to a form of aversion to crowd in each population, they
require that the costs of intraspecific interactions are larger than the costs of the interactions be-
tween the two populations (cfr. [15]). Therefore here there is more distance between the sufficient
conditions for uniqueness and the examples of multiple solutions. We refer to [6, 2] for motivations
to the study of multipopulations MFGs, to [15, 2] for examples of non-uniqueness in the case of
ergodic costs and stationary PDEs, and to [5] for uniqueness when the horizon is short.

We end this introduction with some additional bibliographical remarks. The theory of MFGs
started with the independent work of Lasry and Lions [39] and Huang, Caines, and Malhame
[31, 33, 32]. It aims at modeling at a macroscopic level non-cooperative stochastic differential
games with a very large number N of identical players. The rigorous justification of the PDE
(1.1) as limit of the systems of Bellman equations for such games as N →∞ was proved recently
by Cardaliaguet, Delarue, Lasry, Lions [11] using in a crucial way the convexity and monotonicity
conditions leading to uniqueness for (1.1). General presentations of the field are [10, 27, 26], and
many applications are analysed in [30, 24]. For the probabilistic approach to MFGs, in addition
to the above mentioned works [13, 1, 14, 38, 43], we refer to Carmona and Delarue [12], Lacker
[37], and Fischer [19].

2. Multiple solutions of the MFG system of PDEs

In this section we consider the backward-forward system of parabolic PDEs

(2.1)


−vt +H(vx) = 1

2σ
2(x)vxx + F (x,m(t, ·)), in (0, T )× R,

v(T, x) = G(x,m(T )),

mt − (H ′(vx)m)x = 1
2 (σ2(x)m)xx in (0, T )× R,

m(0, x) = ν(x), m > 0,
∫
Rm(t, x)dx = 1 ∀t > 0.

We will look for solutions such that m(t, ·) is the density of a probability measure with finite first
moment, that we denote as follows

P̃1(R) := {µ ∈ L∞(R) : µ ≥ 0,

∫
R
µ(x)dx = 1,

∫
R
|y|µ(y) dy < +∞},

and assume that the initial density ν is in P̃1(R). For such functions we denote the mean with

M(µ) :=

∫
R
y µ(y) dy.

We recall that the Monge-Kantorovich distance between probability measures is

d1(µ, ν) = sup

{∫
R
φ(y)(µ− ν)(y) dy : φ : R→ R 1− Lipschitz

}
and that M(·) is continuous for such distance. The running and terminal costs

F : R× P̃1(R)→ R, G : R× P̃1(R)→ R

satisfy the following regularity conditions

(F1): µ 7→ F (x, µ) is continuous for the distance d1 locally uniformly in x; for all µ the
function x 7→ F (x, µ) is differentiable with derivative denoted by DxF (·, µ), and for some
α ∈ (0, 1], k ∈ N, there is CR such that

|F (x, µ)− F (y, µ)| ≤ CR|x− y|α, |DxF (x, µ)−DxF (y, µ)| ≤ CR|x− y|α

for all |x|, |y| ≤ R, M(µ) ≤ R, and

|F (x, µ)| ≤ CR(1 + |x|k), ∀x ∈ R,M(µ) ≤ R;
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(G1): for all µ x 7→ G(x, µ) has at most polynomial growth and it is differentiable with
continuous derivative denoted by DxG(·, µ).

The main qualitative assumption on the costs that allows us to build multiple solutions is the
following.

(FG2): for all x ∈ R and µ ∈ P̃1(R)

(2.2) M(µ)DxF (x, µ) ≤ 0, M(µ)DxG(x, µ) ≤ 0,

and for M(µ) 6= 0 either DxF (·, µ) 6≡ 0 or DxG(·, µ) 6≡ 0.

The meaning of this condition is that it is less costly to move to the right if M(µ) > 0 and to
move to the left if M(µ) < 0, so in some sense it is rewarding for a representative agent to imitate
the behaviour of the entire population. This is consistent with the known fact that aversion to
crowd is related to the monotonicity conditions of Lasry and Lions that imply uniqueness of the
solution [39, 30].

Example 2.1. Consider a running cost F of the form

F (x, µ) = f1

(
x,

∫
Rd
k(x, y)µ(y)dy

)
f2(M(µ)) + f3(µ)

with f1, k1 ∈ C1(R2) Lipschitz with Lipschitz derivatives, f2 ∈ C(R), and f3 d1-continuous. Then
(F1) holds. Next assume

rf2(r) ≥ 0 ∀ r ∈ R, f2(r) 6= 0 ∀ r 6= 0,

∂f1

∂x
(x, r) ≤ 0, sign

∂f1

∂r
(x, r) = −sign

∂k

∂x
(x, y) ∀x, y, r.

Then the condition (2.2) on DxF =
(
∂f1
∂x + ∂f1

∂r

∫
R
∂k
∂xµdy

)
f2(M(µ)) in (FG2) is satisfied and

DxF (·, µ) 6≡ 0 if in addition either ∂f1
∂x 6= 0 or both ∂f1

∂r 6= 0 and ∂k
∂x 6= 0. Similar assumptions can

be made on G.

About the diffusion coefficient σ we will assume

(2.3) σ : R→ R Lipschitz ,
1

2
σ2(x) ≥ σo > 0 ∀x ∈ R.

2.1. Non-uniqueness for any time horizon. In this section we consider the Hamiltonian

(2.4) H(p) := max
a≤γ≤b

{−pγ} =

{
−bp if p ≤ 0,
−ap if p ≥ 0,

so that

H ′(p) = −b if p < 0, H ′(p) = −a if p > 0.

Theorem 2.1. Assume (F1), (G1), (FG2), (2.3), and that H is given by (2.4) with a < 0 < b.
Then, for all ν with M(ν) = 0, there are two classical solutions (v1,m1), (v2,m2) of (2.1) such
that (v1)x(t, x) < 0 and (v2)x(t, x) > 0 for all t < T , M(m1(t, ·)) = bt and M(m2(t, ·)) = at for
all t.

Proof. We begin with the construction of (v1,m1) and drop the subscripts. Observe that if vx < 0
the second equation of (2.1) becomes

(2.5) mt + bmx =
1

2
(σ2(x)m)xx in (0, T )× R.

A solution of this equation with the initial condition m(0, x) = ν(x) exists by standard results on
parabolic equations [21], and it is the law of the process X(·) solving

X(t) = ξ + bt+

∫ t

0

σ(X(s))dW (s), t ∈ [0, T ],

where W is a standard one-dimensional Wiener process and Law(ξ) = ν. Then

(2.6) M(m(t)) = E[X(t)] = M(ν) + bt > 0 ∀t ∈ (0, T ].
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Moreover, there exists C > 0 such that

(2.7) d1(m(t),m(s)) ≤ C(b+ ‖σ‖∞)
√
|t− s|,

see, e.g., [10]. For such m we consider the Cauchy problem

(2.8) −vt − bvx =
1

2
σ2(x)vxx + F (x,m(t)) in (0, T )× R, v(T, x) = G(x,m(T )),

which has a unique classical solution by standard results on parabolic equations [21], in view of
(2.7) and the assumptions (F1), (G1), and (2.3). If we show that vx < 0 this equation coincides
with the first PDE in (2.1) and therefore we get the desired solution (v1,m1) of (2.1).

We consider w := vx and by the assumptions on the data can differentiate the equation (2.8)
to get

−wt−bwx = σ(x)σ(x)xwx+
1

2
σ2(x)wxx+DxF (x,m(t)) in (0, T )×R, w(T, x) = DxG(x,m(T )).

By (2.6) and (FG2) DxF (x,m(t)) ≤ 0 and DxG(x,m(T )) ≤ 0, thus the comparison principle
implies w ≤ 0.

By the Strong Maximum Principle, if w(t, x) = 0 for some t < T and some x, then w(s, y) = 0
for all t < s < T and all y, and so DxG(·,m(T )) ≡ 0. Then we get a contradiction if the condition
DxG(x, µ) 6≡ 0 for all M(µ) 6= 0 holds in (MF2), and reach the desired conclusion w(t, ·) < 0 for
all t < T .

If, instead, only the condition DxF (·, µ) 6≡ 0 for all M(µ) 6= 0 holds in (MF2), from w(s, y) = 0
for all t < s < T and all y we get a contradiction with the PDE for w in the interval (t, T ), because
DxF (·,m(t)) 6≡ 0 and all the other terms in the equation are null. This completes the proof of the
existence of (v1,m1) with the stated properties.

The solution (v2,m2) is built in a symmetric way. We first solve

mt + amx =
1

2
(σ2(x)m)xx, m(0, x) = ν(x),

and use that the solution is the law of the process

X(t) = ξ + at+

∫ t

0

σ(X(s))dW (s),

to see that M(m(t)) = M(ν) + at < 0 for t > 0. Next, for such m we solve the Cauchy problem

(2.9) −vt − avx =
1

2
σ2(x)vxx + F (x,m(t)) in (0, T )× R, v(T, x) = G(x,m(T )).

We differentiate this equation and use the assumption (FG2) and the Strong Minimum Principle
as before to show that vx(t, x) > 0 for all x and t ∈ (0, T ). Then for such solution the last equation
coincides with the second equation of (2.1), which completes the proof of the existence of (v2,m2)
with the stated properties. �

Remark 2.1. Symmetry. Assume b = −a, so that H(p) = b|p|, and the data are even, i.e.,

F (x, µ) = F (−x, µ), G(x, µ) = G(−x, µ), σ(x) = σ(−x), ν(x) = ν(−x).

Then the solutions (v1,m1) and (v2,m2) built in the Theorem are even reflection one of the other,
i.e.,

v1(t, x) = v2(t,−x), m1(t, x) = m2(t,−x),

as it is easy to check in the construction.

Remark 2.2. If F ≡ 0 we can drop the sign condition on a and b and consider any initial density
ν such that ν with −bT < M(ν) < −aT . Then the same proof produces two solutions with
(v1)x(t, x) < 0 and (v2)x(t, x) > 0 for all t < T , and M(m1(T, ·)) > 0, M(m2(T, ·)) < 0.
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2.2. Eventual non-uniqueness with smooth Hamiltonian. In this section we consider Hamil-
tonians that coincide with the one defined by (2.4) only for |p| ≥ δ > 0 and therefore can be smooth,
see the Example (2.2). The precise assumption is

(2.10) H ∈ C(R), ∃ δ, b > 0, a < 0 : H(p) = −bp if p ≤ −δ, H(p) = −ap if p ≥ δ.
On the other hand the assumptions on DxG in (FG2) are strengthened a bit by adding

(G3): for some ε > 0, DxG(·, µ) ≤ −δ if M(µ) ≥ εb, and DxG(·, µ) ≥ δ if M(µ) ≤ εa.

Then we get the existence of two distinct solutions if the time horizon T is larger than ε.

Theorem 2.2. Assume (F1), (G1), (FG2), (G3), (2.3), and that H satisfies (2.10). Then, for all
T ≥ ε and ν with M(ν) = 0, there are two classical solutions (v1,m1), (v2,m2) of (2.1) such that
(v1)x(t, x) ≤ −δ and (v2)x(t, x) ≥ δ for all 0 ≤ t ≤ T .

Proof. The construction is the same as in the proof of Theorem 2.1. Now we have, by (2.6)

M(m1(T )) = bT ≥ bε,
so DxG(·, µ) ≤ −δ by (G3). Then w := (v1)x satisfies w(T, x) ≤ −δ for all x, and the Maximum
Principle implies (v1)x(t, x) = w(t, x) ≤ −δ for all 0 ≤ t ≤ T . Then, by (2.10), the equation (2.8)
for v1 coincides with the first PDE in (2.1) and the equation (2.5) for m1 coincides with the second
PDE in (2.1). The construction of the second solution is symmetric because M(m2(T )) = aT ≤
aε. �

Example 2.2. The Hamiltonian

H(p) := max
|γ|≤1

{
−pγ +

1

2
δ(1− γ2)

}
=

{
p2

2δ + δ
2 , if |p| ≤ δ,

|p|, if |p| ≥ δ,

satisfies (2.10) with −a = b = 1. Note that H ∈ C1(R) and H ′ is Lipschitz and bounded, so
it satisfies the assumptions required for the Hamiltonian in the uniqueness result for short time
horizon of Section 4.2, see Remark 4.7. A more detailed probabilistic discussion of this example
is in Section 3.3.

Example 2.3. The terminal cost

G(x, µ) = −βxM(µ) + g(µ), β > 0

satisfies (G1). Since DxG(x, µ) = −βM(µ), the inequality M(µ)DxG(x, µ) ≤ 0 in (FG2) is
satisfied and (G3) holds with the choice ε := max{ δbβ ,

δ
|a|β }.

3. Probabilistic approach to multiple MFG solutions

In this section, we give examples of non-uniqueness analogous to those obtained above, but
under slightly different regularity assumptions, based on the probabilistic representation of the
mean field game. By this we mean that we work directly with the underlying stochastic dynamics
of the controlled state process and the corresponding expected costs. A solution of the mean field
game is then a couple of control strategy and flow of probability measures satisfying a certain
fixed point property, namely: The strategy is optimal for the control problem associated with the
flow of probability measures, which in turn coincides with the flow of marginal distributions of
the state process under the control strategy. In subsection 3.1, we give two definitions of solution,
differing with respect to the admissible strategies (stochastic open-loop vs. Markov feedback).
The second definition, based on Markov feedback strategies, is more closely related to the PDE
characterization (2.1) of the mean field game, see Remark 3.3 below.

Denote by P(R) the set of all probability measures on the Borel sets of R, and set

P1(R)
.
=

{
µ ∈ P(R) :

∫
|x|µ(dx) <∞

}
, M(µ)

.
=

∫
xµ(dx), µ ∈ P1(R).

Endow P(R) with the topology of weak convergence of measures, and P1(R) with the topology of
weak convergence of measures plus convergence of first absolute moments. Notice that

P̃1(R) ⊂ P1(R)
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if we identify probability densities with the probability measures they induce. The topology
on P̃1(R) generated by the Monge-Kantorovich distance coincides with the topology induced by
P1(R).

3.1. The mean field game. As above, we consider mean field games in dimension one over a
finite time horizon T > 0, with drift coefficient of the state dynamics equal to the control action
and dispersion coefficient σ : R → R, assumed to be Lipschitz continuous (hence of sublinear
growth), but possibly degenerate. Let Γ ⊆ R be a compact interval, the set of control actions, and
let f : R×P(R)×Γ→ R, g : R×P(R)→ R be measurable functions with f(·, µ, γ) of polynomial
growth uniformly over compacts in P(R) × Γ and g(·, µ) of polynomial growth uniformly over
compacts in P(R).

Let U be the set of triples ((Ω,F , (Ft),P), u,W ) such that (Ω,F , (Ft),P) forms a filtered prob-
ability space satisfying the usual hypotheses and carries a Γ-valued (Ft)-progressively measurable
process u and a one-dimensional (Ft)-Wiener process W . For ν ∈ P(R), let Uν denote the set of
quadruples ((Ω,F , (Ft),P), ξ, u,W ) such that ((Ω,F , (Ft),P), u,W ) ∈ U and ξ is a real-valued
F0-measurable random variable with P ◦ξ−1 = ν.

Let ν ∈ P(R), and let u ∼= ((Ω,F , (Ft),P), ξ, u,W ) ∈ Uν . Notice that ξ and W are independent
since, by definition of Uν , ξ is F0-measurable, while W is a Wiener process with respect to the
filtration (Ft). The dynamics of the state process are then given by:

(3.1) X(t) = ξ +

∫ t

0

u(s)ds+

∫ t

0

σ
(
X(s)

)
dW (s), t ∈ [0, T ].

Since σ is Lipschitz, the solutionX = Xu of Eq. (3.1) is uniquely determined up to P-indistinguishability.
Its law is determined by the law P ◦(ξ, u,W )−1.

The costs associated with initial distribution ν, strategy u ∈ Uν , initial time t ∈ [0, T ], and a
flow of measures m ∈M .

= C([0, T ],P(R)) are given by

J(t, ν, u;m)
.
= E

[∫ T−t

0

f (Xu(s),m(t+ s), u(s)) ds+ g (Xu(T − t),m(T ))

]
,

where Xu is the unique solution of Eq. (3.1) under u, provided the expected value is finite;
otherwise set J(t, ν, u;m)

.
= ∞. In the above definition of the cost functional, the processes Xu

and u always start from time zero, while the flow of measures is shifted according to the initial
time. In this way, the set Uν of admissible control bases does not depend on the initial time, as
opposed to the more standard, though equivalent, definition used in, for instance, [20].

If ν = δx for some x ∈ R, then we can identify Uδx with U . The value function for a flow of
measures m ∈M is then defined by

V (t, x;m)
.
= inf
u∈U

J(t, δx, u;m), (t, x) ∈ [0, T ]× R.

Notice that V (t, x;m) is finite for every (t, x) ∈ [0, T ]×R thanks to the growth assumptions on f ,
g and the boundedness of Γ.

Remark 3.1. Let t ∈ [0, T ], ν ∈ P(R), m ∈M. If J(t, ν, u;m) <∞ for every u ∈ Uν , then

inf
ũ∈Uν

J(t, ν, ũ;m) =

∫
R
V (t, x;m)ν(dx).

Definition 3.1. Let ν ∈ P(R). An open-loop solution of the mean field game with initial distri-
bution ν is a pair (u,m) such that

(i) u ∼= ((Ω,F , (Ft),P), ξ, u,W ) ∈ Uν and m ∈M;
(ii) optimality condition: ∞ > J(0, ν, u;m) =

∫
R V (0, x;m)ν(dx);

(iii) mean field condition: P ◦(Xu(t))−1 = m(t) for every t ∈ [0, T ], where Xu is the unique
solution of Eq. (3.1) under u.

We are mainly interested in solutions of the mean field game in Markov feedback strategies. To
this end, set

A .
= {α : [0, T ]× R→ Γ : α measurable} .
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For α ∈ A, ν ∈ P(R), t0 ∈ [0, T ] consider the equation:

(3.2) X(t) = ξ +

∫ t

0

α
(
t0 + s,X(s)

)
ds+

∫ t

0

σ
(
X(s)

)
dW (s), t ∈ [0, T − t0],

whereW is a one-dimensional (Ft)-Wiener process on some filtered probability space (Ω,F , (Ft),P)
satisfying the usual hypotheses and carrying a real-valued F0-measurable random variable ξ with
P ◦ξ−1 = ν.

For ν ∈ P(R), t0 ∈ [0, T ], let Aν,t0 denote the set of all α ∈ A such that Eq. (3.2) with initial
distribution ν and initial time t0 possesses a solution that is unique in law.

Remark 3.2. If σ is bounded and such that infx∈R σ(x) > 0, then, thanks to Girsanov’s theorem,
Aν,t0 = A for all t0 ∈ [0, T ], ν ∈ P(R).

If α ∈ Aν,t0 , then there exists u ∼= ((Ω,F , (Ft),P), ξ, u,W ) ∈ Uν such that

(3.3) α
(
t0 + s,Xu(s, ω)

)
= u(s, ω)

for LebT−t0 ⊗P-almost all (s, ω) ∈ [0, T − t0] × Ω, where LebT−t0 denotes Lebesgue measure on
B([0, T − t0]) and Xu is the unique solution of Eq. (3.1) under u. Moreover, by uniqueness in law,
if ũ ∈ Uν is any other stochastic open-loop strategy such that

α
(
t0 + s,X ũ(s, ω)

)
= ũ(s, ω) for LebT−t0 ⊗ P̃-a.a. (s, ω) ∈ [0, T − t0]× Ω̃

with X ũ the unique solution of Eq. (3.1) under control ũ and P̃ the probability measure coming
with ũ, then

P ◦ (Xu, u,W )
−1

= P̃ ◦
(
X ũ, ũ, W̃

)−1

.

We can therefore define the costs associated with initial time t ∈ [0, T ], initial distribution ν,
feedback strategy α ∈ Aν,t, and a flow of measures m ∈M by setting

J(t, ν, α;m)
.
= J(t, ν, u;m)

for any stochastic open-loop strategy u ∈ Uν such that Eq. (3.3) holds with respect to α, u and
initial time t0 = t.

Definition 3.2. Let ν ∈ P(R). A Markov feedback solution of the mean field game with initial
distribution ν is a pair (α,m) such that

(i) α ∈ Aν and m ∈M;
(ii) optimality condition: ∞ > J(0, ν, α;m) =

∫
R V (0, x;m)ν(dx);

(iii) mean field condition: P ◦(Xu(t))−1 = m(t) for every t ∈ [0, T ], where Xu is the unique
solution of Eq. (3.1) under u with u ∈ Uν such that Eq. (3.3) holds with respect to α and u.

Two solutions in the sense of Definition 3.1 or Definition 3.2 are called equivalent if their flows
of measures coincide. Notice that, by the mean field condition, equivalent solutions have the same
initial distribution.

Remark 3.3. Let the function f for the combined running costs have the form

f(x, µ, γ) = l(γ) + F (x, µ)

for some continuous function l : Γ→ R and some function F as in Section 2. Set

H(p)
.
= max

γ∈Γ
{−l(γ)− pγ}, p ∈ R.

Let m ∈ M, and suppose that v = vm is a classical solution of the Hamilton-Jacobi-Bellman
equation

(3.4) −vt +H(vx) =
1

2
σ2(x)vxx + F (x,m(t, ·)) in [0, T )× R

with terminal condition v(T, ·) = g(·,m(T )). Then v(t, x) = V (t, x,m) for all (t, x) ∈ [0, T ] × R.
Moreover, if α ∈ Am(0) is such that the mean field condition of Definition 3.2 holds for α and m
and

α(t, x) ∈ argmaxγ∈Γ{−l(γ)− pγ} for all (t, x) ∈ [0, T )× R,
then (α,m) is a solution in the sense of Definition 3.2.
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3.2. Multiple solutions. Here, the space of control actions Γ is assumed to be a compact interval;
thus, Γ = [a, b] for some a, b ∈ R with a < b. Let ψ ∈ C2(R) be such that

sup
x∈R

e−c|x| ·max{|ψ(x)|, |ψ′(x)|, |ψ′′(x)|} <∞ for some c ∈ (0,∞),

while for all x ∈ R,

b · ψ′(x) +
1

2
σ2(x)ψ′′(x) > 0,(3.5a)

a · ψ′(x) +
1

2
σ2(x)ψ′′(x) < 0.(3.5b)

Here are three examples for choices of ψ such that (3.5) holds:

Example 3.1. Let c > 0, d ∈ R. Set ψ(x)
.
= c · x+ d, x ∈ R. Then (3.5) holds if a < 0 < b.

Example 3.2. Let λ > 0. Set ψ(x)
.
= eλx − 1, x ∈ R. Then (3.5a) holds if b > 0, and (3.5b)

holds if σ is bounded and a < −λ2σ
2(x) for all x ∈ R.

Example 3.3. Set ψ(x)
.
= tanh(x), x ∈ R. Then (3.5) holds if σ is bounded and a ≤ −σ2(x),

σ2(x) ≤ b for all x ∈ R.

Set

Pexp(R)
.
=

{
µ ∈ P(R) :

∫
ecxµ(dx) <∞ for all c ∈ R

}
,

Pψ(R)
.
=

{
µ ∈ P(R) :

∫
|ψ(x)|µ(dx) <∞

}
.

By the growth assumption on ψ, Pexp(R) ⊂ Pψ(R). For µ ∈ Pψ(R), set

Mψ(µ)
.
=

∫
R
ψ(y)µ(dy).

If ψ(x)
.
= x, x ∈ R, then we have Pψ(R) = P1(R) and Mψ(µ) = M(µ), the mean value of

µ ∈ P1(R), in accordance with the notation introduced in Section 2.
In this subsection, we assume the running costs f to be of the form

f(x, µ, γ) = F (x, µ)

for some F : R× P(R)→ R measurable such that for every µ ∈ Pψ(R),

F (·, µ) is

{
decreasing if Mψ(µ) > 0,

increasing if Mψ(µ) < 0,

and the terminal costs g to be given by

g(x, µ) = G(x, µ)

for some G : R× P(R)→ R measurable such that for every µ ∈ Pψ(R),

G(·, µ) is

{
strictly decreasing if Mψ(µ) > 0,

strictly increasing if Mψ(µ) < 0.

We set F (·, µ)
.
= 0, G(·, µ)

.
= 0 if µ ∈ P(R) \ Pψ(R). Moreover, F (·, µ), G(·, µ) are assumed to be

of polynomial growth uniformly over compacts in P(R). Note that these monotonicity conditions
on F and G are very similar to the assumption (FG2) of Section 2.

Proposition 3.1. Grant the hypotheses above, and assume that either σ is bounded or that ψ
together with its first two derivatives is of polynomial growth. Let ν ∈ Pexp(R) be such that
Mψ(ν) = 0. Then there exist two non-equivalent open-loop solutions of the mean field game with
initial distribution ν, and the associated value functions are different and not constant.
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Proof. Let ((Ω,F , (Ft),P), ξ,W ) be such that (Ω,F , (Ft),P) forms a filtered probability space
satisfying the usual hypotheses with W a one-dimensional (Ft)-Wiener process and ξ a real-valued
F0-measurable random variable such that P ◦ξ−1 = ν. Let u+ ≡ b be the constant process equal to
b, and let u− ≡ a be the constant process equal to a. By construction, ((Ω,F , (Ft),P), ξ, u±,W ) ∈
Uν . Let X+ be the unique solution of Eq. (3.1) with u = u+, and let X− be the unique solution
of Eq. (3.1) with u = u−. Thus, for all t ∈ [0, T ],

X+(t) = ξ + t · b+

∫ t

0

σ
(
X+(s)

)
dW (s), X−(t) = ξ + t · a+

∫ t

0

σ
(
X−(s)

)
dW (s).

By the Burkholder-Davis-Gundy inequalities, the sublinear growth of σ, the exponential integra-
bility of ξ and Gronwall’s lemma,

(3.6) E

[
sup
t∈[0,T ]

|X±(t)|p
]
<∞ for every p ≥ 1.

If σ is bounded, then it also holds that

(3.7) E

[
sup
t∈[0,T ]

exp (c ·X±(t))

]
<∞ for every c ∈ R.

To check (3.7), observe that, thanks to the monotonicity and positivity of the exponential and the
Cauchy-Schwarz inequality,

E

[
sup
t∈[0,T ]

exp (c ·X±(t))

]
≤ e|c|max{|a|,|b|}T ·

√
E [e2cξ]·

√√√√E

[
sup
t∈[0,T ]

exp

(
2c

∫ t

0

σ
(
X±(s)

)
dW (s)

)]
.

The first expected value on the right-hand side above is finite by hypothesis. For the second, we
have, by the boundedness of σ,

E

[
sup
t∈[0,T ]

exp

(
2c

∫ t

0

σ
(
X±(s)

)
dW (s)

)]

≤ E

[
sup
t∈[0,T ]

exp

(
c

∫ t

0

σ
(
X±(s)

)
dW (s)− c2

2

∫ t

0

σ2
(
X±(s)

)
ds

)2
]
· ec

2‖σ‖2∞T

≤ 4 E

[
exp

(
2c

∫ T

0

σ
(
X±(s)

)
dW (s)− c2

∫ T

0

σ2
(
X±(s)

)
ds

)]
· ec

2‖σ‖2∞T

≤ 4 E

[
exp

(
2c

∫ T

0

σ
(
X±(s)

)
dW (s)− 4c2

2

∫ T

0

σ2
(
X±(s)

)
ds

)]
︸ ︷︷ ︸

=1

·e2c2‖σ‖2∞T <∞,

where we have used Doob’s maximal inequality (second to third line) as well as the fact that
the stochastic exponential of a martingale with bounded quadratic variation process is again a
martingale; see, for instance, Section 3.5D in [36].

Set

m+(t)
.
= P ◦ (X+(t))

−1
, m−(t)

.
= P ◦ (X−(t))

−1
, t ∈ [0, T ].

Clearly, m+(0) = ν = m−(0). By Eq. (3.6) and the dominated convergence theorem, the mappings
[0, T ] 3 t 7→ m±(t) ∈ P(R) are continuous. It follows that m± ∈ M and that Mψ(m±(t)) is finite
for every t ∈ [0, T ].

We are going to show that

(3.8) J(0, ν, u+;m+) = inf
ũ∈Uν

J(0, ν, ũ;m+).

This will imply the optimality condition of Definition 3.1. Since the mean field condition is satisfied
by construction of m+, it will follow that (u+,m+) is an open-loop solution of the mean field game
with initial distribution ν.
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By assumption and construction, Mψ(ν) = 0 = Mψ (m+(0)). By Itô’s formula, the Fubini-
Tonelli theorem, the growth conditions on σ and ψ and its derivatives, and by Eq. (3.6) and
Eq. (3.7), respectively, we have for all t ∈ [0, T ],

Mψ (m+(t)) = 0 +

∫ t

0

E

[
b · ψ′(X+(s)) +

1

2
σ2(X+(s))ψ′′(X+(s))

]
ds.

By (3.5a), it follows that Mψ (m+(t)) > 0 whenever t > 0. As a consequence, the functions
F (·,m+(t)), t ∈ (0, T ), G(·,m+(T )) are decreasing (with strict decrease for the terminal costs).

Let ũ ∈ Uν . We may assume, since X+ is measurable with respect to the filtration generated
by the initial condition and the Wiener process, that the strategies ũ, u+ are defined on the same
stochastic basis with the same driving Wiener process and the same initial condition. Thus, with
a slight abuse of notation, ũ ∼= ((Ω,F , (Ft),P), ξ, ũ,W ), u+

∼= ((Ω,F , (Ft),P), ξ, u+,W ). Let X̃
be the unique solution of Eq. (3.1) with u = ũ, and let X+ be the unique (strong) solution of
Eq. (3.1) with u = u+, as before. Since b ≥ ũ(t, ω) for all (t, ω) ∈ [0, T ]× Ω, Theorem 1.1 in [34]
entails that

(3.9) P
(
X+(t) ≥ X̃(t) for all t ∈ [0, T ]

)
= 1.

This implies, in view of the monotonicity of the costs, that

J(0, ν, u+;m+) ≤ J(0, ν, ũ;m+),

which yields the optimality condition (3.8) for (u+,m+). The optimality condition for (u−,m−)
is established in a completely analogous way by using (3.5b) instead of (3.5a) and the opposite
monotonicity of the costs.

We have shown that (u+,m+), (u−,m−) are two open-loop solutions of the mean field game with
the same initial distribution. These two solutions are non-equivalent since Mψ (m+(t)) > 0 while
Mψ (m−(t)) < 0 whenever t > 0. Moreover, the associated value functions V (·, ·,m+), V (·, ·,m−)
are different and non-constant since G(·,m+(T )) is strictly decreasing while G(·,m−(T )) is strictly
increasing. �

The proof of Proposition 3.1 also shows that, under the hypotheses of the proposition, there
exist two non-equivalent Markov feedback solutions of the mean field game with non-constant
value function.

In Section 3.3, we will consider a variant with non-zero running costs of the following simple
example with zero running costs:

Example 3.4. Choose Γ
.
= [−1, 1] for the space of control actions, f ≡ F ≡ 0 as the running

costs, and σ(·) ≡ σ for some constant σ ∈ [0,∞) as dispersion coefficient. Set ψ(x)
.
= x, x ∈ R;

thus Mψ(µ) = M(µ) is the mean of µ ∈ Pψ(R) = P1(R). Set G(x, µ)
.
= −M(µ) · x, x ∈ R,

if µ ∈ P1(R). Let ν ∈ Pexp(R) be such that Mψ(ν) = 0. By Proposition 3.1, there exist two
non-equivalent solutions of the mean field game with non-constant value function. In addition,
there exists a third solution, namely the trivial solution (open-loop or feedback) corresponding to
the constant strategy equal to zero; the value function in this case is constant and equal to zero
as well. Observe that these three non-equivalent solutions exist for any time horizon T > 0, be it
small or large.

3.3. Simple example with regular Hamiltonian. In this section, we work with the following
data:

• set of control actions Γ = [−1, 1];
• running costs f given by f(x, µ, γ)

.
= c0 · |γ|2 for some constant c0 > 0;

• terminal costs g(x, µ)
.
= −M(µ) · x;

• dispersion coefficient σ(·) ≡ σ for some constant σ ∈ [0,∞).

The associated Hamiltonian H is therefore

H(p)
.
= max
γ∈[−1,1]

{
−c0γ2 − pγ

}
= −c0 min

{
p2

4c20
, 1

}
+ |p| ·min

{
|p|
2c0

, 1

}
, p ∈ R.

Note that it differs from Example 2.2 only by a constant.
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For this simple example, the value function associated with a given flow of measures can be
computed explicitly. For M ∈ R, let αM ∈ A denote the constant Markov feedback strategy given
by

αM ≡ sgn(M) ·min

{
|M |
2c0

, 1

}
.

In particular, α0 ≡ 0.
Let m ∈M. Set M

.
= M(m(T )). Then, for all (t, x) ∈ [0, T ]× R,

J(t, δx, αM ;m)= c0

∫ T−t

0

(
min

{
|M |
2c0

, 1

})2

dt−M ·

(
x+

∫ T−t

0

sgn(M)

(
min

{
|M |
2c0

, 1

})
dt

)

= −M · x+ (T − t)
(
c0 min

{
M2

4c20
, 1

}
− |M | ·min

{
|M |
2c0

, 1

})
.

The function (t, x) 7→ J(t, δx, αM ;m) satisfies the Hamilton-Jacobi-Bellman equation (3.4) with
terminal condition g(·,m(T )). It follows that V (t, x,m) = J(t, δx, αM ;m); cf. Remark 3.3. In
particular, V (·, ·,m) ≡ 0 if M = 0.

Let ν ∈ P1(R). Let XαM be a solution of Eq. (3.2) with feedback strategy α = αM , initial
distribution ν and initial time t0 = 0. Then

E [XαM (T )] = M(ν) + sgn(M) · T ·min

{
|M |
2c0

, 1

}
.

Observe that XαM is the unique in law optimal process for the flow of measures m, where M =
M(m(T )). Define the flow of measures mν,M by

mν,M (t)
.
= Law (XαM (t)) , t ∈ [0, T ].

Notice that mν,M depends only on ν and the value of M . In view of the mean field condition
in Definition 3.2 (or Definition 3.1), it follows that m is the flow of measures of a solution of the
mean field game with initial distribution ν if and only if m = mν,M and

(3.10) M(ν) = M − sgn(M) · T ·min

{
|M |
2c0

, 1

}
.

In this case, the solution is given by (αM ,m) = (αM ,mν,M ). The number of solutions of the mean
field game with initial distribution ν is therefore equal to the number of solutions of Eq. (3.10) as
M varies over R. We distinguish the following cases:

a) Eq. (3.10) has at most one solution with M = 0, namely one if M(ν) = 0, else zero.
b) |M | ∈ (0, 2c0): In this domain, Eq. (3.10) has at most one solution if T 6= 2c0, namely one

if M(ν) = (1 − T
2c0

)M , else zero. If T = 2c0, then Eq. (3.10) has infinitely many solutions if

M(ν) = 0, else zero.
c) |M | ≥ 2c0: In this domain, Eq. (3.10) has at most one solution, namely one if M(ν) =

M − sgn(M)T , else zero.

The number of solutions of the mean field game thus depends on the time horizon T ; the critical
value is T = 2c0:
Small time horizon: T < 2c0. In this case, the mean field game possesses exactly one solution with
initial distribution ν. The unique solution is given by (αM ,mν,M ) with

M =

{
M(ν)/

(
1− T

2c0

)
if |M(ν)| ∈ [0, 2c0 − T ),

M(ν) + sgn(M(ν))T if |M(ν)| ≥ 2c0 − T.

Critical time horizon: T = 2c0. In this case, the mean field game possesses either one or infinitely
many solutions, depending on the initial distribution ν: There are infinitely many solutions if
M(ν) = 0, namely the solutions corresponding to any M ∈ [−2c0, 2c0]; there is exactly one
solution if M(ν) 6= 0, namely the solution corresponding to M = M(ν) + sgn(M(ν))T .
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Large time horizon: T > 2c0. In this case, the mean field game possesses one, two, or three non-
equivalent solutions, depending on the initial distribution ν: There are exactly three solutions if
|M(ν)| < T −2c0, namely the solutions corresponding to M ∈ {M(ν)/(1− T

2c0
),M(ν)+T,M(ν)−

T}. There are exactly two solutions if |M(ν)| = T − 2c0, namely the solutions corresponding
to M ∈ {M(ν) + T,M(ν) − T}. There is exactly one solution if |M(ν)| > T − 2c0, namely the
solution corresponding to M = M(ν) + sgn(M(ν))T .

4. Comparing the examples of non-uniqueness with some uniqueness results

In this section we assume for simplicity that σ is constant, and then we can consider without
loss of generality

1

2
σ2(x) = 1.

First we state a uniqueness result under the classical monotonicity condition on the costs of Lasry
and Lions [39] and see that such condition is essentially sharp in view of the results of Sections 2
and 3. In the following section we prove a uniqueness theorem under general assumptions on the
costs and merely smoothness of the Hamiltonian, provided the time horizon T is short enough,
and compare it with our examples of multiple solutions for all horizons T > 0.

4.1. Uniqueness under monotonicity conditions. In the next theorem we will assume, for
all measures µ, ν ∈ P1(R) admitting a C2 density

(4.1)

∫
R
(G(x, µ)−G(x, ν))d(µ− ν)(x) ≥ 0,

(4.2)

∫
R

(F (x, µ)− F (x, ν))d(µ− ν)(x)) > 0, if M(µ) 6= M(ν),

(4.3) for any fixed µ, x 7→ F (x, µ) and x 7→ G(x, µ) depend only on M(µ),

(4.4) |F (x, µ)|+ |G(x, µ)| ≤ CR(1 + |x|), if

∫
R
|x|dµ(x) ≤ R.

We call the property (4.1) weak monotonicity of G.

Theorem 4.1. Assume (4.1), (4.2), (4.3), (4.4), σ constant, H convex and Lipschitz, and ν dx ∈
P1(R). Let (v1,m1), (v2,m2) be two classical solutions of (2.1) such that v := v1 − v2 has vt, vx,
and vxx bounded by C(1 + |x|). Then v1 = v2 and m1 = m2 in [0, T ]× R.

Proof. We only make some little variants to the proof of Theorem 3.6 of [10]. Using the repre-
sentation of mi as the law of a diffusion process with drift bounded by ‖H ′‖∞, as in the proof of
Theorem 2.1, by standard properties of the Ito integral we get∫

R
|x|dmi(t, x) ≤

∫
R
|x|dν(x) + T‖H ′‖∞ + |σ|

√
T .

Then mi(t, x) dx ∈ P1(R) for all t.
We set m := m1 −m2. We write the equation for m

mt −mxx − div(m1H
′((v1)x)−m2H

′((v2)x) = 0,

multiply it by vζr, where ζr is a cutoff function in space with ζr(x) = 1 for |x| ≤ r, and integrate
by parts. Then we take the equation for v

−vt +H((v1)x)−H((v2)x) = vxx + F (x,m1)− F (x,m2),

multiply it by m, integrate in time and space and add it to the previous one. Next we let r →∞,
which is possible by (4.4) and the growth conditions on the derivatives of v. As in [10], by (4.1)
and the convexity of H we get∫ T

0

∫
R

(F (x,m1(t))− F (x,m2(t))d(m1 −m2)(x) dt ≤ 0.
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Then (4.2) implies M(m1(t)) = M(m2(t)) for all t. Now by (4.3) and the uniqueness results
for HJB equations we obtain v1 = v2. We plug this into the KFP equation and finally get
m1 = m2. �

Remark 4.1. Some variants of this theorem and more details on the proof can be found in [18].

Corollary 4.2. Assume the Hamiltonian is given by (2.4), σ is constant, and the costs are

(4.5) F (x, µ) = αxM(µ) + f(µ), G(x, µ) = βxM(µ) + g(µ),

with f, g : P̃1(R)→ R continuous for d1. Then

i) there is at most one classical solution of (2.1) with derivatives bounded by C(1 + |x|) if
ν dx ∈ P1(R) and

α > 0, β ≥ 0 ;

ii) there are two distinct classical solutions of (2.1) with derivatives bounded by C(1 + |x|) if

ν ∈ P̃1(R), M(ν) = 0, and
α ≤ 0, β < 0.

Proof. i) First observe that ∫
R

(f(µ)− f(ν))(µ− ν)(x) dx = 0

because
∫
R µ(x) dx =

∫
R ν(x) dx = 1. Then for the costs of the form (4.5) we compute∫

R
(F (x, µ)− F (x, ν))d(µ− ν)(x) = α(M(µ)−M(ν))

∫
R
xd(µ− ν) = α(M(µ)−M(ν))2,

so (4.2) is satisfied if α > 0. Similarly, G satisfies (4.1) if β ≥ 0. Then we get the conclusion by
Theorem 4.1.

ii) This comes from Theorem 2.1 in view of Example 2.1. The growth condition on the solutions
vi follows from the equations (2.8) and (2.9), by (4.4) and the boundedness of M(mi(t)). �

Remark 4.2. The last result can be modified to cover possibly smooth Hamiltonians satisfying
merely (2.10) instead of (2.4). In fact, statement i) remains true if H is convex, whereas ii) holds
for T > max{ δbβ ,

δ
|a|β } by Theorem 2.2 and Example 2.3.

Remark 4.3. The assumptions in the two cases of the Corollary have the following simple inter-
pretation in terms of aversion or not to the crowd. The term xM(µ) is positive if the position x
of a representative individual in the population is on the same side of the origin as the expected
value of the population distribution. Then α > 0 and β > 0 mean that the individual pays a
cost for such a position, whereas he has a gain if he stays on the opposite side. This models a
form of aversion to crowd, whereas the case α < 0 and β < 0 corresponds to a reward for having
positions on the same side as the mean position of the population. The fact that the monotonicity
conditions for uniqueness are related to crowd-aversion is well known [30], and there are examples
of multiple solutions when imitation is rewarding in stationary MFG [29, 4]. The present example
seems to be the first for evolutive MFG PDEs, together with those in the very recent papers [9]
and [17].

Remark 4.4. Note that in the local case with costs of the form F (x, µ) = f(x)µ(x) the crucial
quantity for uniqueness is the sign of f (f > 0 implies uniqueness), whereas in the non-local case
F (x, µ) = f(x)M(µ) what seems to count is the sign of f ′, because f ′ < 0 implies non-uniqueness.

4.2. Uniqueness for short time horizon. In this section we assume 1
2σ

2(x) = 1. On the other
hand we allow any space dimension d ≥ 1. We consider the MFG system

(4.6)

 −vt +H(Dv) = ∆v + F (x,m(t, ·)) in (0, T )× Rd, v(T, x) = G(x,m(T ))),

mt − div(DH(Dv)m) = ∆m in (0, T )× Rd, m(0, x) = ν(x),

where Dv = ∇xv denotes the gradient of v with respect to the space variables, ∆ is the Laplacian
with respect to the space variables x, and DH = ∇pH is the gradient of the Hamiltonian. Our



15

main assumptions are the smoothness of the Hamiltonian and a Lipschitz continuity of the costs
in the norm ‖ · ‖2 of L2(Rd) that we state next. Define

P̃(Rd) := {µ ∈ L∞(Rd) : µ ≥ 0,

∫
R
µ(x)dx = 1},

and note that P̃(Rd) ⊆ L2(Rd). We will assume F,G : P̃(Rd)→ R satisfy, for all µ, ν,

(4.7) ‖F (·, µ)− F (·, ν)‖22 ≤ LF ‖µ− ν‖22,

(4.8) ‖DG(·, µ)−DG(·, ν)‖22 ≤ LG‖µ− ν‖22,

The next theorem is a variant and an extension of a result presented by Lions in [40], see Remark
4.5 for a comparison.

Theorem 4.3. Assume H ∈ C2(Rd), (4.7), (4.8), ν ∈ P̃(Rd), and (v1,m1), (v2,m2) are two
classical solutions of (4.6) such that D(v1 − v2) ∈ L2([0, T ]× Rd). Suppose also that either
(i) |DH| ≤ CH and |D2H| ≤ C̄H , or
(ii) |Dvi| ≤ K, i = 1, 2.
Then there exists T̄ > 0 such that, if T < T̄ , v1(t, ·) = v2(t, ·) and m1(t, ·) = m2(t, ·) for all
t ∈ [0, T ]. Moreover T̄ depends only on d, LF , LG, ‖ν‖∞, CH , and C̄H in case (i), and only on
d, LF , LG, ‖ν‖∞, sup|p|≤K |DH(p)|, and sup|p|≤K |D2H(p)| in case (ii).

Proof. Step 0. We first use the density estimate of Proposition A.1 in the Appendix to get that
mi(t, ·) ∈ P̃(Rd) for all t and

(4.9) ‖mi(t, ·)‖∞ ≤ C ‖ν‖∞, i = 1, 2, ∀ t ∈ [0, T ],

where the constant C = C(T, ‖DH(Dvi)‖∞, d) is bounded for bounded entries. By known prop-

erties of the Fokker-Planck equation for mi, we have that mi(t, ·) ∈ P̃ for all t and then

sup
0≤t≤T

‖mi(t, ·)‖2 ≤ sup
0≤t≤T

‖mi(t, ·)‖∞ < +∞.

Step 1. Define v := v1−v2, m := m1−m2, B(t, x) :=
∫ 1

0
DH(Dv2 +s(Dv1−Dv2))ds, and observe

that B ∈ L∞((0, T )× Rd) and v satisfies{
−vt +B(t, x) ·Dv = ∆v + F (x,m1)− F (x,m2) in (0, T )× Rd,
v(T, x) = G(x,m1(T ))−G(x,m2(T )).

Now set w := Dv, F̄ (t, x) := F (x,m1)−F (x,m2), and differentiate the equation to get the system
of parabolic PDEs

(4.10)

 −
∂wj
∂t + (B(t, x) · w)xj = ∆wj + (F̄ (t, x))xj in (0, T )× Rd, j = 1, . . . , d,

w(T, x) = DxG(x,m1(T ))−DxG(x,m2(T )).

Step 2. Take a smooth cutoff function ζR ≥ 0 satisfying |DζR| ≤ C, ζR(x) = 1 for |x| ≤ R and
ζR(x) = 0 for |x| ≥ 2R. Multiply the j-th equation of (4.10) by wjζ

2
R, integrate by parts in space

and in the interval [t, T ] in time to get

∫ T

t

d

dt

∫
Rd

w2
j

2
ζ2
Rdxds+

∫ T

t

∫
Rd
B · w

(
∂wj
∂xj

ζ2
R + wj

∂ζ2
R

∂xj

)
dxds =∫ T

t

∫
Rd

(
|Dwj |2ζ2

R + wjDwj ·Dζ2
R

)
dxds+

∫ T

t

∫
Rd
F̄

(
∂wj
∂xj

ζ2
R + wj

∂ζ2
R

∂xj

)
dxds,
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so that

(4.11)

∫
Rd

w2
j (t, ·)

2
ζ2
Rdx−

∫
Rd

w2
j (T, ·)

2
ζ2
Rdx+

∫ T

t

∫
Rd
|Dwj |2ζ2

Rdxds ≤∫ T

t

∫
Rd
|wj | |Dwj | 2ζR|DζR|dxds+ ‖B‖∞

∫ T

t

∫
Rd

(
|w|
∣∣∣∣∂wj∂xj

∣∣∣∣ ζ2
R + |w||wj |

∣∣∣∣∂ζ2
R

∂xj

∣∣∣∣) dxds+∫ T

t

∫
Rd
|F̄ |
(∣∣∣∣∂wj∂xj

∣∣∣∣ ζ2
R + |wj |

∣∣∣∣∂ζ2
R

∂xj

∣∣∣∣) dxds.
We estimate∫ T

t

∫
Rd
|wj | |Dwj | 2ζR|DζR|dxds ≤ ε

∫ T

t

∫
Rd
|Dwj |2ζ2

Rdxds+
1

ε

∫ T

t

∫
Rd
w2
j |DζR|2dxds

and observe that all integrals involving derivatives of ζR vanish as R→∞ because DζR → 0 a.e.
and w, F̄ ∈ L2([0, T ]× Rd). Next we estimate∫ T

t

∫
Rd
|w|
∣∣∣∣∂wj∂xj

∣∣∣∣ ζ2
Rdxds ≤

∫ T

t

∫
Rd

(
1

2ε
|w|2ζ2

R +
ε

2

∣∣∣∣∂wj∂xj

∣∣∣∣2 ζ2
R

)
dxds,

∫ T

t

∫
Rd
|F̄ |
∣∣∣∣∂wj∂xj

∣∣∣∣ ζ2
Rdxds ≤

∫ T

t

∫
Rd

(
1

2ε
|F̄ |2ζ2

R +
ε

2

∣∣∣∣∂wj∂xj

∣∣∣∣2 ζ2
R

)
dxds.

We plug these inequalities in (4.11) with ε satisfying 1 = (‖B‖∞ + 3)ε/2, so that the terms
involving Dwj cancel out. Now we can let R→∞, sum over j, and use the terminal condition on
w = Dv with the assumption (4.8) to get

‖w(t, ·)‖22 ≤ LG‖m(T, ·)‖22 +

∫ T

t

d

ε
‖F̄ (s, ·)‖22ds+

d‖B‖∞
ε

∫ T

t

‖w(s, ·)‖22ds.

Gronwall inequality gives, for all 0 ≤ t ≤ T ,

‖w(t, ·)‖22 ≤

(
LG‖m(T, ·)‖22 +

d

ε

∫ T

t

‖F̄ (s, ·)‖22ds

)
ed‖B‖∞T/ε.

We set co := d(‖B‖∞ + 3)/2 = d/ε and use (4.7) to get

(4.12) ‖Dv(t, ·)‖22 ≤

(
LG‖m(T, ·)‖22 + coLF

∫ T

t

‖m(s, ·)‖22ds

)
eco‖B‖∞T .

Step 3. Observe that m satisfies{
mt − div (DH(Dv1)m) = ∆m+ div ((DH(Dv1)−DH(Dv2))m2) in (0, T )× Rd,
m(0, x) = 0.

Define B̃(t, x) := DH(Dv1), the matrix

A(t, x) := m2

∫ 1

0

D2H(Dv2 + s(Dv1 −Dv2))ds

and F̃ (t, x) := A(t, x)(Dv1 −Dv2). Then the PDE for m reads

mt − div(B̃m) = ∆m+ divF̃ ,

with B̃ and A bounded by the assumption (i) or (ii) and the estimate (4.9). As in Step 2 we
multiply the equation by mζ2

R and integrate by parts. Now m ∈ L2([0, T ] × Rd) by Step 0 and

F̃ ∈ L2([0, T ]× Rd) by (4.12). Then we can estimate as in Step 2 and let R→∞ to get

‖m(t, ·)‖22 ≤
1

ε

∫ t

0

‖F̃ (s, ·)‖22ds+
‖B̃‖∞
ε

∫ t

0

‖m(s, ·)‖22ds,
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where we used the initial condition m(0, x) = 0 and chose ε = 2/(‖B̃‖∞ + 3) =: 1/c1. Then
Gronwall inequality gives, for all 0 ≤ t ≤ T ,

(4.13) ‖m(t, ·)‖22 ≤ c1ec1‖B̃‖∞T

∫ t

0

‖F̃ (s, ·)‖22ds ≤ c1ec1‖B̃‖∞T ‖A‖2∞
∫ t

0

‖Dv(s, ·)‖22ds.

Step 4. Now we set φ(t) := ‖Dv(t, ·)‖22 and combine (4.12) and (4.13) to get

(4.14) φ(t) ≤ C1C3

∫ T

0

φ(s)ds+ C2C3

∫ T

t

∫ τ

0

φ(s)ds dτ,

for suitable explicit constants Ci depending only on the quantities listed in the statement of the
theorem. Then Φ := sup0≤t≤T φ(t) satisfies

Φ ≤ Φ(TC1C3 + T 2C2C3/2)

which implies Φ = 0 if T < T̄ := (C1+
√
C2

1 + 2C2/C3)/C2. Therefore for such T we conclude that
Dv1(t, x) = Dv2(t, x) for all x and 0 ≤ t ≤ T . By the uniqueness of solution for the KFP equation
we deduce m1 = m2 and then, by the uniquness of solution of the HJB equation, v1 = v2. �

Remark 4.5. The same result holds for solutions Zd-periodic in the space variable x in the case
that F and G are Zd-periodic in x, with the same proof (and no need of cutoff). In such case of
periodic boundary conditions a uniqueness result for short T was presented by Lions in [40] for
regularizing running cost F and for terminal cost G independent of m. He used estimates in L1

norm for m and in L∞ norm for Dv, instead of the L2 norms we used here in (4.12) and (4.13).
Our main contributions are the replacement of the hard estimates stated by Lions with more direct
ones obtained by energy methods that require less assumptions on F , and the consideration of a
cost G depending on the terminal density m(T ).

Remark 4.6. If the terminal cost G satisfies (4.8) with LG = 0, i.e., DG does not depend on

m(T ), then C1 = 0 and T̄ =
√

2/(C2C3). By a simple and elegant argument of Lions [40] based
on the inequality (4.14), the condition for uniqueness T ≤ T̄ can be improved in this case to
T ≤ π/(2

√
C2C3).

Remark 4.7. The proof of the theorem shows also that there is uniqueness for any T > 0 if (i)
holds with C̄H sufficiently small, or if (ii) holds with sup|p|≤K |D2H(p)| sufficiently small. In fact,

‖A‖∞ becomes small as this quantities get small, and so the constant C3 can be made as small
as we want. This generalizes a recent result in [44] for nonconvex H with both CH and C̄H small
(and periodic boundary conditions).

Remark 4.8. The proof of the theorem shows also the uniqueness of the solution for any T > 0 if
the Lipschitz constants LF and LG of the running cost F and of DxG are small enough, because
the constants C1 and C2 can be made small. See also [3] for existence and uniqueness results
under smallness assumptions on the data.

Remark 4.9. The estimate (4.9), obtained by probabilistic methods in the Appendix, could be
replaced by

‖mi(t, ·)‖∞ ≤ Cd
(
‖ν‖∞ + T (1 + ‖DH(Dvi)‖∞)d+4

)
, i = 1, 2, ∀ t ∈ [0, T ],

which can be deduced from Corollary 7.3.8 of [8], p. 302. Another alternative estimate, obtained
by a simple application of the comparison principle, gives

mi(t, x) ≤ et sup(divDH(Dvi))
+

sup ν,

where, however, the right hand side may depend on the second derivatives of vi.

Remark 4.10. A similar structure of proof, based on combining backward and forward integral
estimates, was also employed for finite state MFGs by [23]. An existence and uniqueness result
under a ”small data” condition was proved in [32] for Linear-Quadratic-Gaussian MFGs using
a contraction mapping argument to solve the associated system of Riccati differential equations.
For different classes of linear-quadratic MFGs, a contraction mapping argument is also used in
[45, 41] to obtain existence and uniqueness of solutions under certain implicitly “small data”
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assumptions. The work [1] mentioned in the introduction provides existence and uniqueness for
MFGs with common noise under a weak monotonicity condition in the spirit of Lasry-Lions.
The proof relies on the representation of the MFG in terms of a forward-backward stochastic
differential equation. Existence of a unique solution is first established for small times by a
contraction mapping argument. The monotonicity assumption then allows to extend the solution
to any given time horizon. Finally, our assumption D(v1 − v2) ∈ L2([0, T ]× Rd) can be replaced
by (v1 − v2)t ∈ L2([0, T ]× Rd), see [18].

Remark 4.11. On the smoothness of H. The assumption H ∈ C2(Rd) can be relaxed to H ∈
C1(Rd) with DH locally Lipschitz. Then the statement of the Theorem remains true with the
following changes: in case (i) DH is assumed globally Lipschitz and C̄H is redefined as its Lipschitz
constant, in case (ii) the time T̄ depends on the Lipschitz constant of DH on the ball {p : |p| ≤ K}
instead of sup|p|≤K |D2H(p)|. The proof is the same, after changing Step 3 with the observation

that there exists a measurable and locally bounded matrix valued function Ã such that

DH(p)−DH(q) = Ã(p, q)(p− q),
see [5] for a proof of this fact.

Example 4.1. Regularizing costs. Consider F and G of the form

F (x, µ) = F1

(
x,

∫
Rd
k1(x, y)µ(y)dy

)
, G(x, µ) = g1(x)

∫
Rd
k2(x, y)µ(y)dy + g2(x)

with F1 : Rd × R→ R measurable and k1, k2 ∈ L2(Rd × Rd). Then

‖
∫
Rd
ki(·, y)µ(y)dy −

∫
Rd
ki(·, y)ν(y)dy‖2 ≤ ‖ki(·, ·)‖2‖µ− ν‖2, i = 1, 2.

About F we suppose

|F1(x, r)− F1(x, s)| ≤ L1|r − s| ∀x ∈ Rd, r, s ∈ R
and get (4.7) with LF = L2

1‖k1(·, ·)‖22. About G we assume g1, g2 ∈ C1(Rd), Dg1 bounded,
Dxk2 ∈ L2(Rd × Rd). Then

DG(x, µ) = Dg1(x)

∫
Rd
k2(x, y)µ(y)dy + g1(x)

∫
Rd
Dxk2(x, y)µ(y)dy +Dg2(x)

satisfies

‖DG(·, µ)−DG(·, ν)‖2 ≤ (‖Dg1‖∞‖k2(·, ·)‖2 + ‖g1‖∞‖Dxk2(·, ·)‖2) ‖µ− ν‖2,
which implies (4.8).

Example 4.2. Local costs. Take G = G(x) independent of m(T ) and F of the form

F (x, µ) = Fl(x, µ(x))

with Fl : Rd × [0,+∞)→ R such that

|Fl(x, r)− Fl(x, s)| ≤ Ll|r − s| ∀x ∈ Rd, r, s ≥ 0.

Then F satisfies (4.7) with LF = L2
l .

Remark 4.12. The functional M(µ) =
∫
Rd yµ(y)dy is Lipschitz in L2 among densities of measures

with support contained in a given compact set, by Example 4.1. This is the case, for instance, of
periodic boundary conditions where the measures are on the torus Td (see Remark 4.5). In such a
case F of the form F (x,M(µ)) satisfies (4.7) if it is Lipschitz in the second entry uniformly with
respect to x.

Remark 4.13. If we compare the uniqueness Theorem 4.3 with the non-uniqueness Theorem 2.1
there are several different assumptions. For instance, in Theorem 2.1 DH is discontinuous in 0
and v1 − v2 /∈ L2(R), and the costs in Example 2.1 do not satisfy (4.7) and (4.8). So it is not
clear which of these conditions is mostly responsible of the lack of uniqueness for short T . From
the proof of Theorem 4.3 we guess that at least the continuity of DH is indispensable for the
short-horizon uniqueness.
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5. Uniqueness and non-uniqueness for two populations

Consider the system of MFG PDEs corresponding to two populations

(5.1)



−∂tvi +Hi(∂xvi) = 1
2σ

2
i (x)∂xxvi + Fi(x,m1(t, ·),m2(t, ·)) in (0, T )× R,

vi(T, x) = Gi(x,m1(T ),m2(T )),

∂tmi − (H ′i(∂xvi)mi)x = 1
2σ

2
i (x)∂xxmi in (0, T )× R,

mi(0, x) = νi(x), i = 1, 2,

where the Hamiltonians are

(5.2) Hi(p) := max
ai≤γ≤bi

{−pγ} =

{
−bip if p ≤ 0,
−aip if p ≥ 0,

ai < 0 < bi,

so that

H ′i(p) = −bi if p < 0, H ′i(p) = −ai if p > 0,

σi satisfy (2.3), and Fi, Gi : R× P̃1(R)× P̃1(R)→ R verify the same regularity conditions as F,G
in Section 2.

We give two different sets of qualitative assumptions that produce examples of nonuniqueness.
The first is the following, for i = 1, 2,

(5.3) DxFi(x, µ1, µ2)

{
≤ 0 if M(µ1),M(µ2) > 0,
≥ 0 if M(µ1),M(µ2) < 0.

(5.4) DxGi(x, µ1, µ2)

{
≤ 0 and 6≡ 0 if M(µ1),M(µ2) > 0,
≥ 0 and 6≡ 0 if M(µ1),M(µ2) < 0.

Proposition 5.1. Assume (5.2), Fi satisfy (F1) and (5.3), Gi satisfy (G1) and (5.4). Then, for
all νi with M(νi) = 0, there is a classical solution of (5.1) with ∂xv1(t, x), ∂xv2(t, x) < 0 for all
0 < t < T and a classical solution with ∂xv1(t, x), ∂xv2(t, x) > 0 for all 0 < t < T .

Proof. For the solution with ∂xv1(t, x), ∂xv2(t, x) < 0 we make the ansatz that mi solves

(5.5) ∂tmi + bi∂xmi =
1

2
σ2
i (x)∂xxmi in (0, T )× R, mi(0, x) = νi(x),

so that M(m1(t, ·)) = b1t > 0 and M(m2(t, ·)) = b2t > 0. We solve the equations

(5.6) −∂tvi − bi∂xvi =
1

2
σ2
i (x)∂xxvi + Fi(x,m1(t, ·),m2(t, ·)), vi(T, x) = Gi(x,m1(T ),m2(T )),

for i = 1, 2. Then wi := ∂xvi solves
(5.7)

−∂twi − bi∂xwi − σi(x)σi(x)x∂xwi −
1

2
σ2
i (x)∂xxwi = DxFi(x,m1(t, ·),m2(t, ·)) ≤ 0, in (0, T )×R,

(5.8) wi(T, x) = DxGi(x,m1(T, ·),m2(T, ·)) < 0,

and so wi < 0 for all t < T by the Strong Maximum Principle. On the other hand, if ∂xvi < 0 the
equations for mi in (5.1) are (5.5) and the equations for vi in (5.1) are (5.6), as we guessed.

The construction of a solution with ∂xv1(t, x), ∂xv2(t, x) > 0 is done in a symmetric way, starting
with the ansatz that mi solves

(5.9) ∂tmi + ai∂xmi =
1

2
σ2
i (x)∂xxmi in (0, T )× R, mi(0, x) = νi(x),

so now M(m1(t, ·)) = a1t < 0 and M(m2(t, ·)) = a2t < 0. We proceed as before by solving a
linear equation for vi like (5.6) but with the term bi∂xvi replaced by ai∂xvi. Now DxFi ≥ 0 in the
equation for wi := ∂xvi and DxGi > 0 in the terminal conditions, so wi > 0 for all t < T . �
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The second set of assumptions is the following.

(5.10) DxF1(x, µ1, µ2)

{
≤ 0 if M(µ1) > 0,M(µ2) < 0
≥ 0 if M(µ1) < 0,M(µ2) > 0.

(5.11) DxF2(x, µ1, µ2)

{
≤ 0 if M(µ1) < 0,M(µ2) > 0,
≥ 0 if M(µ1) > 0,M(µ2) < 0.

(5.12) DxG1(x, µ1, µ2)

{
≤ 0 and 6≡ 0 if M(µ1) > 0,M(µ2) < 0,
≥ 0 and 6≡ 0 if M(µ1) < 0,M(µ2) > 0.

(5.13) DxG2(x, µ1, µ2)

{
≤ 0 and 6≡ 0 if M(µ1) < 0,M(µ2) > 0,
≥ 0 and 6≡ 0 if M(µ1) > 0,M(µ2) < 0.

Proposition 5.2. Assume (5.2), Fi satisfy (F1), (5.10), and (5.11), Gi satisfy (G1), (5.12), and
(5.13), i = 1, 2. Then, for all νi with M(νi) = 0, there is a solution of (2.1) with ∂xv1(t, x) <
0, ∂xv2(t, x) > 0 for all 0 < t < T and a solution with ∂xv1(t, x) > 0, ∂xv2(t, x) < 0 for all
0 < t < T .

Proof. This is a variant of the preceding proof, so we only explain the changes. For the solution
with ∂xv1 < 0, ∂xv2 > 0 we start solving (5.5) for i = 1 and (5.9) for i = 2, so that M(m1(t)) > 0
and M(m2(t)) < 0. Then for i = 1 we solve (5.6) and get (5.7) and (5.8), by the assumptions
(5.10) and (5.12), so ∂xv1 < 0. For i = 2 we solve (5.6) with the term bi∂xvi replaced by a2∂xv2.
Then DxF2 ≥ 0 in the equation for w2 := ∂xv2 and DxG2 > 0 in the terminal conditions,
by the assumptions (5.11) and (5.13). Thus ∂xv2 > 0. The construction of the solution with
∂xv1 > 0, ∂xv2 < 0 is symmetric. �

Remark 5.1. In Proposition 5.1 the assumption DxGi 6≡ 0 in (5.4) can be dropped and replaced
by DxFi 6≡ 0 in (5.4), by the argument of Theorem 2.1. The same variant can be done on the
assumptions of Proposition 5.2.

Next we use the last two propositions and the example to check the sharpness of some suf-
ficient conditions for uniqueness. A natural generalization to systems with two populations of
the monotonicity conditions (4.1) (4.2) is given the following result, see also [15] for stationary
equations.

Theorem 5.3. Assume Hi are convex and Lipschitz, σi > 0 are constant, νi dx ∈ P1(R), the
functions x 7→ Fi(x, µ1, µ2) and x 7→ Gi(x, µ1, µ2) depend only on M(µ1),M(µ2), they grow at
most linearly in x for bounded

∫
R |x|dµi(x), and for some λi > 0 and all (µ1, µ2), (µ̄1, µ̄2) ∈ P1(R)2

with a C2 density
(5.14)∫

R

2∑
i=1

λi[Fi(x, µ1, µ2)− Fi(x, µ̄1, µ̄2)]d(µi − µ̄i)(x) > 0, if M(µ1) 6= M(µ̄1) or M(µ2) 6= M(µ̄2),

(5.15)

∫
R

2∑
i=1

λi[Gi(x, µ1, µ2)−Gi(x, µ̄1, µ̄2)]d(µi − µ̄i)(x) ≥ 0.

Then there is at most one classical solution (v1, v2,m1,m2) of the problem (5.1) such that each vi
and its derivatives are bounded by C(1 + |x|).

Proof. We follow the proof of Theorem 4.1. Let (v̄1, v̄2, m̄1, m̄2) be a second solution. We multiply
the equations of the i-th population by λi and add them over i. After using the convexity of Hi,
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as in the proof of Theorem 4.1, we reach∫
R

2∑
i=1

λi[Gi(x,m1(T ),m2(T ))−Gi(x, m̄1(T ), m̄2(T ))]d(mi(T )− m̄i(T ))(x)+

∫ T

0

∫
R

2∑
i=1

λi[Fi(x,m1(t),m2(t))− Fi(x, m̄1(t), m̄2(t))]d(mi(t)− m̄i(t))(x) dt ≤ 0.

Then (5.14) and (5.15) imply M(m1(t)) = M(m̄1(t)) and M(m2(t)) = M(m̄2(t)) for all t. Since
Fi and Gi depend only on M(µ1),M(µ2), from the HJB equations we get vi = v̄i and finally the
KFP equations give mi = m̄i, i = 1, 2. �

We consider the following example

(5.16) Fi(x, µ1, µ2) = αixM(µ1) + βixM(µ2) + fi(µ1, µ2), i = 1, 2,

(5.17) Gi(x, µ1, µ2) = γixM(µ1) + δixM(µ2) + gi(µ1, µ2), i = 1, 2,

with αi, βi, γi, δi ∈ R, fi, gi : P1(R)2 → R.

Corollary 5.4. Let Hi be given by (5.2) and Fi, Gi of the form (5.16), (5.17) with fi, gi d1-
continuous. Then the problem (5.1) has at most one solution with derivatives bounded by C(1+|x|),
if νi dx ∈ P1(R) and there exists λ > 0 such that the matrices

M1 :=

(
λα1 λβ1

α2 β2

)
, M2 :=

(
λγ1 λδ1
γ2 δ2

)
are, respectively, positive definite and positive semi-definite; on the other hand, it has at least two
solutions with derivatives bounded by C(1 + |x|) if νi ∈ P̃1(R), M(νi) = 0, and either

(5.18) αi, βi, γi, δi ≤ 0, γi + δi < 0, i = 1, 2,

or

(5.19) α1, β2, γ1, δ2 ≤ 0, α2, β1, γ2, δ1 ≥ 0, γ1 < δ1, γ2 > δ2.

Proof. It is easy to compute the integral in (5.14) and get, after normalizing λ2 to 1 and setting
λ1 = λ,

λα1(M(m1)−M(m̄1))2 +(λβ1 +α2)(M(m1)−M(m̄1))(M(m2)−M(m̄2))+β2(M(m2)−M(m̄2))2,

so condition (5.14) is satisfied if the matrix M1 is positive definite. Similarly, condition (5.15) is
satisfied if the quadratic form associated to M2 is positive semi-definite.

As for non-uniqueness, the first statement follows from Prop. 5.1 and the second from Prop.
5.2. �

Remark 5.2. The conditions for the definiteness of M1

(5.20) α1 > 0, β2 > 0, λα1β2 > (λβ1 + α2)2/4,

require not only the form of crowd-aversion within each population explained in Remark 4.3 for
the case of a single population, but also that the costs for intraspecific interactions are dominant
over the costs of the interactions of a population with the other. The same holds for the conditions
of semi-definiteness of M2, i.e.,

γ1 ≥ 0, δ2 ≥ 0, λγ1δ2 ≥ (λδ1 + γ2)2/4.

On the other hand, the hypotheses of the examples of non-uniqueness (5.18) or (5.19) hold only if
the intraspecific costs are null or imitation is rewarding within each population.

Note also that the gap between the sufficient conditions for uniqueness and for non-uniqueness
is larger here than in the case of a single population.
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Example 5.1. Consider a terminal cost G as in Corollary 5.4 and satisfying

γ1, δ2 ≥ 0, δ1 = γ2 = 0,

so that, in particular, there is no cost or gain for interspecific interactions at the terminal time
T . Then the sufficient condition for uniqueness reduces to (5.20) for some λ > 0, and this holds
under the simple conditions

(5.21) α1, β2 > 0, α1β2 > β1α2,

as it can be easily seen by choosing λ = 2α1β2−β1α2

β2
1

if β1 6= 0, and λ = 2α1β2−β1α2

α2
2

if α2 6= 0.

Remark 5.3. If Theorem 5.3 is specialized to stationary equations, it improves slightly upon the
uniqueness result in [15] because it allows to choose the parameters λi. This can be seen in the
case of local and linear costs

Fi(x, µ1, µ2) = αiµ1(x) + βiµ2(x), i = 1, 2,

In fact, the integrand of the integral in (5.14) is

λα1(m1 − m̄1)(x)2 + (λβ1 + α2)(m1 − m̄1)(x)(m2 − m̄2)(x) + β2(m2 − m̄2)(x)2,

and then the condition (5.14) is satisfied again if the matrix M1 is positive definite. Hence (5.21)
is a sufficient condition for uniqueness of the stationary MFG equations for this local case, more
general than the assumption in [15].

Remark 5.4. A uniqueness result with assumptions of short time horizon and smooth Hamilto-
nian replacing the convexity of H and monotonicity of the costs, similar to Theorem 4.3, can be
proved also for systems with several population such as (5.1). This is done in [5] for Neumann
boundary conditions in bounded domains.

Appendix A. Density estimate

Let σ > 0. Let b : [0, T ]×Rd → Rd be bounded and measurable. Let ν ∈ P(Rd) be such that ν
is absolutely continuous with respect to Lebesgue measure with bounded density, that is,

dν

dλd
(.) = m0(.)

for some bounded and measurable m0 : Rd → [0,∞) with
∫
m0(x)dx = 1.

Let (Ω,F , (Ft),P) be a standard filtered probability space carrying a d-dimensional (Ft)-Wiener
process, an Rd-valued F0-measurable random variable ξ with distribution P ◦(ξ)−1 = ν and an
Rd-valued continuous (Ft)-adapted process X such that

(A.1) X(t) = ξ +

∫ t

0

b (s,X(s)) ds+ σW (t), t ∈ [0, T ].

We also assume—as we may—that (Ω,F) is a Borel space.
Let m be the flow of marginal distributions of X:

m(t)
.
= P ◦(X(t))−1, t ∈ [0, T ].

Lastly, for t ∈ (0, T ], let pt denote the density of the d-variate Gaussian distribution with mean
zero and covariance matrix t Idd:

pt(y)
.
= (2πt)−d/2e−

|y|2
2t , y ∈ Rd.

For the following L∞-estimate on the Lebesgue densities of the flow of measures m, we use
the Girsanov transformation and a conditioning argument in the spirit of Exercise 7.4 in [22,
p. 170]. In [42], sharp estimates on the transition probability densities are obtained through more
sophisticated probabilistic methods.
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Proposition A.1. Under the above assumptions, the marginal distribution of X at any time
t ∈ [0, T ] is absolutely continuous with respect to Lebesgue measure with bounded density. More
precisely, for every t ∈ (0, T ], there exists a bounded measurable function mt : Rd → [0,∞) with∫
mt(x)dx = 1 such that

dm(t)

dλd
(.) = mt(.) and ‖mt‖∞ ≤ Ĉt · ‖m0‖∞,

where Ĉt = Ĉt(σ, ‖b‖∞, d) is a finite constant that need not be greater than(
e

8‖b‖2∞
σ2

t +
4‖b‖∞
σ

√
2πt · e

16‖b‖2∞
σ2

t

)d/4
· e

‖b‖2∞
2σ2

t ·
∫
Rd
e

‖b‖∞
σ2
|x|pσ2t(x)dx.

Proof. For x ∈ Rd, define the process Y x = (Y x1 , . . . , Y
x
d ) through

Y x(t)
.
= x+ σW (t), t ∈ [0, T ],

and a process Zx over [0, T ] by

Zx(t)
.
= exp

(
1

σ

∫ t

0

b (s, Y x(s)) · dW (s)− 1

2σ2

∫ t

0

|b (s, Y x(s))|2 ds
)

= exp

(
1

σ

d∑
i=1

∫ t

0

bi (s, Y x(s)) dWi(s)−
1

2σ2

∫ t

0

d∑
i=1

|bi (s, Y x(s))|2 ds

)
.

Girsanov’s theorem (for instance, Chapter 7 in [22] or Sections 3.5 and 5.3.B in [36]) and the fact
that ξ and W are independent yield, for t ∈ [0, T ], every bounded measurable function g : Rd → R,

E [g (X(t))] =

∫
Rd

E [g (Y x(t))Zx(t)] ν(dx).

This implies (taking indicator functions for g) that

(A.2) m(t, B) =

∫
Rd

E [1B (Y x(t))Zx(t)] ν(dx) for all B ∈ B(Rd).

By construction, m(0) = ν. Fix t ∈ (0, T ].

For y ∈ Rd define a process W̃ t,y over [0, t] by

W̃ t,y(s)
.
=

{
s
t y + (t− s)

∫ s
0

1
t−rdW (r) if s ∈ [0, t)

y if s = t.

Then W̃ t,y is a d-dimensional Brownian bridge (with respect to P) from 0 to y over time interval

[0, t]. The process W̃ t,y is continuous on [0, t] P-almost surely; cf. Section 5.6.B in [36, pp. 358-360];
its Itô differential is given by

(A.3) dW̃ t,y(s) =
y

t
ds−

(∫ s

0

1

t− r
dW (r)

)
ds+ dW (s), s ∈ [0, t].

That (A.3) holds if s < t is clear by Itô’s formula and the definition of W̃ t,y. To see that it also
holds if s = t, apply Fubini’s theorem, then the Cauchy-Schwarz inequality followed by the Itô
isometry, to find that

E

[∫ t

0

∣∣∣∣∫ s

0

1

t− r
dW (r)

∣∣∣∣ ds] =

∫ t

0

E

[∣∣∣∣∫ s

0

1

t− r
dW (r)

∣∣∣∣] ds
≤
∫ t

0

√
E

[∫ s

0

dr

(t− r)2

]
ds =

∫ t

0

√
s

t(t− s)
ds ≤

∫ t

0

ds√
t− s

<∞.

Using also the continuity of W̃ t,y, it follows that with P-probability one, for all t1, t2 ∈ [0, t] such
that t1 ≤ t2,

W̃ t,y(t2)− W̃ t,y(t1) =
t2 − t1
t

y −
∫ t2

t1

(∫ s

0

1

t− r
dW (r)

)
ds+W (t2)−W (t1),
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which is equivalent to (A.3). In particular, W̃ t,y is a vector of continuous semimartingales on
[0, t], with the same cross-variation processes as W . Moreover (for instance, Exercise 5.6.17 in [36,
p. 361]), we have for all ĝ : C([0, t],Rd)→ R bounded and measurable,

(A.4) E [ĝ(W )] =

∫
Rd

E
[
ĝ(W̃ t,y)

]
pt(y)dy,

where pt is the density of the d-variate Gaussian distribution with mean zero and covariance matrix
t Idd. Formula (A.4) corresponds to conditioning the Wiener process W on its values at time t.
To be more precise, we choose a regular conditional distribution of P given W (t); cf. Theorem 6.3
in [35, p. 107]. Since (Ω,F) is Borel, there exists a probability kernel κt : Rd × F → [0, 1] such
that for every A ∈ F ,

κt(W (t), A) = E
[
1A
∣∣W (t)

]
P -almost surely.

The probability measures κt(y, ·), y ∈ Rd, are uniquely determined Lebesgue almost everywhere.
In view of (A.4), we have

(A.5) κt(y, ·) ◦ (W )−1 = P ◦(W̃ t,y)−1 for Lebesgue almost every y ∈ Rd.

We are going to apply the above regular conditional distribution to representation (A.2). By
construction, for all B ∈ B(Rd), x ∈ Rd,

E [1B (Y x(t))Zx(t)] = E

[
1B (x+ σW (t)) exp

(
1

σ

∫ t

0

b (s, x+ σW (s)) · dW (s)

− 1

2σ2

∫ t

0

|b (s, x+ σW (s))|2 ds
)]

.

Recalling that pt is the density of the law of W (t), we find that

E [1B (Y x(t))Zx(t)] =

∫
Rd

Eκt(y,·) [1B (Y x(t))Zx(t)] pt(y)dy.

Setting

Ψt(x, y)
.
= E

[
exp

(
1

σ

∫ t

0

b
(
s, x+ σW̃ t,y(s)

)
· dW̃ t,y(s)− 1

2σ2

∫ t

0

∣∣∣b(s, x+ σW̃ t,y(s)
)∣∣∣2 ds)]

we have, by (A.5),

(A.6) E [1B (Y x(t))Zx(t)] =

∫
Rd

1B (x+ σy) Ψt(x, y)pt(y)dy.

Thanks to Eq. (A.3), Ψt(x, y) can be expressed as

Ψt(x, y) = E

[
exp

(
1

σt

∫ t

0

y · b
(
r, x+ σW̃ t,y(s)

)
ds

)
· exp

(
− 1

σ

∫ t

0

b
(
r, x+ σW̃ t,y(s)

)
·
(∫ s

0

1

t− r
dW (r)

)
ds

)
· exp

(
1

σ

∫ t

0

b
(
r, x+ σW̃ t,y(s)

)
· dW (s)− 1

2σ2

∫ t

0

∣∣∣b(r, x+ σW̃ t,y(s)
)∣∣∣2 ds)] .

Below, we will show that for every c ∈ [0,∞),

(A.7) E

[
exp

(
c

d∑
i=1

∫ t

0

∣∣∣∣∫ s

0

1

t− r
dWi(r)

∣∣∣∣ ds
)]
≤
(
e2c2t + 2c

√
2πt · e4c2t

)d/2
<∞.

Thus, Ψt is well defined as a (measurable) function Rd × Rd → (0,∞). By inequality (A.7),
the boundedness of b, the Cauchy-Schwarz inequality and the (super-)martingale property of the
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stochastic exponential of a martingale, we obtain

Ψt(x, y) ≤ e
‖b‖∞
σ |y| ·E

[
exp

(
2‖b‖∞
σ

d∑
i=1

∫ t

0

∣∣∣∣∫ s

0

1

t− r
dWi(r)

∣∣∣∣ ds
)]1/2

·E
[
e

1
σ

∫ t
0

2b(r,x+σW̃ t,y(s))·dW (s)− 1
4σ2

∫ t
0 |2b(r,x+σW̃ t,y(s))|2ds

]1/2
.

≤ e
‖b‖∞
σ |y| ·

(
e

8‖b‖2∞
σ2

t +
4‖b‖∞
σ

√
2πt · e

16‖b‖2∞
σ2

t

)d/4
·E
[
e

1
σ

∫ t
0

2b(r,x+σW̃ t,y(s))·dW (s)− 1
2σ2

∫ t
0 |2b(r,x+σW̃ t,y(s))|2ds

]1/2
︸ ︷︷ ︸

=1

·e
‖b‖2∞
2σ2

t,

hence

(A.8) sup
x∈Rd

Ψt(x, y) ≤ Ct · e
‖b‖∞
σ |y|, y ∈ Rd,

where the finite constant Ct = Ct(σ, ‖b‖∞, d) is given by

Ct(σ, ‖b‖∞, d)
.
=

(
e

8‖b‖2∞
σ2

t +
4‖b‖∞
σ

√
2πt · e

16‖b‖2∞
σ2

t

)d/4
· e

‖b‖2∞
2σ2

t.

Recalling (A.2), (A.6) and the hypothesis that ν has density m0, we see that for all B ∈ B(R),

m(t, B) =

∫
Rd

∫
Rd

1B (x+ σy) Ψt(x, y)pt(y)m0(x)dxdy

=

∫
Rd

∫
Rd

1B(z)Ψt

(
x,
z − x
σ

)
pσ2t(z − x)m0(x)dxdz.

It follows that m(t) possesses a density with respect to Lebesgue measure:

dm(t)

dλd
(z) = mt(z)

.
=

∫
Rd

Ψt

(
x,
z − x
σ

)
pσ2t(z − x)m0(x)dx, z ∈ Rd.

Thanks to (A.8), the density is bounded:

‖mt‖∞ ≤ Ct(σ, ‖b‖∞, d) · sup
z∈Rd

∫
Rd
e

‖b‖∞
σ2
|z−x|pσ2t(z − x)m0(x)dx

≤ Ct(σ, ‖b‖∞, d) · ‖m0‖∞ ·
∫
Rd
e

‖b‖∞
σ2
|x|pσ2t(x)dx <∞.

It remains to prove inequality (A.7). Let c ∈ [0,∞). Since W1, . . . ,Wd are independent one-
dimensional Wiener processes, we have

E

[
exp

(
c

d∑
i=1

∫ t

0

∣∣∣∣∫ s

0

1

t− r
dWi(r)

∣∣∣∣ ds
)]

= E

[
exp

(
c

∫ t

0

∣∣∣∣∫ s

0

1

t− r
dW1(r)

∣∣∣∣ ds)]d .
Let sgn: R→ {−1, 1} denote the left-continuous version of the sign function, and denote by Lebt
Lebesgue measure on [0, t]. By (A.3) and the definition of W̃ t,0, we have with P-probability one,

(A.9)

∫ t

0

∣∣∣∣∫ s

0

1

t− r
dW1(r)

∣∣∣∣ ds = −
∫ t

0

sgn
(
W̃ t,0

1 (s)
)
dW̃ t,0

1 (s) +

∫ t

0

sgn
(
W̃ t,0

1 (s)
)
dW1(s)

since, for Lebt ⊗P-almost all (s, ω) ∈ [0, t]× Ω,∣∣∣∣∫ s

0

1

t− r
dW1(r)

∣∣∣∣ = sgn

(∫ s

0

1

t− r
dW1(r)

)(∫ s

0

1

t− r
dW1(r)

)
= sgn

(
W̃ t,0

1 (s)
)(∫ s

0

1

t− r
dW1(r)

)
.
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Let L̃t,0(0) be the local time at the origin of the continuous semimartingale W̃ t,0
1 according to

Theorem 3.7.1 in [36, p. 218]. In particular, s 7→ L̃t,0s (0) is a continuous non-decreasing non-

negative process with L̃t,00 (0) = 0 such that, for every s ∈ [0, t],

lim
ε↘0

1

4ε

∫ s

0

1[−ε,ε]

(
W̃ t,0

1 (r)
)
dr = L̃t,0s (0) P -almost surely;

cf. Theorem 3.7.1(iii) and Problem 3.7.6 in [36]. By the Itô-Tanaka-Meyer formula applied to the
absolute value function (see Eq. (3.7.9) in [36, p. 220]), we have

−
∫ t

0

sgn
(
W̃ t,0

1 (s)
)
dW̃ t,0

1 (s) = |W̃ t,0(0)| − |W̃ t,0(t)|+ 2L̃t,0t (0) = 2L̃t,0t (0).

This, together with (A.9), yields

E

[
exp

(
c

d∑
i=1

∫ t

0

∣∣∣∣∫ s

0

1

t− r
dWi(r)

∣∣∣∣ ds
)]

= E

[
exp

(
c

(
2L̃t,0t (0) +

∫ t

0

sgn
(
W̃ t,0

1 (s)
)
dW1(s)

))]d
.

Using again the Cauchy-Schwarz inequality and the (super-)martingale property of the stochastic
exponential of a martingale, we find that

E

[
exp

(
c

d∑
i=1

∫ t

0

∣∣∣∣∫ s

0

1

t− r
dWi(r)

∣∣∣∣ ds
)]

≤ E
[
exp

(
4cL̃t,0t (0)

)]d/2
·E
[
exp

(
2c

∫ t

0

sgn
(
W̃ t,0

1 (s)
)
dW1(s)− 4c2

2
t+

4c2

2
t

)]d/2
≤ E

[
exp

(
4cL̃t,0t (0)

)]d/2
· ec

2t·d.

The distribution of 2L̃t,0t (0) is known explicitly. Let (Ls(0))s≥0 be the local time at the origin
of the one-dimensional Wiener process W1. Then, as a consequence of (A.5), we have that the

distribution of 2L̃t,0t (0) coincides with the conditional distribution of 2Lt(0) given W1(t) = 0.
The joint distribution of W1(t) and 2Lt(0) is known to be absolutely continuous with respect to
two-dimensional Lebesgue measure with density given by

P ◦(W1(t), 2Lt(0))−1

dλ2
(w, l) = 1(0,∞)(l) ·

l + |w|√
2πt3

exp

(
− (l + |w|)2

2t

)
︸ ︷︷ ︸

.
=φ(w,l)

, w, l ∈ R,

see, for instance, Problem 6.3.4 in [36, p. 420]. Conditioning on W1(t) = 0, we obtain

P ◦(2L̃t,0t (0))−1

dλ1
(l) =

φ(0, l)∫
φ(0, r)dr

= 1(0,∞)(l) ·
l

t
exp

(
− l

2

2t

)
, l ∈ R.

We therefore have

E
[
exp

(
4cL̃t,0t (0)

)]
=

∫ ∞
0

exp (2c · l) l
t

exp

(
− l

2

2t

)
dl = 1 + 2c

∫ ∞
0

exp

(
2c · l − l2

2t

)
dl

= 1 + 2c · e2c2t

∫ ∞
0

exp

(
− (l − 2tc)2

2t

)
dl ≤ 1 + 2c

√
2πt · e2c2t.

It follows that

E

[
exp

(
c

d∑
i=1

∫ t

0

∣∣∣∣∫ s

0

1

t− r
dWi(r)

∣∣∣∣ ds
)]
≤
(

1 + 2c
√

2πt · e2c2t
)d/2

· ec
2t·d,

which proves (A.7).
�
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[30] O. Guéant, J.-M. Lasry, P.-L. Lions: Mean field games and applications, in ”Paris-Princeton Lectures on
Mathematical Finance 2010” (eds. R. A. Carmona, et al.), Lecture Notes in Math., 2003, Springer, Berlin,

(2011), 205–266.
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