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ABSTRACT

The aim of this study was to compare the common 
method of exploiting infrared spectral data in animal 
breeding; that is, estimating the breeding values for 
the traits predicted by infrared spectroscopy, and an 
alternative approach based on the direct use of spectral 
information (direct prediction, DP) to predict the es-
timated breeding values (EBV). Traits were pH, milk 
coagulation properties, contents of the main casein 
and whey protein fractions, cheese yield measured by 
micro-cheese making, lactoferrin, Ca, and fat compo-
sition. For the DP method, the number of spectral 
variables was reduced by principal components analysis 
to 8 latent traits that explained 99% of the original 
spectral variation. Restricted maximum likelihood was 
used to estimate variance components of the latent 
traits. (Co)variance components of the original spectral 
traits were obtained by back-transformation and EBV 
of all derived milk traits were then predicted as traits 
correlated with the genetic information of the spectra. 
The rank correlation between the EBV obtained for 
the infrared-predicted traits and those obtained from 
the DP method was variable across traits. Rank cor-
relations ranged from 0.07 (for the content of saturated 
fatty acids expressed as g/100 g of fat) to 0.96 (for 
dry matter cheese yield, %) and, for most traits, was 
<0.5. This result can be explained by the nature of 
the principal components analysis: it does not take into 
account the covariance between the spectral variables 
and the reference traits but produces latent traits that 
maximize the spectral variance explained. Thus, the 
direct approach is more likely to be effective for traits 
more related to the main sources of spectral variation 
(i.e., protein and fat). More research is required to 

study spectral genetic variation and to determine the 
best way to choose spectral regions and the type and 
number of considered latent traits for potential applica-
tions.
Key words: infrared spectroscopy, fatty acid, protein 
fraction, breeding value

INTRODUCTION

Fourier-transform infrared spectroscopy (FTIR) 
is a useful tool to predict individual phenotypes for 
traditional and innovative milk traits and a candidate 
method to replace gold standard methodologies, which 
are often not applicable for population-wide pheno-
typing due to high cost or other practical limitations. 
Infrared prediction of individual phenotypes relies on 
the availability of calibration equations developed using 
gold standard measures of traits of concern and FTIR 
spectra for a limited number of reference samples. 
Together with pedigree information and variance com-
ponent estimates, predicted phenotypes can be used in 
BLUP to obtain EBV. This approach is referred to as 
the indirect prediction method (IP; Dagnachew et al., 
2013b) because the spectral information is not directly 
used in EBV prediction procedures, although the spec-
tra provide insights into the genetic variation in milk 
components (Soyeurt et al., 2010).

Starting from evidence that milk FTIR spectral 
variables exhibit tight correlations among each other 
(Soyeurt et al., 2010; Dagnachew et al., 2013a) and con-
sidering that direct genetic analysis on such correlated 
spectral variables may enhance the accuracy of genetic 
evaluation methods, a direct prediction (DP) approach 
has been proposed (Dagnachew et al., 2013b). In the 
DP approach, EBV prediction is performed using the 
milk FTIR spectral variables directly, and EBV for 
traits of concern are derived from the predicted EBV 
for the spectral variables (i.e., EBV for the traits of 
interest are predicted as EBV of traits correlated with 
the genetic component of the spectra).
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The DP method has some benefits over the IP 
method: there is no need to predict phenotypes from 
the spectra to estimate the EBV for the traits, and 
EBV are predicted once (only for the spectra) and then 
used to derive the EBV of traits. This is particularly 
relevant when considering the high number of traits for 
which FTIR calibration equation are being developed 
(Bonfatti et al., 2016; Gengler et al., 2016). In addition, 
direct analysis of the spectral variables may increase 
the precision of the estimated genetic parameters and 
the accuracy of EBV predictions and genetic gains, 
particularly for low-heritability traits, as a consequence 
of exploiting the genetic relationships among many 
spectral variables (Dagnachew et al., 2013b).

Dagnachew et al. (2013b) compared DP and IP using 
goat milk spectra and reported very high rank correla-
tions between the EBV provided by the 2 methods. In 
that study, infrared predictions of fat, protein, and lac-
tose contents were used as phenotypes because no data 
from chemical analysis were available. The investigated 
traits were directly linked to spectral information, and 
the calibration equations developed by Dagnachew et 
al. (2013b) had very high predictive ability, with R2 
values ranging from 0.95 to 0.98. The DP and IP meth-
ods have not been compared for calibration equations 
developed using independent reference data obtained 
by chemical analysis and for traits predicted with inter-
mediate to low accuracy.

The aim of this study was to compare DP and IP as 
methods for routine prediction of EBV in a dairy cattle 
population for a group of traits that describe the fine 
composition and technological properties of milk and 
that are predicted with variable accuracy using FTIR 
spectra.

MATERIALS AND METHODS

FTIR Spectra and Calibration Models

A total of 100,272 milk samples were collected 
(from February 2013 to June 2014) from 11,216 Ital-
ian Simmental cows (92 herds) during the routine milk 
recording operated in Italy in the Friuli Venezia Giulia 
region by the regional milk recording agency (AAFVG, 
Codroipo, Italy). On average, each cow provided 6.9 
milk samples, with a minimum of 1 and a maximum of 
12 samples. Samples were analyzed using a MilkoScan 
FT6000 (Foss Electric A/S, Hillerød, Denmark), and 
the generated FTIR absorbance spectral data (1,060 
variables per spectrum) were recorded.

Calibration equations used in this study were 
the outcome of a research project (MilCo project, 
CPDA122982; University of Padova, Padova, Italy), 
which started in 2013 with the aim of developing proce-

dures to estimate EBV for the Italian Simmental cattle 
population for FTIR predictions of detailed protein 
and FA composition, minerals, lactoferrin, coagulation 
properties, cheese yield, and curd composition. Refer-
ence data for the development of calibration equations 
were obtained for milk protein composition by reversed 
phase HPLC (Bonfatti et al., 2008), for FA compo-
sition by accelerated extraction (Dionex application 
note 345; Thermo Scientific Dionex, 2016) followed by 
2-dimensional gas chromatography separation (Pellat-
tiero et al., 2015), for minerals by inductively coupled 
plasma atomic emission spectroscopy (Soyeurt et al., 
2009), for lactoferrin by ELISA (Soyeurt et al., 2007), 
for milk coagulation properties by lactodynamography 
(Bonfatti et al., 2016), and for cheese yield and curd 
composition by micro-cheese making (Bonfatti et al., 
2016). In total, 92 traits were measured and calibra-
tion equations were developed using more than 1,000 
samples for each of the investigated traits, with the 
exception of minerals (n = 689) and lactoferrin (n = 
558). Details on procedures providing reference data 
for the traits investigated in this study can be found in 
Bonfatti et al. (2016).

Due to the interference of water absorption, the O–H 
bending and stretching regions of the spectra (between 
1,628 and 1,658 cm−1 and between 3,105 cm−1 and 3,444 
cm−1, respectively) were removed from each spectrum, 
as suggested by Soyeurt et al. (2010). Spectral outliers 
were identified based on the standardized Mahalanobis 
distance (Burns and Ciurczak, 2007).

Calibration equations to be used in this study were 
developed using the remaining 872 spectral variables 
and modified partial least square (MPLS; Shenk and 
Westerhaus, 1991) regression procedures, as implement-
ed in the software WinISI II (Infrasoft International 
Inc., State College, PA), and were cross-validated using 
a 10-random-segments procedure.

Estimates of EBV Under the DP and IP Methods

Sixteen traits were used to compare the EBV obtained 
from application of IP and DP. The traits were selected 
from the 92 traits investigated in the MilCo project 
to compare the 2 methods under scenarios in which 
FTIR predictions had variable accuracy. Performance 
of the calibration equations used in the prediction of 
the 16 selected traits is reported in Table 1. Values 
of the coefficient of determination of cross-validation 
(R2

CV) and the ratio of performance to deviation (i.e., 
the ratio of the SD of a trait to the standard error 
in cross-validation) ranged from 0.35 to 0.86 and from 
1.24 to 2.85, respectively.

A schematic representation of IP and DP methods 
is depicted in Figure 1. The estimation of genetic and 
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nongenetic (co)variance components for the 872 spectral 
variables, which would be needed to perform a BLUP 
analysis of the 872 spectral variables, was unfeasible 
due to computer memory constraints. As suggested by 
Soyeurt et al. (2010) and Dagnachew et al. (2013a), the 
dimensionality of the analysis was reduced by principal 
component analysis (PCA). The procedure described 
by Dagnachew et al. (2013b) was used to obtain the 
predictions of EBV under DP. Briefly, a principal com-
ponent decomposition of milk FTIR spectra can be 
represented as follows:

	 w I P t= ⊗( )⊗ +n ε,	 [1]

where w is a vector of observed spectral variables (with 
the spectrum of one sample above the other), In is an 
identity matrix of size n, where n is the number of milk 
samples, ⊗ denotes the Kronecker product operator, 
P is a matrix of loadings of size m × a, where m is 
the number of spectra variables and a is the number 
of principal components, t is a vector of scores to be 
estimated (with the scores of one sample on top of the 
other), and ε is a vector of residuals. The scores (t) are 
referred to as latent traits (LT).

The first 8 LT, corresponding to the 8 highest eigen-
values of the correlation matrix of the original spectral 
data and accounting for 99% of the spectral variance, 
were considered for further analysis. The LT were 
adjusted for the effect of herd-test-date (4,343 levels), 

parity (1, 2, 3, and 4 and later parities), and stage of 
lactation (15-d classes, up to 360 or more DIM). Only 
herd-test-date levels with at least 5 observations were 
retained. The following multi-trait animal model was 
used to estimate the EBV for the latent traits t:

	 t Zu Hh et t t= + + +µ ,	 [2]

where µ is a vector of 1, ut is a vector of animal addi-
tive genetic effects, ht is a vector of permanent environ-
mental effects, et is a vector of random residuals, and Z 
and H are design matrices relating observation in t to 
effects in ut and ht, respectively.

The following (co)variance structure for the latent 
traits in t was assumed: var(ut) = Gt ⊗ A, var(ht) = 
Qt ⊗ Ih, and var(et) = Rt ⊗ In, where Gt is the ge-
netic (co)variance matrix for the latent traits, A is the 
additive relationship matrix among animals, Qt is the 
permanent environmental (co)variance matrix, Rt is 
the residual (co)variance matrix, and Ih and In are 
identity matrices of appropriate order. Restricted 
maximum likelihood estimates of the (co)variance ma-
trices for the latent traits ˆ ,Gt  ˆ ,Qt  and R̂t were obtained 
using VCE software (version 6.0; Groeneveld et al., 
2010).

Pedigree information was supplied by the Italian Sim-
mental Cattle Breeders Association (ANAPRI, Udine, 
Italy) and included all animals with spectral data. The 
pedigree file included 46,870 animals.

Table 1. Parameters1 describing the predictive ability of calibration equations used in the study and descriptive statistics for the measured 
reference traits

Trait

Descriptive statistics

 

Calibration performance

Mean Minimum Maximum SECV R2
CV RPD

Technological traits              
  pH 6.75 6.34 7.32   0.04 0.80 2.23
  Coagulation time (min) 18.62 7.65 59.18   3.14 0.71 2.00
  Raw cheese yield (%) 26.58 0.65 65.67   4.05 0.62 1.66
  DM cheese yield (%) 7.56 0.17 14.04   0.45 0.86 2.85
  Curd moisture (%) 70.93 43.15 83.93   2.66 0.59 1.63
Major protein fractions (g/L)              
  Casein 31.73 22.66 46.31   1.39 0.85 2.60
  αS1-CN 13.52 8.27 21.56   0.76 0.76 2.06
  βγ-CN 10.46 6.08 17.38   1.16 0.59 1.56
  κ-CN 3.58 1.76 6.88   0.61 0.35 1.24
  Lactoferrin (μg/mL) 120.04 9.42 441.88   71.05 0.41 1.30
Ca (mg/kg) 1,206 700 2,068   131 0.53 1.49
Fatty acids (g/100 g of fat)              
  SFA 74.15 53.73 82.75   1.76 0.76 2.06
  MUFA 21.95 14.54 42.01   1.54 0.76 2.08
  PUFA 3.90 2.20 7.34   0.53 0.59 1.57
  n-3 0.55 0.13 1.17   0.10 0.62 1.63
  CLA cis-9,trans-11 0.35 0.02 0.86   0.07 0.42 1.37
1SECV = standard error of cross-validation; R2

CV = coefficient of determination in cross-validation; RPD = ratio of prediction to deviation, 
calculated as the ratio of the SD to the SECV for a trait.
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The EBV for LT were back-transformed to the EBV 
of the original 872 spectral variables using the following 
linear transformation of Equation [1]:

	 u I P uw n t
� �= ⊗( ) ⋅ ,	 [3]

where uw� are the predicted EBV for the spectral vari-
ables (genetic components of FTIR spectra). Breeding 
values for a milk trait, yi, were then predicted as cor-

related traits from the genetic component of FTIR 
spectra �uw( ) :

	 � � �u I B u I B I P ui n PLS w n PLS n ti i
* ' '= ⊗( )⋅ = ⊗( ) ⋅ ⊗( ) ⋅





ˆ ˆ ,	[4]

where �ui
* is a vector of predicted EBV for a trait yi us-

ing DP and B̂PLSi  is the vector of the MPLS regression 
coefficients of the calibration equation developed for 
trait i.

Figure 1. Schematic representation of (a) the indirect prediction method, and (b) the direct prediction method. In the indirect prediction 
method, calibration equations are applied to the spectra to predict phenotypes and BLUP estimates are obtained for each trait to derive the 
breeding values. In the direct prediction method, principal components analysis (PCA) is performed on the spectra and a multi-trait animal 
model is applied on the 8 latent traits having the greatest eigenvalues. Breeding values estimated for the latent traits are then back-transformed 
to the number of original spectra variables, and calibration equations are applied to the back-transformed EBV to obtain the EBV for single 
traits.
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For the IP method, the predicted phenotypes ŷi for a 
trait i (i = 1, …, 16) were predicted from the spectra 
as follows:

	 ˆ ˆ , , .y I B wi n PLSi
i= ⊗( )⋅ = …( )’ 1 16 	 [5]

The FTIR-predicted traits were adjusted for the same 
effects considered for DP and EBV were then estimated 
through univariate analyses using the same linear model 
used for LT in DP (see Equation [2]).

Predictions Obtained from Back- 
Transformed Spectra

Under DP, only 99% of the spectral variation (i.e., 
the amount of variation explained by the first 8 LT) 
was used in EBV prediction. To investigate the effect 
of using a reduced amount of the original spectral in-
formation in prediction of phenotypes (which are never 
obtained using DP) and EBV for milk traits, an inter-
mediate method (BT8) between IP and DP was also 
used. This method, schematically depicted in Figure 2, 
used observations on the first 8 LT to back-transform 
the spectra to the original 872 variables. The IP method 
was then applied to the back-transformed spectra to 
obtain predictions of the phenotypes for the investi-
gated traits, and these predicted phenotypes were used 
to estimate the EBV. The same approach was applied 
using the first 21 LT (BT21), which explained 99.9% of 
the original spectral variation.

Following the approach proposed by Dagnachew et 
al. (2013b) to compare different models with the same 

(co)variance structure, the variance components of in-
dividual traits in the IP approach were calculated from 
the variance components of the FTIR spectra using the 
following equation:

	 ˆ ˆ ˆ .σai i i
2 = ⋅ ⋅ ⋅ ′ ⋅′B BPLS PLSP G Pt

� 	 [6]

Likewise, the permanent environmental σpei
2  and residu-

al σei
2  variances were estimated using similar equations 

by replacing the relevant terms 
i.e., B BPLS PLSσpei i i

2 = ⋅ ⋅ ⋅ ′ ⋅( ′ˆ ˆP Q Pt
�  and 

σei i i
2 = ⋅ ⋅ ⋅ ′ ⋅′ )ˆ ˆ .B BPLS PLSP R Pt

�

For each milk trait, the Spearman rank correlations 
(ρ) between EBV estimated under IP and DP using 
BT8 or BT21 were calculated using the CORR proce-
dure of SAS (version 9.3; SAS Institute Inc., Cary, NC). 
The Pearson product-moment correlations between the 
infrared predicted phenotypes obtained from the IP 
method and those obtained from BT8 and BT21 meth-
ods were calculated using the same SAS procedure.

RESULTS AND DISCUSSION

Genetic Variability of Mid-Infrared Spectral Data

The spectral regions ranging from 1,628 and 1,658 
cm−1 and from 3,105 cm−1 and 3,444 cm−1 (i.e., the water 
absorbance regions) exhibited large phenotypic varia-
tion compared with the rest of the spectrum, and PCA 
performed on the unprocessed spectral data, cleared 
of those regions, resulted in 8 LT explaining approxi-

Figure 2. Schematic representation of the use of back-transformed spectra to obtain phenotypes and EBV using principal components 
analysis (PCA) applied to the spectra. The 8 latent traits having the greatest eigenvalues are used to back-transform the spectra to the number 
of original spectra variables. These correspond to spectra reconstructed using 99% of the original spectral variation. Calibration equations are 
used on the back-transformed spectra to obtain the prediction of phenotypes to be used in univariate animal models for the estimates of EBV.
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mately 99% of the total spectral variation. Cumulative 
variance explained by the LT, as well as estimates and 
standard errors of variance ratios for additive genetic, 
permanent environmental, and residual effects on LT, 
are reported in Table 2. The first LT explained 44% of 
the total spectral variation and the first 3 LT explained 
more than 90% of the total spectral variation, indicat-
ing marked correlations among the original spectral 
variables. This is in agreement with results reported 
by Soyeurt et al. (2010) and Dagnachew et al. (2013a).

Heritability values for the 8 LT ranged from 0.09 and 
0.4, and the last 3 LT exhibited the highest heritabil-
ity estimates, indicating that a large proportion of the 
variation in the spectral information is not of genetic 
origin. This is in agreement with findings of other stud-
ies (Soyeurt et al., 2010; Dagnachew et al., 2013b).

Variance ratios for the permanent environment were 
between 0.10 and 0.24, and ratios for the residual 
variance ranged from 0.39 to 0.81. These results are 
consistent with those reported by Soyeurt et al. (2010) 
and Dagnachew et al. (2013b) for cow and goat milk 
spectra, respectively. The genetic correlations among 
LT are reported in Table 3. One property of the LT is 
that they are phenotypically uncorrelated but genetic 
relationships between LT may exist. Indeed, the mag-
nitude of the additive genetic correlations between LT 
ranged from −0.72 to 0.78. Non-null genetic correla-

tions between LT, ranging from 0.013 to 0.512, were 
reported also by Dagnachew et al. (2013b). Because of 
the large number of milk samples processed by FTIR, 
standard errors of heritabilities and correlation coef-
ficients were very small.

Correlation Between EBV Obtained by IP and by DP

Values of ρ between the EBV predicted using IP and 
DP are reported in Table 4. The ρ between EBV ob-
tained from IP and those from DP was variable across 
traits, but all estimated ρ values were significantly dif-
ferent from zero (P < 0.001). Values of ρ ranged from 
0.07 (for the content of SFA measured as g per 100 g 
of fat) to 0.96 (for dry matter cheese yield, %). For 
most traits, ρ was <0.5. For dry matter cheese yield, 
contents of casein, αS1-CN, βγ-CN, and lactoferrin, the 
EBV estimated by DP were strongly correlated (ρ > 
0.93) with those yielded by IP.

In contrast with our results, in Dagnachew et al. 
(2013b), the ρ between the EBV obtained by IP and 
DP was greater than 0.93 for all investigated traits (fat, 
lactose, and protein contents of milk). Some re-ranking 
of individuals was observed, but, according to those 
authors, it was attributable to the decrease in the EBV 
prediction error variance provided by DP compared 
with that of IP.

Table 2. Estimates and standard errors of variance ratios of additive genetic, permanent environmental, and residual effects to total phenotypic 
variance1 for the first 8 latent variables (LT) obtained from the principal components analysis of the spectral data

Latent variable
Cumulative variance 
explained by LT (%)

Heritability

 

Permanent environment

 

Residual

Estimate SE Estimate SE Estimate SE

LT1 43.73 0.161 0.005   0.106 0.004   0.732 0.003
LT2 76.56 0.218 0.005   0.240 0.005   0.542 0.004
LT3 92.20 0.088 0.003   0.101 0.003   0.811 0.003
LT4 96.06 0.140 0.008   0.203 0.007   0.657 0.004
LT5 97.26 0.101 0.005   0.117 0.004   0.782 0.003
LT6 98.26 0.316 0.014   0.188 0.011   0.496 0.005
LT7 98.63 0.409 0.016   0.198 0.013   0.394 0.005
LT8 98.99 0.349 0.015   0.187 0.013   0.464 0.005
1Total phenotypic variance was calculated as the sum of additive genetic, permanent environmental, and residual variance.

Table 3. Genetic correlations between latent variables (LT)1

  LT2 LT3 LT4 LT5 LT6 LT7 LT8

LT1 −0.48 −0.33 −0.12 −0.12 −0.18 0.23 0.23
LT2   −0.43 −0.13 0.26 0.02 −0.05 0.00
LT3     −0.17 −0.34 0.41 −0.35 −0.22
LT4       −0.55 0.13 0.25 0.44
LT5         −0.72 0.17 −0.38
LT6           −0.59 0.01
LT7             0.78
1Standard errors ranged between 0.015 and 0.038.
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As depicted in Figure 3, the magnitude of ρ was not 
related to the accuracy of the calibration equation that 
generated the predicted phenotypes (for IP) or the EBV 
(for DP). As a consequence, the high ρ values found 
by Dagnachew et al. (2013b) between EBV yielded by 
the 2 approaches were unlikely the result of the high 
accuracy of the calibration models used in that study.

Milk protein, fat, and lactose are the main sources of 
variation of spectral variables and, therefore, are also 
the traits mostly related to the LT. Consequently, it 

is reasonable to hypothesize that phenotypes strongly 
correlated with the major sources of variation of the 
spectra are also the traits for which variability is better 
explained by the LT with the highest eigenvalues. All 
traits having the highest ρ between IP and DP were 
among the traits having the strongest correlation with 
milk protein (r > 0.52; data not reported in tables), 
although the content of κ-CN (i.e., the trait predicted 
with the lowest accuracy; Table 1) exhibited a low ρ 
between EBV obtained by IP and DP, despite being 
highly correlated with milk protein content (r = 0.83; 
data not reported in tables). In general, however, a 
positive relationship was observed between ρ and the 
correlation of the traits with total milk protein or fat 
(Figure 4), confirming that the traits highly correlated 
with the major sources of variation of the spectra are 
also the traits for which variability is better explained 
by the first 8 LT and for which the DP approach would 
provide EBV highly correlated with those obtained by 
the IP method. This can explain the promising results 
obtained with DP on protein, fat, and lactose reported 
by Dagnachew et al. (2013b).

Correlation Between EBV Obtained from Raw  
and Back-Transformed Spectra

The correlations between the EBV yielded by the IP, 
BT8, and BT21 methods is reported in Table 4. Values 
of ρ between EBV obtained by IP and BT8 were very 

Table 4. Spearman rank correlations between EBV and Pearson product-moment correlations between infrared-predicted phenotypes obtained 
using different methods1

Trait

EBV

 

Phenotype

IP–DP IP–BT8 IP–BT21 DP–BT8 DP–BT21 IP–BT8 IP–BT21

Technological traits                
  pH 0.40 0.41 0.55 0.97 0.79   0.53 0.72
  Coagulation time (min) 0.40 0.41 0.57 0.98 0.77   0.41 0.62
  Raw cheese yield (%) 0.89 0.95 0.99 0.97 0.88   0.82 1.00
  DM cheese yield (%) 0.96 0.99 1.00 0.97 0.96   0.99 1.00
  Curd moisture (%) 0.19 0.22 0.66 0.96 0.32   0.41 0.93
Major protein fractions (g/L)                
  Casein 0.97 0.97 0.99 0.98 0.97   0.95 0.99
  αS1-CN 0.93 0.93 0.97 0.98 0.95   0.88 0.96
  βγ-CN 0.96 0.95 0.99 0.98 0.97   0.82 0.98
  κ-CN 0.59 0.62 0.69 0.96 0.92   0.83 0.89
  Lactoferrin (μg/mL) 0.94 0.95 0.98 0.98 0.95   0.90 0.99
Ca (mg/kg) 0.45 0.47 0.54 0.97 0.68   0.44 0.79
Fatty acids (g/100 g of fat)                
  SFA 0.07 0.05 0.71 0.93 0.14   0.19 0.82
  MUFA 0.11 0.10 0.78 0.93 0.17   0.23 0.84
  PUFA 0.60 0.63 0.73 0.92 0.72   0.29 0.69
  n-3 0.63 0.59 0.74 0.91 0.67   0.28 0.73
  CLA cis-9,trans-11 0.32 0.34 0.66 0.98 0.41   0.34 0.72
1IP = indirect prediction method; DP = direct prediction method; BT8 = IP method applied over spectra back-transformed using the 8 latent 
traits having the greatest eigenvalues; BT21 = IP method applied over spectra back-transformed using the 21 latent traits having the greatest 
eigenvalues. All estimated correlations were significantly different from zero (P < 0.001).

Figure 3. Relationship of the Spearman rank correlation between 
the EBV obtained by the indirect prediction and the direct prediction 
method (ρ) with the R2 of cross-validation (R2

CV) of the calibration 
equations.
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similar to those observed between the EBV provided 
by IP and DP. The BT8 method is analogous to the IP 
method for EBV estimation, in which only part of the 
original spectral information (the same as that used by 
the DP method) is used. Indeed, the ρ between EBV 
yielded by DP and BT8 was generally very high (ρ > 
0.9) for all the investigated traits (Table 4). This sug-
gests that the use of the same amount of spectral infor-
mation in a DP or IP approach yields consistent results. 
When the BT21 approach was used, the rank correlation 
of the EBV with those obtained by IP improved for all 
investigated traits. However, ρ was greater than 0.95 
only for 6 out of 16 traits. As the spectral information 
exploited in the DP approach was reduced compared 
with that exploited by the BT21 method (8 vs. 21 LT), 
the ρ between EBV obtained by DP and BT21 was 
lower than that between the EBV estimated from DP 
and BT8 (Table 4).

Correlations Between Phenotypes Predicted  
from Raw and Back-Transformed Spectra

The magnitude of the correlation between pheno-
types predicted from the raw and the back-transformed 
spectra retaining 99% of the original spectral variability 
(BT8) was variable across traits (Table 4). This could 
also explain why the ρ between EBV yielded by IP 
and DP was variable. For most traits, retaining 99% 
of the original spectral variability was not sufficient to 
guarantee good prediction accuracy compared with the 
accuracy obtained using the raw spectra. A consider-
able amount of the information needed to predict phe-
notypes is actually lost, which impairs the prediction 

of EBV from spectral information. Dagnachew et al. 
(2013b) suggested that the remaining 1% of the total 
spectral variation could also have relevant information 
for breeding and that the DP method could be im-
proved to capture part of the remaining 1% of spectral 
variation.

When spectra were back-transformed using an in-
creased number of LT to guarantee that 99.9% of the 
original spectral variability was retained (BT21), the 
correlation between the phenotypes predicted from the 
raw spectra and those predicted from the back-trans-
formed spectra increased for all investigated traits. 
Nevertheless, the correlation in most cases was lower 
than 0.90. This indicates that even the information in-
cluded in the 0.01% of the original spectral variability, 
which was neglected by using the 21 LT with the high-
est eigenvalues, was fundamental for the prediction of 
some of the investigated traits.

This result can be explained by the nature of PCA, 
which does not take into account the covariance be-
tween the spectral variables and the reference traits, 
but produces LT that maximize the spectral variance 
explained. If most of the spectral variance is related 
to sources of variation that are weakly associated 
with a trait, the use of the DP method for that trait 
would not be feasible. The DP approach is more likely 
to be effective for the traits more related to the main 
sources of spectral variation; that is, protein and fat. 
The proportion of the original standard deviation of 
each spectral variable that is preserved by using 8 or 
21 LT is reported in Figure 5. The standard deviation 
of some spectral variables was greatly reduced when 8 
LT were used for spectra back-transformation. If the 

Figure 4. Relationship of the Spearman rank correlation between the EBV obtained by the indirect prediction and the direct prediction 
method (ρ) with the correlation of the traits with (a) milk protein, and (b) fat content.
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spectral regions related to a particular trait were also 
the regions more affected by the loss of variability, the 
ρ for that particular trait would be low.

As it is not possible to estimate (co)variance compo-
nents for all spectral variables (i.e., 872 spectral data 
points) simultaneously, there is a need to reduce the 
spectral dimension. Principal component analysis is the 
method that has been used to date (Soyeurt et al., 2010; 
Dagnachew et al., 2013a), but it extracts information 
focusing only on the magnitude of total variation ex-
plained by a component. This limits the ability of PCA 
to retain all the relevant variation for a specific trait.

PCA Versus Partial Least Square Regression

To better investigate the ability of the PCA to retain 
information about the traits, calibration equations were 
developed by principal component regression imple-
mented in the WinISI II software, using a maximum of 
8 LT. For most of the investigated traits, the calibra-
tion based on principal component regression (i.e., a 
technique that is based on PCA) has a much lower 
predictive ability than that of the equation based on 
MPLS, whereas for traits that are easily predicted by 
FTIR spectroscopy (e.g., casein content or dry mat-
ter cheese yield), the 2 approaches are similar (data 
not reported in tables). The magnitude of the ρ was 
strongly correlated (r = 0.83) to the difference in the 

R2
CV obtained by MPLS and principal component re-

gression (Figure 6).

Use of the LT Most Correlated with the Traits

In the DP approach, the first 8 LT were used because 
they had the greatest eigenvalues, but, as stated above, 
the LT having the greatest eigenvalues are not neces-

Figure 5. Proportion of the original spectral standard deviation obtained with the spectra back-transformation using 99% (solid line) or 
99.9% (dashed line) of the original spectral variation.

Figure 6. Relationship between the rank correlation between the 
EBV estimated by the direct and by the indirect prediction method 
(ρ) and the difference between the R2 in cross-validation obtained 
by modified partial least square regression and principal component 
regression (ΔR2

CV).
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sarily those retaining the greatest part of the genetic 
variation. Other LT might play a fundamental role 
in the prediction of some traits even if the amount of 
variance explained is limited. This problem might be 
addressed by using a supervised PCA, which is similar 
to conventional PCA except that it uses a subset of the 
LT based on their association with the trait (Bair et 
al., 2006). Also, partial least squares regression might 
yield a more accurate estimation of genetic parameters 
for the traits included in the model because it captures 
relevant variations of the spectra associated with those 
traits. However, it will not guarantee that information 
for other milk traits, which are not included in the par-
tial least squares model, are retained in the LT.

To support our hypothesis, as an example, we esti-
mated the EBV for SFA content using the DP method 
on the 8 LT most correlated with the trait instead of 
the 8 LT with the largest eigenvalues. The 8 LT most 
correlated with SFA content, as well as the proportion 
of spectral variance explained, are reported in Table 5. 
The ρ between the EBV yielded by the IP method and 
by the DP method using this approach was 0.68 (P < 
0.001), a value much higher than that (0.07, P < 0.001) 
between the EBV yielded by IP and DP using the 8 LT 
having the greatest eigenvalues, and only slightly lower 
than the ρ observed between the EBV yielded by IP 
and BT21 (0.71, P < 0.001).

The application of other methods for the reduction 
of spectral variables or for the selection of spectral 
regions should be investigated because the direct use 
of spectral information has a lot of potential. Soyeurt 
et al. (2010) suggested that direct use of the spectral 
information might be used to develop herd manage-
ment tools, because metabolic disorders such as acido-
sis, ketosis, or mastitis influence many aspects of milk 
composition that could affect milk spectra. Based on 
the difference between the expected and observed val-
ues for the spectral traits, some disorders, currently 
undiscovered because of the limited number of studied 
milk components, could be detected (Soyeurt et al., 
2010). In addition, reduction of the spectral dimension 
might reduce the requirements for storage of spectral 

variables, because only the storage of phenotypes of the 
few selected latent variables would be needed.

CONCLUSIONS

We compared the common method of exploiting 
infrared predictions in animal breeding and an alterna-
tive approach based on the direct use of the spectral 
information to predict the EBV for several traits re-
lated to fine composition and technological properties 
of milk. Latent variables produced by PCA accounted 
for as much of the variability in the spectra as possible, 
but the covariance between the trait and the spectra 
was neglected. Principal components analysis was not 
suitable for reducing the number of spectral variables 
for the direct use of spectral information in genetic 
evaluation, except for traits that are highly correlated 
with fat and protein. All of the spectral variability as-
sociated with the traits should be retained in the latent 
variables, which means that an increased number of 
latent variables or methods to reduce the dimensional-
ity of the spectra other than PCA should be used. More 
research is required to study spectral genetic variation 
and determine the best way to choose spectral regions 
and the type and number of latent traits for potential 
application.
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