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After examining in Part I the general mechanisms of
endothelial cell injury in the kidney, the Working Group on
Endothelin and Endothelial Factors of the European Society
of Hypertension and the Japanese Society of Hypertension
will herein review current knowledge on the role of
endothelial dysfunction in multiple disease conditions that
affect the kidney, including diabetes mellitus,
preeclampsia, solid organ transplantation,
hyperhomocysteinemia and antiangiogenic therapy in
cancer. The few available randomized controlled clinical
trials specifically designed to evaluate strategies for
correcting endothelial dysfunction in patients with
hypertension and/or chronic kidney disease are also
discussed alongside their cardiovascular and renal
outcomes.
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Abbreviations: ACE, angiotensin I converting enzyme;
ADMA, asymmetric dimethylarginine; AH, arterial
hypertension; Ang II, angiotensin II; ARB, angiotensin AT1

receptor blocker; BP, blood pressure; CKD, chronic kidney
disease; eGFR, estimated glomerular filtration rate; eNOS,
endothelial nitric oxide synthase; ERA, endothelin receptor
antagonist; ESRD, end-stage renal disease; ET-1,
endothelin-1; ETA, endothelin type A receptor; GFR,
glomerular filtration rate; MTHFR, methylene-tetra-hydro-
folate reductase; NO, nitric oxide; NOS, nitric oxide
synthase; Nox, NADPH oxidase; RAAS, renin–angiotensin–
aldosterone system; RCT, randomized controlled
clinical trial; ROS, reactive oxygen species; sFlt-1, soluble
fms-like tyrosine kinase 1; VEGF, vascular endothelial
growth factor
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INTRODUCTION
I
mpaired endothelium-dependent vasodilation, a hall-
mark of arterial hypertension (AH) and many other
cardiovascular disease risk factors and disease condi-

tions, can be an early mechanism leading to cardiovascular
damage or, alternatively, a marker of it. Endothelial dys-
function in glomeruli and peritubular vessels affects filtra-
tion fraction, resulting in a progressive reduction in the
glomerular filtration rate (GFR), extracellular fluid volume
expansion, abnormal ion balance and renal hypoxia, all of
which ultimately contribute to the age-dependent renal
function loss in the hypertensive population and can lead
to chronic kidney disease (CKD) [1]. Proteinuria, a marker
 Health, Inc. All rights reserved.
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of renal microvasculature damage, is invariably associated
with systemic endothelial dysfunction in hypertension,
suggesting a general involvement of the endothelium [2].

After examining in Part I the general mechanisms under-
lying endothelial dysfunction in the kidney, using the same
methodology, the Working Group on Endothelin and
Endothelial Factors of the European Society of Hyperten-
sion in conjunction with the Japanese Society of Hyperten-
sion will herein review current knowledge on the role of
endothelial dysfunction in conditions in which the renal
vasculature is deeply affected, such as diabetes mellitus,
preeclampsia, kidney transplantation, hyperhomocysteine-
mia and cancer. The few randomized controlled clinical
trials (RCTs) that explored the concept that strategies aimed
at correcting endothelial dysfunction in patients with hyper-
tension and/or CKD are also discussed alongside their
cardiovascular and renal outcomes.

DIABETIC NEPHROPATHY
Diabetic nephropathy, one of the main preventable causes
of reno-parenchymal hypertension and CKD, is character-
ized by focal and segmental glomerulosclerosis [3], which
involves multiple factors including progressive podocyte
injury, glomerular fibrosis and loss of glomerular filtration
function [4,5], leading to proteinuria, and ultimately to the
need for renal replacement therapy [4] (Fig. 1). Proteinuric
CKD, and particularly end-stage renal disease (ESRD), not
only aggravates hypertension and cardiovascular risk [6],
but also poses an economic rapidly growing burden to
society [4], making prevention of this disease a critical task
for the future.
 Copyright © 2018 Wolters Kluwer 

FIGURE 1 Stages of diabetic nephropathy. (a) Structure of glomerulus and tubulus unde
injury and, via hyperinsulinemia and release of growth factors, also mesangial expansion
induced by angiotensin II and aldosterone, causes hyperfiltration. (c) With time, angioten
induce podocyte loss, causing microalbuminuria and decreased filtration. They also induc
terstitial fibrosis, by provoking glomerular shrinkage and preventing comunications betw
and protein loss. Normal tubular epithelial cells are visualized in violet. Cells undergoing
whereas cells entirely transformed into mesenchymal cells and, therefore, able to produc

Journal of Hypertension
The pathogenesis of diabetic nephropathy not only
involves hyperglycemia and inflammation, but also endo-
thelial and nonendothelial pathways [7,8], including
enhanced oxidative stress, renin–angiotensin–aldosterone
system (RAAS) and endothelin-1 (ET-1) activation, and
inflammatory processes that were discussed in Part I [4].

Obesity, which is frequently associated with insulin resis-
tance and/or diabetes, also leads to focal and segmental
glomerulosclerosis, a condition termed ‘obesity nephropa-
thy’. Of note, practically all of the aforementioned endothe-
lial mediators of CKD are also implicated in the pathogenesis
of diabetic nephropathy [9], as they were found to promote
and maintain podocyte injury and glomerular and vascular
inflammation [6,10]. Hence, not unsurprisingly, as hyperten-
sion is common among these patients, antihypertensive
medications targeting endothelial pathways, such as angio-
tensin I converting enzyme (ACE) inhibitors, angiotensinAT1

receptor blockers (ARBs) or mineralocorticoid receptor
antagonists, havebeen investigated in diabetic nephropathy.
These agents were shown to improve clinical outcome with
benefit that exceeded that attributable to changes in blood
pressure (BP) [7,11–14]. Of note, the protective effects of
ACE inhibitors and ARBs were particularly marked in obesity
nephropathy [15] and predictably found to be largely BP-
independent [11,13,14], consistent with suggesting their
direct renoprotective effects [7].

It has been known for some time that kidney transplan-
tation not only normalizes BP but also reverses hyper-
tensive damage in the heart and retinal arteries of
patients with proteinuric renal disease and hypertension
[16], indicating the reversibility of end-organ injury. Simi-
larly, regression or partial disease remission was suggested
Health, Inc. All rights reserved.
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to occur in patients with diabetic nephropathy treated with
ARBs or ACE inhibitors, in whom proteinuria decreased [7].
Reversal of diabetic or nondiabetic focal and segmental
glomerulosclerosis and/or proteinuria has also been
observed in studies with endothelin receptor antagonists,
both experimentally and clinically [17–19]. Currently, a
novel approach to interfere with progression of diabetic
nephropathy under investigation entails the pharmacologi-
cal inhibition or downregulation of reactive oxygen species
(ROS) generating NADPH oxidases enzymes [20,21]
(https://clinicaltrials.gov/ct2/show/NCT02010242).

Statins have also been shown to inhibit inflammatory
activation in both endothelial cells and the vasculature [8],
but so far the clinical trials conducted in patients with
diabetic nephropathy have failed to prove their beneficial
effect on the natural history of the disease [6].

Finally, strategies employing preventive measures, such
as weight loss/bariatric treatment of obesity [8], lifestyle
changes to improve and maintain cardiorespiratory fitness
or pharmacological interventions, such as antidiabetic ther-
apy or those targeting the aforementioned endothelial
mediators can conceivably reduce BP, delay vascular and
renal aging, and thus contribute to an improved overall
cardiovascular outcome [8,22–30].

PREECLAMPSIA-ASSOCIATEDKIDNEY
INJURY
Preeclampsia is the most frequent (prevalence about 3–8%)
serious medical complication of pregnancy. It develops
through two stages [31,32]: in stage 1, aberrant shallow
cytotrophoblast invasion in the maternal spiral arteries
supplying the placenta results in poor placentation; in
stage 2, this leads to repeated periods of placental hypoxia
and reperfusion injury, resulting in oxidative stress and an
increased production of placental factors (Fig. 2). Among
the latter, soluble fms-like tyrosine kinase 1 (sFlt-1), a splice
variant of the membrane-bound vascular endothelial
growth factor (VEGF) type 1 receptor originating from
placental syncytiotrophoblast, has been widely studied.
 Copyright © 2018 Wolters Kluwer

FIGURE 2 Endothelial dysfunction and abnormal placentation in preeclampsia. During
remodeling them into high-capacitance vessels that supply the placenta and fetus with m
invasion of the trophoblasts is incomplete, with cytotrophoblast cells only in the superfic
vessels (stage 1). Shallow trophoblasts invasion leads to placental hypoxia and reperfusio
soluble fms-like tyrosine kinase 1 (stage II). Soluble fms-like tyrosine kinase 1, combined
cytokines, causes endothelial dysfunction, finally leading to arterial hypertension and kid
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Others include soluble endoglin, agonistic autoantibodies
to the AT1 receptor, and inflammatory cytokines [33,34].
All these factors, likely in combination with an altered
immune system in preeclampsia [35,36], are thought to
contribute to generalized endothelial dysfunction, although
their precise roles remain unclear. For example, in pre-
eclamptic women, both circulating sFlt-1 and ET-1 levels
rise progressively in relation to the severity of preeclampsia
[37,38]. These factors affect not only growth and develop-
ment of the placenta and the fetus, but also the health of
endothelial cells and kidney function, including the main-
tenance of the glomerular filtration barrier [39]. Moreover,
elevated sFlt-1 levels, by binding both free VEGF and
placental growth factor, disturb the balance between
proangiogenic and antiangiogenic factors. Hence, these
mechanisms may contribute to hypertension and renal
damage in preeclampsia [35].

Accordingly, as discussed below, treatment of cancer
patients by blocking angiogenesis via VEGF inhibition
(with tyrosine kinase inhibitors, and direct VEGF inhibition
or inactivation) resulted in a preeclampsia-like syndrome,
featuring hypertension, proteinuria and glomerular endo-
theliosis [40]. Moreover, VEGF inhibitor-treated cancer
patients, like preeclamptic women, display high ET-1 lev-
els, which correlated closely with the degree of VEGF
inhibition, as estimated by either the serum sFlt-1 levels
or the VEGF inhibitor dose [37]. Multiple regression analysis
has pointed to a role for ET-1 as an independent determi-
nant not only of the BP rise and proteinuria, but also of
renin suppression in preeclamptic women [37]. Therefore,
ET-1 activation seems to be involved in causing both the
clinical manifestations of preeclampsia, and the well known
paradoxical suppression of renin in this disease. ET-1
additionally acts as an aldosterone secretagogue via endo-
thelin type B (ETB) receptors [41], whereas autoantibodies
to AT1 receptors, may have similar effects. Obviously, these
antibodies should also suppress renin release via AT1

receptor activation. Consequently, theoretically preeclamp-
tic women would be expected to display an increased
aldosterone/renin ratio, due to the opposite effects of
 Health, Inc. All rights reserved.
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ET-1 and autoantibodies on renin and aldosterone, but,
in contrast with this prediction, no such increase was
observed [37], suggesting that multiple complex mecha-
nisms modulate the effects of ETB receptors and autoanti-
bodies in vivo. A possible explanation is that the VEGF-
induced increase in adrenal capillary density, which in
normal pregnancy upregulates aldosterone production, is
disturbed in preeclampsia because sFlt-1 blocks such
effects of VEGF [42].

Animal models of preeclampsia support the importance
of sFlt-1/ET-1 upregulation in that ET-1 receptor blockade
alleviates preeclampsia symptoms, in keeping with the
effects seen with these agents in VEGF inhibitor-induced
hypertension [37,43,44]. The cause of the rise of ET-1 in
preeclampsia remains to be determined. Although acute
VEGF inhibition in human umbilical vein endothelial cells
did not affect ET-1 release [45], soluble endoglin has been
suggested to induce endothelial ET-1 production [46]. If
confirmed, this could lead to the development of entirely
new treatment targets. Endothelin receptor antagonism,
having been linked to teratogenicity, might be feasible only
at a late pregnancy stage, when all organs have been formed.
KIDNEY TRANSPLANTATIONAND
TRANSPLANT-ASSOCIATED
HYPERTENSION
The global burden of ESRD patients needing renal replace-
ment therapy and transplantation is continuing to rise. This
poses a huge financial burden to healthcare systems [47],
which will continue to rise with improved survival from
cardiovascular disease in these patients. Endothelial dys-
function is held to be central to both CKD development and
the cardiovascular continuum as discussed in Part I [48].
Renal transplanted patients are no exception to this, which
is clearly understandable given that circulating immune
response cells find the endothelium as the first barrier to
their attack on the transplanted organ. Although advances
in the treatment of acute rejection and short-term graft
survival now allow a 90% survival at 1 year [49], long-term
success has been more difficult to achieve. Oxidative stress
is enhanced in recipients of kidney transplants and starts
before transplantation while these patients develop ESRD.
It is then aggravated during the ischemia-reperfusion occur-
ring during the grafting, and then further exacerbated as a
consequence of long-term immunosuppressant treatment,
more with cyclosporine, which causes hypertension and
renal damage, than with the newer immunosuppressive
drugs like tacrolimus [50]. Moreover, several factors
involved in the impaired vasorelaxation of transplanted
patients, including ET-1 (see below), asymmetric dimethy-
larginine (ADMA) and fibroblast growth factor 23 (FGF23)
(see section on vitamin D), are held to contribute to renal
damage [51,52].

After hepatic, cardiac and renal transplantation, circulat-
ing levels of ET-1 increase [53–56], indicating systemic
activation of the ET system and decreased ETB receptor-
mediated ET-1 clearance. Accordingly, impaired endothe-
lial cell function associated with ET-1 activation has been
observed in human allograft recipients [57]. Cyclosporine is
 Copyright © 2018 Wolters Kluwer 
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not only a potent stimulus for ET-1 production [58], but also
an inhibitor of the L-arginine/nitric oxide (NO) pathway
[59]; thereby, it contributes to post-transplant hypertension
[60]. Moreover, endothelin type A (ETA) receptor expres-
sion increases in renal allografts [61] and endothelin recep-
tor antagonist (ERA) treatment effectively suppresses
fibrotic and proliferative responses in several allografts
[62–70]. Accordingly, selective ETA [71,72], but not
mixed ETA/ETB blockade [73], largely prevents chronic
rejection and renal allograft injury, even in the absence
of continued immunosuppression [71] through mechanisms
not improved by ARB treatment [74], suggesting that
ERA have pronounced and independent immunomodula-
tory effects in the transplant recipient [75]. However,
findings were mostly obtained in experimental models
[62–75], whereas RCTs [53–61] were too small to recom-
mend a specific class of drugs to transplant-associated
hypertension.

ANGIOGENESIS ANTAGONISTS AND THE
RENAL ENDOTHELIN SYSTEM
Angiogenesis is a key process for tumor growth and meta-
static spread. This has led to the development and intro-
duction in the clinic of a large number of agents (such as
anti-VEGF antibodies and small, orally active receptor
tyrosine kinase inhibitors that block the VEGF signaling
pathway) aimed at blunting the actions of VEGF. The latter
regulates angiogenesis through endothelial cell prolifera-
tion and can play an important role in capillary repair in
damaged glomeruli [76]. Common adverse effects of these
agents are hypertension and kidney injury, which resemble
the manifestations of preeclampsia, in which the release of
sFlt-1 in the bloodstream, by sequestering VEGF and pla-
centa growth factor, is held to produce an anti-angiogenic
state [77]. As in preeclampsia, activation of the ET system
occurs in cancer patients treated with the receptor tyrosine
kinase inhibitors sunitinib and regorafenib [45,78]. In preg-
nant rats, the anti-angiogenic factor sFlt-1 causes a rise in BP
and expression of the prepro-ET-1 gene in the renal cortex
[79]. Moreover, over expression of sFlt-1 in mice also
increases expression of the genes encoding for ET-1 and
the ETA receptor, effects that are amplified in endothelial
NO synthase (eNOS)-deficient mice [80]. Thus, inhibition of
angiogenesis leads to ET-1 activation, particularly when
NO bioactivity is blunted. Accordingly, sunitinib dose-
dependently increased plasma ET-1 levels in rats, but
unexpectedly did not increase the urinary excretion of
ET-1, a marker of renal ET-1 production [81]. Moreover,
opposite to what is seen with sFlt-1 administration in
pregnant rats, expression of the prepro-ET-1 and endothe-
lin converting enzyme genes were not increased. Notwith-
standing this, the non-selective ERA macitentan prevented
the rise in BP and proteinuria in sunitinib-exposed rats [82],
whereas amlodipine, which similarly lowered BP, did not
affect proteinuria [82].

In summary, even though the effects of sFlt-1 and
sunitinib on renal expression of the prepro-ET-1 gene
may not be uniform, it can be concluded that antiangio-
genic treatment activates the ET-system and that data
with ERA treatment support a role of the ET-system in
Health, Inc. All rights reserved.
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the development of proteinuria following antiangiogenic
treatment.
HYPERHOMOCYSTEINEMIA,
ENDOTHELIAL DYSFUNCTIONAND
RENAL DAMAGE
Hyperhomocysteinemia defined as a total plasma homo-
cysteinemia more than 15 mmol/l, affects 5–7% of the
general population and 20–40% of those with coronary
atherosclerosis [83,84]. It usually derives from a gene-
environment interaction involving a low folate intake
and the presence of variants of the methylene-tetra-
hydro-folatereductase (MTHFR) gene (ID 4524), particu-
larly in elderly people and in the presence of reduced GFR
[85,86]. Two non-synonymous single nucleotide polymor-
phisms for the MTHFR gene have been described: C677T in
exon 4 (Ala222Val) that results in a MTHFR variant with
decreased stability to temperature (thermolabile variant),
and an A1298C (Glu429Ala) in exon 7 that impairs MTHFR
activity, albeit to a lesser extent than C677T [87]. These
variants, in the presence of a low-folate supply, lead to
hyperhomocysteinemia, which detrimentally affects the
endothelium by inducing oxidative stress, with ensuing
decreased NO production and NO bioactivity [88], and also
accumulation of the endogenous NOS inhibitor ADMA [89].

Declining renal function, alongside aging and left ven-
tricular systolic dysfunction, are recognized factors associ-
ated with hyperhomocysteinemia. ESRD patients are
expected to develop hyperhomocysteinemia, as the kidney
is the major site of homocysteine metabolism, and, more-
over, dialysis is associated with loss of water-soluble B
vitamins, which are key for maintaining normal plasma
homocysteine levels [90]. Hyperhomocysteinemia induces
severe oxidative stress, thus leading to oxidation of free or
protein-bound thiols and aggravation of endothelial dys-
function [90,91]. Accordingly, the MTHFR gene variants
have been linked to kidney damage: the C677T variant
was found to be associated with CKD in both the cross-
sectional Japan Multi-institutional Collaborative Cohort
Study [92] and with mortality risk in ESRD patients of the
Homocysteinemia in Kidney and End Stage Renal Disease-
DNA study [93]. An association was also found between the
decline of GFR and A1298C variant in the longitudinal
African-Americans Study of Kidney Disease and Hyperten-
sion Trial [94].

A recent Cochrane analysis of six studies on the effects of
folic acid or vitamins B6 and vitamin B12 in ESRD patients,
however, failed to show a decrease in cardiovascular events
and/or death, leading the contention that homocysteine-
lowering therapies should not be used for cardiovascular
risk reduction [95]. This conclusion, however, cannot be
taken for granted for the following reason. As there is a
linear relationship between plasma homocysteine and risk
of cardiovascular events over the entire range of plasma
homocysteine values, a benefit from lowering homocyste-
ine may be expected only in those who have overt hyper-
homocysteinemia before they develop ESRD [84] and not in
the population at large in which the beneficial effect occur-
ring in a subset of the patients can be markedly diluted. In
 Copyright © 2018 Wolters Kluwer
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keeping with this prediction, a recent large study in patients
with mild-to-moderate CKD found that the combined treat-
ment with enalapril and folic acid supplementation delayed
the progression of CKD, as compared with enalapril alone
[96]. The concept that lowering plasma hyperhomocystei-
nemia is beneficial is further supported by evidence that
folic acid supplementation protected from cardiovascular
diseases patients with low folic acid levels and without
preexisting cardiovascular disease [97].
ENDOTHELIAL FACTORS, KIDNEY
PROTECTIONAND DISEASE
PREVENTION
In this era of evidence-based medicine, RCTs are the basis
for high level evidence and Class I recommendations.
Whether specifically targeting endothelial dysfunction
may ultimately improve cardiovascular and renal outcomes
in hypertension and CKD patients remains to be demon-
strated in adequately designed, long-term RCTs. As a proof-
of-principle, a study that used a remote ischemic precon-
ditioning strategy to improve endothelial function reported
prevention of acute kidney injury in high-risk patients
undergoing cardiac surgery (mean eGFR 56ml/min
per 1.73 m2) [98], thus supporting the contention that endo-
thelial factors may be targets for kidney protection in
humans [99].

We suggest that a holistic approach to treat hyperten-
sion, dyslipidemia and diabetes mellitus (with/without
diabetic nephropathy) should be the optimal strategy to
prevent CKD, or at least retard its progression. However,
studies involving specific targets suggests the possibility of
achieving additional benefits. For example, in four small
trials, the addition of spironolactone for 60 days, on top of
RAAS inhibition, reduced microalbuminuria, and decreased
BP and eGFR, without altering plasma biomarker concen-
trations of endothelial dysfunction [100]. Aldosterone
breakthrough may occur in patients with diabetic nephrop-
athy treated with an ACE inhibitor or an ARB, likely because
the secretion of aldosterone is controlled by multiple
mechanisms, besides Ang II [101,102]. Notably, aldosterone
breakthrough has been associated with worsening of
microalbuminuria [103], which might explain why low-dose
spironolactone (25 mg/day) on top of standard antihyper-
tensive treatment reduced microalbuminuria despite no
significant BP changes [104]. Moreover, spironolactone
induced a sustained antiproteinuric effect when added
on top of an ACE inhibitor or an ARB in a longer (1-year)
study [103]. Similarly, in a larger RCT, eplerenone
(50–200 mg/day) was more effective in reducing micro-
albuminuria than amlodipine in spite of similar lowering
BP and pulse pressure in patients with systolic hypertension
[105].

In CKD patients, the use of mineralocorticoid receptor
antagonists, especially if combined with ACE inhibitors
and/or ARBs, has been limited by the fear of hyperkalemia
[106,107]. However, serious hyperkalemia developed in
less than 1% of the patients with nondiabetic I–III CKD
stages (eGFR 30–89 ml/min per 1.73 m2) receiving 25mg
spironolactone on top of ARB or ACE inhibition, whereas a
 Health, Inc. All rights reserved.
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significant decrease in urinary albumin excretion greater or
equal to 50% was observed in 35% of the patients [108].
Nonetheless, even though in most cases mineralocorticoid
receptor antagonists are effective and well tolerated [109],
caution should be exercised in prescribing these agents to
CKD patients with an eGFR less than 45ml/min per 1.73 m2

and serum Kþ levels more than 4.5 mmol/l on appropriately
dosed diuretic treatment, as these features predict the
development of hyperkalemia.

Several small-sized short-term RCTs were performed to
target the molecular pathways involved in endothelial
dysfunction in CKD and hypertension [110–114]. In an
attempt to improve endothelial function using antioxidant
therapy, a double-blind pilot RCT was performed in nine
CKD patients with stable chronic heart failure, treated with
placebo or N-acetylcysteine (500mg orally twice daily)
for 28 days followed by a wash-out period (>7 days)
and cross-over to the other treatment. This study showed
that N-acetylcysteine therapy was associated with improved
forearm blood flow after ischemia caused by supra-systolic
pressure of 200 mmHg [110].

Cilostazol, a phosphodiesterase inhibitor with antiplate-
let/antithrombotic effects, used in chronic peripheral arte-
rial disease, induces vasodilatation and inhibits vascular
smooth muscle cells proliferation [111]. In a small single-
blinded study, patients with peripheral arterial disease and
diabetic nephropathy [baseline eGFR of 73 (placebo)–77
(cilostazol) ml/min per 1.73 m2] were randomized to oral
cilostazol (100 mg b.i.d.) or placebo for 1 year. Microalbu-
minuria and albumin–creatinine ratio were significantly
reduced in the cilostazol group as compared with the
placebo group, alongside a decrease in the plasma concen-
tration of endothelial (leukocyte adhesion molecules)
markers E-selectin and vascular cell adhesion molecule-1
(VCAM-1), but no changes in BP or eGFR [111].

Phosphodiesterase type 5 (PDE5), expressed in endo-
thelial, glomerular, mesangial, cortical tubular and inner
medullary collecting duct cells, degrades cyclic guanosine
monophosphate, and experimental data suggest that PDE5
inhibitors can be useful in preventing CKD. Sildenafil,
one PDE5 inhibitor, prevented glomerular hypertension
and hyperfiltration in rats with subtotal nephrectomy
[115,116] and reduced protein excretion in streptozoto-
cin-induced diabetes [117]; it also improved flow-mediated
vasodilation in diabetic men [118,119]. Vardenafil, another
PDE5 inhibitor, also reduced proteinuria in rat streptozocin-
induced type 1 diabetes mellitus, and restored nephrin and
podocin expression in podocytes [120]. Whether these
agents help in maintaining the kidney function in patients
remains to be tested in long-term RCTs.

ADMA is a by-product of the methylation of arginine
residues, which acts as a competitive inhibitor of L-arginine
to reduce NO production, and also causes decoupling of
eNOS leading to ROS production instead of NO [121]. The
circulating levels of ADMA are increased in CKD in propor-
tion to the severity of renal impairment and predict cardio-
vascular outcomes [122]. Oxidative stress also increases
ADMA concentration by upregulating the synthetic enzyme
protein arginine methyltransferase-1 and downregulating
dimethylarginine dimethylaminohydrolase, the enzyme
degradating ADMA [123]. Vitamin E supplementation and
 Copyright © 2018 Wolters Kluwer 
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(transiently) intravenous ascorbic acid level reduce ADMA
levels in patients with CKD [124], suggesting that this may
represent an important mechanism by which antioxidants
exert a beneficial cardiovascular effect.

High uric acid levels promote oxidative stress and might
induce endothelial dysfunction. However, few studies that
investigated if allopurinol could restore endothelial func-
tion in hyperuricemic patients, have given quite heteroge-
neous results, with some suggesting a benefit and others no
effect [112,125,126].

VITAMIN D, ENDOTHELIAL FUNCTION
ANDKIDNEY PROTECTION
Endothelial cells not only express the vitamin D receptor,
but also respond to calcitriol, the active form of vitamin D. A
placebo-controlled RCT investigated the effect of a 12-week
treatment with calcitriol on endothelial function in patients
with stage 3–4 CKD [127].

The vitamin D receptor activator paricalcitol, given at a
dose (2 mg/day) that did not affect endothelium-indepen-
dent vasodilation and BP, improved endothelium-depen-
dent vasodilation, and slightly lowered eGFR [�3.2 ml/min
per 1.73 m2 (�4.9 to�1.4), P< 0.001], two beneficial effects
that disappeared after drug withdrawal [127]. Significantly,
the beneficial effect of paricalcitol was maximal in patients
with no or minimal changes in serum phosphate levels and
was abolished in patients with hyperphosphatemia. Hence,
the endothelium-protective effect of vitamin D receptor
activation might be potentiated by phosphate lowering
interventions [113].

Another RCT using placebo, 1 or 2 mg of paricalcitol daily
for 3 months in 36 nondiabetic CKD patients (mean eGFR
40ml/min per 1.73m2) reported a decline in endothelial
function, which occurred in the group receiving the highest
dose of paricalcitol, with no changes in BP, eGFR and micro-
albuminuria [128]. By contrast, in a double-blind, placebo-
controlled RCT conducted in patients with type 2 diabetes
and stage 3 or 4 CKD, paricalcitol 1 mg daily had no effect
on endothelial function, measured by brachial artery flow-
mediateddilation, orplasmabiomarkers of inflammation and
oxidative stress. A smaller RCT performed with oral ergo-
calciferol, or placebo, over 6 months, in patients with non-
diabetic CKD stage 3–4 and concomitant vitamin D
deficiency, showed that a high-dose ergocalciferol therapy
improved microcirculatory function and reduced oxidative
stress, without altering BP, eGFR or albuminuria [129].

In a small RCT, phosphate-lowering treatment with
sevelamer improved flow-mediated vasodilatation and
FGF23 levels, alongside flow-mediated vasodilatation
[130]. FGF23 is a hormone-regulating serum phosphate
and vitamin D, whose plasma levels are markedly elevated
in patients with CKD [130]. The findings of the RCT, along
with the evidence that FGF23 impairs vasorelaxation by
decreasing NO bioavailability [131], suggest that FGF-23
contributes to vascular dysfunction in patients with stage 4
CKD and, therefore could be a target for pharmacologic
intervention. However, larger and longer intervention stud-
ies are necessary to determine whether there is a protective
effect of vitamin D and/or other factors affecting calcium/
phosphate metabolism on the kidney.
Health, Inc. All rights reserved.
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CONCLUSIONAND RECOMMENDATIONS
Diabetes mellitus, preeclampsia, solid organ transplanta-
tion, hyperhomocysteinemia and antiangiogenic therapy in
cancer are all factors that deeply affect endothelial function
favoring the development of kidney damage and amplify-
ing injury primarily induced by metabolic abnormalities. As
in all diseases, a better understanding of the underlying
mechanisms will improve prevention and treatment of
kidney disease. However, so far translation of new gener-
ated knowledge into clinical practice has been slow with
current pharmacologic tools, likely because of the difficulty
of disentangling the relative role of each putative patho-
genic factor. Hence, further specific research is needed
particularly in the field of RCTs focused at testing strategies
for preserving endothelial function and GFR. To this end,
this working group welcomes and supports the planning of
integrated research efforts from all investigators who share
an interest for the endothelium and preservation of renal
health.
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