
U
nc
or
re
ct
ed

P
ro
of

Eur. Phys. J. H
https://doi.org/10.1140/epjh/e2018-80018-6 THE EUROPEAN

PHYSICAL JOURNAL H
Regular Article

Tales from the prehistory of Quantum Gravity1
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Abstract. The main purpose of this paper is to analyse the earliest9

work of Léon Rosenfeld, one of the pioneers in the search of Quan-10

tum Gravity, the supposed theory unifying quantum theory and general11

relativity. We describe how and why Rosenfeld tried to face this prob-12

lem in 1927, analysing the role of his mentors: Oskar Klein, Louis13

de Broglie and Théophile De Donder. Rosenfeld asked himself how14

quantum mechanics should concretely modify general relativity. In the15

context of a five-dimensional theory, Rosenfeld tried to construct a16

unifying framework for the gravitational and electromagnetic interac-17

tion and wave mechanics. Using a sort of “general relativistic quantum18

mechanics” Rosenfeld introduced a wave equation on a curved back-19

ground. He investigated the metric created by what he called ‘quantum20

phenomena’, represented by wave functions. Rosenfeld integrated Ein-21

stein equations in the weak field limit, with wave functions as source22

of the gravitational field. The author performed a sort of semi-classical23

approximation obtaining at the first order the Reissner-Nordström met-24

ric. We analyse how Rosenfeld’s work is part of the history of Quantum25

Mechanics, because in his investigation Rosenfeld was guided by Bohr’s26

correspondence principle. Finally we briefly discuss how his contribu-27

tion is connected with the task of finding out which metric can be28

generated by a quantum field, a problem that quantum field theory on29

curved backgrounds will start to address 35 years later.30

‘A study of history of science [...] shows that the natural attitude of a sci-31

entist is to be inspired by their predecessors, but always taking the liberty of32

doubting when there are reasons for doubt.’33

Oskar Klein34

1 Introduction35

In the physics community, the word Quantum Gravity (QG) is today associated with36

the task of quantizing gravity, directly or indirectly, in order to unravel a quantum37
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structure of space and time. Despite many approaches, e.g. String Theory, Super-38

gravity (N = 8), Loop Quantum Gravity, non-commutative geometry and so on, a39

consistent theory is still lacking. From the point of view of History and Philosophy40

of Science: ‘QG, broadly construed, is the physical theory (still “under construction”)41

incorporating both the principles of general relativity (GR) and quantum theory’42

[emphasis added] [Rickles & Weinstein, 2016]. “Broadly construed” means that all43

the attempts in this direction have contributed to our modern understanding of the44

difficulties in constructing a consistent theory of QG, even those approaches that45

did not quantize the gravitational interaction. To name one, quantum field theory46

(QFT) on curved backgrounds increased our knowledge on the physics of Black Holes47

[Hawking, 1975]. Furthermore, from a point of view of the integrated History and48

Philosophy of Science (&HPS), the fact that the theory is still under construction49

represents a unique opportunity for studying the process of a theory’s formation from50

the inside (in Kuhnian words “a revolution in progress”).51

Usually the history of QG starts in 1930 with the first attempts to reconcile52

the budding quantum field theory with gravity made by Léon Rosenfeld [1930a,b]53

(cf. English translation [Léon Rosenfeld, 2017] and the accompanying commentary54

[Salisbury & Sundermeyer, 2017]). In the first paper the author tried to find out what55

would be the gravitational field produced by light in a weak-field approximation. This56

paper marked the beginning of what is today called the covariant approach. In this57

work the quantization procedure was applied to the electromagnetic field only, the58

metric field being an operator because it is a function of the Maxwell field. In the59

second paper, conversely, he tried to apply the quantization procedure directly to60

the gravitational interaction, employing a tetrad gravitational field rather than the61

conventional metric. This paper marked the beginning of the today called canonical62

approach. Before Rosenfeld’s attempts, soon after the birth of GR in 1915, researchers63

tried to apply the theory of gravity to the microscopic world. The best known example64

is Einstein’s claim of 1916. When he discovered that a mass should emit gravitational65

waves, Einstein pointed out the need to modify GR [Einstein, 1916]. Of course what66

he had in mind was Bohr’s old move that classical electrodynamics was not applicable67

in his model of orbiting electrons. In a similar way GR had to be modified with respect68

to its application to the microscopic world. Einstein’s suggestion was not an isolated69

episode. Recent developments in the history of QG show that in the fifteen years70

before Rosenfeld’s attempts many authors tried to reconcile the old quantum theory71

or quantum mechanics (QM) with gravity [Stachel, 1999; Rickles, 2005, 2013; Hagar,72

2014; Rocci, 2015a,b]. For this reason the period between 1915 and 1930 could be73

called a prehistory era.74

Exploring this time frame, the term “Quantum Gravity” must be necessarily75

interpreted in a broad sense, because in the period between 1916 and 1930 the quan-76

tization procedure was a concept under construction. As far as we know, before 1930,77

there were no attempts that tried to quantize the gravitational field directly. Before78

going on, we therefore briefly summarize the evolution of the quantization procedure79

during this period [Mehra & Rechenberg, 2001]. Between 1916 and 1924, the con-80

struction of atomic models was one of the main tasks of the old quantum theory. The81

quantization procedure of the atomic model was performed by applying the Epstein-82

Sommerfeld-Wilson rules. After 1925, with the birth of QM, the investigation of the83

atomic phenomena was pursued by wave mechanics (WM) and matrix mechanics84

(MM). In the first formulation of QM, electrons are represented by normalized wave85

functions. WM was born by using Hamilton Jacobi (HJ) analogy between particle and86

waves [Schrödinger, 1926]. The quantization procedure consisted in writing a wave87

equation and in imposing the boundary condition on wave functions. The second88

formulation of QM focused on observable quantities. MM was born by attempting to89

formulate a new theoretical technique for the determination of the intensities of quan-90

tum transitions, using the anharmonic oscillator as a toy model [Blum et al., 2017].91



U
nc
or
re
ct
ed

P
ro
of

G. Peruzzi and A. Rocci : Tales from the prehistory of Quantum Gravity 3

The classical position and its conjugated momentum in the Hamiltonian formulation92

were treated as “q-numbers”, that today are known as operators. The name “q-93

numbers” stands for quantum numbers, in contrast with “c-numbers”, i.e. the usual94

classical variables, like e.g. classical position and momentum of a particle [Darrigol,95

1992]. The quantization procedure consisted in imposing the commutation relations96

between these q-numbers. In 1926 Schrödinger pointed out the equivalence between97

the two formulations, but WM remained the preferred point of view in attempting98

to generalize Schrödinger approach in the context of both Special and General Rel-99

ativity [Rocci, 2015b]. In 1927 many new concepts were introduced: the description100

of spin with two components wave functions, its statistical interpretation, the uncer-101

tainty relations. At the end of 1927 Oskar Klein and Pascual Jordan introduced for102

the first time the quantum commutation relations for the scalar field operators, but103

the general approach was developed by Heisenberg and Pauli at the end of 1929.104

Rosenfeld was a protagonist of this early period as well. As stated in the intro-105

duction of a recent biography of Rosenfeld [Jacobsen, 2012], the Belgian physicist106

is a blank sheet in the history of science literature, ‘but he was at the centre of107

modern physics as one of the pioneers of quantum field theory and quantum elec-108

trodynamics in the late 1920s and the 1930s’ ([Jacobsen, 2012]; p. 1). In spite of109

the fact that he initiated two of the major research areas in the history of QG, the110

covariant and the canonical approaches, Rosenfeld never considered his early work111

as an important contribution [Kuhn & Heilbron, 1963]. The aim of this paper is to112

offer a historical analysis “in context” of the papers published by Rosenfeld at the113

beginning of his career: [Léon Rosenfeld, 1927a,b,c,d,e]. In particular we will focus114

on the aspects concerning the conciliation between GR and the WM, that produced115

a first attempt to find the metric generated by “charged quantum matter”, using a116

wave-mechanical approach. Rosenfeld was persuaded, at that time, that he had found117

a quantum modification of the flat metric, using the correspondence principle. He per-118

formed a semi-classical approximation in order to compare his quantum metric with119

the external Reissner-Nordström (RN) metric. Aside from the fact that this attempt120

is important by itself, it contained the seeds for his following work [Léon Rosenfeld,121

1930a], nevertheless Rosenfeld later become one of the opponents to any quantization122

of the gravitational field without any experimental evidence for the necessity to do123

it [Léon Rosenfeld, 1963].124

The paper is organized as follows. In Section 2 we briefly introduce Rosenfeld’s125

life and we put it in the context of the prehistory of QG. In Section 3 we review the126

work of the authors that influenced the professional training of the young Rosenfeld127

in 1927: Oskar Klein, Louis de Broglie and Théophile De Donder. In particular we128

will focus on the analogies and on the differences among these authors. In Section 4129

we present Rosenfeld’s attempt to reconcile GR with WM. At the beginning we shall130

focus on his first paper, discussing how Klein, de Broglie and De Donder influenced131

Rosenfeld’s work. Then we shall review the papers written by Rosenfeld in 1927,132

where a general relativistic version of Bohr’s correspondence principle emerged. We133

shall also analyse the role played by Klein, and indirectly by Bohr, in suggesting the134

first use of the correspondence principle in the context of QG. At the beginning of135

Section 4 we shall focus on what Rosenfeld wanted to achieve. In the last part of136

the section, i.e. 4.3, we briefly present a modern interpretation of his approach and a137

perspective on how the analysed papers would influence Rosenfeld’s subsequent work138

on the search of a quantum theory of gravity. In Section 5 we summarize the basic139

stages of our paper without entering into technical details.140

In the Appendices, we describe with more details some calculations left out in the141

main text.142
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2 The prehistory of QG and the young Rosenfeld143

The prehistory of QG can be naturally divided into two parts. The first period from144

1915 to 1924, was dominated by attempts to understand the role of GR in constructing145

planetary models of atoms [Jaffé, 1922; Jeffery, 1921; Lodge, 1921; Vallarta, 1924].146

With the birth of QM in 1925–26 a new era began, because the classical concept of147

trajectory had become problematic in the atomic realm. In particular, the second148

period of the prehistory of QG from 1925 to 1930, was dominated by WM and by149

attempts which tried to generalize Schrödinger’s approach in the context of Special150

Relativity (SR) and GR. In fact, between the two alternative formulations of QM,151

MM and WM, the second formulation was the preferred one by the authors of the152

period who tried to find a unique framework describing quantum phenomena and the153

gravitational interaction [Rocci, 2015b]. In this respect, as we will see, Léon Rosenfeld154

was not an exception.155

The career of the young Belgian physicist had started with the accidental reading156

of Schrödinger’s communications [Schrödinger, 1926], as he recollected during an157

interview with Thomas S. Kuhn and John L. Heilbron in 1963 [Kuhn & Heilbron,158

1963]. After completing his studies, Rosenfeld left the University of Liège and moved159

to Paris at the end of 1926 to meet Louis de Broglie, where, as he recollected in the160

interview, he spent most of his time learning what he had missed at Liège [Kuhn &161

Heilbron, 1963]. Rosenfeld himself stressed that he attended a course on relativity in162

Liège and that the lecturer was an opponent of the new theory. In Paris, he attended163

many lectures, e.g. Langevin’s lectures at the College de France, and he studied a164

lot of books, including Eddington’s book on GR [Eddington, 1923]: ‘I was anxious to165

do some research, and then the only research I did was in just combining my freshly166

acquired knowledge of relativity with wave mechanics [...]’ [Kuhn & Heilbron, 1963].167

A key ingredient of this second period in the prehistory of QG is the enlargement168

of the four-dimensional space-time by the introduction of a fifth space-like dimension169

in order to look for a unified picture of the gravitational force, the electromagnetic170

interaction and the quantum behaviour of particles, described by a wave function. The171

idea was not new. The founding father of this approach is Theodore Kaluza [1921] who172

had noted that a five-dimensional theory of “pure gravity”, i.e. without any matter173

content but with the electromagnetic potentials represented by specific components174

of the metric field, seems to offer a unified framework to describe the usual four-175

dimensional gravitational and electromagnetic interactions.1 In 1927 many authors176

tried to harmonize Kaluza’s picture with WM, and started explicitly from the German177

physicist’s 1921 paper.2 The most well-known contribution was Oskar Klein’s3 work,178

who developed his ideas from 1926 to 1927. Less known contributions were the papers179

written by Louis de Broglie [1927b] and Léon Rosenfeld [1927a,b,c,d,e]. During the180

year spent in Paris, Rosenfeld started to interact frequently with de Broglie, discussing181

for example the problem of spin. It was the Belgian physicist who drew de Broglie’s182

attention on the five-dimensional approach. As a consequence the French physicist183

published a paper, in 1927, on this topic [Louis de Broglie, 1927b; Kuhn & Heilbron,184

1963]. During Kuhn’s interview Rosenfeld also recollected that he was anxious to185

apply his new acquired knowledge to relativity, and that the first goal he wanted to186

1More precisely Gunnar Nordström also tried a similar approach before Kaluza [Nordström,
1914], but the Norwegian mathematician described the gravitational interaction using a scalar field
instead of a tensor field.

2Kaluza’s approach was completely classical. He was afraid that quantum theory could invalidate
his five-dimensional approach, as he explicitly stated at the end of his paper ([Kaluza, 1984]; p. 8).

3The modern multidimensional approach used by e.g. supergravity and string theory is called
Kaluza-Klein approach in honour of these two authors, but the modern approach is different from
that of the Fathers. For a review of the modern approach and a comparison with the old one see
Duff et al. [1986].
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achieve was to develop ‘the wave equation in five dimensions’ [Kuhn & Heilbron, 1963].187

On this subject Rosenfeld published two notes during his stay at the Ecole Normal188

in Paris: Léon Rosenfeld [1927a] and Léon Rosenfeld [1927b]. Why did Rosenfeld189

decide to embark on a five-dimensional adventure? What attracted him? What was190

Rosenfeld’s point of view at that time? In the case of Klein’s work the answer was191

well known, because the Swedish physicist himself answered the question. As we will192

see, Klein, de Broglie and Rosenfeld constructed their five-dimensional approaches193

starting from different perspectives and we will try to make clear what considerations194

suggested to each of the three authors how to develop a five-dimensional picture.195

Another important role for the young Rosenfeld was played by Théophile De Don-196

der. Like Rosenfeld, De Donder was a Belgian researcher, older and more experienced.197

De Donder was an enthusiastic supporter of Einstein’s theory. As we will see, soon198

after the birth of QM he tried to explain the existence of atomic stable orbits with199

the help of GR, but he always followed a classical approach [De Donder, 1926a,c;200

De Donder & van den Dungen, 1926b]. As Rosenfeld recollected: ‘I published a note201

which I sent to him to be presented to the Belgian Academy. De Donder was the least202

critical person you can imagine, he was enthusiastic about it. So he asked me then203

to come to Brussels, he wanted to have me in Brussels; I wanted to go abroad a bit204

more, but I worked for a month with him in Brussels.’ [Kuhn & Heilbron, 1963]. As we205

shall see, one of the main consequences of the Rosenfeld-De Donder collaboration in206

1927 was the physical interpretation of the assumptions made by Rosenfeld in his first207

paper, with the introduction of Bohr’s correspondence principle in the context of QG,208

contained in Léon Rosenfeld [1927c,e] and De Donder [1927b]. In October 1927 the209

fifth Solvay conference took place in Brussels and on that occasion De Donder tried210

to attract attention to Rosenfeld’s work. This Solvay conference is well known to his-211

torians of Physics, because it indicates the start of the famous Einstein-Bohr debate.212

The young Belgian physicist was not officially admitted to attend the conference, but213

de Donder invited Rosenfeld to follow him. At the conference Rosenfeld met Max214

Born for the first time and asked him about the possibility of a stay in Göttingen.215

Born’s positive answer permitted Rosenfeld to attend Hilbert’s, Born’s and Pascual216

Jordan’s lectures ([Jacobsen, 2012], p. 18), and it would open the doors to his future217

collaborations with Pauli, Jordan and many others. All these facts showed the crucial218

role played by De Donder in Rosenfeld’s life.219

In the next section we will start with a brief summary of the history of Klein’s220

work and its intersection with de Broglie’s contribution to the construction of a221

five-dimensional Universe. Section 3 will end with an introduction of De Donder222

four-dimensional approach, based on the lectures he gave at MIT in 1925, in order223

to understand, in Section 4, how De Donder also influenced Rosenfeld’s early work.224

3 Oskar Klein’s, Louis de Broglie’s and Theophile De Donder’s225

role226

3.1 The five-dimensional universe: Klein’s approach227

Klein’s investigation of the five-dimensional Universe started in 1926 with the pur-228

pose of unifying gravity, electromagnetism and WM [Pais, 2000]. As Klein himself229

recollected in Klein [1991], he was attracted by two facts. First, he knew that the230

Hamilton-Jacobi (HJ) equation offers a link between particle dynamics and the prop-231

agation of a wave front, in the limit of geometrical optics, suggesting a concrete232

realization for the wave-particle duality. Secondly, by writing the relativistic HJ equa-233

tion for a particle moving in a combined gravitational and electromagnetic field, he234
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noticed that the electric charge would play the role of an extra momentum compo-235

nent: ‘[...] I gave a lecture course on electromagnetism, towards the end of which236

I derived the general relativistic Hamilton-Jacobi equation for an electric particle237

moving in a combined gravitational and electromagnetic field. Thereby, the simi-238

larity struck me between the ways the electromagnetic potentials and the Einstein239

gravitational potentials enter into this equation, the electric charge in appropriate240

units – appearing as the analogue to a fourth momentum component, the whole241

looking like a wave front equation in a space of four dimensions. [emphasis added]’4242

([Klein, 1991]; p. 108).5 In the summer of 1925 he became ‘immediately very eager243

to see how far the mentioned analogy reached’ ([Klein, 1991]; p. 109) and he started244

to investigate the five-dimensional Riemann geometry to describe the gravitational245

and electromagnetic interactions in a unified framework, trying also to write a five-246

dimensional wave equation. In the long wavelength limit, the wave equation resembles247

the eikonal equation for the paths of light rays in geometric optics. These paths248

follow geodesic lines through a Riemannian space: Klein identified them with five-249

dimensional null-geodesics which reduce, on his assumptions, to four-dimensional250

trajectories for charged massive particles moving in a combined electromagnetic and251

gravitational field. Klein’s original idea was to follow an analogy with light in five252

dimensions, even if he wanted to relate five-dimensional geometry with the stationary253

states of massive particles. Carrying on this work, the Swedish Physicist convinced254

himself that his approach was only a first step towards the formulation of a theory255

able to reconcile GR with WM. But this conclusion was contained only in his last256

paper of the period [Klein, 1927b], a work that Rosenfeld would never cite.257

Now we briefly retrace the steps followed by Klein in his first paper [Klein, 1926a,258

1984]. Klein introduced the following five-dimensional line element6:259

dσ2 = γµ̄ν̄dx
µ̄dxν̄ , (1)

assuming that the metric tensor did not depend on the new fifth space-like compo-
nent7 x5. Then it follows that the allowed coordinate transformations were restricted
to the following set: 

xµ = fµ
(
x0′, x1′, x2′, x3′

)
x5 = x5′ + f5

(
x0′, x1′, x2′, x3′

)
.

(2a)

(2b)

([Klein, 1984]; p. 11). After noting the invariance of γ55 under the coordinate transfor-260

mations (2a) and (2b), Klein decided to set γ55 = α, where α is a constant. In modern261

Kaluza-Klein theories γ55 is not a constant, it is a real scalar field depending on the262

4It is worth noting that in the original paper Klein did not emphasize the role of the electric
charge explicitly. Rosenfeld followed a similar reasoning in constructing his wave equation, but stated
it explicitly: see the remark after equation (55).

5The original reasoning runs backward with respect to the path followed by Klein in the paper,
where the author presented his model in an axiomatic way.

6In our paper we consider many authors who introduced different notations. We decided to
adopt the following conventions. Barred indices refer to the five-dimensional World, µ̄ = 0, 1, 2, 3, 5,
where the zero component corresponds to a time-like dimension. We use the mostly-plus signa-
ture, i.e. ηµ̄ν̄ = diag(−1,+1,+1,+1,+1). The unbarred Greek indices correspond to the usual
four-dimensional space-time, µ = 0, 1, 2, 3, and Latin indices refer to the three-dimensional spatial
coordinates, i = 1, 2, 3. We use International System of Units.

7Kaluza called this hypothesis the cylinder condition. Using modern language, this means that
translations in the fifth direction are isometries and hence that the five-dimensional space-time
admits a space-like Killing vector field, namely ∂

∂x5
. Neither Klein nor de Broglie or Rosenfeld

mentioned this fact explicitly in their papers.
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transverse dimensions, called a dilaton field. As O’Raifeartaigh & Straumann [2000]263

and other authors [Overduin & Wesson, 1997] pointed out, Klein’s choice is inconsis-264

tent, as we shall explain below after equation (8). Klein rewrote the line element (1)265

in the following form:266

dσ2 = αdθ2 + ds2 , (3)

where267

dθ = dx5 +
γ5µ

α
dxµ ; gµν = γµν −

γ5µγ5ν

α
; ds2 = gµνdx

µdxν . (4)

Citing Kramers’ paper on stationary gravitational fields in four dimensions [Kramers,268

1922], Klein noted that dθ, equation (4), is invariant under the coordinate transfor-269

mations (2a) and (2b). In fact, following Kramers and remembering that α = γ55,270

the invariance of dθ is transparent if we rewrite it in the following way: dθ =271

dx5 +
γ5µ

γ55
dxµ =

1

γ55
γ5µ̄dx

µ̄. As a consequence, Klein noted that the four components272

γ5µ transform as a four-vector of the four-dimensional space-time. Following Kaluza,273

Klein assumed that they would be proportional to the electromagnetic potentials274

Aν = (V ; ~A), introducing another parameter β:275

γ5µ

α
= βAµ , (5)

where we defined Aµ = gµνA
ν . We note that dθ defined in equation (4) is not an276

exact form and that it can be rewritten as: dθ = dx5 + βAµdx
µ. Using dθ2 invariance277

and dσ2 invariance, it follows that ds2 is invariant under the coordinate transforma-278

tions (2a) and (2b). As a consequence gµν can be interpreted as a four-dimensional279

metric. After having introduced the five-dimensional curvature scalar R̃, defined in280

Appendix B, Klein varied the five-dimensional Einstein-Hilbert action as usual in281

GR, with respect to the metric γµ̄ν̄ :282

δγS5 = δγ

∫
Ω

R̃
√
−γd5x =

∫
Ω

d5x
δ
(
R̃
√
−γ
)

δγµ̄ν̄
δγµ̄ν̄ , (6)

where the symbol
√
−γ represents the square root of the negative of the determi-283

nant of the metric and the integral is carried out over a closed region Ω, where284

boundary values of γµ̄ν̄ are kept fixed. From the principle of stationary action the285

five-dimensional Einstein equations follow:286

δγS5 = 0 ⇒ R̃µ̄ν̄ −
1

2
γµ̄ν̄R̃ = 0 . (7)

It is worth noting that neither Klein nor any of the other authors we analysed consid-
ered the 55 component of equation (7), because they fixed α = constant before varying
the action. Thanks to all assumptions he made, equation (7) are formally equiva-
lent to the four-dimensional Einstein-like equations coupled to the four-dimensional
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Maxwell-like equations8: Rµν −
1

2
gµνR =

αβ2

2
T emµν

∂µ
(√
−gFµν

)
= 0 ,

(8a)

(8b)

where g is the determinant of gµν defined in equation (4). Choosing to set9
287

αβ2 = 16πG
c4 , where G, and c are the Newton constant and the speed of light288

respectively, Klein justified the identification of gµν and Fµν = ∂µAν − ∂νAµ with289

our four-dimensional metric and with the electromagnetic tensor respectively. The290

electromagnetic stress-energy tensor that appears in (8a) is defined by: T emµν =291

Fµ
αFνα − 1

4g
µνFαβF

αβ . The condition αβ2 = 16πG
c4 implies α > 0. This means that292

Klein introduced a space-like extra dimension motivated by the need to obtain the293

four-dimensional Einstein equations coupled with Maxwell’s equations. Indeed, a294

space-like coordinate only, i.e. a positive α constant in (8a), produces the correct295

coupling between electromagnetic and gravitational interactions. In this sense our296

four-dimensional World is a “projection” of a five-dimensional Universe.297

As indicated Klein’s model is inconsistent, if α is constant. Indeed, if the dilaton is298

a non trivial scalar function α(x), the 55 component of equation (7) is not trivial and it299

has the form �
√
α ∼

(√
α
)3
FαβF

αβ , where the four-dimensional operator �, when300

acting on a scalar function α(x) is defined by �α = gµν∇µ∂να for a curved four-301

dimensional space-time, where ∇µ represents the covariant derivative. This means302

that a non-zero constant dilaton would imply the too restrictive condition FαβF
αβ =303

0, i.e. that the modulus of the electric field should be proportional to the modulus304

of the magnetic field. As reported in Overduin & Wesson [1997], this inconsistency305

was noted by Pascual Jordan [1947] and Yves Thiry [1948] in 1947 and in 1948306

respectively: all the authors of the period we are considering imposed the constancy307

of the dilaton, including de Broglie and Rosenfeld, and they were not aware of this308

inconsistency.309

In order to reconcile this framework with WM, Klein’s idea was to write a five-310

dimensional wave equation in a curved space-time, which was then to be connected311

with the classical four-dimensional Lorentz equation for a charged particle in the312

presence of gravitational and electromagnetic fields, in the so called geometrical optics313

limit. The connection between the two equations, considered by all the authors that314

we shall analyse, is as follows.10 In a geometrical optics approximation, the wave315

equation reduces to the classical HJ equation with a particular Hamiltonian function.316

After a Legendre transformation, the associated Lagrangian produces five equations317

of motion. The four equations transverse to the fifth coordinate can be reduced to318

the Lorentz equation for a charged massive particle. The Lagrangian approach shows319

that, in five dimensions, charged particles follow a geodesic motion. Klein himself320

explained this procedure in the introduction of his paper: ‘the equations of motion321

for the charged particles [..] take the form of equations of geodesic lines. If we explain322

these equations as wave equations because the matter is supposed to be a kind of wave323

propagation, we are almost naturally led to a partial differential equation of second324

order, which may be regarded as a generalization of the ordinary wave equation.’325

([Klein, 1984]; p. 10). This justifies Klein’s idea stated above to connect wave equation326

8See Appendix D.3 for a detailed explanation of the formal equivalence in the context of
Rosenfeld’s work.

9In his following papers Klein would set α = 1. In de Broglie’s and Rosenfeld’s paper both
constants are present.

10For a short review with some mathematical details see Appendix A. For a detailed technical
explanation of Klein’s approach see e.g. [O’Raifeartaigh & Straumann, 2000].



U
nc
or
re
ct
ed

P
ro
of

G. Peruzzi and A. Rocci : Tales from the prehistory of Quantum Gravity 9

with geodesic lines and it also clarifies why WM had a prominent role in his approach327

in unifying GR with QM.328

In order to write an equation that generalizes Schrödinger’s equation, Klein329

followed an analogy with light. The equation he found resembles a massless Klein-330

Gordon (KG) equation,11 what the author called ‘our equations for the light wave’331

([Klein, 1984]; p. 17). The Swedish physicist was forced to introduce a symmet-332

ric tensor aµ̄ν̄ , whose contravariant components are fixed by the request to connect333

the five-dimensional wave equation with the four-dimensional Lorentz equation for334

massive charged particles, as we shall see below. Klein’s wave equation reads:335

aµ̄ν̄
(
δσ̄ν̄

∂

∂xµ̄
− Γ σ̄µ̄ν̄

)
∂σ̄Ψ = aµ̄ν̄∇µ̄∂ν̄Ψ = 0 , (9)

where he introduced the covariant derivative ∇µ̄ using the Christoffel symbols Γ σ̄µ̄ν̄ ,336

because Klein considered a wave function living on a curved five-dimensional Rieman-337

nian manifold. This means that Klein’s wave function is different from Schrödinger’s338

wave function, which lives in configuration space. With this respect, Klein’s Ψ resem-339

bles a classical scalar field. From a modern point of view, the introduction of aµ̄ν̄340

sounds strange, because the covariant derivative is usually contracted with the con-341

travariant components of the metric γµ̄ν̄ , which are different from aµ̄ν̄ , as we shall342

see below. It is worth noting that Klein did not start from a variational principle to343

obtain his wave equation. He simply wrote a light-like wave equation. The hypothesis344

that the wave function would be periodic with respect to the fifth coordinate x5 per-345

mits to “project” equation (9) to obtain the KG wave equation.12 See Appendix C346

for an explanation of the use of periodicity condition in the context of de Broglie’s347

work.348

How did Klein justify the analogy with light? In Klein [1991] the author recol-349

lected: ‘[...] for some time I had played with the idea that waves representing the350

motion of a free particle had to be propagated with constant velocity, in analogy with351

light waves – but in a space of four dimensions – so that the motion we observe is a352

projection on our ordinary three-dimensional space of what is really taking place in353

four-dimensional space. [emphasis added]’ ([Klein, 1991]; p. 108). The introduction of354

the symmetric tensor aµ̄ν̄ served this specific purpose. Klein’s conviction was enforced355

by the fact that in the long wavelength limit equation (9) reduces to the eikonal356

equation for light rays. As a consequence, Klein imposed that in the semi-classical357

limit the four-dimensional motion of charged particles with mass m in the presence358

of a gravitational and electromagnetic field should be described by five-dimensional359

null-geodesics of the following differential form:360

dσ̂2 = aµ̄ν̄dx
µ̄dxν̄ =

1

m2c2
dθ2 + ds2 (10)

([Klein, 1984]; p. 17) and showed that the correspondent geodesic equation is equiv-361

alent to the four-dimensional Lorentz equation. It seems that Klein introduced a362

different metric for the microscopic world, aµ̄ν̄ , whose components can be obtained363

11Given a scalar field φ of mass m, the KG equation is �φ = m2c2

~2 φ.
12Klein and all the authors we consider in the present paper were convinced, at that time, that the

relativistic wave equation for the electron would be the KG equation, instead of Dirac’s equation. It
is worth remembering that Pauli matrices were introduced in the same year [Pauli, 1927] and that
the Dirac’s equation would be published one year later [Dirac, 1928].
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from equation (10), namely:364

aµν = gµν +
e2

m2c4
AµAν aµ5 =

e2

m2c3β
Aµ a55 =

e2

m2c4β2
, (11)

and which is quite unlike the space-time metric γµ̄ν̄ , cf. equation (11) with (4) and365

(3), but he made no comments on this choice. It is worth noting that the particle’s366

mass m and its charge e are hidden in the expressions of aµ̄ν̄ tensor.367

To show the correspondence between five-dimensional null-geodesics and four-368

dimensional motion of charged particles, Klein considered the corresponding369

Lagrangian picture, by projecting the equations of motions obtained by varying the370

Lagrangian L =
1

2
aµ̄ν̄

dxµ̄

dλ̂

dxν̄

dλ̂
, where λ̂ is an arbitrary parameter. One of the five371

resulting Euler-Lagrange equations states that the momentum conjugated to the coor-372

dinate x5 is conserved, while the other four equations are equivalent to the Lorentz373

equation for an electron13 (charge q = −e):374

mc

(
d

dτ
(gµνu

ν)− 1

2
∂µgρνu

ρuν
)

= −e
c

(∂µAν − ∂νAµ)uν , (12)

where the four-dimensional proper time τ is defined by dτ =
√
−ds2, and the four-375

velocity of the particle is defined by uµ =
dxµ

dτ
. The analogy with light forced376

Klein to look for a correspondence between five-dimensional null-geodesics and377

four-dimensional paths: this conclusion would be criticized by de Broglie.378

Before going on, it is worth noting that equation (12) can be obtained, as Klein379

did, without fixing the constant14 β introduced in (5). In his first paper, Klein decided380

to set β = e
c and consequently the value of α must be α = 16πG

e2c2 . In his second paper381

[Klein, 1926b], a brief communication to Nature, it seems that Klein had changed382

his mind about the role of null-geodesics. In fact he explicitly referred to ‘the equa-383

tion of geodetics’ ([Klein, 1926b]; p. 516) of the line element15 dσ2. Furthermore,384

he suggested to start from the new Lagrangian L′ =
m

2
γµ̄ν̄

dxµ̄

dτ

dxν̄

dτ
, where the aµ̄ν̄385

tensor has disappeared, and the mass and the presence of the proper time τ indicate386

that Klein did not refer to null-geodesics.16 This brief communication is important,387

because Klein noted that the quantization of the momentum along the periodic fifth388

dimension17 of finite size l could have been connected with the quantization of the389

electric charge. In fact the momentum’s quantization along the fifth dimension forces390

the size l to assume a precise value:391

l =
hc
√

2κ

e
, (13)

13Technical details of the equivalence are given in Appendix A.
14See Appendix C for technical details in the context of de Broglie’s work.
15In this brief communication Klein introduced a different notation and decided to set α = 1 from

the beginning and consequently β =
√

16πG
c4

: this simply means that now the fifth coordinate has a

dimension of length.
16From a modern point of view, even in the massive case, the Lagrangian L′ should be written by

introducing the arbitrary parameter λ̂ The proper time τ can be introduced because the ratio dλ̂
dτ

is
constant, as we shall show in Appendix C, discussing de Broglie’s approach. We suppose that Klein
underlined implicitly that he did not consider null-paths any more.

17The momentum connected with the quantization of the electric charge is p5, the momentum

conjugated to the fifth dimension, namely p5 =
∂L′

∂ (dx5/dτ)
.
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where κ =
8πG

c4
. As we will see, as far as we know, neither de Broglie nor Rosen-392

feld fixed explicitly either of both parameters and they also did not make explicit393

considerations on the size of the fifth dimension.394

3.2 De Broglie’s contribution395

As mentioned in the introduction, during his stay in Paris Rosenfeld drew de Broglie’s396

attention to Klein’s approach. From de Broglie’s point of view, the analogy with light397

was not the correct perspective to describe the path of massive particles. In order398

to explain the conclusion reached by de Broglie, we emphasize again that Klein, de399

Broglie and Rosenfeld developed the five-dimensional Universe for different reasons.400

De Broglie’s paper analyses the features of the five-dimensional approach from401

two distinct perspectives: the classical and the quantum point of view. In the first402

part of de Broglie’s paper, the author described how the most attractive advantage403

of the classical five-dimensional approach would reside in the fact that it allowed to404

geometrize all the forces known at that time, i.e. the gravitational and the electro-405

magnetic forces. The author made an analogy between Einstein’s approach and the406

five-dimensional construction. De Broglie interpreted Einstein’s theory as a geomet-407

rical description of the gravitational force and Kaluza’s approach as an extension408

of this geometrical description to Maxwell’s theory18: ‘The main consequence of the409

introduction of the equivalence principle is that the metaphysic notion of force in the410

theory of gravitation disappears. The path followed by a point particle in a gravita-411

tional field can be defined, thanks to Einstein’s conceptions, as the geodesic line of412

the space-time. [...] The success of this beautiful interpretation of the gravitational413

field temptingly suggests to throw out the concept of force from the Physics, in order414

to replace it with the concept of geometry.’ ([Louis de Broglie, 1927b]; p. 65).415

In the second part of the paper, de Broglie introduced the description of the416

quantum behaviour of matter using wave/particle duality. From this perspective,417

there are no forces associated to the particles’ wave function, hence neither geomet-418

rical description nor analogy with light was needed. De Broglie explicitly stated that419

‘With the present state of our knowledge it seems that all the forces of which we420

are aware can be reduced to only two: the gravitational and electromagnetic forces.’421

([Louis de Broglie, 1927b] p. 65). It is worth noting that the quantum force concept422

emerged with the introduction of quantum fields. Unlike Klein, de Broglie introduced423

a wave equation describing quantum particles’ dynamics, i.e. the KG equation, in four424

dimensions: in the geometrical optics approximation the wave’s rays would follow the425

classical trajectories for massive particles. Hence a five-dimensional generalization of426

the KG equation would not require any analogy with light. It is important to stress427

that de Broglie did not use any variational principle to describe the wave’s dynamics.428

With this premise in mind we first consider de Broglie’s approach in more detail.429

De Broglie briefly reviewed Klein’s approach and introduced the line element (1)430

with Klein’s Ansatz that now we rewrite here for convenience:431

dσ2 = αdθ2 + ds2 , (14)

where

dθ = dx5 + βAµdx
µ ; gµν = γµν −

γ5µγ5ν

α
; ds2 = gµνdx

µdxν (15)

18Here and in the following, we present an English translation of some parts of the original paper,
written in French.
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(We adapted de Broglie’s notation changing the symbols he used). Let the values432

of α and β be unfixed for the moment. De Broglie’s choice shall be analysed after433

equation (23).434

At this point, de Broglie’s and Klein’s paths separate. As we said, de Broglie435

did not consider any analogy with light, hence he studied the geodesic equations436

in five dimensions for massive particles. Like Klein, the key idea is that our world437

would be a projection onto a four-dimensional manifold of what happens in the five-438

dimensional Universe. The four-dimensional geodesic equation is obtained by the439

following variational principle19:440

δS4 = 0 ⇒ δ

∫ M

O

dτ = 0 , (16)

where O and M are ‘two fixed points of the world line’ ([Louis de Broglie, 1927b]; p.441

69). De Broglie considered its natural generalization in five dimensions:442

δS5 = 0 ⇒ δ

∫ M

O

dτ̂ = 0 , (17)

where we introduced the notation dτ̂ =
√
−dσ2. The geodesic equations following443

from (17) are equivalent to the five-dimensional equations obtained by Klein with the444

help of the aµ̄ν̄ tensor he introduced in his first paper,20 and their four-dimensional445

projection reproduce equation (12). In order to obtain the correct Lorentz equations,446

de Broglie set447

α
dθ

dτ
= − e

βc

1

mc
, (18)

underlining the importance of this equation. Indeed, from de Broglie’s point of view,448

equation (18) suggests a geometrical interpretation of the ratio e
m . Let’s consider,449

following de Broglie, ‘a coordinate line x5’ ([Louis de Broglie, 1927b]; p. 68) and450

using dτ =
√
−ds2 and dτ̂ =

√
−dσ2 we rewrite equation (14) as follows:451

dτ̂2 = dτ2 + |α| dθ2 . (19)

We use |α|, because de Broglie set α < 0, a choice that we shall discuss after equation452

(23). ‘Let us represent, on a point P of this coordinate line, a part of a plane π453

inclined with respect to the x5 direction, which represents a little portion of the four-454

dimensional hypersurface x5 = const. passing through the point P . Let PQ be an455

element of a world line of length dτ̂ and let PS and PR be its projections along the456

x5 direction and orthogonal to the x5 direction respectively. From equation (19) it457

follows that458

PS =
√
|α|dθ ; PR = dτ . (20)

19Because of our mostly-plus signature, the four-dimensional action for a point particle involves
the proper time τ .

20See Appendix C for a detailed explanation of the original derivation. As we said, Klein was
certainly aware of this fact, because he changed his own approach to the geodesics in the brief
communication to Nature. It is worth noting that de Broglie never cited Klein’s Nature paper.
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[...] the tangent of the angle Q̂PR, namely

√
|α|dθ
dτ

, is proportional to the ratio e
m459

where e and m are the charge and the mass of the particle of which PQ is the460

element of the world line. Hence the world line of every moving object makes the461

same angle with the direction x5 at each point, which angle is straight if the electric462

charge is zero.’ ([Louis de Broglie, 1927b]; p. 68).21 This result supported de Broglie’s463

conviction that the five-dimensional Universe could provide a geometrical description464

for all of the known physical concepts. Rosenfeld would continue to use this idea, as465

we shall see in the discussion after equation (59).466

De Broglie asked himself what the exact form of the action S5 to be varied would467

be in order to obtain a five-dimensional generalization of the four-dimensional massive468

particle’s action. De Broglie stressed that he wanted to obtain, in the case of zero469

charge, the usual action S4 = −mc
∫ M

O

dτ ([Louis de Broglie, 1927b]; p. 70) and he470

proposed that the five-dimensional particle’s action should be22:471

S5 = −I
∫ M

O

dτ̂ , (21)

where the quantity I satisfies the following relations472

Iαdθ
dτ̂

= − e

cβ
, I dτ

dτ̂
= mc , (22)

and has the following form:473

I =

√
m2c2 − e2

αβ2c2
. (23)

The invariant I needs some comments, connected with de Broglie’s choice of α’s474

and β’s values. De Broglie implicitly set475

αβ2 = −16πG

c4
, (24)

from the beginning of his paper. As a consequence, IdB = I
(
αβ2 = −16πG

c4

)
= is476

a real constant:477

IdB =

√
m2c2 +

e2c2

16πG
, (25)

and comparing S4 and S5, de Broglie suggested that it should be interpreted as the478

modulus of the five-dimensional momentum Pµ̄ for charged particles, defined in anal-479

ogy with the four-dimensional momentum pµ = mcgµν
dxν

dτ
for uncharged particles480

in four dimensions, namely Pµ̄ = γµ̄ν̄IdB
dxν̄

dτ̂
. To be more explicit, referring to the481

geometrical picture discussed above, de Broglie asserted that relations (22) should482

21With the choice α > 0, the ratio would define the hyperbolic tangent of the angle.
22We skip over some technical details. See Appendix C for de Broglie’s original proof that S5

reduces to S4 in the case of null charge.
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be interpreted as the tangent and orthogonal components of the five-dimensional483

momentum Pµ̄ with respect to the fifth direction x5 ([Louis de Broglie, 1927b]; p.484

70, note (1)). We will return to this interpretation discussing Rosenfeld work, see485

the discussion after equation (59). Equation (24) means that unlike Klein, de Broglie486

imposed that the fifth dimension would be a time-like coordinate, because from equa-487

tion (24) it follows γ55 = α < 0. De Broglie made no explicit comment on the time-like488

character of the fifth dimension. As we shall see, Klein noted that this choice was489

inconsistent with other demands of the model. Rosenfeld would be strongly influ-490

enced by de Broglie’s ideas, but he was aware of this inconsistency. After having491

specified this fundamental difference between the two approaches, let us now return492

to de Broglie’s considerations.493

After having established that the Lorentz equation (12) can be obtained by vary-494

ing23 S5, de Broglie declared: ‘The notion of force has been banned completely from495

Mechanics.’ ([Louis de Broglie, 1927b]; p. 70), emphasizing his original aim. As a con-496

sequence he proposed the following wave equation as a generalization of Schrödinger497

wave equation, instead of (9), namely498

γµ̄ν̄∇µ̄∂ν̄Ψ =
4π2

h2
I2
dBΨ , (26)

where now the covariant derivative is correctly contracted with the metric. Equation499

(26) could resemble a KG equation in five dimension, where IdBc plays the role of500

the mass in five dimensions, because it is a real quantity. It is worth noting that the501

identification of Ψ as a wave function prevents the identification of IdB with a mass502

term in the sense of modern field theory. Using the fact that the action S5 can be503

rewritten as follows504

S5 = −
∫ M

O

e

cβ
dx5 +

e

c

∫ M

O

Aµdx
µ −mc

∫ M

O

dτ , (27)

de Broglie could show that equation (26) is equivalent to the four-dimensional505

KG equation for massive particles, which reduces to Schrödinger equation in the506

non-relativistic limit. In order to demonstrate his claim, de Broglie introduced the507

geometrical optics approximation, writing the five-dimensional wave function Ψ as508

Ψ = Ce
i
~S5 = f(x, y, z, t)e

i
~
ex5

cβ (28)

([Louis de Broglie, 1927b]; p. 72), where C is a constant and S5 is the five-dimensional509

action defined in (27). It is worth noting that De Broglie considered S5 as an Hamilto-510

nian action. This means that he interpreted the five-dimensional action as a “Jacobi511

function”. As we will see, De Donder will be more explicit on this fact. At this512

point, De Broglie expressed his opinion on the analogy with light introduced by the513

Swedish physicist: ‘O. Klein writes the equation (26) without the second member,514

and he concludes that the world-lines must be null-geodesics; it is in our opinion that515

the second term of (26) is fundamental and that the world-lines are still geodesics,516

but not null-geodesics’ ([Louis de Broglie, 1927b], p. 72; we modified the number of517

the cited equation in order to fit with our numerical order).518

Before going on we return to the question of the fifth dimension’s size, which519

was never calculated by de Broglie. Indeed, the author commented on the size of the520

fifth dimension like this: ‘The variations of the fifth coordinate completely escape521

our senses [...] two points that differ only for the value of the fifth coordinate are522

23See Appendix C.
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indistinguishable from our point of view’ ([Louis de Broglie, 1927b]; p. 67). But523

from these observations, de Broglie inferred, like Klein, that the components of the524

metric γµ̄ν̄ must be independent from the fifth coordinate and that ‘the only humanly525

possible transformations have the following form:526

x′
µ

= fµ
(
x0, x1, x2, x3

)
’ (29)

([Louis de Broglie, 1927b]; p. 67). If de Broglie would have chosen αβ2 = 2κ, i.e. a527

space-like dimension, he would have been able to read off the size of the compact528

dimension. Indeed, after noting that24 x̃5 =
√
αx5 has dimensionality of [length]1,529

the dependence on the fifth dimension in (28) can be rewritten as530

i

~
ex5

cβ
=
i

~
e

c
√
αβ

√
αx5 =

i

~
e

c
√

2κ

√
αx5 = i

x̃5

l̃
, (30)

where l̃ = ~c
√

2κ
e is Klein’s length (13) divided by 2π, showing that Klein’s length531

determines the periodicity.532

De Broglie was very impressed by equation (26) and he concluded his paper with533

the following remark: ‘For studying the problem of matter and of its atomic structure534

deeply, it would be necessary to perform a systematic analysis of the five-dimensional535

Universe’s point of view that seemed to be more promising than Weyl’s approach. If536

we understand how to interpret correctly the role played by the constants e, m, c,537

~ and G in equation (26), we will have finally grasped one of the most mysterious538

secret of Nature.’ ([Louis de Broglie, 1927b] p. 73).539

Klein’s answer to the question of null-geodesics arrived immediately [Klein, 1927a].540

He noted that in equation (26) de Broglie used the metric γµ̄ν̄ instead of his “arti-541

ficial” tensor aµ̄ν̄ : inserting the components of aµ̄ν̄ in (26), Klein showed that the542

equations (26) and (9) were equivalent. The fact is not surprising, because the parti-543

cle’s mass is hidden in the expression of the aµ̄ν̄ tensor.25 Klein also noted that the544

condition on the parameters αβ2 = 2κ was incompatible with the choice of a time-like545

fifth dimension.26 But he concluded the brief communication with a positive com-546

ment on de Broglie’s assertion: ‘...this error has no influence on de Broglie’s result547

[emphasis added]’27 ([Klein, 1927a]; p. 243). It is worth noting that in his subsequent548

papers Klein would have stressed the need to introduce a space-like fifth dimension28
549

([Klein, 1927b]; p. 206, footnote *). Notwithstanding, after de Broglie’s paper, Klein550

abandoned explicitly the analogy with light.551

3.3 De Donder’s lectures on gravitation552

Neither Klein nor de Broglie tried to obtain their wave equation, in the works we553

analysed so far, using a unified variational principle. In fact they introduced only554

24Remember that de Broglie choose a negative value for α. We suppose that for this reason he
never noted this fact.

25See discussion after equation (10).
26In Appendix B we will analyse Klein’s claims in more detail.
27Klein assertion was referred to the fact that irrespective of the nature of the fifth coordinate,

after having used the periodicity condition, the term with the Newton constant in (26) disappears
and it reduces to the KG equation. See Appendix C, the discussion after equation (C.19) for a
detailed explanation.

28See Appendix B for technical details.
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the particle’s Lagrangian in order to describe the classical particle’s dynamics.29 The555

Belgian physicist Théophile De Donder was an early supporter of variational princi-556

ples, developing the purely formal parts of the calculus of variations and analysing557

e.g. the effect of transformations of coordinates and parameters upon what he called558

“invariants” and upon other expressions which occur in the theory of the variational559

calculus [De Donder, 1930]. As we shall see, De Donder’s “invariants” would corre-560

spond to our modern Lagrangian density. He tried also to derive WM from a unified561

variational principle. He did not consider multidimensional world, because he was562

satisfied to write a unified Lagrangian involving the gravitational field, the Maxwell563

field and a Lagrange function for the quantum particle. De Donder tried to present564

a coherent framework for relativistic Lagrangian dynamics in the context of curved565

spaces, and he was one of the first to note the role of the HJ equation as constraints566

in this context. In his first paper, Rosenfeld mainly followed De Donder’s approach567

to introduce the wave function in the five-dimensional Universe, as we shall see later.568

During the Spring of 1926, De Donder gave a series of lectures at the MIT. In these569

lectures, which would be published the following year [De Donder, 1927a], the Bel-570

gian physicist gathered together all the results he had just published in the Comptes571

Rendus journal. The lectures contain all the original references, with an advantage:572

Comptes Rendus publications were often brief communications, whereas the lectures573

gave a complete overview of De Donder’s point of view. For this reason we will refer574

to his MIT lectures. We stress that this paragraph is a brief analysis of the ideas that575

influenced Rosenfeld. A deeper understanding of De Donder’s methods goes beyond576

the goals of the present paper.577

The Belgian physicist tried explicitly to apply GR to the microscopic world. At578

the end of the first lecture, the general introduction, De Donder wrote: ‘We then579

say a few words about the mysterious quantum. To shed some light on this obscure580

physical entity, we shall deduce at first from relativistic electrodynamics expressed by581

means of points in space-time, the dynamics of an atomic or molecular system of any582

number of degrees of freedom. We shall then devise a general method of quantization583

in space-time, which we shall apply to the quantization of the point electron and584

to that of continuous systems: It will be shown that this quantization is a logical585

consequence of our gravific theory [...]’30 ([De Donder, 1927a]; p. 8).586

This comment is important for two reasons. First, it emphasized again that the587

problem of reconciling quantum physics and GR was considered early in the history588

of quantum physics. Secondly, De Donder developed his approach during the birth of589

QM and it is a “spurious” approach in the following sense. Before 1925 the quantiza-590

tion of a system was performed using Epstein-Sommerfeld-Wilson rules and a system591

like ‘the point electron’, as De Donder referred to, would follow a classical trajec-592

tory. He agreed with this interpretation and in this sense, from our point of view,593

his approach belongs to the old quantum theory. But De Donder knew Schrödinger594

papers and he explicitly stated that he was looking for new quantization rules that595

should be compatible with the curved space-time of Einstein theory. These rules596

would have to reproduce, in his opinion, the general relativistic generalization of597

Schrödinger’s equation.31 This means that with the phrase ‘general method of quan-598

tization in space-time’ De Donder intended a procedure to obtain a wave equation599

for the wave function ψ, living on a curved background. As far as we know, De Don-600

der never referred to ψ as a field. For this reason we could say that De Donder was601

looking for a “General Relativistic Quantum Mechanics” (GRQM).602

29As we shall note in the next section, Klein’s last paper would contain a five-dimensional vari-
ational principle to derive WM ([Klein, 1927b]; p. 201), which is slightly different from Rosenfeld’s
variational principle.

30De Donder used the old term ‘gravific theory’ instead of ‘gravitational theory’.
31Once again the reference was to the KG equation.
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In WM a key ingredient of the quantization procedure was the imposition of603

boundary conditions for the wave function. As far as we know, De Donder never604

considered any boundary conditions explicitly. As we will see, his method was based605

on a unified variational principle, but De Donder’s ψ was treated, from our point of606

view, classically. This means also that, from the modern field theoretic point of view,607

he did not consider any quantum feature of the fields. Lastly, it is worth noting that608

De Donder was not alone in believing that quantization rules could be derived in the609

context of some unknown classical theory. Einstein, for example, would look for a610

classical field theory (Einheitliche Feldtheorie) for the rest of his life [Pais, 1982]. We611

do not know why De Donder was convinced of this idea, but because of the absence612

of a discussion on the wave function’s boundary conditions, as we shall discuss after613

equation (45), the unified variational principle seemed not to require any modification614

of GR. For this reason, De Donder thought that the quantization rules should have615

been a consequence of GR principles, as he stated in the in the introduction cited616

above. This attitude is consistent with the claim that De Donder belongs to the group617

of authors who were convinced of GR supremacy. This conviction is confirmed by the618

last sentence of the general introduction to his MIT lectures: ‘Once more relativity619

unfolds the great physical drama of the universe clad in an immutable form bearing620

the stamp of eternal laws.’ ([De Donder, 1927a]; p. 8). This means also that from621

a modern point of view, in his approach De Donder did not consider any quantum622

effect on the gravitational field. This fact was common to almost all the pre-1930623

works: as far as we know Rosenfeld’s approach was the only exception.624

We introduce some technical details in order to understand how De Donder tried625

to harmonize WM with GR. The tenth lecture is dedicated to the ‘Relativistic Quan-626

tization’, and it started from the classical dynamics of a charged particle in GR,627

i.e. the ‘point-electron’. The dynamics is described by the Euler-Lagrange equations628

obtained using the following Lagrangian32 ([De Donder, 1927a]; p. 90):629

LDD (x; u) =
mc

2
gµνu

µuν − e

c
Aµu

µ, (31)

where uµ =
dxµ

dτ
, τ is the proper time, and the tangent vector satisfies the following630

constraint:631

gµνu
µuν = −1. (32)

Using LDD, De Donder was able to define the conjugate momenta as pµ =
∂LDD
∂uµ

=632

mcgµνu
ν − e

c
Aµ, and the Hamiltonian H = pµu

µ − LDD reads:633

H =
1

2mc

(
pµ +

e

c
Aµ

)(
pµ +

e

c
Aµ
)
. (33)

The constraint gµνu
µuν = −1 is equivalent to the relation H = − 1

2mc, i.e. the634

reduced HJ equation for a point particle, which De Donder called ‘Jacobian equa-635

tion’. Finally, by using equation (33), the constraint assumes the following form ([De636

32The “Lagrangian” used by De Donder had the dimensions of a Lagrangian divided by a velocity
and the same happens for the following “Hamiltonian” (33), but we will call them Lagrangian and
Hamiltonian as well.
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Donder, 1927a]; p. 91, Eq. (10)):637

gµν
(
∂S

∂xµ
+
e

c
Aµ

)(
∂S

∂xν
+
e

c
Aν

)
+m2c2 = 0 ,

∂S

∂xµ
= pµ, (34)

where S is the Jacobi function of classical mechanics. Before going on, we point out638

that De Donder was aware of the following fact. Using S4 = −mc
∫ M

O

dτ as action639

for the free point-particle, the Lagrangian approach could be performed introducing640

an arbitrary parameter λ and rewriting S4 as follows:641

S4 =

∫ M

O

Ldλ̂ =

∫ M

O

√
−γµ̄ν̄

dxµ̄

dλ̂

dxν̄

dλ̂
dλ̂ . (35)

In this case, a Legendre transform would produce a null Hamiltonian, i.e. the642

constraint H = 0.643

At this point De Donder introduced a wave function associated to the electron,644

namely ψ (τ, x), a function of the spatial coordinates x and of the proper time τ . In645

the MIT lectures, the author made no explicit discussion neither on the mathematical646

feature of the wave function nor on its physical interpretation. He implicitly identified647

it with Schrödinger’s wave function, when considering a single electron. In fact, De648

Donder imposed the following Ansatz for the wave function ([De Donder, 1926a]; p.649

91):650

ψ = ek S i.e. S =
1

k
log (ψ) , (36)

where the Jacobi function S(τ , x) depends on the spatial coordinates and on the651

proper time. At the beginning k is an unknown constant, but in the end, in order652

to match his wave equation with Schrödinger equation, he would choose k =
i

~
.653

De Donder made no comment on the fact that with this choice both ψ and the654

log-function in equation (36) turn into complex functions. As a consequence of the655

fact that he left k undetermined, he would not use the complex conjugate as we656

shall do in equation (42). De Donder will use the correct notation in his book on657

Variational Calculus [De Donder, 1930]. If k =
i

~
, the Ansatz (36) corresponds to658

the correct geometrical optics approximation. It is worth noting that this procedure659

is very similar to Klein’s approach. In fact, this procedure was the common way660

to introduce a wave equation for a “quantum” particle in the mid 1920s. Unlike661

Klein, from De Donder’s point of view it was not necessary to unify all forces with662

a five-dimensional Lagrangian. Indeed, De Donder was satisfied with a unified action663

principle. Unlike Klein, he looked from the beginning for an action principle in four664

dimensions, with the help of relativistic Hamiltonian dynamics.665

After having introduced the Jacobi function S(τ , x), in order to obtain the reduced666

HJ equation H = − 1
2mc, the reducibility condition reads:667

∂S

∂τ
=

1

2
mc. (37)
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Integrating (37), De Donder wrote the Jacobi function in the following form:668

S =
1

2
mcτ + S0

(
x0, x1, x2, x3

)
, (38)

that will play an important role for Rosenfeld, as we shall see in the next section.669

Thanks to definition (36) and using equation (37), the author was able to write670

([De Donder, 1926a]; p. 91):671

∂S

∂τ
=

~
i

1

ψ

∂ψ

∂τ
, (39)

∂S

∂xµ
=

~
i

∂µψ

ψ
, (40)

ψ =
~
i

∂ψ
∂τ
∂S
∂τ

=
~
i

2

mc

∂ψ

∂τ
. (41)

The conjugated wave function ψ satisfies the conjugated version of equations (39),672

(40) and (41).673

Inserting (40) and (41) into (34), the HJ equation (34) can be rewritten in the674

following form:675

J (ψ) ≡ −gµν
(
mc

2
∂µψ +

e

c
Aµ

∂ψ

∂τ

)(
mc

2
∂νψ −

e

c
Aν

∂ψ

∂τ

)
−m2c2

∂ψ

∂τ

∂ψ

∂τ
= 0 . (42)

In De Donder’s approach equation (42) defines a functional J (ψ), that is an invariant676

under all changes of variables, x0, . . . , x3 ([De Donder, 1927a]; p. 92). The J functional677

plays a fundamental role for the author. From his point of view, with the introduction678

of the wave function ψ, the classical HJ equation (34) becomes a constraint for the679

new functional J(ψ), i.e.680

J (ψ) = 0 , (43)

and using this new functional De Donder was able to introduce what the author calls681

the relativistic quantization rule for curved space-time. After defining the following682

functional derivative:683

δ

δψ
J(ψ) =

∂J

∂ψ
− ∂µ

∂J

∂∂µψ
+ · · · , (44)

the quantization rule reads: ‘the variational derivative of the left-hand member of the684

Jacobian equation (43), with respect to ψ, shall vanish. Explicitly:685

δ

δψ

(√
−gJ

)
= 0 ’ (45)

([De Donder, 1927a]; p. 92).686

Before going on, let us consider De Donder’s variational principles in more detail.687

Lecture 5 of the MIT lectures is dedicated to ‘The Fundamental Equations of the688

Gravific Field’. In order to obtain Einstein equations, De Donder considered the689
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following variational principle ([De Donder, 1926a]; p. 47):690

δ [(aR+ b+ Lm)
√
−g]

δgµν
= 0 , (46)

where the functional derivative is defined as in equation (44) with ψ replaced by the691

metric, R is the four-dimensional curvature scalar, a and b are arbitrary constants692

(incidentally, the constant b plays the role of the Cosmological Constant Λ, but De693

Donder did not comment on this fact), Lm is an unspecified Lagrangian density for694

the matter part of the theory, and the functional (aR+ b)
√
−g, i.e. the Lagrangian695

density, is named ‘the characteristic gravific function’ ([De Donder, 1926a]; p. 47).696

It seems that in these years De Donder preferred to introduce a variational principle697

using Lagrangian densities instead of action functionals. De Donder himself stressed698

this fact as follows, advocating a precise justification of the choice he made: ‘The vari-699

ational principle, as we have presented it, is evidently a generalization of Hamilton’s700

principle, that is, equivalent to placing701

δ

∫
Ω

(aR+ b+ Lm)
√
−gd4x = 0 , (47)

Ω being a region of space-time at the boundaries of which the variations must vanish.702

It is in order to avoid the use of four-dimensional space that we have preferred the703

above presentation.’ [emphasis added] ([De Donder, 1926a]; p. 47). In his following704

works devoted on the developments of variational principles and their applications705

[De Donder, 1930], the author will use both forms. Let us now consider again De706

Donder’s approach to quantization procedure.707

Why did De Donder call equation (45) ‘a quantization rule’? The functional708

derivative (44), introduced by De Donder, produces the usual equations of motion709

for a charged scalar field and he showed that it reduces to the Schrödinger’s equation710

in the non relativistic limit and in the approximation of an electrostatic field. It is711

worth noting that De Donder’s ψ would not have the correct dimensionality to be712

interpreted as the Schrödinger’s wave equation, but De Donder made no comments713

on this fact. For this reason he considered equation (45) as a quantization rule. In714

this sense, for us, De Donder’s approach belongs to the WM point of view: like Klein715

he believed that writing a wave equation was a sufficient condition to describe the716

quantum behaviour of a system.717

Why did De Donder assert in his general introduction that this quantization rule718

would be ‘a logical consequence of our gravitational theory’? In order to answer this719

question, firstly we note that from a modern point of view, De Donder’s approach720

is of course a classical approach, because it is equivalent to a classical variational721

principle for a field theory, though De Donder interpreted the “field” ψ as a wave722

function. The absence of the integral in (45) was compensated by an ad hoc choice of723

the functional derivative defined in (44). Secondly we remember that the first authors724

that tried to quantize scalar fields were Klein and Jordan in 1927 [Jordan & Klein,725

1927]. This means that the concept of quantum field was not already born and like726

other authors De Donder was convinced that writing a wave equation for a system727

was sufficient to quantize it. De Donder was convinced that GR could explain where728

the quantization rules come from, because he obtained Schrödinger’s wave equation729

through the use of a variational principle, like Einstein’s equations are obtained, only730

from different action. Lastly, it is worth noting that by applying variational methods731

without imposing commutation relations for the fields, the apparatus of GR seems not732

to require any modification. For these reasons, De Donder made the following remark,733

in order to emphasize his interpretation of the approach: ‘We have thus shown that734
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the quantization of the point electron can be deduced from Einstein’s gravitational735

theory by means of an absolute extremal.’ ([De Donder, 1927a]; p. 95).736

Before going on, we make the following remark on De Donder’s functional. Unlike737

Klein, who considered a real scalar field in five dimensions, De Donder wrote a sort738

of Lagrangian density for a charged scalar field. More precisely, using relation (41)739

the J functional reads:740

J(ψ) =
m2c2

4

[
−gµν

(
∂µψ +

i

~
e

c
Aµψ

)(
∂νψ −

i

~
e

c
Aνψ

)
− m2c2

~2
ψψ

]
. (48)

The expression in the squared brackets resembles the Lagrangian density of a complex741

scalar field in the presence of an electromagnetic and a gravitational field, but neither742

ψ nor J would have the correct dimensionality to be interpreted as a scalar field and743

a density Lagrangian respectively. Unlike Klein’s functional, De Donder’s functional744

(48) would have the correct sign in order to be interpreted as a Lagrangian density745

[Rocci, 2013].746

4 Rosenfeld’s contributions747

Rosenfeld merged De Donder’s and de Broglie’s ideas using Klein’s approach. He748

explicitly cited all the authors we discussed in the preceding section. Like De Donder,749

he considered the relativistic Jacobi function approach. Like de Broglie, he explicitly750

inserted a mass term in the KG equation. Like Klein, he was aware of the fact that751

the fifth dimension’s character should be space-like. But the principal purpose of752

Rosenfeld was to try to understand concretely how quantum effects should modify753

the classical view in the presence of a gravitational field, at least in the weak field754

approximation.755

All of Rosenfeld’s papers on this topic, [Léon Rosenfeld, 1927a,b,c], are authored756

by Rosenfeld alone: to what extent were de Broglie and De Donder active collabora-757

tors in these articles? The influence of de Broglie and De Donder is stated explicitly758

by the author himself. At the end of the introduction of his first paper, Rosenfeld759

wrote: ‘This work was completed under the direction of Mr. L. de Broglie and Mr.760

Th. De Donder, who have never ceased to assist me with their advice, and have been761

kind enough to communicate to me their works, even manuscripts; I am happy to762

be able to express my deep appreciation to them here.’ ([Léon Rosenfeld, 1927a]; p.763

305). From the observations that we make in the rest of this paper, we can infer that764

De Donder had an active part in Rosenfeld’s paper. In particular, we shall see how765

Rosenfeld followed De Donder’s approach to introduce the wave equation in the con-766

text of a curved space-time, which permitted him to find a natural explanation of De767

Donder’s interpretation of the quantum wave amplitude. Furthermore, we shall infer768

what precisely de Donder found attractive in Rosenfeld’s five-dimensional Universe.769

In his second and third communications, Rosenfeld supported with a physical expla-770

nation his first paper. Stimulated by De Donder’s influence, Rosenfeld recognized that771

he was using Bohr’s correspondence principle. Unlike Rosenfeld, De Donder thought772

that Rosenfeld’s work was a proof of a new version of the correspondence principle,773

which could be derived from Einstein’s theory, and stressed that this principle should774

have been a cornerstone or the ‘gravitational wave mechanics’ ([De Donder, 1927b];775

p. 506), i.e. a theory reconciling WM with Einstein’s theory.776

Rosenfeld’s first paper [Léon Rosenfeld, 1927a] is a long and technical work and it777

does not contain any physical interpretation of the choices he made. For this reason,778

in Section 4.1 we shall pay more attention to the technical details of the Rosenfeld’s779

approach, explaining his results from the author’s point of view. The second and the780
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third papers are shorter than his first contribution. In these articles the author clari-781

fied his technical choices from the physical point of view. We will analyse Rosenfeld’s782

comments in Section33 4.2. At the end, in Section 4.3, we shall emphasize how these783

first articles influenced Rosenfeld’s future work and we shall interpret the author’s784

results from a modern point of view.785

4.1 The quantum origin of a space-time metric786

In the introduction to his first paper [Léon Rosenfeld, 1927a], written during his stay787

in Paris at the “Ècole normale supérieure”, Rosenfeld formulated his main goals34:788

‘The first part of this work is dedicated to the systematic study of the789

five-dimensional universe considered by O. Klein, Th. De Donder and L.790

de Broglie. We will show how the model of the five-dimensional universe is791

satisfactory [...]. Generalizing Gordon’s and Schrödinger’s papers, we will792

show how the introduction of the Ψ function of de Broglie-Schrödinger793

permits us to combine in a unique variational principle, into the five-794

dimensional universe, the gravitational force, the electromagnetic force795

and the quantum phenomena (the Ψ equation). [...] Finally, a formula will796

be established to calculate the gravitational and electromagnetic potentials,797

for a field slightly different from the Minkowskian field, as a function of798

Ψ . The calculation will be developed for the case of a stationary charge799

and for the case of a charge moving with constant speed. Comparing the800

values obtained with the classical potentials, we find that the amplitude of801

the Ψ function representing the charge must have a constant value inside802

a finite volume and it must be zero outside of that volume: these results803

can be well understood with the beautiful interpretation of the Ψ function804

recently proposed by Mr. De Donder; quite to the contrary it appears to805

be irreconcilable with the opinion of Mr. de Broglie, who believed that the806

charge would be a point singularity of the Ψ function. [emphasis added]’807

([Léon Rosenfeld, 1927a]; p. 304-5).808

We shall investigate only the first case proposed by Rosenfeld, i.e. the case of a809

stationary massive charge, represented by a wave function, in order to investigate the810

gravitational field produced by a quantum particle. Rosenfeld would consider a weak-811

field approximation, what he called ‘a field slightly different from a Minkowskian812

field’35. Rosenfeld would find that the quantum particle should be represented by813

a localized wave function, which is non zero inside a finite volume, instead of a814

point-like object, in contrast with de Broglie’s point of view. This fact would enforce815

De Donder’s interpretation of the wave function’s amplitude as representing a sort816

of internal quantum force of matter. We will not discuss this interpretation, which817

was based on the application of Rosenfeld-De Donder’s approach to multi-particle818

systems, because for this case Rosenfeld did not investigate the gravitational field.819

Why did Rosenfeld consider a five-dimensional framework? The answer seems now820

almost trivial: the author studied Klein’s work with de Broglie and was fascinated821

by its capability to describe in a unified framework GR and Maxwell’s theory.822

What was Rosenfeld’s starting point? The answer is connected with his knowl-823

edge of De Donder’s and de Broglie’s works. Indeed, following De Donder, Rosenfeld824

33The fourth of Rosenfeld’s communication is an attempt to unify the preceding works.
34We present an English translation of some parts of the original paper, written in French, and

then we comment on it. We omit the references of the original work.
35Minkowskian field is the English translation of the French expression “champ de Minkowski”

which was well understood and commonly used in that period as the vacuum space. See e.g. Solomon
[1938] or Lichnerowitz in Pauli [1993].
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started from the classical description of a single charged particle, and following Klein825

and de Broglie, he considered a five-dimensional space-time, with the usual coordi-826

nates (x0 , x1 , x2 , x3 , x5 ). The classical particle was described by a five-dimensional827

Jacobi function S̄, namely828

S̄ (x) = − e

cβ
x5 + S0

(
x0 , x1 , x2 , x3

)
, (49)

in analogy with De Donder’s four-dimensional Jacobi function (38), that we rewrite829

here for convenience, namely:830

S =
1

2
mcτ + S0

(
x0, x1, x2, x3

)
. (50)

Rosenfeld explicitly defined the fifth coordinate putting:831

‘x5 = −mc
2β

2e
τ ’ ([Léon Rosenfeld, 1927a]; Eq. (5), p. 306), (51)

specifying that ‘β is a universal constant.’ ([Léon Rosenfeld, 1927a]; p. 306). From832

our point of view, the introduction of the fifth coordinate simply follows from the833

comparison between De Donder’s Jacobi function, equation (50), and de Broglie’s five-834

dimensional Hamiltonian action for the charged particle, equation (27). Indeed, to835

obtain equation (27), it is sufficient in (50) to set S0 = −
∫ M

O

e

c
Aµdx

µ −mc
∫ M

O

dτ .836

About the size of the fifth dimension, Rosenfeld shared de Broglie’s view. He observed837

that from equation (49) it follows the invariance of x5 with respect to the general838

transformation of coordinates f(x0, x1, x2, x3) and concluded: ‘Its invariance with839

respect to the transformations that we are able to perform explains why this fifth840

dimension escapes direct observations.’ ([Léon Rosenfeld, 1927a]; p. 307). Like de841

Broglie, Rosenfeld did never discuss explicitly the size of the fifth dimension, though842

he would have been able to extract it.36
843

The dynamics of classical charged particles is described by the HJ equation and844

Rosenfeld introduced his five-dimensional analogously. Following the author we note845

first that the new Jacobi function S̄ satisfies37
846

∂5S̄ = − e

cβ
. (52)

Secondly, Rosenfeld used Klein’s five-dimensional metric γµ̄ν̄ defined in the previous847

section, see equations (14) and (15), with the same convention, i.e. imposing the848

following choice for α and β: αβ2 = 2κ. Lastly, with the help of the components of849

the inverse metric γµ̄ν̄ , namely850

γµν = gµν , γ55 =
1

α
+ β2AµA

µ , γ5µ = −βAµ , (53)

the author is able to show how De Donder’s four-dimensional HJ equation (34),851

namely852

gµν
(
∂µS0 +

e

c
Aµ

)(
∂νS0 +

e

c
Aν

)
+m2c2 = 0 , (54)

36See the discussion after equation (29).
37Note that the combination e

cβ
x5 has the dimension of an action.
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can be rewritten in the following compact form ([Léon Rosenfeld, 1927a]; p. 307):853

γµ̄ν̄∂µ̄S̄∂ν̄ S̄ = −
(
m2c2 − e2c2

16πG

)
. (55)

It is worth noting that equation (52) is the same relation that induced Klein to854

introduce a fifth coordinate: it suggests indeed that the electric charge could play the855

role of an extra momentum component, as recollected by Klein (see the beginning of856

Sect. 3.1), and permits to translate in the five-dimensional language the relativistic857

HJ equation for a particle moving in a combined electromagnetic and gravitational858

field.859

Choosing αβ2 = 2κ, Rosenfeld implicitly imposed α > 0. As noted in the previous860

section, this means that, like Klein, Rosenfeld correctly introduced a space-like fifth861

dimension. Hence, the quantity I2, see equation (23), assumes the following form:862

I2
Ros = m2c2 − e2c2

16πG
, (56)

and it differs from de Broglie’s IdB , see equation (25), because of the presence of863

the minus sign. For an electron, the quantity I2
Ros is negative: indeed Rosenfeld did864

not use the symbol I2
Ros, but he explicitly wrote its square root, cf. equation (57)865

below. Hence, we introduced it in order to compare Rosenfeld’s and de Broglie’s866

work. As we shall see in a moment, Rosenfeld did not discuss the square root of867

the expression IRos, but he underlined that it has a geometrical meaning as follows.868

Parametrizing the five-dimensional path with τ̂ and the particle’s four-dimensional869

world line with the proper time τ , Rosenfeld wrote: ‘It is easy to calculate the five-870

dimensional trajectory’s slope on the space-time. Indeed, if S̄ is a complete integral871

of equation (55), along the trajectory, from (55) it follows that872

γµ̄ν̄∂ν̄ S̄ =

√
m2c2 − e2c2

16πG
· dx

µ̄

dτ̂
, (57)

and from (52), (54) and (53) it follows that873

γµν̄∂ν̄ S̄ = mc
dxµ

dτ
. (58)

This means that the slope reads:874

dτ̂

dτ
=

√
1− 1

2κµ2
(59)

and therefore it is determined only by the ratio µ; this geometric interpretation of875

the ratio µ was on the ground of de Broglie’s reasoning.’38 [emphasis added] ([Léon876

Rosenfeld, 1927a]; p. 308). The ratio µ is defined by µ = −mc
2

e and it encodes the877

characteristics of the particle, because it involves the particle’s mass and charge.878

The emphasis added at the end of the citation underscores de Broglie’s influence on879

Rosenfeld’s approach. Firstly, Rosenfeld’s equation (59) is equivalent to de Broglie’s880

equation (22). Secondly, in the previous section we said that from de Broglie’s point881

of view Pν̄ = ∂ν̄ S̄ should be interpreted as the five-dimensional generalization of882

38See Landau & Lif̌shitz [1951] for an explanation of the four-dimensional case. Inserting equation
(57) into (55), it can be verified that (57) is a complete integral of (55).
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pµ = mcgµν
dxν

dτ . Rosenfeld referred to the fact that equations (57) and (58) made883

explicit this connection,39 because they implied that γµν̄Pν̄ = gµνpν . Furthermore,884

Rosenfeld agreed explicitly with de Broglie’s idea that the particle’s five-dimensional885

geodesics would be inclined with respect to the hyperplane that locally describes the886

four-dimensional hypersurface x5 = const. See de Broglie’s comments after equation887

(19).888

After having introduced the five-dimensional Universe and its unified description889

of the gravitational and electromagnetic interaction, the author introduced what he890

called the ‘de Broglie-Schrödinger wave function’ ([Léon Rosenfeld, 1927a]; p. 311).891

Following de Broglie and De Donder, equations (28) and (36), Rosenfeld’s general892

Ansatz for the five-dimensional wave function reads:893

Ψ (x) = A
(
x0 , x1 , x2 , x3

)
ek S̄ , (60)

where S̄ is the Jacobi function (49), k is a constant and the amplitude A is in general a894

complex function of the form A = A+ iB. Like De Donder, Rosenfeld made the choice895

k = i
~ and then he considered the case of real constant amplitude, in order to compare896

his five-dimensional functional with De Donder’s J functional. But Rosenfeld assigned897

the value of k ab initio, therefore, as we pointed out in the discussion after equation898

(36), both De Donder and Rosenfeld considered wave functions as complex objects.899

The periodicity condition is still contained in Rosenfeld’s Ansatz (60), because the900

wave function is periodic in the fifth coordinate, see equation (49). In the case of real901

constant amplitude A, from equation (60) it follows:902

∂S̄

∂xµ̄
=

~
i

∂µ̄Ψ

Ψ
. (61)

Inserting (61) into the HJ equation (55), Rosenfeld obtained the five-dimensional903

generalization of De Donder’s functional equation (43), i.e. L = 0, where the new904

functional is905

L
(
Ψ , Ψ

)
= −γµ̄ν̄∂µ̄Ψ∂ν̄Ψ −

I2
Ros

~2
ΨΨ , (62)

the symbol Ψ is the complex conjugate of the five-dimensional wave function and906

we used for this quantity the symbol IRos, equation (56), for brevity. This means907

that from Rosenfeld’s point of view the constant amplitude case corresponded to the908

classical limit. Indeed, the author underlined: ‘In the general case, i.e. when A is an909

arbitrary function, L is no longer null along a trajectory.’ ([Léon Rosenfeld, 1927a];910

p. 312). As a consequence L is able to play a central role for the quantum dynamics.911

Following De Donder, the quantum picture would be described by a variational912

principle involving (62): Rosenfeld applied De Donder’s functional derivative (44) on913

L
√
−g and obtained, by varying with respect to Ψ and Ψ independently, the following914

wave equations:915

γµ̄ν̄∇µ̄∂ν̄Ψ =
I2
Ros

~2
Ψ and γµ̄ν̄∇µ̄∂ν̄Ψ =

I2
Ros

~2
Ψ , (63)

and that should be, as Rosenfeld wrote, ‘a generalization of the de Broglie-916

Schrödinger’s equation’ ([Léon Rosenfeld, 1927a]; p. 312), i.e. equation (26). Having917

introduced a complex wave function ab initio, Rosenfeld wrote explicitly a wave equa-918

tion both for Ψ and for Ψ . The author’s functional L is formally equivalent to the919

39In Appendix D.1 we clarify the connection among equations (57), (58) and (59).
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Lagrangian density of a complex scalar field, but as for all of the authors of this920

period, Ψ is treated as a wave function. This approach has been conceived in a period921

that lies between the birth of QM and the birth of QFT, when scholars were look-922

ing for a “relativistic quantum mechanics”. For this reason we could say that, like923

De Donder, Rosenfeld was looking for GRQM. The wave equation obtained by vary-924

ing Ψ in (62) is formally equivalent to the five-dimensional wave equation suggested925

by de Broglie (26). Rosenfeld used De Donder’s variational derivative, but he was926

aware of the fact that this procedure is equivalent to the variational principle used927

in a modern field theory, obtained varying the integral of the Lagrangian density928

and imposing that the variations of the fields should be zero at the boundary of the929

domain of integration. Indeed, Rosenfeld claimed that L should be the generalization930

of the Lagrangian considered by Gordon [1927], where Gordon himself suggested to931

consider the wave function and his complex conjugated as independent variables with932

vanishing variations at the boundary. Unlike Klein’s functional, Rosenfeld’s L func-933

tional had the correct sign to be interpreted as a Lagrangian density [Rocci, 2013].934

This follows from the fact that Rosenfeld was influenced by De Donder’s approach935

presented above. Unlike De Donder, Rosenfeld considered a general form for the wave936

functions, admitting that its amplitude A could be a non-constant function of the937

four-dimensional coordinates. Rosenfeld noted that in the constant-amplitude case938

he obtained De Donder’s results, which are connected with the classical HJ equation939

(55) as suggested by De Donder himself.940

How did Rosenfeld reconcile GR with QM? Like De Donder, after having used941

the wave-particle duality via the Hamiltonian dynamics, Rosenfeld supposed that,942

in the case of non-constant amplitude, L should be the correct generalization943

of Schrödinger’s Lagrangian [Schrödinger, 1927] in the sense of GRQM. Finally,944

Rosenfeld introduced a variational principle, based on the following five-dimensional945

action40
946

Stot
(
γ , Ψ , Ψ

)
=

∫
d5x
√
−g
[
−R̃+ 2κL

]
, (64)

where 2κ = 16πG
c4 . Rosenfeld did not specify the domain of integration, we suppose947

that the integral should be performed over an arbitrary portion Ω of the five-948

dimensional space-time. By varying the action with respect to the metric like in949

equation (6), he obtained the five-dimensional Einstein equations coupled with the950

complex field Ψ , which are formally equivalent to a system with the four-dimensional951

Maxwell equations coupled to the scalar field and the four-dimensional Einstein equa-952

tions coupled to the electromagnetic and the scalar fields. By varying the action with953

respect to Ψ and Ψ , using De Donder’s functional derivative, Rosenfeld obtained the954

KG equation (63) for Ψ and Ψ , respectively, as before, because the curvature’s scalar955

depends neither on the wave function nor its complex conjugate. This is the unified956

framework that should reconcile, from Rosenfeld’s point of view, GR with WM.957

Did the five-dimensional formalism offer any additional insights beyond these that958

De Donder could have deduced in his four-dimensional context? As Rosenfeld stressed,959

the main advantage offered by the five-dimensional Universe was the opportunity to960

write a unified variational principle ([Léon Rosenfeld, 1927a]; p. 304). It is worth961

noting that the neutron would be discovered five years later [Chadwick, 1932]. This962

means that all known elementary particles were charged particles and the unified963

picture offered by the five-dimensional Universe seemed to be a way to describe the964

known physical phenomena. As we shall see in Section 4.2, Rosenfeld’s approach965

40In equation (64) the determinant of the four-dimensional metric g appears, instead of γ. In
Rosenfeld’s approach, the two determinants are related by the relation γ = αg as explained in
Appendix D.2. This means that the presence of g does not affect the equations obtained by varying
(64).
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permitted also to incorporate and, in a certain sense, to justify some of De Donder’s966

ideas.967

It is not clear whether Rosenfeld considered his approach as a result or as a point968

of departure. But it is evident that he tried, for the first time, to investigate the969

geometry created by the wave function Ψ . In fact, the equations obtained by varying970

action (64) with respect to the metric are:971

R̃µ̄ν −
1

2
γµ̄νR̃ = κTµ̄ν , (65)

where Einstein’s and Maxwell’s equations are coupled to the complex scalar field via972

the stress-energy tensor Tµ̄ν , defined by Rosenfeld as973

Tµ̄ν̄ = − 2√
−g

δ (
√
−gL)

δγµ̄ν̄
, (66)

which has the usual form:974

Tµ̄ν = ∂µ̄Ψ∂νΨ + ∂νΨ∂µ̄Ψ + γµ̄νL . (67)

Rosenfeld made no comments on the fact that in general the r.h.s. of equation (65) is975

a complex quantity. It is worth noting that the author investigated a particular case,976

i.e. when the wave function’s amplitude is real. Hence, the energy momentum tensor977

is a real quantity. Introducing the wave function on the right side of equation (65),978

Rosenfeld considered implicitly the wave function as representing the material part979

creating gravity. In this first paper, a long and technical paper, Rosenfeld did not980

justify this choice, which seems to be in contrast with the probabilistic interpretation981

of the wave function, from a modern point of view. As we shall see in the next section,982

the author would clarify his choice in the following work, where he referred explicitly983

to Bohr’s correspondence principle.984

Like Klein, Rosenfeld did not consider the 55 component of the equations of985

motion: the Belgian physicist explicitly stated that this equation can be neglected,986

because the constancy of γ55 implies δγ55 = 0 ([Léon Rosenfeld, 1927a]; p. 314)41.987

Before going on, we compare briefly Rosenfeld’s approach with that of his men-988

tors. Though Rosenfeld started out generalizing De Donder’s approach, the unitary989

variational principle is presented starting with the action functional (64) instead of De990

Donder’s invariants, i.e. density Lagrangians. It is worth noting that in the same year991

Klein published independently a similar action, using a real scalar field. Klein cou-992

pled matter and geometry exactly like Rosenfeld did ([Klein, 1927b]; p. 207). Unlike993

Rosenfeld, in Klein [1927b], Klein will express explicitly some perplexities about this994

kind of approach, observing that a unified action principle, e.g. that based on (64),995

was only a starting step towards a unified theory that reconciles WM with GR ([Klein,996

1927b]; p. 190, footnote (∗) at the end of the introduction). In contrast, Rosenfeld,997

and De Donder with him, seemed to be convinced that the five-dimensional unified998

action principle would have some interesting features. Thanks to this conviction, the999

Belgian physicist investigated the quantum character of the metric produced by a1000

quantum object, represented by the wave function Ψ .1001

In order to face this problem, Rosenfeld considered the weak-field approximation1002

for the gravitational field, introduced by Einstein in 1916 to study the problem of1003

gravitational waves, because it permitted to integrate the Einstein equations. In this1004

approximation the metric can be written in the following form ([Léon Rosenfeld,1005

41As we said in the previous section, this is not correct.
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1927a]; p. 319):1006

γµ̄ν = ηµ̄ν + hµ̄ν , (68)

where ηµ̄ν is the five-dimensional Minkowski metric and hµ̄ν represents the perturba-1007

tion of the flat metric, which satisfies the condition |hµ̄ν | � 1. Rosenfeld contracted1008

(65) with γνµ̄ to obtain an expression for the five-dimensional curvature scalar R̃,1009

namely42
1010

R̃ = −κ
[
γνµ̄Tµ̄ν +

FσλF
σλ

2
− γµρAρ∇λ

(
γµσF

σλ
)]

. (69)

After having inserted (69) into equation (65), Rosenfeld used the Ansatz (68) for the1011

metric and he considered linear terms only obtaining:1012

�hµ̄ν = −κ
[
Tµ̄ν −

1

2
ηµ̄νη

λσ̄Tσ̄λ

]
= −κT̄µ̄ν , (70)

where the � operator acts only on the usual four dimensions, because the metric1013

does not depend on the fifth coordinate. In this approximation we are considering1014

the gravitational field strength far away from the source, i.e. the particle’s wave1015

function, and the second and third term in the r.h.s. of equation (69) can be ignored1016

in the case of a stationary charge.43 The stress-energy tensor appearing in (70) has1017

the same form of equation (67), but the curved metric γµ̄ν has been substituted by1018

the flat metric ([Léon Rosenfeld, 1927a]; p. 319). In particular, in this approximation1019

the indices are raised and lowered by ηµ̄ν̄ . Rosenfeld was now able to integrate (70),1020

and obtained, using Rosenfeld’s original notation44 ([Léon Rosenfeld, 1927a]; p. 319,1021

Eq. (71)):1022

hµ̄ν = − κ

2π

∫ {
T̄µ̄ν
}
t− rc

dxdydz

r
, (71)

where, according to Rosenfeld, r represents the radial distance and the symbol {u}t− rc1023

means that the function u has been calculated using the variable t− r
c : for this reason1024

the (71) components are often called retarded potentials. In order to consider the case1025

of a stationary mass, the author chooses the following form45 for the Jacobi function1026

S̄ ([Léon Rosenfeld, 1927a]; p. 320):1027

S̄ = − e

cβ
x5 +mcx0 , (72)

that appears in (60), where now the amplitude A is a real function of the four-1028

dimensional coordinates. Using this Ansatz, Rosenfeld was able to calculate explicitly1029

42See Appendix D.4 for a detailed explanation.
43Rosenfeld did not write explicitly equation (70), he referred to a ‘well known procedure’ ([Léon

Rosenfeld, 1927a]; p. 319) and wrote directly equation (71).
44Rosenfeld did not specify that the integration is carried over a three-dimensional hypersurface

Σ at the retarded time. In Appendix D.5 we express equation (71) in a modern notation. In the rest
of our paper we will continue to use Rosenfeld’s original notation.

45Remember that in our notation the combination e
cβ
x5 has the dimensions of an action.
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the retarded potentials. Introducing the following functions46 of x and t:1030

F =
2mc2

~2

∫ {
A2
}
t− rc

dxdydz

r
, (73)

Wµν =

∫
{∂µA∂νA}t− rc

dxdydz

r
, (74)

G =

∫
{∂µA∂µA}t− rc

dxdydz

r
, (75)

the perturbations of the flat metric are therefore47:1031

h5i = 0 , i = 1, 2, 3 , (76)

h50 = −αβ
(
e

4π

F
c2

)
, (77)

hµν =
8G

c4
Wµν µ 6= ν , (78)

hµµ =
2mG

c4
F +

8G

c4
G . (79)

It is worth noting that in (77) and in (79) the Planck constant appears via tha1032

definition of F (73). In this sense, Rosenfeld’s result represents a quantum correction1033

of the flat metric. This is not surprising, because these corrections are generated1034

by the wave function Ψ . In this sense, the result is the first attempt to describe a1035

quantum metric using WM and GR. As far as we know, this is the first time that a1036

quantum metric appears in the history of QG.1037

Rosenfeld did not emphasize this feature of the metric he found. As we have1038

said, in his first paper Rosenfeld did not make explicit comments on the physical1039

meaning of the calculations performed. As we shall see, in his following papers he1040

would advocate Bohr’s correspondence principle in explaining his use of the wave1041

function as the source of gravitational field. From this perspective, it is easier to1042

understand why Rosenfeld was more interested in analysing the metric in the case of1043

a constant amplitude. Indeed, he considered a sort of semi-classical limit, confronting1044

his “quantum metric” with its classical analogue. In this limit, equations (76), (77),1045

(78) and (79) should match the metric produced by a classical source of mass m and1046

charge e, sitting at the origin O of the coordinates, at least in the weak-field limit,1047

known today as the RN solution. The classical metric is presented in Appendix D.6,1048

equation (D.21). At asymptotically large distances from the source it can be written1049

as γRNµ̄ν̄ = ηµ̄ν̄ + hRNµ̄ν̄ , where the components of the perturbations of the flat metric1050

are:1051

h5i = 0 , i = 1, 2, 3 , (80)

h50 = αβA0 where A0 = η00A
0 = V = − e

4πr0
, (81)

hµν = 0 µ 6= ν , (82)

hµµ =
2mG

c2r0
, (83)

46The integration domain is the same as in equation (71).
47In equation (79) we used explicitly that α and β satisfy the constrain αβ2 = 2κ, like in Klein’s

approach.
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where, according to Rosenfeld, r0 represents ‘the distance between the origin O and1052

an arbitrary point [of the five-dimensional space-time]’ ([Léon Rosenfeld, 1927a]; p.1053

321). Equations (82) and (83) represent the components of the RN metric in the1054

weak field approximation expressed using isotropic Cartesian coordinates,48 while1055

(80) and (81) coincide with γ5µ components (5) in the case of a stationary charge. As1056

we shall see in a moment, in considering the matching between classical metric and1057

“quantum metric” in the semiclassical limit, Rosenfeld did not consider a point-like1058

charge, hence r0 = r0(~x) should be a sort of “mean distance” from the charged body,1059

sitting at the origin of the coordinates.1060

In order to match (76)–(79) with (80)–(83), Wµν and G must be zero and, as a1061

consequence, the two following conditions must hold:1062

∂µA = 0 , (84)

F =
c2

r0
. (85)

Equation (84) follows directly from the condition Wµν = 0, while equation (85) can1063

be obtained comparing (81) with (77). Rosenfeld discussed both these relations: ‘The1064

first condition tells us that a fixed charge can be represented by a wave with stationary1065

phase and constant amplitude.’ ([Léon Rosenfeld, 1927a]; p. 322). As stated above,1066

though Rosenfeld did not emphasize this fact, the constancy of the amplitude, i.e.1067

condition (85), emerged as a condition to ensure that the quantum description could1068

contain, at least as a limiting case, the classical description, which in this context1069

corresponds to the classical five-dimensional RN metric (80)–(83). Besides this, the1070

wave function of a fixed charge should have a fixed energy E = mc2, and because1071

of Heisenberg’s uncertainty principle it should spread over the whole space. In a1072

semi-classical approximation the wave packet is highly localized. Rosenfeld used a1073

“localized wave function” instead, in the sense that Rosenfeld’s wave function is non-1074

zero only inside an arbitrary volume V . Indeed Rosenfeld continued: ‘The second1075

condition is satisfied [...] if we imagine that the amplitude is non-zero inside a finite1076

volume centred around O.’ ([Léon Rosenfeld, 1927a]; p. 322). Finally, using the mean1077

value theorem, the author defined formally the “mean distance”49 r0 ([Léon Rosenfeld,1078

1927a]; p. 322):1079

V

r0
=

∫
dxdydz

r
. (86)

As usual, Rosenfeld did not specify the domain of integration. We suppose that it is1080

the region where the wave function is non-zero, i.e. the volume V . By using definition1081

(86) and the definition of F , equation (73), in the constant amplitude approximation1082

the condition (85) reads:1083

F =
2mc2

~2

∫ {
A2
}
t− rc

dxdydz

r
=
c2

r0
,

2m

~2
A2

∫
dxdydz

r
=

1

r0
,

2mA2

~2

V

r0
=

1

r0
,

48See Appendix D.6 for a detailed discussion.
49See Appendix D.6 for a definition of the mean distance using modern notation.
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i.e.1084

2mA2V

~2
= 1 . (87)

This condition is consistent from the point of view of dimensional analysis. To under-1085

stand it, let us consider action (64). The presence of the four-dimensional Einstein1086

coupling κ produces a consequence for the length dimensions of the wave function Ψ .1087

We remember that the curvature scalar has dimensions
[
R̃
]

= (length)−2 for every1088

space-time dimension and we observe that from (64) it follows that κL and R̃ have1089

the same dimensions. As a consequence, the squared wave function amplitude A2 has1090

the following dimensions [A2] = (length)(mass)
(time)2 as it should, because of equation (87).1091

It is worth noting that from Rosenfel’s point of view, the wave function of a particle is1092

not a point singularity: its amplitude is non zero in a finite volume V . This fact is in1093

contrast with de Broglie’s point of view as Rosenfeld anticipated in the introduction1094

of his paper.1095

In this paper, Rosenfeld did not make any particular comment on (87) and on1096

the whole calculation: he would discuss the physical meaning of the whole apparatus1097

in the next papers, that we will briefly analyse in the following section. However,1098

for us, Rosenfeld’s calculation acquired a fundamental importance. Indeed, with this1099

derivation the author showed for the first time how in the semi-classical limit GRQM1100

is able to reproduce the RN metric in the weak-field approximation. In particular the1101

condition (87) found by Rosenfeld can be interpreted as the normalization condition1102

for the wave function. In this pre-second-quantized picture, the normalization condi-1103

tion of the wave function can be imposed using the definition of the Hamiltonian50
1104

([Landau et al., 1971]) H:1105

H =

∫
d3xT00 , (88)

where T00 is the 00 component of the total stress-energy tensor (67). The integration is1106

carried out over the three-spatial volume for the following reason. The stress-energy1107

tensor defined by Rosenfeld is a four-dimensional object, because of the unusual1108

coupling between matter and geometry in the action (64). The presence of the four-1109

dimensional constant κ means that the stress-energy tensor’s components represent1110

an energy density with respect to the three-dimensional volume, instead of a four-1111

dimensional volume. Rosenfeld was aware of this peculiarity, even if he did make1112

no specific comment, because he noted that equation (65) imply a relation for the1113

four-dimensional curvature scalar,51 namely1114

R = −κ
[
γνµ̄Tµ̄ν − γµρAρ∇λ

(
γµσF

σλ
)]

, (89)

that permitted him to define a four-dimensional mass density52 ([Léon Rosenfeld,1115

1927a]; p. 318, Eq. (63)), i.e. the quantity between the squared brackets on the r.h.s.1116

of (89). For a stationary charge, in the weak field limit, the four-dimensional density1117

mass defined by Rosenfeld in (89) coincides with T00. Moreover, for a localized wave1118

packet the Hamiltonian must correspond to the rest energy E = mc2 of the classical1119

particle. In the case of a constant amplitude, the T00 value can be easily read off using1120

50In the weak-field limit, at the first order, the metric is flat.
51See Appendix D.4 for a detailed explanation.
52Remember that in GR the trace of the stress-energy tensor is proportional to the curvature

scalar and it is the energy density at first order in v/c.
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equations (62), (60), (67), and the normalization condition for the wave function1121

reads:1122 ∫
d3x

2m2c2A2

~2
= mc2 ⇒ 2m2c2A2

~2
V = mc2 ⇒ 2mA2V

~2
= 1 , (90)

where V is the three-volume of the localized wave packet. The normalization condition1123

is precisely Rosenfeld condition (87). This normalization condition can be obtained1124

also by considering the conserved current jµ̄. In the weak field approximation the1125

continuity equation is ∂µ̄j
µ̄ = 0. Using the wave function Ansatz (60) with a real1126

constant amplitude A, namely Ψ = Aexp
[
i
~

(
− e
cβx

5 +mcx0
)]

, the continuity equa-1127

tion reads
~
i

∂ρ

∂t
= 0, where the squared modulus of the “probability amplitude” ρ is1128

ρ = 2m
~2 A

2. By integrating over a three-spatial volume, because of the unusual length1129

dimensions of the scalar field Ψ , the normalization condition reads 2mA2V
~2 = 1, that1130

is the same result obtained using the stress-energy tensor.1131

In the rest of his first paper, Rosenfeld tried to generalize his previous results1132

to the case of a many-body system. This generalization process would continue in1133

his following papers, where the author also analysed the role of the wave function1134

amplitude A. Rosenfeld inspected the consequences produced by considering a non-1135

constant amplitude. In particular, he would be interested in its interpretation as a1136

‘potential of the internal forces’ ([Léon Rosenfeld, 1927a]; p. 325) that should emerge1137

when considering a continuous system. This idea was also shared by de Broglie, but1138

was introduced by De Donder,53 as Rosenfeld wrote: ‘Recently, Mr. De Donder has1139

introduced in WM two important concepts: the notion of permanence of a system and1140

the interpretation of the amplitude A of the Schrödinger’s function Ψ as a potential1141

of the internal tensions of the system.’54 ([Léon Rosenfeld, 1927b]; p. 447).1142

4.2 The role of the correspondence principle in QG1143

As noted in our previous section, the first communication was sent to De Donder,1144

who asked Rosenfeld to work with him during the summer of 1927. Even if they did1145

not publish a joint paper, they cited each other in the communications published by1146

the Bulletin de l’Académie royale de Belgique [De Donder, 1927b; Léon Rosenfeld,1147

1927b,c]. Rosenfeld acknowledged De Donder explicitly at the end of the introduction:1148

‘My warmest thanks to Mr. De Donder, who did not quit to take an active interest1149

in my work.’ ([Léon Rosenfeld, 1927b]; p. 448). At the end of the third paper’s1150

introduction, Rosenfeld underscored again: ‘Mr. De Donder played an essential role1151

in this work, because he suggested to me the basic idea. I owe a lot to De Broglie,1152

who kindly continued to have a correspondence with me of which I took greatest1153

advantage.’ ([Léon Rosenfeld, 1927c]; p. 574). The main result of Rosenfeld-De Donder1154

collaboration was the introduction of Bohr’s correspondence principle as a physical1155

interpretation of Rosenfeld’s previous mathematical treatment. As far as we know,1156

this is the first time that Bohr’s principle was invoked in searching for a theory1157

that could reconcile WM with GR. In particular, Rosenfeld and De Donder posed1158

this principle as one of the founding principles of this new theory, which De Donder1159

called ‘the gravitational wave mechanics’ ([De Donder, 1927b]; p. 506). The purpose1160

of this paragraph is to discuss the role of the correspondence principle, presenting1161

Rosenfeld’s following works: [Léon Rosenfeld, 1927b,c,e].1162

53The original citations are not quoted.
54We will not deepen the concept of “permanence”.
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In order to understand the role of the correspondence principle, we start point-1163

ing out that Rosenfeld was impressed by the fact that the stress-energy tensor (67)1164

resembled the stress-energy tensor for a particles’ system whose form was:1165

Tµν = σ(m)gµρgνσu
ρuσ + Pµν , where uρ =

dxρ

dτ
, (91)

as it appears in De Donder’s MIT lectures ([De Donder, 1927a] p. 52), and where1166

σ(m) represents the mass density as measured by the observer uµ. For a swarm of non-1167

interacting particles Pµν = 0, for a perfect fluid with pressure p, Pµν = p (uµuν + gµν)1168

([Misner et al., 1973]); p. 132), while if we consider the dissipative processes its form is1169

more complicated. The resemblance between the stress-energy tensor of a scalar field1170

and that of a particle’s system emerges as follows. Rosenfeld considered the following1171

Ansatz for the wave function and for the Jacobi function:1172

Ψ (x) = A
(
x0 , x1 , x2 , x3

)
e
i
~ S̄ (92)

S̄ (x) = − e

βc
x5 + S

(
x0 , x1 , x2 , x3

)
, (93)

where now S has an unspecified form and A is an arbitrary real function. The author1173

inserted (92) into equation (67), and the stress-energy tensor components read:1174

Tµ̄ν = 2
A2

~2
∂µ̄S̄∂ν S̄ + 2∂µ̄A∂νA+ γµ̄νL , (94)

where the 55 component has been explicitly omitted, because Rosenfeld was not1175

interested in the 55 component of five-dimensional Einstein equations. Using the1176

inverse components of the metric, equation (53), Rosenfeld rewrote equation (58),1177

that we rewrite here for convenience1178

γµν̄∂ν̄ S̄ = mc
dxµ

dτ
, (95)

in the following form:1179

gµν∂νS = mcuµ +
e

c
Aµ . (96)

Equations (96) and (93) imply that:1180

∂µS̄ = ∂µS = gµνmcu
ν +

e

c
Aµ , (97)

∂5S̄ = − e

βc
. (98)

Inserting equations (97) and (98) in (94), the author obtained55 ([Léon Rosenfeld,1181

1927b]; p. 454):1182

Tµν = %(m)gµρgνσu
ρuσ +Πµν (99)

βT5
ν = %(e)u

ν + Λν , (100)

55Equation (100) was obtained raising an index with the five-dimensional metric, γρ̄µ̄Tµ̄ν̄ , and
then choosing ρ̄ = ρ and ν̄ = 5.



U
nc
or
re
ct
ed

P
ro
of

34 The European Physical Journal H

where we define, following Rosenfeld, a “quantum” mass density %(m) and a1183

“quantum” charge density56 %(e):1184

%(m) =
2m2c2

~2
A2 %(e) = −2em

~2
A2 . (101)

Equations (99) and (100) require some comments, because, from Rosenfeld’s and De1185

Donder’s point of view they are the basis for invoking the correspondence principle.1186

Firstly, the analogy between (91) and (99) is now evident, and this explains why1187

%(m) could play the role of a mass density. In order to understand why %(e) represents1188

a charge density, we remember that the Maxwell equations on curved space-time for1189

a classical charged system are1190

∇µF νµ = jµ whith jµ = σ(e)u
µ , (102)

where σ(e) represents the charge density of the system as measured by the observer uµ.1191

On the other hand, the Maxwell equations obtained by the five-dimensional Einstein1192

equations coupled to the wave function stress-energy tensor (65) are57:1193

∇µF νµ = βT5
ν . (103)

Therefore, it is evident that βT5
ν could play the role of the density current jµ and,1194

as a consequence, equation (100) defines a charge density %(e).1195

Secondly, this is the point where Bohr’s principle comes into play. At the end of the1196

introduction of his communication, Rosenfeld underscored that the identification of1197

%(m) and %(e) with the mass and electric densities of quantum system is ‘a particularly1198

instructive aspect of the correspondence principle’ ([Léon Rosenfeld, 1927b]; p. 448):1199

he stressed that this claim would deserve further analysis and that the connection1200

between the above identification and the correspondence principle has been suggested1201

by De Donder. At the end of the fifth section of the brief communication, Rosenfeld1202

remarked that (we changed the original equation’s numbers in order to fit our numer-1203

ical order): ‘equations (99) and (100) show that %(m) and %(e) should be interpreted1204

as a mass density and an electric density of the system, or, better(∗), corresponding1205

to the system [...]’ ([Léon Rosenfeld, 1927b]; p. 454). Rosenfeld himself used the ital-1206

ics and in the footnote corresponding to the symbol (∗) he underscored again that1207

this remark had been suggested by De Donder. The term “corresponding” referred to1208

the formal correspondence between a classical and a quantum system. Indeed, %(m)1209

and %(e) depend on the wave function’s amplitude. In the following papers, Rosenfeld1210

would clarify how his approach is connected with Bohr’s correspondence principle.1211

Our last comment concerns the terms Πµν and Λν . Their precise form will not be1212

discussed here, but it is worth noting that they contain the contribution due to the1213

fact that the amplitude is not constant. From Rosenfeld’s and De Donder’s point of1214

view the Πµν tensor would represent the contribution of the internal forces of the1215

system, while Λν was called ‘quantum current’ ([Léon Rosenfeld, 1927e]; p. 665) by1216

Rosenfeld, maybe because it has no classical analogue.1217

In the third communication Rosenfeld dedicated an entire section to enunciate his1218

principle of correspondence, explicitly referring to Bohr’s principle, also describing1219

what he had in mind as QG theory (we changed the original equation numbers in1220

order to fit our numerical order):1221

‘The wave mechanics obtained using the variational principle (64) realizes1222

formally the fusion between Gravity and quantum theory. To the field1223

56Remember that ab inizio we decided to consider the case of q = −e.
57See Appendix D.3 for technical details.
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equations that describe gravitational and electromagnetic phenomena, we1224

added the equation of quantization (26), that rules the quantum-energy1225

exchanges. In this last equation intervenes the fundamental quantity Ψ ,1226

and the fusion between the two theories is represented by the fact that the1227

five-dimensional matter tensor that is present in the [gravitational] field1228

equation is defined using the fundamental quantity Ψ ; on the contrary,1229

in a pure Einsteinian gravitational theory, this tensor is a function of1230

different fundamental quantities of the system: the mass density σ(m)1231

and the electric charge density σ(e).’
58 ([Léon Rosenfeld, 1927c]; p. 574).1232

Rosenfeld used different letters referring to the mass and charge densities,1233

because he wanted to emphasize the difference between a classical system and the1234

corresponding quantum system. The author continued:
1235

‘The new definition of the stress-energy tensor as a function of Ψ , (67),1236

implies a modification of our conception for the role of the fundamental1237

quantities σ(m) and σ(e). In the Einsteinian theory these quantities inter-1238

vene directly in in the field equations in order to fix the gravitational1239

and the electromagnetic potentials, corresponding to a given distribu-1240

tion
(
σ(m) , σ(e)

)
. In Wave Mechanics, these quantities do not intervene1241

directly, but through [..] the quantity Ψ . [...] The material tensor T µ̄ν̄ as1242

a function of Ψ should not necessarily be identical to the material tensor1243

of pure Gravity, which is defined as a function of σ(m) and σ(e). It seems1244

desirable to analyse, thenceforward, as soon as possible, the behaviour of1245

the T µ̄ν̄ tensor, in order to emphasize all possible modifications to1246

Gravity produced by the introduction of the quantum quantity1247

Ψ ; this is the role of the principle of correspondence. [bold form added]’59
1248

([Léon Rosenfeld, 1927c]; p. 575).1249

The bold text emphasizes clearly what was the physical meaning of the calculation1250

presented in Section 4.1. From Rosenfeld’s point of view, the introduction of the wave1251

function was responsible for the modifications of the “pure”, i.e. classical, GR, because1252

even in the case of constant amplitude, it permits us to introduce two quantum1253

quantities, corresponding to classical quantities σ(m) and σ(e): through the new stress-1254

energy tensor, the new quantities %(m) and %(e), defined by (101), must be considered1255

as the quantum source of gravitational and electromagnetic field. Indeed Rosenfeld1256

continued:
1257

‘The comparison between %(m) and %(e), and σ(m) and σ(e) will show us1258

how the quantum objects will modify the gravitational and the electro-1259

magnetic phenomena. It will be possible to enunciate a more precise and1260

general correspondence principle; [...] there are some precise formulas that1261

define, in a strict sense, the principle of correspondence and that estab-1262

lish the identification of the formal schema of wave mechanics with the1263

gravitational schema of Th. De Donder, [...] showing how Wave Mechanics1264

widens the picture of the pure Gravity, in order to incorporate quantum1265

phenomena.’ ([Léon Rosenfeld, 1927c]; p. 575).1266

58The term ‘pure Einsteinian gravitational theory’ seems to be referred to the classical theory
obtained without the introduction of the “quantum field”. We introduced Rosenfeld symbols σ(m)

and σ(e) in equations (91) and (102) respectively.
59The term pure Gravity can be interpreted as GR. See also footnote [58].
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It is important to stress that, like Klein, de Broglie and De Donder, Rosenfeld1267

never discussed the role of the boundary conditions of the wave function. Like De1268

Donder he referred to the introduction of the wave function as the ‘equation of1269

quantization’. It is worth to remember that Heisenberg’s uncertainty principle was1270

introduced in February of the same year [Heisenberg, 1927]. This coincided with1271

the fact that Rosenfeld considered it sufficient to introduce the wave function into1272

Einstein’s equations in order to describe correctly the coupling between gravity and1273

quantum matter.1274

Rosenfeld did not cite any of Bohr’s papers, but the idea that the correspondence1275

principle could be a theoretical argument to infer the behaviour of a quantum system1276

with respect to the classical one is a consequence of Bohr’s influence. Indeed, in the1277

introduction of the third communication, Rosenfeld declares that his approach, i.e.1278

the variational principle, is a ‘formal theory’ ([Léon Rosenfeld, 1927c]; p. 573). Then1279

he continued: ‘To put a physical interpretation [on the formal theory], we let ourselves1280

be guided by the correspondence principle, using the interpretation given by Klein1281

[1927c] ...’ ([Léon Rosenfeld, 1927c]; p. 573).1282

In order to understand Bohr’s role, we briefly analyse Klein’s paper [Klein, 1927c].1283

Klein’s work is a cornerstone of the history of QM. Before that article, matrix mechan-1284

ics was the only approach incorporating the correspondence principle,60 as Heisenberg1285

himself reported in his review of matrix mechanics’ successes in 1926 ([Mehra &1286

Rechenberg, 2001f]; p. xxxii). In this sense, the title of Klein’s contribution was very1287

revealing: Electrodynamics and Wave Mechanics from the point of view of the Cor-1288

respondence Principle. As reported in Mehra & Rechenberg [2001f], Bohr was aware1289

of the content of Klein’s work and he expressed an enthusiastic comment in a let-1290

ter to Schrödinger ([Mehra & Rechenberg, 2001f]; p. 176). In particular, Bohr was1291

fascinated by the connection between Hamiltonian mechanics and HJ dynamics of1292

wave rays, that generated Klein’s relativistic WM. Paraphrasing Bohr’s words, he1293

was interested in the fact that thanks to this analogy it is possible, on the basis of1294

WM, to build a corresponding theory. Klein’s main purpose was to investigate the1295

possibilities of exploiting relativistic WM for understanding atomic processes involv-1296

ing discontinuities. In Klein’s paper, the correspondence principle intervenes when1297

the author tries to modify Maxwell’s equations. Schrödinger also expressed the idea1298

that the wave function ‘possesses the property to enter even the untouched [classical]1299

Maxwell-Lorentz equations between the electromagnetic field vectors as a “source”1300

of the latter’ ([Mehra & Rechenberg, 2001f]; p. 43).1301

In 1927 Schrödinger investigated also the effect on the stress-energy tensor1302

obtained by a unified variational principle involving the Maxwell’s Lagrangian and1303

the complex scalar field Lagrangian, i.e. ‘the de Broglie’s wave’ ([Schrödinger, 1927];1304

p. 265). Unlike Klein, de Broglie and Rosenfeld, Schrödinger declared explicitly that1305

he would consider neither additional dimensions, nor gravitational field contribu-1306

tions. Indeed, Schrödinger’s Lagrangian LS is the sum of Maxwell’s Lagrangian,1307

Lem = −1

4
FµF

µν , and Lψ, the Lagrangian for material fields, which is related to1308

De Donder’s work, see (48), because Schrödinger cited De Donder’s contribution:1309

LS = Lem +Lψ = −1

4
FµF

µν − ηµν
(
∂µψ +

i

~
e

c
Aµψ

)(
∂νψ −

i

~
e

c
Aνψ

)
+
m2c2

~2
ψψ .

(104)

1310

60Heisenberg referred to the fact that classical results can be obtained, in matrix mechanics
approach, in the limit of high quantum numbers.
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LS can be obtained after a dimensional reduction from Rosenfeld’s Lagrangian1311

(64) in the limit of a flat background. But Schrödinger did not investigate the role of1312

ψ as a source of the electromagnetic field, because he explicitly asserted that the KG1313

Lagrangian Lψ did not describe any real field. In spite of this, Klein analysed this1314

aspect, inspired by the idea to use the correspondence principle. First he manipulated1315

his scalar relativistic equation to define the four-vector jµ =
(
ρ ; ji

)
, where61 ([Klein,1316

1927c]; p. 414, Eqs. (20)):1317

ρ = − e

2mc2

{
−~
i

(
ψ
∂ψ

∂t
− ψ∂ψ

∂t

)
+ 2eψψA0

}
(105)

ji = − e

2m

{
~
i
ηij
(
ψ∂iψ − ψ∂iψ

)
+ 2

e

c
ψψAi

}
. (106)

Then he showed that using the usual optical geometric Ansatz ψ = e
i
~S for the wave

1318

function, in the semiclassical limit ~ → 0, equations (105) and (106) reduce to the1319

components of the usual potentials for a relativistic scalar charged particle, namely:1320

ρcl = − e√
1− (v2/c2)

(107)

jicl = − evi√
1− (v2/c2)

, (108)

where vi is the three-velocity of the particle62 and v its modulus. Finally, using the1321

correspondence principle, Klein interpreted equations (105) and (106) as the source1322

for the electromagnetic field, in order to investigate the quantum modifications of the1323

Maxwell equations, namely:
1324

∂iE
i = 4πρ (109)

εijk∂jBk −
1

c

∂Ei

∂t
=

4π

c
ji . (110)

Klein solved the Maxwell equations (109) and (110) using the advanced and the
1325

retarded potentials, in order to write an expression for the electric and the magnetic1326

fields as functions of ψ. Klein identified these electric and magnetic fields with the1327

electromagnetic field produced by the bounded electron,63 by means of the correspon-1328

dence principle ([Klein, 1927c]; p. 422, Eqs. (41). See also Eqs. (33), (28) and (18)).1329

As we have seen, Rosenfeld followed the same path in order to obtain an expression1330

for the metric components, explicitly referring to Klein’s paper. In this sense, Rosen-1331

feld was the first author to introduce the correspondence principle in the context of1332

QG. It is worth noting that in the five-dimensional picture the Maxwell equations are1333

naturally coupled to the four-current, like Rosenfeld himself showed with relations1334

(103). This seemed to be another advantage of the five-dimensional approach.1335

61The symbols have the usual meaning. We remember that the electromagnetic potentials are
Aµ = (A0;Ai).

62The role of the analogy between Hamiltonian dynamics and the dynamics of wave’s rays is
fundamental to obtain these relations.

63Unlike Rosenfeld, Klein considered also the full quantum treatment, introducing the eigenfunc-
tions expansion for the wave field.



U
nc
or
re
ct
ed

P
ro
of

38 The European Physical Journal H

4.3 Back to the present1336

In his last paper of the year,64 written in October 1927, Rosenfeld made a detailed and1337

wider exposition of all the concepts introduced in his previous work. His idea was to1338

formulate a sort of formal basis for the five-dimensional Universe as a unified frame-1339

work for GR and WM. The foundations of the whole building are three principles: a1340

variational principle, i.e. equation (64); the principle of Schrödinger eigenfunctions,1341

i.e. the usual ‘boundary conditions that must be imposed on Ψ and Ψ in order to1342

quantize the system’ ([Léon Rosenfeld, 1927e]; p. 665); and the correspondence prin-1343

ciple, that the author formulated with the help of De Donder. Rosenfeld also cited a1344

paper written by De Donder, where the latter tried to give a more precise formulation1345

of the principle [De Donder, 1927b]. Unlike Rosenfeld, De Donder will not abandon1346

this idea in the future. Indeed while Rosenfeld seemed to be convinced that quantum1347

theory should modify GR, De Donder will continue to claim that GR and WM, were1348

compatible theories [De Donder, 1930].1349

Rosenfeld confirmed the ideas proposed in the previous paper, claiming that the1350

components of the new stress-energy tensor as a function of the wave function Ψ1351

should play the role of ‘quantum currents’, i.e. quantum source for the right side of1352

Maxwell and Einstein equations. The author wrote explicitly: ‘The correspondence1353

principle consists in stating that this analogy is not only a formal analogy, but also a1354

physical analogy.’ ([Léon Rosenfeld, 1927e]; p. 666). He also emphasized the particular1355

nature of the correspondence principle: ‘There exist postulates in the sense of the1356

formal logic, whilst the correspondence principle is a physical principle [...]’ ([Léon1357

Rosenfeld, 1927e]; p. 667). Rosenfeld meant that the extension of the analogy from1358

the formal plane to the physical plane is a sort of meta-sentence, and it was different,1359

in this sense, from a formal sentence of the “basic language” of the equations, like1360

e.g. the variational principle.1361

Rosenfeld’s approach, as well as de Broglie’s proposal were briefly discussed at the1362

Solvay conference. As stated above, in Section 2, Rosenfeld was not officially admitted1363

to the conference, but De Donder invited him to follow him, in order to have the1364

possibility to meet Pauli at the conference. The conference’s proceedings showed once1365

again how de Broglie, Rosenfeld and De Donder agreed on the meaning of the five-1366

dimensional Universe. De Broglie asserted that De Donder succeeded in harmonizing1367

Einstein theory with WM ([Bacciagaluppi & Valentini, 2009]; p. 483); De Donder1368

tried to draw attention to the MIT lectures we previously discussed, speculating on a1369

connection between his correspondence principle and Bohr reflections ([Bacciagaluppi1370

& Valentini, 2009]; p. 483). Subsequently De Donder stated that there is a connection1371

between de Broglie’s contributions, his work and Rosenfeld’s ideas ([Bacciagaluppi &1372

Valentini, 2009]; p. 499 and 519). De Donder will try again to discuss his approach1373

([Bacciagaluppi & Valentini, 2009]; p. 470; 471; 510), but the questions raised by De1374

Donder and de Broglie will not be faced by the group of physicists.1375

De Donder’s approach to Hamiltonian dynamics discussed in Section 2 is peculiar,1376

because he introduced systematically the use of poly-momenta pµ obtained starting1377

with a Lagrangian L(ya , ∂µy
a), which were functions of some variables ya and its1378

derivatives, deriving it with respect to all of the derivatives, paµ = ∂L
∂∂µya

, instead of1379

using the time derivative only as usual. This convention, sometimes called the De1380

Donder-Weyl approach, and its generalization to a curved space-time has survived1381

64In a brief communication to the Comptes rendus in June of the same year, Rosenfeld claimed
that he was able to reproduce Epstein’s description of ‘the magnetic electron of Uhlenbeck and
Goudsmith’ ([Léon Rosenfeld, 1927d]; p. 1541), i.e. the spinning electron, using the five-dimensional
apparatus described in the previous section. We will not go into the reasons that could explain
Rosenfeld’s claim, because we postpone this analysis to a future work.
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until recent years, as an alternative approach for the quantization of gravity, and it1382

is today known as pre-canonical quantization [Kanatchikov, 1998, 2014].1383

At the end of 1929, after his stay in Göttingen, Rosenfeld moved to Zürich where,1384

stimulated by Pauli, tried to inspect what we today call the gravitational self-energy1385

of a quantized electromagnetic field. In Léon Rosenfeld [1930a] he approached the1386

problem in a way that resembles the work analysed here. Like in his previous work,1387

he integrated again the linearised Einstein equations, this time coupled with Maxwell1388

equations only. The quantized electromagnetic field played the role of the complex1389

scalar field. Rosenfeld used the annihilation and creation operators approach for treat-1390

ing the electromagnetic field, hence the metric field hµν itself was described by an1391

operator. In this sense he obtained again a sort of quantum metric, because it is gen-1392

erated by a quantum field. Rosenfeld did not cite the previous papers we analysed,1393

but we must stress the importance played by his early work, because of the affinity1394

of the path followed by the author.1395

The term quantum metric could be understood in a complementary way. The1396

quantum corrections to the classical gravitational field can be considered as the contri-1397

bution to the classical effects produced by the quantization of the gravitational field.1398

In the mid thirties, Bronstein [1935] would quantize for the first time the gravitational1399

field directly in the weak field limit, in order to understand quantum deviations from1400

the classical Newton law. Only 37 years later, after the development of perturbation1401

theory, Duff [1973] tried to understand the quantum corrections to the Schwarzschild1402

metric. Duff used explicitly a classical source and he quantized directly the gravita-1403

tional field. At the tree level, in the weak field limit, he obtained the classical results,1404

while the quantum corrections came from the one-loop corrections.1405

Finally we address the following question: what is the physical meaning of Rosen-1406

feld’s result from the modern point of view? Rosenfeld interpreted the particle’s wave1407

function as the source of the gravitational field. From a modern point of view, this1408

approach treats the gravitational interaction as a classical phenomenon and the par-1409

ticle’s description as fully quantized. This means that Rosenfeld’s procedure gives a1410

semi-classical result, even in the case of non constant amplitude. From a modern point1411

of view, Rosenfeld’s results can be obtained as non-relativistic limit of the so-called1412

semi-classical Einstein equations, an approach formally suggested by Møller for the1413

first time [Møller, 1962]. These equations are obtained by replacing the stress-energy1414

tensor, i.e. the r.h.s. of Einstein equations, by the expectation value of the stress-1415

energy operator T̂µν with respect to some quantum state |Ψ〉. In four dimensions1416

they have the following form:1417

Rµν −
1

2
gµνR = 8πG〈ΨT̂µν |Ψ〉 . (111)

The modern interpretation of equation (111) is connected with the character of the1418

coupling between gravity and matter. This character has not yet been clarified and it1419

is an open problem in the QG research area. It is equivalent to the question whether1420

gravity should be quantized or not [von Borzeszkowski et al., 1988]. This is a long1421

debate, see e.g. Carlip [2008] and Kiefer [2004], that divided the physicist community1422

in two groups, initiated incidentally by Rosenfeld himself [Léon Rosenfeld, 1963]. On1423

one side those who believe that the gravitational interaction must be quantized, on1424

the other side those who believe that gravitational interaction must remain classical.1425

As a consequence, for the first group equations (111) can be derived approximately1426

from canonical QG as a kind of mean-field equation [Kiefer, 2004]. In this case, the1427

metric obtained integrating the linearised Einstein equations following Rosenfeld’s1428

procedure is a sort of “mean metric” 〈Ψĝµν |Ψ〉, where the hat-symbol means that the1429

metric should be an operator. This perspective is also shared by those who inves-1430

tigate the behaviour of QFT on a curved background [Birrel & Davies, 1982], that1431
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led to Hawking’s results on black hole’s entropy. For the second group the coupling1432

between quantum fields and classical gravity described by Einstein equations should1433

be understood as a fundamental description of nature. As a consequence, they inter-1434

pret the l.h.s. of (111) as evaluated using the classical metric. From this perspective,1435

a possible starting point for reconciling WM with gravity is the so called Schrödinger-1436

Newton equation65 [Bahrami et al., 2014], where the source of the gravitational field1437

is represented by the squared modulus of the wave function. We do not enter the1438

debate whether which approach could be the fundamental one, because we believe1439

that any extension of our conceptual framework for the description of nature would1440

be of interest in itself. We observe that recently there has been a revival of Rosen-1441

feld’s ideas coming from the second group of physicists. Modern authors, Giulini1442

& Grossardt [2012] and Bahrami et al. [2014], with different scope, used some of1443

the Rosenfeld’s ideas, extended to the non-static case. More precisely, in Giulini &1444

Grossardt [2012], the authors studied the coupling between KG field and gravity in1445

the case of a non-static spherical symmetric space-time, in the limit of semi-classical1446

and non-relativistic approximation from the four-dimensional point of view. Follow-1447

ing Kiefer’s scheme for non-relativistic and semi-classical approximation, the authors1448

investigated KG equation on a curved background, showing that it reduces itself, in1449

this WKB-like scheme, to the Newton-Schrödinger equation, at a certain order of1450

the WKB expansion. Einstein equations coupled with the KG stress-energy tensor1451

reduces, in the same approximation, to the Poisson equation for the gravitational1452

potential, where the wave function amplitude plays the role of the mass density. This1453

means that, like in Rosenfeld’s scheme, the wave function is the source of the metric.1454

At the order chosen by the authors, the metric itself results as an expansion in terms1455

of ~
c2 powers and it depends on the wave amplitude of the field. In the weak field limit,1456

the quantum-mechanical description can be derived from the field-theoretic approach1457

with a well defined procedure, which allows one to use the wave function, instead of1458

Fock’s states [Robertson, 1972]. In Bahrami et al. [2014], the authors refined their1459

analysis using the second-quantised formalism and hence they apply the procedure1460

to find the quantum mechanical limit. Once again they find that the wave function1461

is the source of the gravitational field, like in Rosenfeld’s approach.1462

5 Summary and conclusions1463

In this paper we have described the earliest of Rosenfeld’s contributions of 1927. From1464

an historical point of view, Rosenfeld’s work is interesting for various reasons. First,1465

it contains many ingredients that the author will use in his future work. Second, it1466

shows how Rosenfeld was influenced by his mentors: Oskar Klein, Louis de Broglie1467

and Theophile De Donder. Third, it offers a connection between the history of QM1468

and the history of QG.1469

We started considering the main results achieved by his mentors, at the time he1470

started to write his first paper. Klein wrote a five-dimensional unified variational1471

principle for the electromagnetic and the gravitational field. He introduced the rel-1472

ativistic wave equation on a curved background using the correspondence between1473

Hamiltonian dynamics for point particles and the HJ equation in the geometrical1474

optics limit. Following this correspondence, Klein tried to introduce a sort of massless1475

KG equation, in analogy with light. De Broglie was pressed by Rosenfeld, who joined1476

the French physicist in Paris, to investigate the five-dimensional Universe features.1477

De Broglie showed that it is not necessary to consider null-geodesics, and that the1478

four-dimensional geodesics can be represented as the projection of five-dimensional1479

65The Schrödinger-Newton equation was introduced by Roger Penrose to provide a dynamical
description of the quantum wave function’s collapse [Penrose, 1996].



U
nc
or
re
ct
ed

P
ro
of

G. Peruzzi and A. Rocci : Tales from the prehistory of Quantum Gravity 41

geodesics. De Broglie built his five-dimensional Universe using an inconsistent time-1480

like extra dimension, as Klein himself would note in a following paper. De Donder,1481

the third character of our story, introduced the Lagrangian approach involving the1482

wave function, treating it as a field, again using the correspondence between Hamil-1483

tonian particle dynamics and the HJ equation for wave’s rays. De Donder interpreted1484

the introduction of a unified variational principle as the mathematical instrument1485

responsible for the quantization of the system, because it produces the KG equation.1486

He was convinced that no modifications of GR were needed for describing quantum1487

phenomena. De Donder played a fundamental role in Rosenfeld’s work. Rosenfeld1488

sent De Donder his first paper, who presented it for publication at the Bulletin de1489

l’Académie royale de Belgique journal. Even though we have not analysed any De1490

Donder-Rosenfeld correspondence, a collaboration between these authors emerges1491

clearly. Furthermore, De Donder invited Rosenfeld to the fifth Solvay conference,1492

where De Donder tried to draw attention to Rosenfeld’s work and where Rosenfeld1493

met Einstein and the physicists of the Göttingen school.1494

After having introduced Klein’s, de Broglie’s and De Donder’s approaches, we1495

considered Rosenfeld’s work. In his first paper, Rosenfeld tried to walk one step1496

ahead with respect to his mentors. He decided to put De Donder’s action model in1497

a five-dimensional context, building upon the work of Klein and de Broglie. His sec-1498

ond contribution, central in our analysis, was to address the task of understanding1499

which metric can be generated by a quantum object, i.e. a localized electron’s wave1500

function. Rosenfeld tried also to understand which conditions must hold in order1501

that WM and GR could reproduce in a semi-classical approximation a classical met-1502

ric in the weak field limit. Studying this problem he presented for the first time a1503

quantum modification of the flat metric, because of the appearance of ~. In his fol-1504

lowing papers, thanks to De Donder’s collaboration, Rosenfeld succeeded in giving1505

a physical meaning to his mathematical treatment. De Donder recognized the idea1506

of Bohr’s correspondence principle in using the wave function’s stress-energy tensor1507

as a source of the gravitational field. In his third communication Rosenfeld himself1508

explicitly recognized that his approach to QG was inspired to what Klein did in the1509

context of Maxwell’s equations.1510

Thanks to De Donder, Rosenfeld started to interact with Pauli, Jordan, Bohr1511

himself and many other physicists who will play, unlike de Broglie and De Donder,1512

a fundamental role in constructing the new quantum theory of fields. After 1927,1513

Rosenfeld will convince himself of the importance of quantizing these new objects1514

and, stimulated by Pauli, he will study again the problem of a quantum metric, but1515

using the new-born quantum theory of massless spin-1 fields [Léon Rosenfeld, 1930a].1516

From an historical point of view, this paper concluded what we called the prehistory1517

era in the history of QG.1518

Even if he never considered his early papers on QG an important work, Rosen-1519

feld’s contributions show how the search of a theory that could reconcile quantum1520

phenomena with GR started early and that it also reached interesting results, that1521

will continue to be valid in the context of quantum field theory on a curved space-1522

time. Even if Klein, de Broglie, De Donder and Rosenfeld were not a research group1523

as in our modern meaning, in 1927 their works were related by a common purpose.1524

The problem of finding a quantum theory of gravity has never been limited, and is1525

not limited today, to the quantization of gravitational interaction only. We now know1526

that attempts to apply directly to the gravitational field quantization procedures,1527

which have been successful in other contexts, have failed. From the beginning of the1528

prehistory of QG, the authors that tried to face the problem of reconciling quantum1529

phenomena with gravity interpreted the idea of QG in the broadest sense. From an1530

historical point of view, the following statement is particularly true: ‘In the broadest1531

sense, a quantum theory of gravitation would represent an extension of our conceptual1532
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framework for the description of nature: any such extension would be interest in itself.’1533

([Ashtekar & Geroch, 1974]; p. 1213).1534
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Appendix A Wave optics and null-geodesics in Klein’s1539

five-dimensional manifold1540

Klein’s original idea was to write a wave equation in analogy with light in the con-1541

text of his five-dimensional Universe. This appendix follows Klein’s original approach1542

[Klein, 1926a].1543

In a curved five dimensional space-time, a relativistic generalization of Schrödinger1544

equation is represented by the following equation:1545

aµ̄ν̄
(
δσ̄ν̄

∂

∂xµ̄
− Γ σ̄µ̄ν̄

)
∂σ̄Ψ = aµ̄ν̄∇µ̄∂ν̄Ψ = 0 , (A.1)

where Ψ is the wave function and the covariant derivative ∇µ̄ is defined using the1546

Christoffel symbols Γ σ̄µ̄ν̄ . As stated in the main text, Klein defined the Christoffel1547

symbols using the space-time metric γµ̄ν̄ , that we rewrite here for convenience:1548

dσ2 = αdθ2 + ds2 , (A.2)

where1549

dθ = dx5 + βAµdx
µ ; gµν = γµν −

16πG

c4
AµAν ; ds2 = gµνdx

µdxν . (A.3)

Equation (A.1) resembles a massless equation for a scalar field, where the inverse1550

of the space-time metric γµ̄ν̄ has been replaced by the tensor aµ̄ν̄ , whose covariant1551

components are defined by equation (11). As stressed in Sections 3.1 and 3.2, this1552

fact generated the ambiguity in Klein’s approach, criticized by de Broglie. Following1553

Klein’s approach, we shall show how wave equation (A.1) is connected with five-1554

dimensional null-geodesics that reduce to the four-dimensional equations of motion1555

for charged massive particles in a combined electromagnetic and gravitational field.1556

In the geometrical optics limit a wave front propagates locally as a plane-fronted1557

wave. Therefore, the Ansatz for the wave function is1558

Ψ(x) = AeiωS(x) (A.4)

where ω is so large that only the term proportional to ω2 in equation (A.1) need to be1559

taken into account. The function S = S(x) is termed the eikonal and it characterizes1560

the phase of the wave. Substituting (A.4) into the wave equation, the term with two1561

derivatives is proportional to ω2 and equation (A.1) reads:1562

aµ̄ν̄∂µ̄S∂ν̄S = 0 . (A.5)

Last equation resembles the eikonal equation for light rays, that describes the prop-1563

agation of the wave front S(x) of light rays. In the HJ approach, it can be derived1564
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by a particular Hamiltonian, whose Hamilton equations describe the dynamics of1565

the particle associated to the wave by wave/particle duality. Klein we defined the1566

Hamiltonian as follows:1567

H =
1

2
aµ̄ν̄pµ̄pν̄ where pµ̄ = ∂µ̄S . (A.6)

Hence, equation (A.5) now reads:1568

H = 0 , (A.7)

and parametrizing the five-dimensional particle’s world line with an arbitrary1569

parameter λ̂, the relativistic Hamilton equations are:1570

∂H

∂pµ̄
=
dxµ̄

dλ̂
; − ∂H

∂xµ̄
=
dpµ̄

dλ̂
. (A.8)

The analogy between equation (A.5) and the usual eikonal equation suggests to con-1571

sider null-geodesics for the differential form aµ̄ν̄dx
µ̄dxν̄ as stated by Klein, where1572

aµ̄ν̄ represent the reciprocal quantities of aµ̄ν̄ . As emphasized in the main text,1573

After a Legendre transformation, the Hamiltonian H is mapped into the following1574

Lagrangian:1575

L =
1

2
aµ̄ν̄

dxµ̄

dλ̂

dxµ̄

dλ̂
, (A.9)

where the covariant components of the tensor aµ̄ν̄ are:1576

aµν = gµν +
e2

m2c4
AµAν aµ5 =

e2

m2c3β
Aµ a55 =

e2

m2c4β2
. (A.10)

Like all the quantities introduced by Klein, also the components of aµ̄ν̄ do not depend1577

on the fifth coordinate. As we emphasized in the main text, aµ̄ν̄ and γµ̄ν̄ are quite1578

different, cf. equation (A.10) and equation (A.3). As we said, it seems that Klein1579

introduced a new metric for the microscopic world, aµ̄ν̄ , indeed the null-like character1580

of the paths is referred to the tensor aµ̄ν̄ instead of γµ̄ν̄ . If following Klein we define1581

µ = a55, hence aµ̄ν̄dx
µ̂dxν̂ = µdθ2 + ds2. After having defined the tangent vector1582

along the null-path, V µ =
dxµ

dλ̂
, it should satisfy the condition µ

(
dθ
dλ̂

)2

+
(
ds
dλ̂

)2

= 0.1583

The Hamilton equations are equivalent to the Euler-Lagrange equations:1584

d

dλ̂

∂L

∂
(
dxµ̄/dλ̂

) − ∂L

∂xµ̄
= 0 . (A.11)

We now skip some technical details, because a similar derivation is proposed in1585

Appendix C, discussing de Broglie’s approach. The equation for the fifth component1586

is a conservation law, because the tensor aµ̄ν̄ does not depend on the fifth coordinate1587

x5. The conserved momentum p5 reads p5 =
∂L

∂
(
dx5/dλ̂

) = µ
dθ

dλ̂
. This conservation1588
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law can be used to reduce equation (A.11), with µ̄ = 0, 1, 2, 3, to:1589

mc

(
d

dλ̂
(gµνV

ν)− 1

2
∂µgρνV

ρV ν
)

= −e
c

(∂µAν − ∂νAµ)V ν . (A.12)

Klein now introduces the particle’s proper time τ as follows. The constancy of p51590

and the condition for the null-like character of the paths imply that the ratio
dτ

dλ̂
is1591

constant along the path. Hence, in the projected four-dimensional equation (A.12),1592

the arbitrary parameter can be substituted with the proper time, notwithstanding we1593

started considering null-geodesics.66 After some manipulation it can be shown that1594

it is equivalent to the Lorentz equation for a charged massive particle of mass m and1595

charge −e in a combined electromagnetic and gravitational field (see Appendix C):1596

mc

(
duλ

dτ
+ Γλ%νu

ρuν
)

= −e
c
Fλνu

ν , (A.13)

where now uµ =
dxµ

dτ
is the particle’s four-velocity. We stress again the role of the1597

tensor aµ̄ν̄ . The mass of the particle is hidden into its definition, equation (A.10).1598

Therefore, the five-dimensional null-geodesics for the differential form aµ̄ν̄dx
µ̄dxν̄ are1599

connected with four-dimensional geodesics of charged massive particles.1600

Appendix B On the inconsistency of a time-like compactified1601

dimension1602

One of the most important assertion we made in the text is that, unlike Klein, de1603

Broglie considered a time-like fifth dimension. In order to understand the conse-1604

quences of this choice we start again with the five-dimensional line element dσ2 =1605

γµ̄ν̄dx
µ̄dxν̄ . Using Klein notation, which we rewrite here for convenience, we define1606

γ5µ
α = βAµ and the components of the five-dimensional metric are:1607

γµν = gµν + αβ2AµAν , γ55 = α , γ5µ = αβAµ . (B.1)

This metric has the following signature: (− ; + ; + ; + ; ε), where ε = + if α > 0, i.e. if1608

the fifth coordinate describes a space-like dimension, and ε = − if α < 0, i.e. in the1609

case of a time-like coordinate. We remember that the line element can be rewritten as1610

dσ2 = αdθ2 + ds2, where dθ = dx5 +βAµdx
µ and ds2 = gµνdx

µdxν . The components1611

of the inverse metric are:1612

γµν = gµν , γ55 =
1

α
+ β2AµA

µ , γ5µ = −βAµ . (B.2)

Using the Ansatz that the metric does not depend on the fifth coordinate, we have1613

calculated the components of the five-dimensional Ricci tensor, defined by1614

R̃µ̄ν̄ = ∂λ̄Γ̃
λ̄
µ̄ν̄ − ∂ν̄ Γ̃ λ̄µ̄λ̄ + Γ̃ λ̄σ̄λ̄Γ̃

σ̄
µ̄ν̄ − Γ̃ λ̄σ̄ν̄ Γ̃ σ̄µ̄λ̄ . (B.3)

66It is worth remembering that the proper-time cannot be defined for null-geodesics.
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We need the following results:1615

R̃55 =
α2β2

4
FµνF

µν , (B.4)

R̃5σ = αβ∇λFσλ +
α2β3

4
AσFµνF

µν , (B.5)

gµνR̃µν = R+
α2β4

4
AσA

σFµνF
µν − αβ2

2
FµνF

µν + αβ2Aµ∇λFµλ , (B.6)

that lead to the following relation for the five-dimensional curvature scalar:1616

R̃ = γµ̄ν̄R̃µ̄ν̄ = γ55R̃55 + 2γ5µR̃5µ + γµνR̃µν

= R− αβ2

4
FµνF

µν . (B.7)

Equation (B.7) shows that if the fifth dimension is space-like, α > 0, we can identify1617

αβ2 = 2κ and the electromagnetic kinetic term has the correct sign. On the contrary,1618

if α is negative this identification is not possible. This is the inconsistency connected1619

with a compactified time-like dimension. As written in the main text, Klein inferred1620

from this fact the need to introduce a space-like compact dimension.1621

Appendix C Geodesics in de Broglie-Rosenfeld approach1622

In this section we describe de Broglie’s analysis of five-dimensional geodesics, with1623

some details. After having introduced the five-dimensional metric, in the fifth para-1624

graph of his paper de Broglie considered all five-dimensional geodesics, not only1625

null-geodesics as suggested by Klein, with the following motivation: ‘Admitting the1626

existence of a fifth dimension of the Universe, we could enunciate the following prin-1627

ciple: ¡¡In the five-dimensional universe, the World-line of every point particle is a1628

geodesic¿¿’ ([Louis de Broglie, 1927b]; p. 69). Given O and M , ‘two fixed points of1629

the World-line’ ([Louis de Broglie, 1927b]; p. 69), five-dimensional geodesics can be1630

seen as world-lines of extremal “five-dimensional proper time” dτ̂ =
√
−dσ2:1631

δ

∫ M

O

dτ̂ = 0 . (C.1)

After introducing an arbitrary parameter λ̂, the geodesic equation can be obtained1632

equivalently by the following variational principle:1633

1

2
δ

∫ M

O

[
γµ̄ν̄

dxµ̂

dλ̂

dxν̂

dλ̂

]
dλ̂ =

1

2
δ

∫ M

O

[
α

(
dθ

dλ̂

)2

+ gµν
dxµ

dλ̂

dxν

dλ̂

]
dλ̂ = 0 i.e.

1

2
δ

∫ M

O

[
α
(
V 5 + βAµV

µ
)2

+ gµνV
µV ν

]
dλ̂

= 0, (C.2)

where we used dσ2 = γµ̂ν̂dx
µ̂dxν̂ = αdθ2 + ds2 and where V 5 and V µ are the five1634

components of the five-velocity V µ̄ =
dxµ̄

dλ̂
. Now de Broglie identified the quantity1635



U
nc
or
re
ct
ed

P
ro
of

46 The European Physical Journal H

into the square bracket as a Lagrangian L(x , V ). Varying the action as a function of1636

xµ̄ and V µ̄, de Broglie obtained the following Euler-Lagrange equations:1637

d

dλ̂

∂L

∂V 5
=

∂L

∂x5
, (C.3a)

d

dλ̂

∂L

∂V µ
=

∂L

∂xµ
. (C.3b)

Remembering that there is no dependence from the fifth dimension, the equation1638

(C.3a) produces a conserved quantity:1639

d

dλ̂
α
(
V 5 + βAµV

µ
)

= 0 i.e. π5 = α
dθ

dλ̂
= constant , (C.4)

while equation (C.3b) read67:1640

d

dλ̂
(π5βAµ + gµνV

ν) =
1

2
∂µgρσV

ρV σ + π5β∂µAνV
ν , (C.5)

and, rearranging the terms and inserting π5 expression (C.4), its equivalent form is:1641

d

dλ̂

(
gµν

dxν

dλ̂

)
=

1

2
∂µgρσ

dxρ

dλ̂

dxσ

dλ̂
+ α

dθ

dλ̂
βFµρ

dxρ

dλ̂
. (C.6)

We can now introduce the proper-time dτ =
√
−ds2, because we are considering non-1642

null geodesics. The five-dimensional geodesic equation and the metricity condition1643

imply that the covariant derivative of the γµ̄ν̄V
µ̄V ν̄ would be zero. Hence the ratio1644

dλ̂
dτ is constant along the geodesic curve and in equation (C.6) λ̂ could be substituted1645

by τ . If we define the normalized four-dimensional vector uµ =
dxµ

dτ
and if we set,1646

following de Broglie,1647

α
dθ

dτ
= − e

βc

1

mc
, (C.7)

equation (C.6) reduces to1648

mc

(
d

dτ
(gµνu

ν)− 1

2
∂µgρνu

ρuν
)

= −e
c
Fµνu

ν . (C.8)

As claimed in the main text, the parameter β disappears and it remains undetermined.1649

In order to obtain Lorentz equations we rewrite the first term of the l.h.s. of1650

equation (C.8) as follows:1651

d

dτ
(gµνu

ν) = uρ∂ρ (gµνu
ν) = gµν

duν

dτ
+

1

2
(∂ρgµν + ∂νgµρ) , (C.9)

67Remember that Aµ is a function of the four-dimensional coordinates.
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Finally, we insert the previous equation in (C.8) and we contract it with the inverse1652

components of the metric gλµ to get the Lorentz equations:1653

mc

(
duλ

dτ
+ Γλµρu

ρuν
)

= −e
c
Fλνu

ν . (C.10)

Unlike Klein, de Broglie’s purpose was to show how the five-dimensional Universe’s1654

approach permits to geometrize the electromagnetic force. He stressed: ‘This means1655

that with geometric meaning we have attributed to the [electromagnetic] poten-1656

tials and to the ratio e/m, the five-dimensional World-lines of point particles are all1657

geodesics. The notion of force has been completely banned from Mechanics.’ ([Louis1658

de Broglie, 1927b]; p. 70). This connection between geodesic lines and equation (C.8)1659

convinced de Broglie that was not necessary to consider null-geodesics lines only.1660

De Broglie’s investigation of five-dimensional geodesic lines continued with the1661

question of what would be the correct particle’s action in five dimensions. The author1662

proposed ([Louis de Broglie, 1927b]; p. 70):1663

S5 = −I
∫ M

O

dτ̂ , (C.11)

where1664

I = m2c2 − e2

αβ2c2
, (C.12)

because it reduces to the usual point particle action in the case of zero charge. In1665

order to understand this fact, following de Broglie, we point out that we can rewrite1666

S5 as follows:1667

S5 = −I
∫ M

O

dτ̂ =

∫ M

O

(
Iαdθ

dτ̂

)
dθ −

∫ M

O

(
I dτ
dτ̂

)
dτ , (C.13)

where the second equality sign follows by inserting 1 =

(
dτ̂

dτ̂

)2

=

(
dτ

dτ̂

)2

−α
(
dθ

dτ̂

)2

,1668

as a formal consequence of dτ̂2 = dτ2 − αdθ2. We remember that the condition1669

∂5γµ̄ν̄ = 0 is equivalent to assert, using modern language, that space-time would1670

admit a Killing vector field, which is tangent to the fifth coordinate. The scalar prod-1671

uct between the Killing field and the velocity field is constant along the geodesic.1672

This result implies that the ratio dθ
dτ̂ must be constant. Hence, de Broglie chose:1673

I dτ
dτ̂

= mc (C.14)

and1674

Iαdθ
dτ̂

= − e

cβ
, (C.15)

which are consistent with equation (C.7). Finally, using dθ = dx5 + βAµdx
µ, S51675

assumes the following form:1676

S5 = −
∫

e

cβ
dx5 +

e

c

∫
Aµdx

µ −mc
∫
dτ . (C.16)
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It is now evident that S5 reduces to S4 = −mc
∫
dτ when we set e = 0. Indeed,1677

when e = 0 the scalar product between the Killing field and the velocity field (C.15)1678

(cf. de Broglie’s comment on equation (20)) is zero, then the geodesic projects onto1679

the four-dimensional space-time. As a consequence, de Broglie convinced himself1680

that the invariant I2 should have been a five-dimensional generalization of the four-1681

dimensional momentum68 mc. At this stage, we are able to explain the form of the1682

invariant I. Equations (C.14) and (C.15) and the identity dτ̂2 = dτ2αdθ2 imply that1683

I must have the following form:1684

I2 = m2c2 − e2

αβ2c2
. (C.17)

As noted by Klein, de Broglie choose −αβ2 = 2κ, because, if the fifth dimension1685

is time-like, α is negative and the invariant I2 would be strictly positive. On the1686

other hand, as we have said, the choice is not consistent with the request to obtain1687

Maxwell Lagrangian in (B.7).1688

As we have said in the main text, Klein asserted that de Broglie’s mistake did not1689

affect his conclusions. Klein referred to the following fact. De Broglie proposed the1690

five-dimensional wave equation:1691

γµ̄ν̄∇µ̄∂ν̄Ψ =
4π2

h2
I2Ψ . (C.18)

It is worth noting that S5 depends linearly from x5, as we can see integrating (C.16).1692

Hence, using a geometrical optics Ansatz Ψ = Ae
i
~S5 , the periodicity with respect to1693

x5 follows immediately.1694

This means that the wave function can be written as:1695

Ψ (x) = ψ
(
x0 , x1 , x2 , x3

)
· exp

(
i

~
e

cβ
x5

)
, (C.19)

where ψ is the four-dimensional wave function. Using (C.19) and the components of1696

the inverse metric (B.2), we note, following Klein ([Klein, 1927a]; p. 243) that, Ψ1697

satisfies1698

γ55∂2
5Ψ = − 1

~2

(
1

α
+ β2AµA

µ

)
e2

c2β2
Ψ . (C.20)

This means that (C.18) can be rewritten, in a flat space-time, in the following way1699

([Louis de Broglie, 1927b]; p. 73):1700

gµν∂µ∂νψ −
2ie

~c
Aµ∂µψ −

e2

~2c2
AµA

µψ =
m2c2

~2
ψ . (C.21)

We note that (C.21) corresponds to the KG equation for a complex scalar field in an1701

external electromagnetic field, and can be written in the following compact way:1702

gµν
(
∂µ −

i

~
e

c
Aµ

)(
∂ν −

i

~
e

c
Aν

)
ψ =

m2c2

~2
ψ , (C.22)

68We remember that De Broglie’s idea emerged comparing S4 with S5.
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if the Lorenz gauge, namely ∂µA
µ = 0, holds. As claimed by Klein, independently to1703

the character of the fifth dimension, the term depending on αβ2 in I2 definition (C.17)1704

disappears, and equation (C.21) reduces to de Broglie’s equation ([Louis de Broglie,1705

1927b]; p. 73, Eq. (40)), where the case of null gravitational field is considered.1706

Appendix D On Rosenfeld approach1707

In this section we explain some technical details skipped in the main text.1708

D.1 Five-dimensional versus four-dimensional momentum1709

Equations (58) and (59) can be obtained as follows. First we note that if S0 is a1710

complete integral of the HJ equation in four dimensions, see equation (54), it fol-1711

lows that69 gµν
(
∂νS0 +

e

c
Aν

)
= mc

dxµ

dτ
. Then, using the inverse components of the1712

metric tensor (53) and equation (52), we rewrite the l.h.s. of (58) as follows:1713

γµν̄∂ν̄ S̄ = γµ5∂5S̄ + γµν∂ν S̄ = (−βAµ)

(
− e

cβ

)
+ gµν∂νS0

= gµν
(
∂νS0 +

e

c
Aν

)
= mc

dxµ

dτ
, (D.1)

and we have finally obtained equation (58). Since Rosenfeld introduced explicitly the1714

quantity
√
m2c2 − e2c2

16πG , we used for this quantity the symbol IRos for brevity. From1715

equation (57) we get1716

γµν̄∂ν̄ S̄ = IRos
dxµ

dτ̂
= IRos

dxµ

dτ

dτ

dτ̂
, (D.2)

and confronting equation (D.2) with (58) we get equation (59).1717

D.2 Modern five-dimensional action1718

In action (64) Rosenfeld choose an unusual coupling between matter and gravity.1719

Rosenfeld’s coupling is unusual for the following reason. In a modern five-dimensional1720

approach, the action would be:1721

Stot
(
γ , Φ , Φ̄

)
=

∫
d5x
√
−γ
[
− 1

2κ5
R̃+ L̃

]
, (D.3)

where L̃ is the action for a complex scalar field Φ, that has the expected length dimen-1722

sion [Φ] = (length)−
3
2 , in natural units ~ = c = 1. Using the determinant definition1723

and (B.1) it can be proved that70
1724

γ = εµ̄ν̄ρ̄σ̄λ̄γµ̄0γν̄1γρ̄2γσ̄3γλ̄5 = αg . (D.4)

69See Landau & Lif̌shitz [1951].
70We define ε01235 = 1.
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Using κ5 = 2πl̃κ, where 2πl̃ is the “volume” of the compact dimension, (D.3) can be1725

rewritten as follows:1726

Stot
(
γ , Φ , Φ̄

)
=

√
α

2κ5

∫
d5x
√
−g
[
−R̃+ κ

(
2πl̃L̃

)]
. (D.5)

Now the length l̃ of the fifth dimensions can be adsorbed with the following field1727

redefinition: Ψ =
√

2πl̃ Φ. This shows that the equations obtained by varying (D.5)1728

are equivalent to Rosenfeld’s equations of motion, but the new scalar field Ψ has length1729

dimensions [Ψ ] = (length)−1 as a four-dimensional scalar field. As a consequence, as1730

stated in the main text, the stress-energy tensor defined by Rosenfeld is a four-1731

dimensional object.1732

D.3 Einstein–Maxwell equations coupled with complex scalar field1733

The equations obtained by varying (D.5) with respect to the metric are:1734

R̃µ̄ν̄ −
1

2
γµ̄ν̄R̃ = κTµ̄ν̄ , (D.6)

and, as written in the main text, they are formally equivalent to the the four-1735

dimensional Einstein equations, coupled to the electromagnetic and matter stress-1736

energy tensor, and Maxwell equations. In order to understand this fact, firstly we1737

write the expression for R̃µν . After a lengthy calculation, from (B.3) it follows:1738

R̃µν = Rµν +
α2β4

4
AµAνFσλF

σλ − αβ2

2
FµλFν

λ +
αβ2

2

(
Aµ∇λFνλ +Aν∇λFµλ

)
.

(D.7)
Let us consider the contravariant components of (D.6), i.e.1739

γλ̄µ̄γσ̄ν̄R̃µ̄ν̄ −
1

2
γλ̄σ̄R̃ = κγλ̄µ̄γσ̄ν̄Tµ̄ν̄ . (D.8)

Using (B.1), (B.2), (B.4), (B.5) and (D.7) the λσ components of the l.h.s. of equation1740

(D.8) can be rewritten as follows:1741

γλµ̄γσν̄R̃µ̄ν̄ −
1

2
γλσR̃ =

[
gλµgσνR̃µν + gλµγσ5R̃5µ + γλ5gσνR̃5ν + γλ5γσ5R̃55

]
−1

2
gλσR̃ ,

= Rλσ − 1

2
gλσR− κgλµgσνT emµν . (D.9)

Following Rosenfeld we define1742

Tλσ = γλµ̄γσν̄Tµ̄ν̄ , (D.10)

and the λσ components of (D.8) read ([Léon Rosenfeld, 1927a]; p. 313):1743

Rλσ − 1

2
gλσR = κ

(
Tλσem + Tλσ

)
, (D.11)
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that correspond to Einstein equations coupled to the electromagnetic and the matter1744

stress-energy tensor. Maxwell equations emerge conversely as follows. If we contract1745

(D.6) with γρ̄µ̄, we get:1746

γρ̄µ̄R̃µ̄ν̄ −
1

2
δρ̄ν̄R̃ = κγρ̄µ̄Tµ̄ν̄ . (D.12)

The ρ5 components of the l.h.s. of equation (D.12) now read71:1747

γρµ̄R̃µ̄ν̄ = γρµR̃µ5 + γρ5R̃55 ,

=
αβ

2
∇λF ρλ . (D.13)

Remembering that κ = αβ2

2 , following Rosenfeld, we define1748

T ρ5 = γρµ̄Tµ̄5 , (D.14)

and equation (D.12) now reads:1749

∇λF ρλ = βT ρ5 . (D.15)

Equation (D.15) correspond to Maxwell equations coupled to a current density as1750

written by Rosenfeld ([Léon Rosenfeld, 1927a]; p. 313).1751

D.4 Four-dimensional and five-dimensional curvature scalar1752

In the main text, we have written that using (D.6) Rosenfeld obtained a particular1753

relation for the curvature scalars R and R̃, namely1754

R = −κ
[
γνµ̄Tµ̄ν − γµρAρ∇λ

(
γµσF

σλ
)]

and (D.16)

R̃ = −κ
[
γνµ̄Tµ̄ν +

FσλF
σλ

2
− γµρAρ∇λ

(
γµσF

σλ
)]
. (D.17)

In order to obtain these relations, we set ρ̄ = ν̄ = ν in equation (D.12) and it reads:1755

γνµ̄R̃µ̄ν − 2R̃ = κT νν , (D.18)

where we have defined T νν = γνµ̄Tµ̄ν . Using the definition of R̃ (Eq. (B.7)), equation1756

(D.18) can be rewritten as1757

R̃− γ55R̃55 − γ5µR̃µ5 − 2R̃ = κT νν . (D.19)

Inserting (B.2), (B.4), (B.5) and (B.7), and isolating R, we obtain equation (D.16)1758

and using again (B.7) we obtain (D.17).1759

71Remember that δρ̄ν̄ = 0 when ρ̄ 6= ν̄.
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D.5 The retarded potentials1760

After having linearised Einstein equation (D.6), Rosenfeld integrated it and obtained1761

the retarded potentials, equation (71). Using modern notation the retarded potentials1762

read:1763

hµ̄ν(t; x) = − κ

2π

∫
Σ

T̄µ̄ν

(
t− |x− y|

c
; y

)
d3y

|x− y|
, (D.20)

where the radial distance is defined by r = |x− y| and the integration is carried on1764

a three-dimensional hypersurface Σ at the retarded time t − |x− y|
c

. The retarded1765

potential are functions of x and t.1766

D.6 The isotropic coordinate system and the “mean distance”1767

In this last appendix we show how Rosenfeld was inspired by his knowledge of1768

Eddington’s book on GR.1769

Given a bounded charged matter distribution of radius ε, the RN metric is an1770

exact solution of equation (D.11), with Tλσ being the stress-energy tensor associated1771

to the classical spherical symmetric mass distribution. In polar coordinates the line1772

element has the following form:1773

ds2 = −
(

1− 2mG

c2r
+
GQ2

c4r2

)
c2dt2 +

(
1− 2mG

c2r
+
GQ2

c4r2

)−1

dr2

+r2
(
dθ2 + sin2θdϕ2

)
, (D.21)

where m and Q are the mass and the charge of the particle respectively and the coor-1774

dinate r has the following range: ε ≤ r < +∞. If Q = 0 the line element describes1775

the so called exterior Schwartzschild metric. Rosenfeld used the less known isotropic1776

coordinate system. We do not know if the author would know RN metric in isotropic1777

coordinates. As stated in Section 2, we know from Kuhn’s interview [Kuhn & Heil-1778

bron, 1963] that Rosenfeld studied Eddington’s book on GR. In The Mathematical1779

Theory of Relativity [Eddington, 1923] the British Physicist introduced isotropic coor-1780

dinates for Schwartzschild metric, using both its exact form and its limit at first order1781

in
1

r
. It is worth noting that at asymptotically large distances from the source, at the1782

first order in
1

r
, both Schwartzschild and RN metric have the same form. This fact1783

is true both in isotropic and in polar coordinates.1784

In the so called isotropic Cartesian coordinate system the line element of a1785

spherically symmetric space-time has the following form:1786

ds2 = −A (r) dt2 +B (r)
(
dx2 + dy2 + dz2

)
, (D.22)

where r =
√
x2 + y2 + z2 is the distance from the origin. Following Eddington, at the1787

first order in
1

r
, for a point-particle continually at rest we have ([Eddington, 1923];1788

p. 101):1789

A (r) ≈ 1− 2mG

c2r
and B (R) ≈ 1 +

2mG

c2r
, (D.23)



U
nc
or
re
ct
ed

P
ro
of

G. Peruzzi and A. Rocci : Tales from the prehistory of Quantum Gravity 53

where the particle need not be at the origin provided that r is the distance from the1790

particle to the point considered. The line element now reads:1791

ds2 = −
(

1− 2mG

c2r

)
dt2 +

(
1 +

2mG

c2r

)(
dx2 + dy2 + dz2

)
, (D.24)

showing that at large distances the particle’s gravitational field is “less different”1792

from the Minkowskian field, as stated by Rosenfeld.1793

Line element (D.24) and Rosenfeld’s line element are different, see e.g. (80). Rosen-1794

feld used the “mean distance” r0(~x) instead of r: Rosenfeld replaced the distance to1795

the single particle by the mean distance to the cloud. In order to understand this1796

fact, we remember that inspecting the semi-classical limit of his quantum metric the1797

particle is represented by a wave function that is zero outside a volume V . For this1798

reason, following Eddington, we consider the transition to continuous matter. Sum-1799

ming the fields of force of a number of particles, Eddington suggested the following1800

form for the two functions A (R) and B (R):1801

A (r) ≈ 1− 2Ω

c2
and B (r) ≈ 1 +

2Ω

c2
, (D.25)

where Ω represents the Newton potential at the point considered and using Eddington1802

notation reads:1803

Ω =
∑ m

r
. (D.26)

Let ~yi, with i = 1, . . . , N , be the position of the i-th particle, mi its mass and let ~x be1804

an arbitrary point of the space-time. Using modern notation, equation (D.26) reads:1805

Ω =

N∑
i=1

mi

|~yi − ~x|
. (D.27)

For a homogeneous system of mass m with volume V the Newton potential reads:1806

Ω =
m

V

∫
V

dxdydz

|~y − ~x|
, (D.28)

where y is a point of the volume V . The mean value theorem states that:1807

1

V

∫
V

dxdydz

|x− y|
=

1

r0(x)
(D.29)

where r0(~x) is the mean distance to the cloud. Equation (D.29) is equivalent to1808

Rosenfeld’s condition (86), namely
V

r0(x)
=

∫
V

dV

|x− y|
and the line element to be1809

compared with the semi-classical limit of the quantum metric reads:1810

ds2 = −
(

1− 2mG

c2r0(~x)

)
dt2 +

(
1 +

2mG

c2r0(~x)

)(
dx2 + dy2 + dz2

)
. (D.30)
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Mécanique ondulatoire. (Quatrième communication). Bulletin de l’Académie royale de1846

Belgique [Classe des Sciences] , 13: 504–509. Serie 5.1847
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