A Diophantine approximation problem with two primes and one *k*-th power of a prime

Alessandro Gambini^{a,∗}, Alessandro Languasco^b, Alessandro Zaccagnini^a

^aUniversità di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parco Area delle Scienze 53/a, 43124 Parma, Italy.

^bUniversità di Padova, Dipartimento di Matematica "Tullio Levi-Civita", Via Trieste 63, 35121 Padova, Italy.

Abstract

We refine a result of the last two Authors of [\[8\]](#page-16-0) on a Diophantine approximation problem with two primes and a k -th power of a prime which was only proved to hold for $1 \leq k \leq 4/3$. We improve the *k*-range to $1 < k \leq 3$ by combining Harman's technique on the minor arc with a suitable estimate for the L^4 -norm of the relevant exponential sum over primes.

Keywords: Diophantine inequalities, Goldbach-type problems, Hardy-Littlewood method *2000 MSC:* primary 11D75, *2000 MSC:* secondary 11J25, 11P32, 11P55

1. Introduction

This paper deals with an improvement of the result contained in [\[8\]](#page-16-0), which is due to the last two Authors: we refer to its introduction for a more thorough description of the general Diophantine problem with prime variables. Here we just recall that the goal is to prove that the inequality

$$
|\lambda_1 p_1^{k_1} + \cdots + \lambda_r p_r^{k_r} - \omega| \leq \eta,
$$

where k_1, \ldots, k_r are fixed positive numbers, $\lambda_1, \ldots, \lambda_r$ are fixed non-zero real numbers and $\eta > 0$ is arbitrary, has infinitely many solutions in prime variables p_1, \ldots, p_r for any given real number ω , under as mild Diophantine assumptions on $\lambda_1, \ldots, \lambda_r$ as possible. In some cases, it is even possible to prove that the above inequality holds when η is a small negative power of the largest prime occurring in it, usually when $1/k_1 + \cdots + 1/k_r$ is large enough.

The problem tackled in [\[8\]](#page-16-0) had $r = 3$, $k_1 = k_2 = 1$, $k_3 = k \in (1, 4/3)$. Assuming that λ_1/λ_2 is irrational and that the coefficients λ_j are not all of the same sign, the last two Authors proved

[∗]Corresponding author

Email addresses: a.gambini@unibo.it (Alessandro Gambini), alessandro.languasco@unipd.it (Alessandro Languasco), alessandro.zaccagnini@unipr.it (Alessandro Zaccagnini)

2 OUTLINE OF THE PROOF

that one can take $\eta = (\max\{p_1, p_2, p_3^k\})$ $(\frac{k}{3})^{-\phi(k)+\varepsilon}$ for any fixed $\varepsilon > 0$, where $\phi(k) = (4-3k)/(10k)$. Our purpose in this paper is to improve on this result both in the admissible range for *k* and in the exponent, replacing $\phi(k)$ by a larger value in the common range. More precisely, we prove the following Theorem.

Theorem 1. Assume that $1 < k \leq 3$, λ_1 , λ_2 and λ_3 are non-zero real numbers, not all of the same *sign, that* λ_1/λ_2 *is irrational and let* ω *be a real number. The inequality*

$$
|\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3^k - \omega| \le (\max\{p_1, p_2, p_3^k\})^{-\psi(k) + \varepsilon}
$$
 (1)

has infinitely many solutions in prime variables p_1 , p_2 , p_3 *for any* $\varepsilon > 0$ *, where*

$$
\psi(k) = \begin{cases}\n(3-2k)/(6k) & \text{if } 1 < k \le \frac{6}{5}, \\
1/12 & \text{if } \frac{6}{5} < k \le 2, \\
(3-k)/(6k) & \text{if } 2 < k < 3, \\
1/24 & \text{if } k = 3.\n\end{cases}
$$
\n(2)

We point out that in the common range $1 < k < 4/3$ we have $\psi(k) > \phi(k)$. We also remark that the strong bounds for the exponential sum S_k , defined in [\(3\)](#page-1-0) below, that recently became available for integral *k* (see Bourgain [\[1\]](#page-16-1) and Bourgain, Demeter & Guth [\[2\]](#page-16-2)) are not useful in our problem.

The technique used to tackle this problem is the variant of the circle method introduced in the 1940's by Davenport & Heilbronn [\[4\]](#page-16-3), where the integration on a circle, or equivalently on the interval [0, 1], is replaced by integration on the whole real line. Our improvement is due to the use of the Harman technique on the minor arc and to the fourth-power average for the exponential sum *S*^{*k*} for $k \geq 1$.

We thank the anonymous referee for an extremely careful reading of a previous version of this paper.

2. Outline of the proof

Throughout this paper p_i denotes a prime number, $k \ge 1$ is a real number, ε is an arbitrarily small positive number whose value may vary depending on the occurrences and ω is a fixed real number. In order to prove that [\(1\)](#page-1-1) has infinitely many solutions, it is sufficient to construct an increasing sequence X_n that tends to infinity such that [\(1\)](#page-1-1) has at least one solution with max $\{p_1, p_2, p_3^k\}$ $\frac{3}{3}$ } \in [δX_n , X_n], with a fixed $\delta > 0$ which depends only on the choice of λ_1 , λ_2 and λ_3 . Let *q* be a denominator of a convergent to λ_1/λ_2 and let $X_n = X$ (dropping the suffix *n*) run through the sequence $X = q^3$. The main quantities we will use are:

$$
S_k(\alpha) = \sum_{\delta X \le p^k \le X} \log p \ e(p^k \alpha), \quad U_k(\alpha) = \sum_{\delta X \le n^k \le X} e(n^k \alpha) \quad \text{and} \quad T_k(\alpha) = \int_{(\delta X)^{1/k}}^{X^{1/k}} e(t^k \alpha) \, \mathrm{d}t,\tag{3}
$$

2 OUTLINE OF THE PROOF 3

where $e(\alpha) = e^{2\pi i \alpha}$. We will approximate S_k with T_k and U_k . By the Prime Number Theorem and first derivative estimates for trigonometric integrals we have

$$
S_k(\alpha) \ll_{k,\delta} X^{1/k}, \qquad T_k(\alpha) \ll_{k,\delta} X^{1/k-1} \min\{X, |\alpha|^{-1}\}.
$$
 (4)

Moreover the Euler summation formula implies that

$$
T_k(\alpha) - U_k(\alpha) \ll_{k,\delta} 1 + |\alpha|X. \tag{5}
$$

We also need a continuous function we will use to detect the solutions of (1) , so we introduce

$$
\widehat{K}_{\eta}(\alpha) := \max\{0, \eta - |\alpha|\}, \quad \text{where } \eta > 0,
$$

which is the Fourier transform of the function K_n defined by

$$
K_{\eta}(\alpha) = \left(\frac{\sin(\pi \alpha \eta)}{\pi \alpha}\right)^2
$$

for $\alpha \neq 0$ and, by continuity, $K_{\eta}(0) = \eta^2$. A well-known estimate is

$$
K_{\eta}(\alpha) \ll \min\{\eta^2, |\alpha|^{-2}\}.
$$
 (6)

Let now

$$
\mathcal{P}(X) = \{ (p_1, p_2, p_3) : \delta X < p_1, p_2 \le X, \ \delta X < p_3^k \le X \}
$$

and

$$
\mathcal{F}(\eta,\omega,\mathfrak{X})=\int_{\mathfrak{X}}S_1(\lambda_1\alpha)S_1(\lambda_2\alpha)S_k(\lambda_3\alpha)K_\eta(\alpha)e(-\omega\alpha)\,\mathrm{d}\alpha,
$$

where $\mathfrak X$ is a measurable subset of $\mathbb R$. From [\(3\)](#page-1-0) and using the Fourier transform of $K_\eta(\alpha)$, we get

$$
\mathcal{F}(\eta, \omega, \mathbb{R}) = \sum_{\substack{(p_1, p_2, p_3) \in \mathcal{P}(X) \\ \leq \eta(\log X)^3 \mathcal{N}(X),}} \log p_1 \log p_2 \log p_3 \max\{0, \eta - |\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3^k - \omega|\}
$$

where $\mathcal{N}(X)$ actually denotes the number of solutions of the inequality [\(1\)](#page-1-1) with $(p_1, p_2, p_3) \in \mathcal{P}(X)$. In other words $\mathcal{I}(\eta, \omega, \mathbb{R})$ provides a lower bound for the quantity we are interested in; therefore it is sufficient to prove that $\mathcal{J}(\eta, \omega, \mathbb{R}) > 0$.

We now decompose R into subsets such that $\mathbb{R} = \mathfrak{M} \cup \mathfrak{M}^* \cup \mathfrak{m} \cup \mathfrak{t}$ where \mathfrak{M} is the major arc, \mathfrak{M}^* is the intermediate arc (which is non-empty only for some values of k , see section [6\)](#page-10-0), m is the minor arc and t is the trivial arc. The decomposition is the following: if $1 < k < 5/2$ we consider

$$
\mathfrak{M} = [-P/X, P/X], \qquad \mathfrak{M}^* = \emptyset,
$$

\n
$$
\mathfrak{M} = [P/X, R] \cup [-R, -P/X], \qquad \mathfrak{M}^* = \mathfrak{M}, \qquad \mathfrak{M}^* \cup \mathfrak{M}, \qquad (7)
$$

while, for $5/2 \le k \le 3$, we set

$$
\mathfrak{M} = [-P/X, P/X], \qquad \mathfrak{M}^* = [P/X, X^{-3/5}] \cup [-X^{-3/5}, -P/X],
$$

\n
$$
\mathfrak{M}^* = [R/X, X^{-3/5}] \cup [-X^{-3/5}, -P/X],
$$

\n
$$
t = \mathbb{R} \setminus (\mathfrak{M} \cup \mathfrak{M}^* \cup \mathfrak{m}),
$$
 (8)

where the parameters $P = P(X) > 1$ and $R = R(X) > 1/\eta$ are chosen later (see [\(15\)](#page-10-1) and [\(16\)](#page-10-2)) as well as $\eta = \eta(X)$, that, as we explained before, we would like to be a small negative power of $max{p_1, p_2, p_3^k}$ $\binom{k}{3}$ (and so of *X*). We have to distinguish two cases in the previous decomposition of the real line in order to avoid a gap between the end of the major arc and the beginning of the minor arc, where we can prove Lemma [12](#page-13-0) in the form that we need: see the comments at the beginning of section [6](#page-10-0) and just before the statement of Lemma [12.](#page-13-0) As we will see later in section [6,](#page-10-0) we need to introduce intermediate arc only for $k \geq \frac{5}{2}$.

The constraints on η are in [\(18\)](#page-12-0), [\(20\)](#page-12-1) and [\(21\)](#page-12-2), according to the value of k . In any case, we have $\mathcal{F}(\eta, \omega, \mathbb{R}) = \mathcal{F}(\eta, \omega, \mathfrak{M}) + \mathcal{F}(\eta, \omega, \mathfrak{M}^*) + \mathcal{F}(\eta, \omega, \mathfrak{m}) + \mathcal{F}(\eta, \omega, t)$. We expect that \mathfrak{M} provides the main term with the right order of magnitude without any special hypothesis on the coefficients λ_j . It is necessary to prove that $\mathcal{F}(\eta, \omega, \mathfrak{M}^*)$, $\mathcal{F}(\eta, \omega, \mathfrak{m})$ and $\mathcal{F}(\eta, \omega, t)$ are $o(\mathcal{F}(\eta, \omega, \mathfrak{M}))$ as $X \to +\infty$ on the particular sequence chosen: we show that the contribution from trivial arc is "tiny" with respect to the main term. The main difficulty is to estimate the minor arc contribution; in this case we will need the full force of the hypothesis on the coefficients λ_j and the theory of continued fractions.

Remark: from now on, anytime we use the symbol ≪ or ≫ we drop the dependence of the approximation from the constants λ_j , δ and k . We use the notation $f = \infty(g)$ for $g = o(f)$.

3. Lemmas

In their original paper [\[4\]](#page-16-3) Davenport and Heilbronn approximate directly the difference $|S_k(\alpha) T_k(\alpha)$ estimating it with $\Theta(1)$. The L^2 -norm estimation approach (see Brüdern, Cook & Perelli [\[3\]](#page-16-4) and [\[8](#page-16-0)]) improves on this taking the L^2 -norm of $|S_k(\alpha) - T_k(\alpha)|$: this leads to the possibility of having a wider major arc compared to the original approach. We introduce the generalized version of the Selberg integral

$$
\mathcal{J}_k(X,h) = \int_X^{2X} \left(\theta((x+h)^{1/k}) - \theta(x^{1/k}) - ((x+h)^{1/k} - x^{1/k}) \right)^2 dx,
$$

where $\theta(x) = \sum_{p \le x} \log p$ is the usual Chebyshev function. We have the following lemmas.

Lemma 1 ([\[7](#page-16-5)], Theorem 3.1). Let $k \ge 1$ be a real number. For $0 \lt Y \le 1/2$ we have

$$
\int_{-Y}^{Y} |S_k(\alpha) - U_k(\alpha)|^2 \, d\alpha \ll \frac{X^{2/k - 2} \log^2 X}{Y} + Y^2 X + Y^2 \mathcal{J}_k\left(X, \frac{1}{2Y}\right).
$$

Lemma 2 ([\[7](#page-16-5)], Theorem 3.2). Let $k \ge 1$ be a real number and ε be an arbitrarily small positive *constant. There exists a positive constant* $c_1(\varepsilon)$ *, which does not depend on k, such that*

$$
\mathcal{J}_k(X,h) \ll h^2 X^{2/k-1} \exp\left(-c_1 \left(\frac{\log X}{\log \log X}\right)^{1/3}\right)
$$

uniformly for $X^{1-5/(6k)+\varepsilon} \leq h \leq X$.

In order to prove our crucial Lemma [4](#page-4-0) on the L^4 -norm of $S_k(\alpha)$, we need the following technical result.

Lemma 3. *Let* $\varepsilon > 0$, $k > 1$ *and* $\gamma > 0$. *Let* further $\mathfrak{B}(X^{1/k}; k; \gamma)$ *denote the number of solutions of the inequalities*

$$
|n_1^k + n_2^k - n_3^k - n_4^k| < \gamma, \qquad X^{1/k} < n_1, n_2, n_3, n_4 \leq 2X^{1/k}.
$$

Then

$$
\mathfrak{B}(X^{1/k}; k; \gamma) \ll (X^{2/k} + \gamma X^{4/k-1})X^{\varepsilon}.
$$

PROOF. This is an immediate consequence of Theorem 2 of Robert & Sargos [\[9](#page-16-6)]; we just need to choose $M = X^{1/k}$, $\alpha = k$ and $\gamma = \delta M^k$ there. \Box

Lemma 4. *Let* $\varepsilon > 0$, $\delta > 0$, $k > 1$, $n \in \mathbb{N}$ and $\tau > 0$. Then we have

$$
\int_{-\tau}^{\tau} |S_k(\alpha)|^4 \, \mathrm{d}\alpha \ll (\tau X^{2/k} + X^{4/k-1}) X^{\varepsilon} \quad \text{and} \quad \int_{n}^{n+1} |S_k(\alpha)|^4 \, \mathrm{d}\alpha \ll (X^{2/k} + X^{4/k-1}) X^{\varepsilon}.
$$

PROOF. A direct computation gives

$$
\int_{-\tau}^{\tau} |S_k(\alpha)|^4 d\alpha = \sum_{\delta X < p_1^k, p_2^k, p_3^k, p_4^k \le X} (\log p_1) \cdots (\log p_4) \int_{-\tau}^{\tau} e((p_1^k + p_2^k - p_3^k - p_4^k)\alpha) d\alpha
$$
\n
$$
\ll (\log X)^4 \sum_{\delta X < p_1^k, p_2^k, p_3^k, p_4^k \le X} \min \left\{ \tau, \frac{1}{|p_1^k + p_2^k - p_3^k - p_4^k|} \right\}
$$
\n
$$
\ll (\log X)^4 \sum_{\delta X < n_1^k, n_2^k, n_3^k, n_4^k \le X} \min \left\{ \tau, \frac{1}{|n_1^k + n_2^k - n_3^k - n_4^k|} \right\}
$$
\n
$$
\ll U\tau (\log X)^4 + V(\log X)^4, \tag{9}
$$

where

$$
U := \sum_{\substack{\delta X < n_1^k, n_2^k, n_3^k, n_4^k \le X \\ |n_1^k + n_2^k - n_3^k - n_4^k| \le 1/\tau}} 1, \quad \text{and} \quad V := \sum_{\substack{\delta X < n_1^k, n_2^k, n_3^k, n_4^k \le X \\ |n_1^k + n_2^k - n_3^k - n_4^k| > 1/\tau}} \frac{1}{|n_1^k + n_2^k - n_3^k - n_4^k|},
$$

say. Using Lemma [3](#page-4-1) on *U* we get

$$
U \ll \mathcal{B}(X^{1/k}; k; 1/\tau) \ll \left(X^{2/k} + \frac{1}{\tau}X^{4/k-1}\right)X^{\varepsilon}.
$$
 (10)

Concerning *V*, by a dyadic argument we get

$$
V \ll \log X \Big(\max_{1/\tau < W \ll X} \sum_{\substack{\delta X < n_1^k, n_2^k, n_3^k, n_4^k \le X \\ W < |n_1^k + n_2^k - n_3^k - n_4^k| \le 2W}} \frac{1}{|n_1^k + n_2^k - n_3^k - n_4^k|} \Big)
$$
\n
$$
\ll \log X \max_{1/\tau < W \ll X} \Big(\frac{1}{W} \mathcal{B}(X^{1/k}; k; 2W) \Big) \ll \max_{1/\tau < W \ll X} \Big(X^{4/k - 1} + \frac{X^{2/k}}{W} \Big) X^{\varepsilon}
$$
\n
$$
\ll (\tau X^{2/k} + X^{4/k - 1}) X^{\varepsilon}.
$$
\n
$$
(11)
$$

Combining $(9)-(11)$ $(9)-(11)$, the first part of the lemma follows. The second part can be proved in a similar way. \square

We need the following result in the proof of Lemma [9](#page-6-0) and also when dealing with \mathfrak{M}^* ; see section [6.](#page-10-0)

Lemma 5. *Let* $\delta > 0$ *,* $k > 1$ *,* $n \in \mathbb{N}$ *and* $\tau > 0$ *. Then*

$$
\int_{-\tau}^{\tau} |S_k(\alpha)|^2 \, \mathrm{d}\alpha \ll (\tau X^{1/k} + X^{2/k-1}) (\log X)^3 \quad \text{and} \quad \int_{n}^{n+1} |S_k(\alpha)|^2 \, \mathrm{d}\alpha \ll X^{1/k} (\log X)^3.
$$

PROOF. It follows directly from the proof of Lemma 7 of Tolev [\[10\]](#page-16-7) by letting $c = k$ and using $X^{1/k}$ instead of *X* there. We explicitly remark that the condition $c \in (1, 15/14)$ in Tolev's original version of this lemma depends on other parts of his paper; in fact the proof of Lemma 7 of [\[10](#page-16-7)] holds for every $c > 1$.

We now state some other lemmas which will be mainly useful on the minor and trivial arcs.

Lemma 6 (Vaughan [\[11\]](#page-16-8), Theorem 3.1). *Let* α *be a real number and a, q be positive integers satisfying* $(a, q) = 1$ *and* $|\alpha - a/q| < 1/q^2$. *Then*

$$
S_1(\alpha) \ll \left(\frac{X}{\sqrt{q}} + \sqrt{Xq} + X^{4/5}\right) (\log X)^4.
$$

Lemma 7. Let $X^{-1} \ll |\alpha| \ll X^{-3/5}$. Then $S_1(\alpha) \ll X^{1/2} |\alpha|^{-1/2} (\log X)^4$.

Proof. It follows immediately from Lemma [6](#page-5-1) by choosing $q = |1/\alpha|$ and $a = 1$.

Lemma 8. *Let* $\lambda \in \mathbb{R} \setminus \{0\}$, $X \ge Z \ge X^{4/5}(\log X)^5$ *and* $|S_1(\lambda \alpha)| > Z$ *. Then there are coprime integers* $(a, q) = 1$ *satisfying*

$$
1 \le q \ll \Big(\frac{X(\log X)^4}{Z}\Big)^2, \qquad |q\lambda\alpha - a| \ll \frac{X(\log X)^{10}}{Z^2}.
$$

Proof. Let *Q* be a parameter that we will choose later. By Dirichlet's theorem there exist coprime integers $(a, q) = 1$ such that $1 \le q \le Q$ and $|q \lambda \alpha - a| \ll Q^{-1} \le q^{-1}$. The choice

$$
Q = \frac{Z^2}{X(\log X)^{10}}
$$

allows us to prove the second part of the statement and to neglect some terms in the estimations of $|S_1(\lambda \alpha)|$. Using Lemma [6,](#page-5-1) knowing that $Z \geq X^{4/5} (\log X)^5$ and $|S_1(\lambda \alpha)| > Z$, we can rewrite the bound for $|S_1(\lambda \alpha)|$ neglecting the term $X^{4/5}$:

$$
Z < |S_1(\lambda \alpha)| \ll (Xq^{-1/2} + X^{1/2}q^{1/2})(\log X)^4.
$$

The condition $q \le Q$ allows us to neglect the term $X^{1/2}q^{1/2}$ and deal with small values of *q*; in fact, if $q > X^{1/2}$ then we would have a contradiction

$$
Z < |S_1(\lambda \alpha)| \ll X^{1/2} q^{1/2} (\log X)^4 \leq X^{1/2} \frac{Z}{X^{1/2} (\log X)^5} (\log X)^4 = o(Z).
$$

Then $q \le \min\{X^{1/2}, Q\} = X^{1/2}$, since $Z = X^{4/5} (\log X)^5 > X^{3/4} (\log X)^5$. Moreover, we can rewrite the inequality on $|S_1(\lambda \alpha)|$ as

$$
Z < |S_1(\lambda \alpha)| \ll Xq^{-1/2} (\log X)^4
$$

and finally we get $q^{1/2}Z \ll X(\log X)^4$, which completes the proof.

The optimizations in section [7](#page-11-0) depend either on L^2 or on L^4 averages of S_k , according to the value of k ; these are provided by the following Lemmas. For brevity, we skip the proof of the first one, remarking that it requires Lemma [5.](#page-5-2)

Lemma 9 (Lemma 5 of [\[8](#page-16-0)]). Let $\lambda \in \mathbb{R} \setminus \{0\}$, $k > 1$, $0 < \eta < 1$, $R > 1/\eta$ and $1 < P < X$. We *have*

$$
\int_{P/X}^R |S_1(\lambda \alpha)|^2 K_\eta(\alpha) d\alpha \ll \eta X \log X \quad \text{and} \quad \int_{P/X}^R |S_k(\lambda \alpha)|^2 K_\eta(\alpha) d\alpha \ll \eta X^{1/k} (\log X)^3.
$$

Lemma 10. *Let* $\lambda \in \mathbb{R} \setminus \{0\}$ *,* $\varepsilon > 0$ *,* $k > 1$ *,* $0 < \eta < 1$ *,* $R > 1/\eta$ *and* $1 < P < X$ *. Then*

$$
\int_{P/X}^R |S_k(\lambda \alpha)|^4 K_\eta(\alpha) d\alpha \ll \eta \max\{X^{2/k}, X^{4/k-1}\}X^\varepsilon.
$$

4 THE MAJOR ARC 8

Proof. Using [\(6\)](#page-2-0) we obtain

$$
\int_{P/X}^R |S_k(\lambda \alpha)|^4 K_\eta(\alpha) d\alpha \ll \eta^2 \int_{P/X}^{1/\eta} |S_k(\lambda \alpha)|^4 d\alpha + \int_{1/\eta}^R |S_k(\lambda \alpha)|^4 \frac{d\alpha}{\alpha^2} = A + B,\qquad(12)
$$

say. By Lemma [4,](#page-4-0) we immediately get

$$
A \ll \eta^2 \int_{-|\lambda|/\eta}^{|\lambda|/\eta} |S_k(\alpha)|^4 \,d\alpha \ll \eta \max\{X^{2/k}, \eta X^{4/k-1}\} X^{\varepsilon}.
$$
 (13)

Moreover, again by Lemma [4,](#page-4-0) we have that

$$
B \ll \int_{|\lambda|/\eta}^{+\infty} |S_k(\alpha)|^4 \frac{d\alpha}{\alpha^2} \ll \sum_{n \ge |\lambda|/\eta} \frac{1}{(n-1)^2} \int_{n-1}^{\eta} |S_k(\alpha)|^4 d\alpha
$$

$$
\ll \eta \max\{X^{2/k}, X^{4/k-1}\} X^{\varepsilon}.
$$
 (14)

Combining [\(12\)](#page-7-0)-[\(14\)](#page-7-1) and using $0 < \eta < 1$, the lemma follows.

As we remarked in the introduction, stronger bounds are now available for larger integral *k*, but they are not useful for our purpose. The next Lemma provides the additional information that enables us to give a non-trivial result also when $k = 3$.

Lemma 11. Let $\lambda \in \mathbb{R} \setminus \{0\}$, $\varepsilon > 0$, $0 < \eta < 1$, $R > 1/\eta$ and $1 < P < X$. Then

$$
\int_{P/X}^R |S_3(\lambda \alpha)|^8 K_\eta(\alpha) d\alpha \ll \eta X^{5/3+\varepsilon}.
$$

Proof. Inserting Hua's estimate in [\[6\]](#page-16-9), i.e. $\int_0^1 |S_3(\alpha)|^8 d\alpha \ll X^{5/3+\epsilon}$, in the body of the proof of Lemma [10](#page-6-1) and exploiting the periodicity of $S_3(\alpha)$, the result follows immediately.

Another lemma on the minor arc is inserted in the body of section [7.](#page-11-0)

4. The major arc

We recall the definitions in (7) and (8) . The major arc computation is the same as in [\[8\]](#page-16-0):

$$
\mathcal{F}(\eta, \omega, \mathfrak{M}) = \int_{\mathfrak{M}} S_1(\lambda_1 \alpha) S_1(\lambda_2 \alpha) S_k(\lambda_3 \alpha) K_\eta(\alpha) e(-\omega \alpha) d\alpha
$$

=
$$
\int_{\mathfrak{M}} T_1(\lambda_1 \alpha) T_1(\lambda_2 \alpha) T_k(\lambda_3 \alpha) K_\eta(\alpha) e(-\omega \alpha) d\alpha
$$

+
$$
\int_{\mathfrak{M}} (S_1(\lambda_1 \alpha) - T_1(\lambda_1 \alpha)) T_1(\lambda_2 \alpha) T_k(\lambda_3 \alpha) K_\eta(\alpha) e(-\omega \alpha) d\alpha
$$

4 THE MAJOR ARC 9

+
$$
\int_{\mathfrak{M}} S_1(\lambda_1 \alpha)(S_1(\lambda_2 \alpha) - T_1(\lambda_2 \alpha))T_k(\lambda_3 \alpha)K_\eta(\alpha)e(-\omega \alpha) d\alpha
$$

+
$$
\int_{\mathfrak{M}} S_1(\lambda_1 \alpha)S_1(\lambda_2 \alpha)(S_k(\lambda_3 \alpha) - T_k(\lambda_3 \alpha))K_\eta(\alpha)e(-\omega \alpha) d\alpha
$$

=
$$
J_1 + J_2 + J_3 + J_4,
$$

say.

*4.1. Main term: lower bound for J*1

As the reader might expect the main term is given by the summand J_1 . Let $H(\alpha) = T_1(\lambda_1 \alpha)T_1(\lambda_2 \alpha)T_k(\lambda_3 \alpha)K_\eta(\alpha)e(-\omega \alpha)$ so that

$$
J_1 = \int_{\mathbb{R}} H(\alpha) \, \mathrm{d}\alpha + \mathcal{O}\Big(\int_{P/X}^{+\infty} |H(\alpha)| \, \mathrm{d}\alpha\Big).
$$

Using (6) and (4) , we get

$$
\int_{P/X}^{+\infty} |H(\alpha)| \, \mathrm{d}\alpha \ll \eta^2 X^{1/k-1} \int_{P/X}^{+\infty} \frac{\mathrm{d}\alpha}{\alpha^3} \ll \eta^2 \frac{X^{1+1/k}}{P^2} = o(\eta^2 X^{1+1/k}),
$$

provided that $P \to +\infty$. Let now $D = [\delta X, X]^2 \times [(\delta X)^{1/k}, X^{1/k}]$. We obtain

$$
\int_{\mathbb{R}} H(\alpha) d\alpha = \iiint_{D} \int_{\mathbb{R}} e((\lambda_1 t_1 + \lambda_2 t_2 + \lambda_3 t_3^k - \omega)\alpha) K_{\eta}(\alpha) d\alpha dt_1 dt_2 dt_3
$$

$$
= \iiint_{D} \max\{0, \eta - |\lambda_1 t_1 + \lambda_2 t_2 + \lambda_3 t_3^k - \omega)|\} dt_1 dt_2 dt_3.
$$

Apart from trivial changes of sign, there are essentially two cases:

1. $\lambda_1 > 0, \lambda_2 > 0, \lambda_3 < 0$ 2. $\lambda_1 > 0$, $\lambda_2 < 0$, $\lambda_3 < 0$.

We deal with the first one. We warn the reader that here it may be necessary to adjust the value of δ in order to guarantee the necessary set inclusions. After a suitable change of variables, letting $D' = [\delta X, (1 - \delta)X]^3$, we find that

$$
\int_{\mathbb{R}} H(\alpha) d\alpha \gg \iiint_{D'} \max\{0, \eta - |\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3||\} u_3^{1/k - 1} du_1 du_2 du_3
$$

$$
\gg X^{1/k - 1} \iiint_{D'} \max\{0, \eta - |\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3||\} du_1 du_2 du_3.
$$

4 THE MAJOR ARC 10

Apart from sign, the computation is essentially symmetrical with respect to the coefficients λ_j : we assume, as we may, that $|\lambda_3| \ge \max{\lambda_1, \lambda_2}$, the other cases being similar. Now, for $j = 1, 2$ let $a_j = \frac{2\delta |\lambda_3|}{|\lambda_1|}$ |λ*j* | $, b_j = \frac{3}{2}$ $\frac{3}{2}a_j$ and $\mathfrak{D}_j = [a_j X, b_j X]$; if $u_j \in \mathfrak{D}_j$ for $j = 1, 2$ then

$$
\lambda_1 u_1 + \lambda_2 u_2 \in [4|\lambda_3|\delta X, 6|\lambda_3|\delta X]
$$

so that, for every choice of (u_1, u_2) the interval $[a, b]$ with endpoints $\pm \eta/|\lambda_3| + (\lambda_1 u_1 + \lambda_2 u_2)/|\lambda_3|$ is contained in $[\delta X, (1 - \delta)X]$. In other words, for $u_3 \in [a, b]$ the values of $\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3$ cover the whole interval $[-\eta, \eta]$. Hence for any $(u_1, u_2) \in \mathcal{D}_1 \times \mathcal{D}_2$ we have

$$
\int_{\delta X}^{(1-\delta)X} \max\{0, \eta - |\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3|\} \, \mathrm{d}u_3 = |\lambda_3|^{-1} \int_{-\eta}^{\eta} \max\{0, \eta - |u|\} \, \mathrm{d}u \gg \eta^2.
$$

Summing up, we get

$$
J_1 \gg \eta^2 X^{1/k-1} \iint_{\mathfrak{D}_1 \times \mathfrak{D}_2} du_1 du_2 \gg \eta^2 X^{1/k-1} X^2 = \eta^2 X^{1+1/k},
$$

which is the expected lower bound.

*4.2. Bound for J*2*, J*3 *and J*4

The computations for J_2 and J_3 are similar to and simpler than the corresponding one for J_4 ; moreover the most restrictive condition on *P* arises from *J*4; hence we will skip the computation for both J_2 and J_3 . Using the triangle inequality and [\(6\)](#page-2-0),

$$
J_4 \ll \eta^2 \int_{\mathfrak{M}} |S_1(\lambda_1 \alpha)| |S_1(\lambda_2 \alpha)| |S_k(\lambda_3 \alpha) - T_k(\lambda_3 \alpha)| \, d\alpha
$$

\n
$$
\leq \eta^2 \int_{\mathfrak{M}} |S_1(\lambda_1 \alpha)| |S_1(\lambda_2 \alpha)| |S_k(\lambda_3 \alpha) - U_k(\lambda_3 \alpha)| \, d\alpha
$$

\n
$$
+ \eta^2 \int_{\mathfrak{M}} |S_1(\lambda_1 \alpha)| |S_1(\lambda_2 \alpha)| |U_k(\lambda_3 \alpha) - T_k(\lambda_3 \alpha)| \, d\alpha
$$

\n
$$
= \eta^2 (A_4 + B_4),
$$

say, where $U_k(\lambda_3\alpha)$ and $T_k(\lambda_3\alpha)$ are defined in [\(3\)](#page-1-0). Using the Cauchy-Schwarz inequality, Lemmas [1-](#page-3-1)[2](#page-3-2) and trivial bounds yields, for any fixed $A > 0$,

$$
A_4 \ll X \Big(\int_{\mathfrak{M}} |S_1(\lambda_1 \alpha)|^2 \, d\alpha \Big)^{1/2} \Big(\int_{\mathfrak{M}} |S_k(\lambda_3 \alpha) - U_k(\lambda_3 \alpha)|^2 \, d\alpha \Big)^{1/2}
$$

\$\ll X^{1+1/k} (\log X)^{(1-A)/2} = o(X^{1+1/k})

5 THE TRIVIAL ARC 11

as long as *A* > 1, provided that $P \leq X^{5/(6k)-\varepsilon}$. Using again the Cauchy-Schwarz inequality, [\(5\)](#page-2-3) and trivial bounds, we see that

$$
B_4 \ll \int_0^{1/X} |S_1(\lambda_1 \alpha)| |S_1(\lambda_2 \alpha)| \, d\alpha + X \int_{1/X}^{P/X} \alpha |S_1(\lambda_1 \alpha)| |S_1(\lambda_2 \alpha)| \, d\alpha
$$

\$\ll X + P\left(\int_{1/X}^{P/X} |S_1(\lambda_1 \alpha)|^2 \, d\alpha \int_{1/X}^{P/X} |S_1(\lambda_2 \alpha)|^2 \, d\alpha\right)^{1/2} \ll PX \log X\$.

Taking $P = o(X^{1/k}(\log X)^{-1})$ we get $\eta^2 B_4 = o(\eta^2 X^{1+1/k})$. We may therefore choose

$$
P = X^{5/(6k) - \varepsilon}.\tag{15}
$$

5. The trivial arc

We recall that the trivial arc is defined in [\(7\)](#page-2-1) and [\(8\)](#page-3-0). Using the Cauchy-Schwarz inequality and [\(4\)](#page-2-2), we see that

$$
|\mathcal{F}(\eta,\omega,t)| \ll \int_R^{+\infty} |S_1(\lambda_1\alpha)S_1(\lambda_2\alpha)S_k(\lambda_3\alpha)|K_{\eta}(\alpha) d\alpha
$$

$$
\ll X^{1/k} \Biggl(\int_R^{+\infty} |S_1(\lambda_1\alpha)|^2 K_{\eta}(\alpha) d\alpha \Biggr)^{1/2} \Biggl(\int_R^{+\infty} |S_1(\lambda_2\alpha)|^2 K_{\eta}(\alpha) d\alpha \Biggr)^{1/2}
$$

$$
\ll X^{1/k} C_1^{1/2} C_2^{1/2},
$$

say. Using the PNT and the periodicity of $S_1(\alpha)$, for every $j = 1, 2$ we have that

$$
C_j = \int_R^{+\infty} |S_1(\lambda_j \alpha)|^2 \frac{d\alpha}{\alpha^2} \ll \int_{|\lambda_j| R}^{+\infty} |S_1(\alpha)|^2 \frac{d\alpha}{\alpha^2} \ll \sum_{n \ge |\lambda_j| R} \frac{1}{(n-1)^2} \int_{n-1}^n |S_1(\alpha)|^2 d\alpha \ll \frac{X \log X}{|\lambda_j| R}.
$$

Hence, recalling that $|\mathcal{F}(\eta, \omega, t)|$ has to be $o(\eta^2 X^{1+1/k})$, the choice

$$
R = \eta^{-2} (\log X)^{3/2}
$$
 (16)

is admissible.

6. The intermediate arc: $5/2 \le k \le 3$

In section [7](#page-11-0) we apply Harman's technique to the minor arc, using Lemma [8](#page-5-3) as the starting point. We remark that in the course of the proof of Lemma [12](#page-13-0) it is crucial that both the integers a_1 and a_2 appearing in [\(22\)](#page-13-1) below do not vanish; in fact, if $a_1 = 0$, say, then α is very small ($\alpha \ll X^{-2/3}$) and, according to our definitions above, it belongs to $\mathfrak{M} \cup \mathfrak{M}^*$.

For small *k* we do not need an intermediate arc, because the major arc is wide enough to rule out the possibility that $a_1a_2 = 0$ for $\alpha \in \mathfrak{m}$. For larger values of *k*, the constraint [\(15\)](#page-10-1) implies that there is a gap between the major arc and the minor arc which we need to fill: see the definition in [\(8\)](#page-3-0). Using the intermediate arc \mathfrak{M}^* , we are able to cover more than needed.

Let $5/2 \le k \le 3$: we now show that the contribution of \mathfrak{M}^* is negligible. Using [\(6\)](#page-2-0), Lemma [7,](#page-5-4) the Cauchy-Schwarz inequality and (15) we get

$$
\mathcal{F}(\eta, \omega, \mathfrak{M}^*) \ll \eta^2 \int_{P/X}^{X^{-3/5}} |S_1(\lambda_1 \alpha)||S_1(\lambda_2 \alpha)||S_k(\lambda_3 \alpha)| d\alpha
$$

$$
\ll \eta^2 X(\log X)^8 \int_{P/X}^{X^{-3/5}} |S_k(\lambda_3 \alpha)| \frac{d\alpha}{\alpha}
$$

$$
\ll \eta^2 X(\log X)^8 \Biggl(\int_{-X^{-3/5}}^{X^{-3/5}} |S_k(\lambda_3 \alpha)|^2 d\alpha \Biggr)^{1/2} \Biggl(\int_{P/X}^{X^{-3/5}} \frac{d\alpha}{\alpha^2} \Biggr)^{1/2}
$$

$$
\ll \eta^2 X(X^{1/k - 3/5})^{1/2} (X^{1 - 5/(6k)})^{1/2} X^{\varepsilon} \ll \eta^2 X^{6/5 + 1/(12k) + \varepsilon},
$$

where we also used Lemma [5](#page-5-2) with $\tau = X^{-3/5}$ and the fact that $k \ge 5/2$. The last estimate is $o(\eta^2 X^{1+1/k})$ for every $5/2 \leq k < 55/12$.

7. The minor arc

Here we use Harman's technique as described in [\[5\]](#page-16-10). The minor arc m is defined in [\(7\)](#page-2-1) and [\(8\)](#page-3-0), according to the value of k . In view of using Lemma [8,](#page-5-3) we now split m into subsets m_1 , m_2 and $m^* = m \setminus (m_1 \cup m_2)$, where

$$
\mathfrak{m}_i = \{ \alpha \in \mathfrak{m} : |S_1(\lambda_i \alpha)| \le X^{5/6} (\log X)^5 \} \quad \text{for } i = 1, 2.
$$

In order to obtain the optimization, we chose to split the range for *k* into two intervals in which to take advantage of the L^2 -norm of $S_k(\alpha)$ in one case (Lemma [9\)](#page-6-0) and the L^4 -norm of $S_k(\alpha)$ in the other one (Lemma [10\)](#page-6-1). The same choice will be made later in the discussion of the arc m[∗] . We will see that it is not possible to split the minor arc in another way in order to get a better result, in the present state of knowledge on exponential sums.

7.1. Bounds on $m_1 ∪ m_2$

Using Hölder's inequality and Lemma [9,](#page-6-0) for $1 < k \leq 6/5$ we obtain

$$
|\mathcal{F}(\eta, \omega, \mathfrak{m}_i)| \ll \int_{\mathfrak{m}_i} |S_1(\lambda_1 \alpha)| |S_1(\lambda_2 \alpha)| |S_k(\lambda_3 \alpha)| K_\eta(\alpha) d\alpha
$$

$$
\ll \left(\max_{\alpha \in \mathfrak{m}_i} |S_1(\lambda_1 \alpha)| \right) \left(\int_{\mathfrak{m}_i} |S_1(\lambda_2 \alpha)|^2 K_\eta(\alpha) d\alpha \right)^{1/2}
$$

$$
\times \left(\int_{\mathfrak{m}_i} |S_k(\lambda_3 \alpha)|^2 K_\eta(\alpha) d\alpha \right)^{1/2}
$$

$$
\ll X^{5/6} (\log X)^5 (\eta X \log X)^{1/2} (\eta X^{1/k} (\log X)^3)^{1/2}
$$

$$
\ll \eta X^{4/3 + 1/(2k) + \varepsilon}.
$$
 (17)

The estimate in [\(17\)](#page-12-3) should be $o(\eta^2 X^{1+1/k})$; hence this leads to the constraint

$$
\eta = \infty(X^{1/3 - 1/(2k) + \varepsilon}),\tag{18}
$$

where $f = \infty(g)$ means $g = o(f)$.

Using Hölder's inequality and Lemmas [9](#page-6-0) and [10,](#page-6-1) for $6/5 < k < 3$ we obtain

$$
|\mathcal{F}(\eta,\omega,\mathfrak{m}_{i})| \ll \int_{\mathfrak{m}_{i}} |S_{1}(\lambda_{1}\alpha)||S_{1}(\lambda_{2}\alpha)||S_{k}(\lambda_{3}\alpha)|K_{\eta}(\alpha) d\alpha
$$

\n
$$
\ll \left(\max_{\alpha\in\mathfrak{m}_{i}} |S_{1}(\lambda_{1}\alpha)|^{1/2}\right) \left(\int_{\mathfrak{m}_{i}} |S_{1}(\lambda_{1}\alpha)|^{2} K_{\eta}(\alpha) d\alpha\right)^{1/4}
$$

\n
$$
\times \left(\int_{\mathfrak{m}_{i}} |S_{k}(\lambda_{3}\alpha)|^{4} K_{\eta}(\alpha) d\alpha\right)^{1/4} \left(\int_{\mathfrak{m}_{i}} |S_{1}(\lambda_{2}\alpha)|^{2} K_{\eta}(\alpha) d\alpha\right)^{1/2}
$$

\n
$$
\ll X^{5/12} (\log X)^{5/2} (\eta X \log X)^{1/4} (\eta \max\{X^{2/k}, X^{4/k-1}\})^{1/4} (\eta X \log X)^{1/2}
$$

\n
$$
\ll \eta \max\{X^{7/6+1/(2k)}, X^{11/12+1/k}\} X^{\varepsilon}.
$$
 (19)

The estimate in [\(19\)](#page-12-4) should be $o(\eta^2 X^{1+1/k})$; hence this leads to

$$
\eta = \infty \big(\max \{ X^{1/6 - 1/(2k) + \varepsilon}, X^{-1/12 + \varepsilon} \} \big). \tag{20}
$$

If $k = 3$ we use Lemmas [9](#page-6-0) and [11](#page-7-2) thus getting

$$
|\mathcal{F}(\eta, \omega, \mathfrak{m}_{i})| \ll \int_{\mathfrak{m}_{i}} |S_{1}(\lambda_{1}\alpha)||S_{1}(\lambda_{2}\alpha)||S_{3}(\lambda_{3}\alpha)|K_{\eta}(\alpha) d\alpha
$$

\$\ll \left(\max_{\alpha \in \mathfrak{m}_{i}} |S_{1}(\lambda_{1}\alpha)|^{1/4}\right) \left(\int_{\mathfrak{m}_{i}} |S_{1}(\lambda_{1}\alpha)|^{2} K_{\eta}(\alpha) d\alpha)\right)^{3/8}\$
\$\times \left(\int_{\mathfrak{m}_{i}} |S_{3}(\lambda_{3}\alpha)|^{8} K_{\eta}(\alpha) d\alpha)\right)^{1/8} \left(\int_{\mathfrak{m}_{i}} |S_{1}(\lambda_{2}\alpha)|^{2} K_{\eta}(\alpha) d\alpha)\right)^{1/2}\$
\$\ll \eta X^{31/24+\epsilon}\$.

This bound leads to the constraint

$$
\eta = \infty \big(X^{-1/24 + \varepsilon} \big),\tag{21}
$$

which justifies the last line of [\(2\)](#page-1-2).

7.2. Bound on m[∗]

We recall our definitions in [\(7\)](#page-2-1) and [\(8\)](#page-3-0). It remains to discuss the set m^* where the following bounds hold simultaneously

$$
|S_1(\lambda_1\alpha)| > X^{5/6}(\log X)^5, \quad |S_1(\lambda_2\alpha)| > X^{5/6}(\log X)^5, \quad T \le |\alpha| \le \eta^{-2}(\log X)^{3/2} = R,
$$

where $T = P/X = X^{5/(6k)-1-\epsilon}$ by our choice in [\(15\)](#page-10-1) if $k < 5/2$, and $T = X^{-3/5}$ otherwise. Using a dyadic dissection, we split m^* into disjoint sets $E(Z_1, Z_2, y)$ in which, for $\alpha \in E(Z_1, Z_2, y)$, we have

$$
Z_i < |S_1(\lambda_i \alpha)| \leq 2Z_i, \qquad y < |\alpha| \leq 2y,
$$

where $Z_i = 2^{k_i} X^{5/6} (\log X)^5$ and $y = 2^{k_3} X^{5/(6k)-1-\epsilon}$ for some non-negative integers k_1, k_2, k_3 .

It follows that the number of disjoint sets is, at most, $\ll (\log X)^3$. Let us write $\mathcal A$ as a shorthand for the set $E(Z_1, Z_2, y)$. We need an upper bound for the Lebesgue measure of A . In the following Lemma, it is crucial that both the integers a_1 and a_2 appearing in [\(22\)](#page-13-1) below do not vanish; in fact, if $a_1 = 0$, say, then $q_1 = 1$ and α is so small that it can not belong to m. If k is large, we treat the range $[P/X, X^{-3/5}]$ and its symmetrical by means of the argument in section [6:](#page-10-0) this is needed because, in this case, the inequalities [\(22\)](#page-13-1) below do not rule out the possibility that $a_1a_2 = 0$, unless $|\alpha|$ is large enough.

Lemma 12. Let $\varepsilon > 0$. We have that $\mu(\mathcal{A}) \ll yX^{8/3+\varepsilon}Z_1^{-2}Z_2^{-2}$, where $\mu(\cdot)$ denotes the Lebesgue *measure.*

Proof. If $\alpha \in \mathcal{A}$, by Lemma [8](#page-5-3) there are coprime integers (a_1, q_1) and (a_2, q_2) such that

$$
1 \le q_i \ll \left(\frac{X(\log X)^4}{Z_i}\right)^2, \qquad |q_i \lambda_i \alpha - a_i| \ll \frac{X(\log X)^{10}}{Z_i^2}.
$$
 (22)

We remark that $a_1a_2 \neq 0$ otherwise we would have $\alpha \in \mathfrak{M} \cup \mathfrak{M}^*$. In fact, if $a_1a_2 = 0$, recalling the definitions of Z_i and [\(22\)](#page-13-1), $\alpha \ll q_i^{-1} X (\log X)^{10} Z_i^{-2} \ll X^{-2/3}$.

Now, we can further split m^* into sets $I = I(Z_1, Z_2, y, Q_1, Q_2)$ where, on each set, $Q_j \le q_j \le 2Q_j$. Note that a_i and q_i are uniquely determined by α ; in the opposite direction, for a given quadruple a_1, q_1, a_2, q_2 , the inequalities [\(22\)](#page-13-1) define an interval of α of length

$$
\ll \min\left\{\frac{X(\log X)^{10}}{Q_1 Z_1^2}, \frac{X(\log X)^{10}}{Q_2 Z_2^2}\right\} \ll \frac{X(\log X)^{10}}{Q_1^{1/2} Q_2^{1/2} Z_1 Z_2},
$$

by taking the geometric mean.

Now we need a lower bound for Q_1Q_2 : by [\(22\)](#page-13-1) we obtain

$$
\left|a_2q_1\frac{\lambda_1}{\lambda_2} - a_1q_2\right| = \left|\frac{a_2}{\lambda_2\alpha}(q_1\lambda_1\alpha - a_1) - \frac{a_1}{\lambda_2\alpha}(q_2\lambda_2\alpha - a_2)\right|
$$

$$
\ll q_2|q_1\lambda_1\alpha - a_1| + q_1|q_2\lambda_2\alpha - a_2|
$$

$$
\ll Q_2 \frac{X(\log X)^{10}}{Z_1^2} + Q_1 \frac{X(\log X)^{10}}{Z_2^2}.
$$

Recalling that $Q_i \ll (X(\log X)^4/Z_i)^2$ and that $Z_i \gg X^{5/6}(\log X)^5$, we have

$$
\left| a_2 q_1 \frac{\lambda_1}{\lambda_2} - a_1 q_2 \right| \ll \left(\frac{X (\log X)^4}{X^{5/6} (\log X)^5} \right)^2 \left(\frac{X^{1/2} (\log X)^5}{X^{5/6} (\log X)^5} \right)^2 \ll X^{-1/3} (\log X)^{-2} < \frac{1}{4q}. \tag{23}
$$

We recall that $q = X^{1/3}$ is a denominator of a convergent of λ_1/λ_2 . Hence by [\(23\)](#page-14-0), Legendre's law of best approximation for continued fractions implies that $|a_2q_1| \ge q$ and by the same token, for any pair α , α' having distinct associated products a_2q_1 ,

$$
|a_2(\alpha)q_1(\alpha) - a_2(\alpha')q_1(\alpha')| \ge q;
$$

thus, by the pigeon-hole principle, there is at most one value of a_2q_1 in the interval $[rq, (r+1)q)$ for any positive integer *r*. Furthermore a_2q_1 determines a_2 and q_1 to within $X^{\varepsilon/2}$ possibilities (from the bound for the divisor function) and consequently also a_2q_1 determines a_1 and q_2 to within $X^{\varepsilon/2}$ possibilities from [\(23\)](#page-14-0).

Hence we got a lower bound for q_1q_2 , since, using $Q_j \le q_j \le 2Q_j$, we get

$$
q_1 q_2 = a_2 q_1 \frac{q_2}{a_2} \gg \frac{rq}{|a|} \gg r q y^{-1}.
$$

for the quadruple under consideration.

As a consequence we obtain that the total length of the part of $I(Z_1, Z_2, y, Q_1, Q_2)$ with $a_2q_1 \in$ $[rq, (r+1)q]$ is

$$
\ll X^{1+\varepsilon/2} (\log X)^{10} Z_1^{-1} Z_2^{-1} r^{-1/2} q^{-1/2} y^{1/2}.
$$

Now we need a bound for *r*: since $a_2q_1 \in [rq, (r + 1), q)$, we have

$$
rq \le |a_2q_1| \ll q_1q_2|\alpha| \ll y \Big(\frac{X(\log X)^4}{Z_1}\Big)^2 \Big(\frac{X(\log X)^4}{Z_2}\Big)^2 \ll \frac{yX^4(\log X)^{16}}{Z_1^2 Z_2^2}
$$

and hence we get

$$
r \ll q^{-1} y X^4 (\log X)^{16} Z_1^{-2} Z_2^{-2}.
$$

Next, we sum on every interval to get an upper bound for the measure of \mathcal{A} : we get

$$
\mu(\mathcal{A}) \ll \frac{X^{1+\varepsilon/2} y^{1/2} (\log X)^{10}}{Z_1 Z_2 q^{1/2}} \sum_{1 \le r \ll q^{-1} yX^4 (\log X)^{16} Z_1^{-2} Z_2^{-2}} r^{-1/2}.
$$

Standard estimates imply that the sum on the right is $\ll (q^{-1} yX^4 (\log X)^{16}Z_1^{-2}Z_2^{-2})^{1/2}$, and recalling that $q = X^{1/3}$ we can finally write

$$
\mu(\mathfrak{A}) \ll yX^{3+\varepsilon/2} (\log X)^{18} Z_1^{-2} Z_2^{-2} q^{-1} \ll yX^{8/3+\varepsilon} Z_1^{-2} Z_2^{-2}.
$$

This proves the lemma.

8 CONCLUSION 16

8. Conclusion

Here we finally justify the choice of the function ψ in the statement of the main Theorem. Using Lemmas [9](#page-6-0)[-10](#page-6-1)[-12](#page-13-0) we are now able to estimate $\mathcal{F}(\eta, \omega, \mathcal{A})$ for $1 < k \leq 3$. For $k \geq \frac{5}{2}$ $\frac{5}{2}$, we also need the result in section [6.](#page-10-0)

If $1 < k \leq 6/5$ we proceed as follows:

$$
|\mathcal{F}(\eta,\omega,\mathcal{A})| \ll \int_{\mathcal{A}} |S_1(\lambda_1\alpha)||S_1(\lambda_2\alpha)||S_k(\lambda_3\alpha)|K_{\eta}(\alpha) d\alpha
$$

\n
$$
\ll \left(\int_{\mathcal{A}} |S_1(\lambda_1\alpha)S_1(\lambda_2\alpha)|^2 K_{\eta}(\alpha) d\alpha\right)^{1/2} \left(\int_{\mathcal{A}} |S_k(\lambda_3\alpha)|^2 K_{\eta}(\alpha) d\alpha\right)^{1/2}
$$

\n
$$
\ll \left(\min\{\eta^2, y^{-2}\}\right)^{1/2} \left((Z_1Z_2)^2 \mu(\mathcal{A})\right)^{1/2} \left(\eta X^{1/k+\varepsilon}\right)^{1/2}
$$

\n
$$
\ll \left(\min\{\eta^2, y^{-2}\}\right)^{1/2} Z_1 Z_2 \left(y X^{8/3+\varepsilon} Z_1^{-2} Z_2^{-2}\right)^{1/2} \eta^{1/2} X^{1/(2k)+\varepsilon/2}
$$

\n
$$
\ll \eta X^{4/3+1/(2k)+\varepsilon}.
$$

Hence we need $\eta = \infty (X^{1/3 - 1/(2k) + \varepsilon})$, which is the same condition we got in [\(18\)](#page-12-0). If $6/5 < k < 3$,

$$
|\mathcal{F}(\eta,\omega,\mathcal{A})| \ll \int_{\mathcal{A}} |S_1(\lambda_1\alpha)||S_1(\lambda_2\alpha)||S_k(\lambda_3\alpha)|K_{\eta}(\alpha) d\alpha
$$

\n
$$
\ll \left(\int_{\mathcal{A}} |S_1(\lambda_1\alpha)S_1(\lambda_2\alpha)|^{4/3}K_{\eta}(\alpha) d\alpha\right)^{3/4} \left(\int_{\mathcal{A}} |S_k(\lambda_3\alpha)|^4K_{\eta}(\alpha) d\alpha\right)^{1/4}
$$

\n
$$
\ll \left(\min\{\eta^2, y^{-2}\}\right)^{3/4} \left((Z_1Z_2)^{4/3}\mu(\mathcal{A})\right)^{3/4} \left(\eta \max\{X^{2/k}, X^{4/k-1}\}X^{\varepsilon}\right)^{1/4}
$$

\n
$$
\ll \left(\min\{\eta^2, y^{-2}\}\right)^{3/4} Z_1 Z_2 \left(yX^{8/3+\varepsilon}Z_1^{-2}Z_2^{-2}\right)^{3/4} \eta^{1/4} \max\{X^{1/(2k)}, X^{1/k-1/4}\}X^{\varepsilon/4}
$$

\n
$$
\ll \eta Z_1^{-1/2}Z_2^{-1/2}X^{2+\varepsilon} \max\{X^{1/(2k)}, X^{1/k-1/4}\}
$$

\n
$$
\ll \eta \max\{X^{7/6+1/(2k)}, X^{11/12+1/k}\}X^{\varepsilon}.
$$

Hence we need $\eta = \infty (\max\{X^{1/6-1/(2k)+\varepsilon}, X^{-1/12+\varepsilon}\})$, which is the same condition we got in [\(20\)](#page-12-1). If $k = 3$, using Lemmas [11](#page-7-2) and [12](#page-13-0) we obtain

$$
|\mathcal{F}(\eta,\omega,\mathcal{A})| \ll \int_{\mathcal{A}} |S_1(\lambda_1\alpha)||S_1(\lambda_2\alpha)||S_3(\lambda_3\alpha)|K_{\eta}(\alpha) d\alpha
$$

\$\ll \left(\int_{\mathcal{A}} |S_1(\lambda_1\alpha)S_1(\lambda_2\alpha)|^{8/7}K_{\eta}(\alpha) d\alpha\right)^{7/8} \left(\int_{\mathcal{A}} |S_3(\lambda_3\alpha)|^8K_{\eta}(\alpha) d\alpha\right)^{1/8}\$
\$\ll \eta Z_1^{-3/4}Z_2^{-3/4}X^{7/3+5/24+\epsilon} \ll \eta X^{31/24+\epsilon}\$.

This leads to the same constraint for η that we had in [\(21\)](#page-12-2).

References

References

- [1] J. Bourgain, *On the Vinogradov mean value*, Tr. Mat. Inst. Steklova **296** (2017), Analiticheskaya i Kombinatornaya Teoriya Chisel, 36–46.
- [2] J. Bourgain, C. Demeter, and L. Guth, *Proof of the main conjecture in Vinogradov's mean value theorem for degrees higher than three*, Ann. Math. **184**, (2016), 633–682.
- [3] J. Brüdern, R. J. Cook, and A. Perelli, *The values of binary linear forms at prime arguments*, Proc. of Sieve Methods, Exponential sums and their Application in Number Theory (G. R. H. Greaves *et al*, ed.), Cambridge University Press, 1997, pp. 87–100.
- [4] H. Davenport and H. Heilbronn, *On indefinite quadratic forms in five variables*, J. London Math. Soc. **21** (1946), 185–193.
- [5] G. Harman, *Diophantine approximation by prime numbers*, J. London Math. Soc. **44** (1991), 218–226.
- [6] L. K. Hua, *Some results in the additive prime number theory*, Quart. J. Math. Oxford **9** (1938), 68–80.
- [7] A. Languasco and A. Zaccagnini, *On a ternary Diophantine problem with mixed powers of primes*, Acta Arith. **159** (2013), 345–362.
- [8] A. Languasco and A. Zaccagnini, *A Diophantine problem with prime variables*, in V. Kumar Murty, D. S. Ramana, and R. Thangadurai, editors, *Highly Composite: Papers in Number Theory, Proceedings of the International Meeting on Number Theory, celebrating the 60th Birthday of Professor R. Balasubramanian (Allahabad, 2011)*, volume 23, pages 157–168. RMS-Lecture Notes Series, 2016.
- [9] O. Robert and P. Sargos, *Three-dimensional exponential sums with monomials*, J. reine angew. Math. **591** (2006), 1–20.
- [10] D. I. Tolev, *On a Diophantine inequality involving prime numbers*, Acta Arith. **51** (1992), 289–306.
- [11] R. C. Vaughan, *The Hardy–Littlewood method*, second ed., Cambridge U. P., 1997.