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Abstract. Let g be a real semisimple Lie algebra with Iwasawa decomposition
k ⊕ a ⊕ n. We show that, except for some explicit exceptional cases, every
derivation of the nilpotent subalgebra n that preserves its restricted root space
decomposition is of the form ad(W ), where W ∈ m⊕ a.

1. Introduction

Let g be a semisimple Lie algebra, with Iwasawa decomposition g = k ⊕ a ⊕ n,
where k is compact, a is abelian, and n is nilpotent, and let m be the centraliser
of a in k. Then n =

∑
γ∈Σ+ gγ, where Σ+ is the set of positive restricted roots and

gγ is the restricted root space corresponding to the restricted root γ.
We study the derivations of n which preserve its root space decomposition, that

is, the derivations D such that D(gγ) ⊆ gγ for each positive restricted root γ.
By definition and the Jacobi identity, if W ∈ m ⊕ a, then [H,W ] = 0 for all
H ∈ a, and so [H, [W,X]] = [W, [H,X]] = γ(H)[W,X] for all X ∈ gγ; thus ad(W )
preserves the root space decomposition. The main point of this paper is that,
unless g contains a simple summand of the form so(n, 1) or su(n, 1), every root
space preserving derivation D of n is of the form ad(W ), where W ∈ m ⊕ a, and
more precisely the symmetric part of D is in ad(a) while the skew-symmetric part
of D is in ad(m).

The root space preserving derivations are known for real rank one simple Lie
algebras. Indeed, Korányi [16] showed that in the rank one case, n is an H-type
Lie algebra, and the Lie algebra of derivations and the automorphism group of an
H-type algebra were found by Riehm [20] and Saal [21]. Our work may be viewed
as a development of the ideas of these authors.

Here is our strategy. First, the algebra g splits into a sum of simple ideals,
and we show that it suffices to consider the case where g is simple. As noted,
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the real rank one case is understood; we treat the algebras of real rank two by
considering the possible restricted root systems separately, and using a detailed
analysis of several H-type algebras contained in n in each case. A key argument
at this stage is showing that each derivation is the sum of a symmetric and an
antisymmetric derivation. To treat the general case, we again show that it suffices
to treat symmetric and an antisymmetric derivations separately. The symmetric
derivations act by scalars on each restricted root space, and belong to ad(a), but the
skew-symmetric derivations are trickier. We handle these by introducing identities
(Dγ,δ) and (Eγ,δ), where γ, δ ∈ Σ+, which involve the interplay of a derivation with
the Cartan involution θ, and show that these identities characterise derivations in
ad(m) in simple Lie algebras of arbitrary real rank. We prove these identities for
the simple algebras of higher rank by reducing to subalgebras of real rank one and
two, and then using our analysis of these algebras.

This paper is a step towards the classification of the derivations and automor-
phisms of n, which is interesting for a variety of reasons. One reason is to find the
derivations of (minimal) parabolic subalgebras of semisimple Lie algebras, which
has been a lively field in recent years; see, for example, Chen [2] and Wang and Yu
[22]. Every derivation of a parabolic subalgebra induces a derivation of its nilradi-
cal; if we can show that these are Lie multiplication by elements of the subalgebra,
then we are well on the way to finding the derivations of the whole subalgebra.
Another reason is the question of classification of nilpotent Lie algebras: in general
this is an impossibly tedious matter, but one might hope to do better with algebras
with lots of symmetry; to see whether this is viable, we need to understand some
examples.

Next, to carry out harmonic analysis on the simply connected nilpotent Lie
group associated to n, which has applications in diverse areas including theoretical
physics and linear partial differential equations, it is important to understand its
symmetries; see, for example, the study of Folland [12].

A fourth reason for studying the automorphisms of n is the theory of quasiconfor-
mal mappings of “Carnot groups”. Indeed, as defined by Pansu [19], the derivative
of a quasiconformal mapping of an Iwasawa N group is an automorphism, and re-
strictions on the automorphisms give rise to restrictions on the quasiconformal
mappings. Further, it was shown by Yamaguchi [24], using the theory of Tanaka
prolungations and the Borel–Bott–Weil theorem, and Cowling, De Mari, Korányi
and Reimann [8], using more elementary arguments, that the space of “multi-
contact mappings”, that is, mappings whose differentials preserve the simple root
spaces, is finite-dimensional when all the derivations that preserve the root spaces
are of the form ad(m⊕ a). The result presented here leads to the same conclusion
in an even simpler way. Indeed, unless n has dimension 1 or 2, the Tanaka pro-
longation of n through ad(m⊕ a) is finite-dimensional; see Ottazzi and Warhurst
[18], and this implies that multicontact mappings form a finite-dimensional Lie
group. While a more abstract approach, for instance via cohomology, might well
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also establish our main result for Iwasawa algebras, our more concrete analysis
also provides tools that should apply to more general algebras that do not arise as
subalgebras of semisimple algebras.

It is also of interest to consider derivations that preserve the grading of n, that is,
the subspaces

∑
α gα where we sum over all α of the same height, and to consider

derivations of nilradicals of more general parabolic algebras; we will return to these
questions in future work.

This paper is organized as follows. In Section 2 we analyse the derivations of an
H-type algebra. We start by showing that every derivation is the sum of a sym-
metric derivation and a skew-symmetric derivation; we then describe symmetric
and skew-symmetric derivations separately.

In Section 3, we consider real semisimple Lie algebras. First, we reduce matters
to the case of simple Lie algebras, and then we show that these contain various
H-type algebras. We also see how the geometry of root systems is reflected in the
structure of various subalgebras of g. Most of the ideas behind this section may
be found in Ciatti [3, 4, 5, 6, 7].

In Section 4, we consider the grading of a semisimple Lie algebra associated to
a choice of positive roots, and grading preserving derivations of g, of m ⊕ a ⊕ n
and of n. We find a simple Lie algebraic criterion for a skew-symmetric grading
preserving derivation of n to extend to a derivation of g; this extended derivation
is not only grading preserving but also root space preserving.

Finally, in Section 5 we apply the results of Sections 2 and 3 to the study of the
derivations of n that preserve the root space decomposition. These are sums of
symmetric derivations and skew-symmetric derivations. The main idea is to show
that our assertion is true when the real rank of g is 1 or 2, and then apply this
result to the rank two subalgebras of a general simple Lie algebra, deducing from
these the full result.

Main Theorem. If no simple summand of g is isomorphic to so(n, 1) or su(n, 1)
for any n, then all the derivations of n that preserve the root spaces are of the form
ad(W ), where W ∈ m⊕ a. Otherwise, there are derivations of n that preserve the
root spaces that do not arise in this way.

2. Derivations of an H-type Lie algebra

In this section, we first define H-type Lie algebras, which arose in the work of
Kaplan [14], and then describe their derivations. These are always the sum of
a symmetric derivation and a skew-symmetric derivation. In Corollary 2.6, skew-
symmetric derivations are decomposed as the sum of two components, one of which
is trivial on the centre. The symmetric derivations are classified in Corollary 2.8
by a diagonalization process.

Let h be a two-step nilpotent Lie algebra, endowed with an inner product 〈·, ·〉.
We denote by z the centre of h and by v the orthogonal complement of z; given a
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subspace s of h, we write Is for the identity map on s. Then

g = v⊕ z

(throughout this paper, ⊕ denotes a vector space direct sum; in general, the sum-
mands need not be Lie algebras). For each Z in z, we define JZ in End(v) by

(2.1) 〈JZX, Y 〉 = 〈Z, [X, Y ]〉 ∀X, Y ∈ v.

Then JZ is trivially skew-symmetric, that is, JT
Z = −JZ , where T denotes the

transpose relative to the inner product. We say that h is of Heisenberg type, or
just H-type, when

(2.2) J2
Z = −‖Z‖2Iv

for all Z ∈ z. Equivalently, for each X ∈ v of length 1, the map ad(X) is an
isometry from ker(ad(X))⊥ onto z. For the rest of this section, we assume that h
is an H-type algebra.

By polarization, (2.2) implies that

(2.3) JZJZ′ + JZ′JZ = −2 〈Z,Z ′〉 Iv ∀Z,Z ′ ∈ z.

Thus the JZ generate a Clifford algebra.
Recall that a derivation of a Lie algebra h is a linear endomorphism D : h→ h

such that
D([X, Y ]) = [DX, Y ] + [X,DY ] ∀X, Y ∈ h;

every derivation of a Lie algebra automatically preserves the centre. We say that a
linear endomorphism D of h preserves the grading if D(v) ⊆ v and D(z) ⊆ z, and
write D(h) for the Lie algebra of all grading preserving derivations of h. We denote
by Dsym(h) the subspace of D(h) of all symmetric derivations and by Dskew(h) the
Lie subalgebra of all skew-symmetric derivations. We also write Dsym

0 (h) and
Dskew

0 (h) for the subspaces of these spaces of derivations that vanish on z.

Proposition 2.1. Let D be a grading preserving linear endomorphism of h. Then
D is a derivation if and only if

(2.4) JDTZ = DTJZ + JZD ∀Z ∈ z.

Suppose moreover that D|z = 0. If D is skew-symmetric, then D is a derivation
if and only if D commutes with all the JZ and if D is symmetric, then D is a
derivation if and only if D anticommutes with all the JZ.

Proof. From (2.1), it follows that D is a derivation if and only if, for all Z in z and
X, Y in v,

〈JDTZX, Y 〉 =
〈
DTZ, [X, Y ]

〉
= 〈Z,D[X, Y ]〉

= 〈Z, [DX, Y ]〉+ 〈Z, [X,DY ]〉
= 〈JZDX,Y 〉+

〈
DTJZX, Y

〉
,

proving the result. �
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The next result is known, but we give a proof for completeness.

Lemma 2.2 (Riehm [20]). For every pair of orthogonal vectors Z ′ and Z ′′ in z,
the grading preserving linear map ΦZ′Z′′, defined by

ΦZ′Z′′(X + Z) = JZ′JZ′′X + 2 〈Z ′, Z〉Z ′′ − 2 〈Z ′′, Z〉Z ′

for all Z ∈ z and all X ∈ v, is a skew-symmetric derivation of h.

Proof. It is evident that ΦZ′Z′′ is skew-symmetric. By Proposition 2.1, it suffices
to show that

JΦZ′Z′′ (Z)X = ΦZ′Z′′JZX − JZΦZ′Z′′X ∀X ∈ v.

We consider the right-hand side of the equation, and use (2.3):

JZ′JZ′′JZX − JZJZ′JZ′′X = −2 〈Z,Z ′′〉 JZ′X − JZ′JZJZ′′X
+ 2 〈Z,Z ′〉 JZ′′X + JZ′JZJZ′′X

= 2 〈Z ′, Z〉 JZ′′X − 2 〈Z ′′, Z〉 JZ′X
= J2〈Z′,Z〉Z′′−2〈Z′′,Z〉Z′X

= JΦZ′Z′′ (Z)X,

as required. �

We defineR(h) to be the vector subspace ofD(h) of all grading preserving deriva-
tions of h spanned by the ΦZ′Z′′ . As observed by Riehm [20], the subspace R(h)
is a subalgebra of D(h). To see this, we take an orthonormal basis {Z1, · · · , Zm}
for z, and write Φij in place of ΦZiZj . Since ΦZ′Z′′ depends linearly on Z ′ and on
Z ′′, every element of R(h) is a linear combination of the Φij. Moreover,

ΦijΦkl − ΦklΦij =

{
0 if {i, j} ∩ {k, l} = ∅,

2Φjl if i = k,

which shows that R(h) is closed under taking commutators. We omit the proof of
these commutation relations, as we do not need this result.

Corollary 2.3. Suppose that D is a grading preserving derivation of h. Then we
may write D as D0 +D1, where D0 ∈ D(h) and D0|z is symmetric, and D1 ∈ R(h).

Proof. The skew-symmetric part of the restriction D|z of D to z decomposes as a
linear combination of the Φij|z defined above; we take D1 to be the same linear
combination of the Φij, and D0 to be D−D1. The result follows immediately. �

Corollary 2.4. Suppose that D ∈ D(h) and D|z is symmetric. Then DT ∈ D(h).

Proof. Since D|z is symmetric, it is diagonalisable. Take an eigenvector Z in z with
eigenvalue 2µ. By Proposition 2.1,

2µJZ = JDZ = JDTZ = DTJZ + JZD,
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whence multiplication on both sides by JZ gives

−2µ|Z|2JZ = −|Z|2JZDT − |Z|2DJZ ,
and

JDZ = DJZ + JZD
T.

This holds for all eigenvectors Z of D, and so for all Z ∈ z by linearity, so DT is a
derivation, again by Proposition 2.1. �

Corollary 2.5. Suppose that D is a grading preserving endomorphism of h. Then
D ∈ D(h) if and only if DT ∈ D(h). Hence if D ∈ D(h), then we may write D as
Da +Ds, where Ds ∈ Dsym(h) and Da ∈ Dskew(h).

Proof. For the first part, it suffices to suppose that D ∈ D(h) and show that
DT ∈ D(h). In light of Corollary 2.3, by subtracting off an element of R(h) if
necessary, we may assume that D|z is symmetric. It follows that DT ∈ D(h), as
required.

For the second part of the corollary, take

Ds =
1

2
(D +DT) and Da =

1

2
(D −DT);

the conclusion is obvious. �

Hence, to describe the elements of D(h), we can study symmetric and skew-
symmetric derivations separately. First we consider the skew-symmetric deriva-
tions.

Corollary 2.6. Each D in Dskew(h) decomposes as a sum D0 + R, where D0 ∈
Dskew

0 (h) and R ∈ R(h). In particular, D0|v commutes with all the maps JZ.

Proof. This is a consequence of Corollary 2.3 and Proposition 2.1. �

Now we consider a symmetric derivation D, which is diagonalizable with real
eigenvalues. Since D preserves v and z, these spaces decompose into eigenspaces
for D. We take vλ to be the eigenspace of D|v for the eigenvalue λ, and, given a
subspace s of h, we write Ps for the orthogonal projection of h onto s.

Proposition 2.7. Suppose that D ∈ Dsym(h). Then D|z = 2µIz for some µ in R.
Moreover, if X ∈ vλ, then

(2.5) DJZX = (2µ− λ)JZX and DJZJZ′X = λJZJZ′X

for all Z and Z ′ in z.

Proof. Fix an orthonormal basis {Z1, . . . , Zm} of z such that DZi = 2µiZi when
i = 1, . . . ,m, with µi ∈ R. From (2.4), it follows that

DJZiX = JDZiX − JZiDX = (2µi − λ)JZiX

when i = 1, . . . ,m, and the first formula of (2.5) is established, and similarly,

(2.6) DJZiJZkX = (2µi − 2µk + λ)JZiJZkX
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when i, k = 1, . . . ,m.
If dim(z) = 1, then D|z = 2µIz for some µ in R and the second formula of (2.5)

is trivial, so we suppose henceforth that dim(z) > 1. By interchanging i and k in
(2.6), we see that

DJZkJZiX = (2µk − 2µi + λ)JZkJZiX,

which yields

DJZiJZkX = (2µk − 2µi + λ)JZiJZkX,

when i 6= k, since JZiJZk = −JZkJZi by (2.3). This equality, compared with (2.6),
shows that µi = µk, and the lemma follows. �

Corollary 2.8. Let D be a derivation in Dsym(h). Denote by 2µ the eigenvalue of
D on z, and by {λ1, . . . , λr} the distinct eigenvalues of D on v, listed in decreasing
order, and by vi the corresponding eigenspaces. Then λi + λr+1−i = 2µ, and we
may write

D = µ
(
2Pz + Pv

)
+

br/2c∑
i=1

(λi − µ)
(
Pvi − Pvr+1−i

)
;

all the maps
(
Pvi − Pvr+1−i

)
and 2Pz + Pv are derivations.

Proof. This follows from Propositions 2.7 and 2.1. �

3. Structure of semisimple Lie algebras

In this section, we describe the restricted root structure and the standard Iwa-
sawa and Bruhat decompositions of a semisimple Lie algebra. Then we exhibit a
number of H-type subalgebras of the Iwasawa n subalgebra. Next, we analyse the
structure of g and n in more detail.

3.1. Semisimple Lie algebras of the noncompact type. Take a real semisim-
ple Lie algebra g with Killing form B and Cartan involution θ, and let k ⊕ p be
the corresponding Cartan decomposition of g. Fix a maximal subalgebra a of p;
its dimension is known as the real rank of g. Given an element α of Hom(a,R),
we define the (possibly trivial) subspace gα of g by

gα = {X ∈ g : [H,X] = α(H)X, ∀H ∈ a}.
Then α is said to be a restricted root if α 6= 0 and gα 6= {0}. We denote by
Σ the restricted root system, that is, the set of all restricted roots. Note that
[gα, gβ] ⊆ gα+β for all α, β ∈ Hom(a,R), because ad(H) is a derivation for each
H ∈ a. Hence if α and β are roots, then α + β is also a root, unless α + β = 0 or
[gα, gβ] = {0}. Since a is θ-invariant, so is g0, and it follows easily that g0 = m⊕a,
where m = g0 ∩ k. Then

g = m⊕ a⊕
∑
α∈Σ

gα.
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Henceforth, in this paper, unless stated explicitly otherwise, we write rank and
root rather than real rank and restricted root for brevity; this should not create
any confusion.

We recall that Σ is said to be decomposable if Σ = Σ1 ∪ Σ2, where Σ1 and Σ2

are disjoint nontrivial subsets of Σ and 〈γ, δ〉 = 0 for all γ ∈ Σ1 and all δ ∈ Σ2,
and indecomposable otherwise. It is standard (see, for instance, Helgason [13] or
Knapp [15]) that Σ is indecomposable if and only if g is simple, that is, cannot
be written as a direct sum of nontrivial pairwise commuting ideals. We recall also
that Σ is said to be reduced if the only multiples of a root γ that also lie in Σ are
±γ.

A Weyl chamber is a maximal open subset of a in which no root vanishes. We
choose one of these, C say, and say that a root γ is positive, and write γ ∈ Σ+, when
γ(H) > 0 for all H ∈ C. Then Σ+ is closed under addition and Σ = Σ+ ∪ (−Σ+).
We write ∆ for the smallest subset of Σ+ such that the boundary of C is a subset
of the set

⋃
α∈∆{H ∈ a : α(H) = 0}; the roots in ∆ are called simple. Set

n =
∑
α∈Σ+

gα.

Then we obtain the Bruhat decomposition of g, namely,

g = θn⊕m⊕ a⊕ n.

Each root γ in Σ+ may be written uniquely as a sum
∑

α∈∆ nαα, where each nα
is a nonnegative integer. The positive integer

∑
α∈∆ nα is called the height of γ,

and written height(γ). Clearly the height of a simple root is 1, and moreover

height(γ + δ) = height(γ) + height(δ)

for all γ, δ ∈ Σ+ such that γ+ δ ∈ Σ+. Then n is graded by height; more precisely,
we may write n =

∑
h∈Z+ gh, where [gh, gk] ⊆ gh+k.

3.2. Reduction to the simple case. Our first simplification is a reduction of
the problem to the case of the Iwasawa n subalgebra of a simple Lie algebra g.

Proposition 3.1. Suppose that g = g1 ⊕ g2 ⊕ · · · ⊕ gJ , where J > 1 and each gj

is a nontrivial simple ideal, and that n = n1 ⊕ n2 ⊕ · · · ⊕ nJ is the corresponding
decomposition of n into subalgebras. Then

D(n) =
J∑
j=1

D(nj).

Remark 3.2. This is to be interpreted in the sense that each root space preserving
derivation of n preserves each of the subalgebras nj, and the restriction to each
subalgebra is a root space preserving derivation thereof, and vice versa.

Some of the simple summands gj may be compact. In this case, the correspond-
ing space nj is {0}; we define D({0}) = {0}.
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Proof. Since D in D(n) preserves the root spaces, it preserves each gα and hence
each nj. So one direction of the assertion is proved. The other is obvious. �

Remark 3.3. If we replace the root space preserving assumption by a grading
preserving assumption, and add the hypothesis that no summand is isomorphic
to so(n, 1) for any n, then the result still holds. Indeed, when there is no abelian
summand, n is “totally nonabelian” in the language of Cowling and Ottazzi [11],
and the conclusion follows from [11, Corollary 2.4].

3.3. The simple case. In light of Proposition 3.1, we may and shall assume that
g is simple in the rest of this paper.

Two observations underpin our approach to the study of derivations. First,
derivations are local, in the sense that if D is a root space preserving linear endo-
morphism of n, then linearity implies that D is a derivation if and only if

D[X, Y ] = [DX, Y ] + [X,DY ] ∀X ∈ gγ ∀Y ∈ gδ,

as γ and δ range over Σ+. This identity holds trivially if γ + δ is not a root, for
then both sides are 0. If γ + δ is a root, then the subalgebra n{γ,δ}, defined by

n{γ,δ} =
∑

ε∈Σ+∩(Rγ+Rδ)

gε,

is the Iwasawa n subalgebra of a simple subalgebra of g, whose rank is 1 if γ = δ
and 2 otherwise. Then we can understand D provided we understand its restriction
to Iwasawa n algebras of simple Lie algebras of rank one and rank two.

The second observation is that n may be equipped with a natural inner product
so that, in the rank one case, n itself is an H-type algebra, while in the rank
two cases, n has many H-type subalgebras. We will use what we know about the
derivations of H-type algebras, but first we need to find H-type subalgebras of n.

3.4. Subalgebras of n of H-type. If c > 0, then the symmetric bilinear form
〈·, ·〉 on g, given by

(3.1) 〈X, Y 〉 = −cB(X, θY ),

is an inner product, which induces an inner product on the dual of a, also written
〈·, ·〉; we denote the corresponding norms by ‖ · ‖. We fix c so that the length of
the longest roots is

√
2. In the vector space decomposition m⊕ a⊕

∑
α∈Σ gα of g,

the distinct summands are orthogonal.
Now the Killing form satisfies the well-known identity

B([Z,X], Y ) +B(X, [Z, Y ]) = 0 ∀X, Y, Z ∈ g,

and so ad(Y )T = − ad(θY ), that is,

(3.2) 〈X, [Y, Z]〉 = −〈[θY,X], Z〉 ∀X, Y, Z ∈ g.

If γ ∈ Σ and X, Y ∈ gγ, then [θX, Y ] ∈ g0. Further, for all H ∈ a,

(3.3) 〈H, [θX, Y ]〉 = −〈[X,H], Y 〉 = 〈[H,X], Y 〉 = γ(H) 〈X, Y 〉 .
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On the one hand, if X ⊥ Y , then 〈H, [θX, Y ]〉 = 0, and so [θX, Y ] ∈ a⊥, whence
[θX, Y ] ∈ m. On the other hand, θ[θX,X] = −[θX,X], so [θX,X] ∈ a. We write
Hγ for the unique element of a such that δ(Hγ) = 〈δ, γ〉 for all δ ∈ Hom(a,R), or
equivalently for all δ ∈ Σ. Now (3.3) implies that

(3.4) δ([θX,X]) = 〈δ, γ〉 ‖X‖2 and [θX,X] = ‖X‖2Hγ

for all X ∈ gγ. For future purposes, note that

(3.5) a =
∑
α∈Σ+

RHα;

in general, this sum is not direct.
Our next results allow us to find various subalgebras of n that are H-type alge-

bras, or nearly so.

Lemma 3.4. Suppose that γ, δ, and γ + δ are positive roots. For all Z in gγ+δ,
we define the linear operator JZ on gγ ⊕ gδ by

(3.6) JZ = ad(Z) ◦ θ.
Then JZ maps gγ into gδ and gδ into gγ; further

(3.7) 〈JZX, Y 〉 = 〈Z, [X, Y ]〉 ∀X, Y ∈ gγ ⊕ gδ.

Proof. The mapping properties of JZ are consequences of the orthogonality of
distinct root spaces, while (3.7) follows from the definition of JZ and (3.2). �

Lemma 3.5. Suppose that γ, δ, and γ+δ are positive roots, and that JZ is defined
as in Lemma 3.4. Suppose also that neither 2γ + δ nor γ + 2δ is a root. Then

(3.8) [X, JZX] = 〈γ + δ, γ〉 ‖X‖2Z ∀X ∈ gγ ⊕ gδ

and

(3.9) J2
ZX = −〈γ + δ, γ〉 ‖Z‖2X ∀X ∈ gγ ⊕ gδ,

Thus if Z 6= 0, then JZ is a linear isomorphism of gγ ⊕ gδ that exchanges gδ and
gγ. Moreover, if γ = δ, then gγ ⊕ g2γ is an H-type algebra, while if neither 2γ nor
2δ is a root, then gγ ⊕ gδ ⊕ gγ+δ is an H-type algebra.

Proof. When 2γ + δ is not a root, [X,Z] = 0 for all Z in gγ+δ and all X in gγ.
Hence, from the Jacobi identity and (3.4),

[X, JZX] = [X, [Z, θX]]

= [[X,Z], θX] + [Z, [X, θX]]

= (γ + δ)([θX,X])Z

= 〈γ + δ, γ〉 ‖X‖2Z,

and similarly,

JZ(JZX) = [Z, θ[Z, θX]]
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= [Z, [θZ,X]]

= [X, [θZ, Z]] + [θZ, [Z,X]]

= −〈γ + δ, γ〉 ‖Z‖2X.

By exchanging the role of γ and δ in the last two formulae, we see that

[Y, JZY ] = 〈γ + δ, δ〉 ‖Y ‖2Z

and
JZ(JZY ) = −〈γ + δ, δ〉 ‖Z‖2Y

for all Z ∈ gγ+δ and all Y ∈ gδ when γ + 2δ is not a root. Hence (3.8) and (3.9)
are proved, and JZ is a linear isomorphism from gγ ⊕ gδ onto gδ ⊕ gγ when Z 6= 0.

Either γ = δ or the roots γ and δ span a root system of rank 2. By inspection of
the possibilities, we see that the hypotheses that γ, δ, and γ+δ are roots and 2γ+δ
and γ + 2δ are not roots imply that ‖γ‖ = ‖δ‖ and 〈γ + δ, δ〉 = 〈γ + δ, γ〉 > 0.
Now (3.8) and (3.9) follow immediately. Further, if γ = δ or neither 2γ nor 2δ is
a root, then 〈γ + δ, γ〉 = 1, and so

J2
ZX = −‖Z‖2X ∀X ∈ gγ ⊕ gδ ∀Z ∈ gγ+δ,

as required. �

Remark 3.6. We have just shown that the Iwasawa n algebras of real rank one
simple Lie algebras are H-type. Further, inspection of the root systems of rank
one and two shows that if γ, δ, and γ + δ are roots and 2γ + δ and γ + 2δ are not
roots, then either 2γ and 2(γ + δ) are both roots, or neither is a root.

Corollary 3.7. Suppose that γ, δ, and γ + δ are positive roots, and that neither
2γ + δ nor γ + 2δ is a root. If D is a root space preserving derivation of g whose
restriction to gγ+δ is symmetric, then

(3.10) DT[X, Y ] = [DTX, Y ] + [X,DTY ] ∀X ∈ gγ ∀Y ∈ gδ.

Proof. The proof is a mild generalisation of the proof of Corollary 2.4. Observe
first that if E is a root space preserving linear endomorphism of gγ ⊕ gδ ⊕ gγ+δ,
then E[X, Y ] = [EX, Y ] + [X,EY ] if and only if

(3.11)

〈JETZX, Y 〉 =
〈
ETZ, [X, Y ]

〉
= 〈Z,E[X, Y ]〉
= 〈Z, [EX, Y ]〉+ 〈Z, [X,EY ]〉
= 〈JZEX, Y 〉+

〈
ETJZX, Y

〉
,

for all X ∈ gγ, all Y ∈ gδ, and all Z ∈ gγ+δ.
Since D|gα+β is symmetric, it is diagonalisable. Take an eigenvector Z in gα+β

with eigenvalue 2µ. By (3.11),

2µJZ = JDZ = JDTZ = DTJZ + JZD,
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whence composition on both sides by JZ gives

−2µ|Z|2JZ = −|Z|2JZDT − |Z|2DJZ ,
and

JDZ = DJZ + JZD
T.

This holds for all eigenvectors Z of D, and so for all Z ∈ z by linearity, so (3.10)
holds by (3.11). �

We are supposing that g is simple, so Σ is indecomposable. In particular, Σ
contains just one highest root (see Bourbaki [1, p. 165, Proposition 25]), which we
denote by ω. We fix the constant c in (3.1) by requiring that ‖ω‖2 = 2. Then for
each γ ∈ Σ, the number 〈γ, ω〉 is one of ±2, ±1 and 0; further, it is ±2 if and only
if γ = ±ω.

Define

Σ1 = {γ ∈ Σ: 〈γ, ω〉 = 1} and Σ0 = {γ ∈ Σ: 〈γ, ω〉 = 0},
and write Σ+

0 for Σ+ ∩ Σ0. Then, by Ciatti [5, Lemma 2.1],

Σ+ = Σ+
0 ∪ Σ1 ∪ {ω}.

Further, define

v =
∑
γ∈Σ1

gγ, h = v⊕ gω and n0 =
∑
γ∈Σ+

0

gγ;

then
n = n0 ⊕ v⊕ gω = n0 ⊕ h.

Following Ciatti [5], for Z in gω, we define the operator JZ : v→ v by

(3.12) JZX = [Z, θX].

Then by definition and (3.2),

〈JZX, Y 〉 = 〈[Z, θX], Y 〉 = 〈Z, [X, Y ]〉 ∀X, Y ∈ v.

Lemma 3.8 (Ciatti [3]). The pair (v ⊕ z, 〈·, ·〉) is an H-type algebra with centre
gω, that is, [v, v] = gω and

(3.13) J2
ZX = −‖Z‖2X

for all Z in gω and X in v.

Proof. This follows from Lemma 3.5. �

Now we list some H-type subalgebras of the Iwasawa n algebras of rank two
simple Lie algebras. When the root system is of type A2, then n is itself an H-
type algebra. When the root system is of type B2, say Σ = {α, β, α + β, 2α + β},
then gα⊕ gα+β ⊕ g2α+β is an H-type subalgebra (and moreover gβ ⊕ gα+β ⊕ g2α+β

is abelian and hence a degenerate H-type algebra too). When the root system
is of type BC2, say Σ = {α, 2α, β, α + β, 2α + β, 2α + 2β}, then gα ⊕ g2α and
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gβ ⊕ gα+β ⊕ g2α+β ⊕ g2α+2β are H-type subalgebras, and gα⊕ gα+β ⊕ g2α+β is close
to an H-type subalgebra (see Lemma 3.5). Finally, when the root system is of
type G2, say Σ = {α, β, α + β, 2α + β, 3α + β, 3α + β}, then gα ⊕ g2α+β ⊕ g3α+β

and gβ ⊕ gα+β ⊕ g2α+β ⊕ g3α+β ⊕ g3α+2β are H-type subalgebras.

3.5. The fine structure of g. We now study g in more detail.

Lemma 3.9. Suppose that γ, δ, and γ + δ are positive roots, and that γ − δ and
γ + 2δ are not roots. If U ∈ gδ \ {0}, then

(3.14) {[U,X] : X ∈ gγ} = gγ+δ and {[θU, Y ] : Y ∈ gγ+δ} = gγ.

Consequently, dim(gγ) = dim(gγ+δ) and ad(U) is bijective from gγ to gγ+δ.

Proof. The hypotheses imply that 〈γ + δ, δ〉 = 1
2
〈δ, δ〉 6= 0. Evidently, if Y ∈ gγ+δ,

then [θU, Y ] ∈ gγ and

[U, [θU, Y ]] = [[U, θU ], Y ] + [θU, [U, Y ]] = (γ + δ)([U, θU ])Y = −〈γ + δ, δ〉 ‖U‖2Y

by (3.4), and it follows that Y is in the range of ad(U). This proves the left hand
formula of (3.14) and hence dim(gγ) ≥ dim(gγ+δ). The right hand formula and
the opposite inequality dim(gγ) ≤ dim(gγ+δ) may be shown similarly.

The bijectivity of ad(U), and of ad(θU), follow. �

Lemma 3.10. Suppose that γ, δ, γ + δ and γ + 2δ are positive roots, and that
γ − δ and γ + 3δ are not roots. If U ∈ gγ \ {0} and X ∈ gδ \ {0}, then

[U,X] 6= 0 and [[U,X], X] 6= 0.

Proof. First, [U, θX] = 0 since γ − δ is not a root.
The hypotheses imply that γ and δ span a root subsystem of type B2 or BC2,

whence 2γ+ δ is not a root, and that 〈γ + δ, δ〉 = 0 while 〈γ, δ〉 6= 0 (see Bourbaki
[1, p. 148, Théorème 1]). Now [U,X] 6= 0, by Lemma 3.9 with the roles of γ and
δ exchanged.

Next, by the Jacobi identity and the facts that 〈γ + δ, δ〉 = 0 and [U, θX] = 0,

[[[U,X], X], θX] = [[θX,X], [U,X]] + [[[U,X], θX], X]

= (γ + δ)([θX,X])[U,X] + [[[U,X], θX], X]

= 〈γ + δ, δ〉 ‖X‖2[U,X] + [[U, [X, θX]], X] + [[[U, θX], X], X]

= 〈γ, δ〉 ‖X‖2[U,X] 6= 0,

which ensures that [[U,X], X] 6= 0 if neither U nor X is 0. �

We are going to analyse general simple Lie algebras by looking carefully at
subalgebras of rank 1 or 2. Given a subset E of Σ+, we write gE for the subalgebra
of g generated by the root spaces gε where ε ranges over span E.

We define, for any root γ, m{γ} = m ∩ g{γ} and

mγ = span{[X, θY ] : X, Y ∈ gγ, 〈X, Y 〉 = 0}.
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Lemma 3.11. Suppose that γ, δ and γ + δ are positive roots. Then

{[X, Y ] : X ∈ gγ, Y ∈ gδ} = gγ+δ;

{U ∈ gγ : ad(U)|gδ = 0} = {0}.

Proof. We observe that ad(m ⊕ a) is irreducible on gε for any positive root ε.
Indeed, we know that ad(m ⊕ a) maps gε into itself, while from Kostant’s double
transitivity theorem [17], ad(m{ε}) is transitive on the unit sphere in gε, whence
ad(m ⊕ a) takes any nonzero vector in gε to any other nonzero vector. (For an
alternative approach to this, see Cowling, Dooley, Korányi and Ricci [9].)

It follows that the subspace [m⊕a, [gγ, gδ]] is either gγ+δ or {0}. Hence, to prove
the first equality, it suffices to show that

(3.15) [gγ, gδ] 6= {0}.

To do this, we consider the subset (Zγ + Zδ) ∩ Σ of Σ, which is a root system in
its own right.

If this root subsystem is of rank one, then necessarily δ = γ, and γ+ δ = 2γ. In
this case, gγ ⊕ g2γ is an H-type algebra, and (3.15) follows.

If the root system is of type A2, then we are done, since gγ ⊕ gδ ⊕ gγ+δ is an
H-type algebra.

If the root system is of type B2 or BC2, then (3.15) follows from Lemma 3.10.
If the root system is of type G2, then the algebra is split or complex, and in this

case the result is well known.
Finally, suppose that U ∈ gγ \ {0} and [U,X] = 0 for all X ∈ gδ. Then

[ad(W )U,X] = ad(W )[U,X]− [U, ad(W )X] = 0

for all X ∈ gδ and all W ∈ m ⊕ a, and hence [V,X] = 0 for all V ∈ gγ and all
X ∈ gδ, which is impossible. �

Lemma 3.12. The following hold:

(i) if γ is a root, then m−γ = mγ,
(ii) if γ is a root, then [m,mγ] ⊆ mγ,
(iii) if γ, δ and ε are roots and ε ∈ Zγ + Zδ, then mε ⊆ mγ + mδ,
(iv) if γ is a root, then mγ ⊆ m{γ}, with equality if γ/2 is not a root,
(v) m =

∑
γ∈∆ mγ =

∑
γ∈Σ+ mγ.

Proof. Observe that if X, Y ∈ g−γ, then [X, θY ] = −[θY, θ(θX)], and θY, θX ∈ gγ,
so (i) holds.

Now we prove (ii). If Z ∈ m and X, Y ∈ gγ, then

[Z, [X, θY ]] = [[Z,X], θY ] + [X, [Z, θY ]].

Both summands lie in mγ. Thus mγ is an ideal in m, and in particular, is a
subalgebra.
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Next, we prove (iii). First, if γ, δ and γ + δ are roots and W,Z ∈ gγ+δ, then
there exist X ∈ gγ and Y ∈ gδ such that [X, Y ] = Z, by Lemma 3.11. Then

[W, θZ] = [W, [θX, θY ]] = [[W, θX], θY ] + [θX, [W, θY ]]

= [W, θX], θY ]− [[W, θY ], θX] ∈ mγ + mδ.

To prove (iii), we use (i) and the observation above repeatedly.
To prove (iv), observe that if 2γ and 1

2
γ are not roots, then g−γ⊕mγ⊕RHγ⊕gγ

coincides with the subalgebra g{γ}, whence mγ = m{γ}. Similarly, if γ and 2γ are
both roots, then m2γ ⊆ mγ, by (ii), so g−2γ ⊕ g−γ ⊕mγ ⊕RHγ ⊕ gγ ⊕ g2γ coincides
with the subalgebra g{γ}, and again mγ = m{γ}. Finally, if γ and 1

2
γ are both

roots, mγ ⊆ mγ/2, and mγ ⊆ m{γ}. This inclusion is strict when g{γ} is su(n, 1)
(where n > 1) or sp(n, 1) (where n > 1).

To prove (v), we use (i) and (iii) repeatedly. �

4. Derivations of semisimple Lie algebras.

In this section, we discuss the height of roots and the associated grading of the
Lie algebra g, and prove a number of results on height preserving derivations. Then
we prove a localisation result for derivations of g. Our final result is a necessary
and sufficient condition for a skew-symmetric root space preserving derivation of
n to be of the form ad(Z) for some Z ∈ m.

Lemma 4.1. Suppose that W ∈ g0. Then W = 0 if and only if ad(W )|gβ = 0 for
all β ∈ ∆.

Proof. One implication is obvious. To prove the other, suppose that ad(W )|gβ = 0
for all β ∈ ∆. Then ad(W ) vanishes on n, whence ad(θW ) also vanishes on n since
ad(θW ) = − ad(W )T.

Now if X ∈ n, then

[W, θX] = θ[θW,X] = 0.

Since g is simple, and ad(W ) is a derivation that vanishes on n⊕ θn and hence on
the algebra that this generates, that is, g, we conclude that W = 0. �

We are interested in the derivations D of n that preserve the root space structure,
that is, are such that D(gα) ⊆ gα for all α ∈ Σ+. We write D(n) for the space of
these mappings.

Recall that the height of the positive root α, written height(α), is defined to be∑r
j=1 nj, where α =

∑r
j=1 njαj and αj ∈ ∆. Note that there is an element H0 of

a such that [H0, X] = height(α)X for all X ∈ gα and all α ∈ ∆. We may extend
the height function to all roots: we set height(γ) = h when [H0, X] = hX for all
X ∈ gγ. When h is a nonzero integer, we write gh for

∑
γ gγ, where we sum over

the γ in Σ such that height(γ) = h. We defined g0 to be the “null root space”
m⊕ a, which fortunately coincides with the subspace of g of elements of height 0,
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and so g0 may also be used to describe the latter space, consistently with our gh
notation.

Proposition 4.2. The Lie algebra g is graded: more precisely, g =
∑

h∈Z gh, and
[gh, gh′ ] ⊆ gh+h′. Next, n is stratified, that is, [gh, g1] = gh+1 for all h ∈ Z+, so g1

generates n. Finally, if 0 < h < height(ω), then {X ∈ gh : ad(X)|g1 = 0} = {0}.

Proof. The linear operator ad(H0) on g is diagonalisable, whence g decomposes as
a sum of eigenspaces; given that the simple roots correspond to eigenvalue 1 and
all positive roots are sums of simple roots (with multiplicities), all eigenvalues are
integers. Further, ad(H0) is a derivation and so [gh, gh′ ] ⊆ gh+h′ .

If height(γ) = h + 1 where h > 0, then there exists α ∈ ∆ such that γ − α is
a root, by [8, Lemma 3.1]. Lemma 3.11 shows that [gα, gγ−α] = gγ, and it follows
that gγ ⊆ [g1, gh]. This applies to all γ of height h+ 1 and so gh+1 ⊆ [g1, gh]. The
converse inclusion has already been established.

Finally, suppose that X ∈ gh and ad(X)|g1 = 0. Write X as
∑

γ Xγ, where

Xγ ∈ gγ and height(γ) = h. Now

0 = [[H,X], Y ] = [[H,Y ], X] + [H, [X, Y ]] ∀Y ∈ g1,

whence ad([H,X])|g1 = 0 for all H ∈ a. The algebra of operators generated by the
operators ad(H) for all H ∈ a is closed under transpose and hence spanned by its
minimal projections, which are precisely the projections onto the root spaces gγ
as γ varies over Σ. We deduce that ad(Xγ)|g1 = 0 for all γ of height h. By Lemma
3.11, each Xγ is zero. �

We are now going to work with derivation identities.

Definition 4.3. Suppose that D is a derivation of n. For γ, δ ∈ Σ+, let (Dγ,δ) be
the formula

D[X, θZ] = [DX, θZ] + [X, θDZ]

for all X ∈ gγ and all Z ∈ gδ, and (Eγ,δ) be the formula

D[[X, θY ], Z] = [[DX, θY ], Z] + [[X, θDY ], Z] + [[X, θY ], DZ]

for all X, Y ∈ gγ and all Z ∈ gδ.

Note that if D were a derivation of g such that θD = Dθ, then these formulae
would follow from the Jacobi identity. At this point, we are not asserting their
truth!

Theorem 4.4. Suppose that D is a skew-symmetric height preserving derivation of
n, and that (Eγ,δ), as in Definition 4.3, holds for all γ, δ ∈ ∆. Then the following
statements hold.

(i) There is a unique well-defined linear map D̃ : g0 → g0 such that

D̃[X, θY ] = [DX, θY ] + [X, θDY ] ∀X, Y ∈ g1.

(ii) The range of the linear map D̃ is contained in m.
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(iii) The linear map E : g0 ⊕ n→ g0 ⊕ n, defined by

E(W +X) = D̃W +DX ∀W ∈ g0 ∀X ∈ n,

is a derivation.
(iv) If h ≥ k ≥ 0, then

E[U, θV ] = [EU, θV ] + [U, θEV ] ∀U ∈ gh ∀V ∈ gk

Proof. To prove (i), we first claim that if α, β ∈ ∆ and α 6= β, then

(4.1) [DX, θY ] + [X, θDY ] = 0 ∀X ∈ gα ∀Y ∈ gβ.

To see this, take W in g0 of the form [U, θV ], where U, V ∈ gγ, for some γ ∈ ∆.
Since D is a skew-symmetric derivation,

〈[DX, θY ] + [X, θDY ],W 〉 = −〈DX, [W,Y ]〉 − 〈X, [W,DY ]〉
= 〈X,D[W,Y ]〉 − 〈X, [W,DY ]〉
= 〈X, [[DU, θV ] + [U, θDV ], Y ]〉
= −〈[X, θY ], [DU, θV ] + [U, θDV ]〉
= 0,

since [X, θY ] = 0 because α− β is not a root; the third step uses (Eγ,β). Since g0

is spanned by elements of the form [U, θV ], our claim is established.
Now we define L :

⋃
α∈∆ gα ×

⋃
α∈∆ gα → g0 by L(X, Y ) = [X, θY ]. Then L

extends automatically to a linear map, also denoted L, from g1 ⊗ g1 to g0. Take
Xj, Yj ∈ g1, and suppose that

∑
j[Xj, θYj] = 0 in g0. Write each Xj as

∑
αXj,α

and each Yj as
∑

β Yj,β, where Xj,α ∈ gα and Yj,β ∈ gβ; here α and β range over
∆. Then ∑

j

[Xj, θYj] =
∑
j,α

[Xj,α, θYj,α]

since [Xj,α, θYj,β] = 0 because α− β is not a root if α 6= β. If γ ∈ ∆ and W ∈ gγ,
then ∑

j

[[Xj, θYj],W ] = 0 and
∑
j

[[Xj, θYj], DW ] = 0

by hypothesis. Thus by (Eα,γ),

0 = D
∑
j

[[Xj, θYj],W ] = D
∑
j,α

[[Xj,α, θYj,α],W ]

=
∑
j,α

[[DXj,α, θYj,α],W ] + [[Xj,α, θDYj,α],W ] + [[Xj,α, θYj,α], DW ]

=
∑
j,α

[
[DXj,α, θYj,α] + [Xj,α, θDYj,α],W

]
+
∑
j

[[Xj, θYj], DW ]

=
∑
j,α,β

[
[DXj,α, θYj,β] + [Xj,α, θDYj,β],W

]
,
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and this shows that∑
j

[
[DXj,α, θYj,β] + [Xj,α, θDYj,β],W

]
= 0.

From Lemma 4.1, we see that∑
j

[DXj,α, θYj,β] + [Xj,α, θDYj,β] = 0.

It follows immediately that D̃, given by

D̃
∑
j

[Xj, θYj] =
∑
j

(
[DXj, θYj] + [Xj, θDYj]

)
,

is well-defined; clearly D̃ is also unique.
To prove (ii), note that if X, Y ∈ gα where α ∈ ∆, and H ∈ a, then

〈[DX, θY ] + [X, θDY ], H〉 = 〈DX, [H,Y ]〉+ 〈X, [H,DY ]〉
= 〈DX, [H,Y ]〉+ 〈[H,X], DY 〉
= α(H) 〈DX, Y 〉+ 〈X,DY 〉
= 0,

since D is skew-symmetric. This equality now holds for all X, Y ∈ g1 by linearity
and (4.1), and so the range of D̃ is contained in m.

We now extend D and D̃ to a linear map E on g0 + n by setting E(W +X) =
D̃W + DX for all W ∈ g0 and all X ∈ n. Since D is a derivation on n, to show
that E is a derivation it suffices to show that

(4.2) D[W,X] = [D̃W,X] + [W,DX] ∀W ∈ g0 ∀X ∈ n.

and

(4.3) D̃[W,U ] = [D̃W,U ] + [W, D̃U ] ∀W,U ∈ g0.

To prove (4.2), observe that

D[W,X]− [D̃W,X]− [W,DX] =
(
[D, ad(W )]− ad(D̃W )

)
X,

and [D, ad(W )]− ad(D̃W ) is a derivation. To show that it is 0 on n, it suffices to
show that it vanishes on gβ for all simple roots β. By linearity, it suffices to take
W of the form [X, θY ] where X, Y ∈ gα and α ∈ ∆; this case follows from (Eα,β).



DERIVATIONS OF LIE ALGEBRAS 19

To prove (4.3), we may suppose by linearity that U = [X, θY ] where X, Y ∈ gα
for some α ∈ ∆. Now θD̃θ = D̃, so

D̃[W, [X, θY ]] = D̃[[W,X], θY ] + D̃[X, [W, θY ]]

= D̃[[W,X], θY ] + D̃[X, θ[θW, Y ]]

= [D[W,X], θY ] + [[W,X], θDY ]

+ [DX, [W, θY ]] + [X, θD[θW, Y ]]

= [[D̃W,X], θY ] + [[W,DX], θY ] + [[W,X], θDY ]

+ [DX, [W, θY ]] + [X, θ[D̃θW, Y ]] + [X, θ[θW,DY ]]

= [[D̃W,X], θY ] + [[W,DX], θY ] + [[W,X], θDY ]

+ [DX, [W, θY ]] + [X, [D̃W, θY ]] + [X, [W, θDY ]]

= [D̃W, [X, θY ]] + [W, [DX, θY ]] + [W, [X, θDY ]]

= [D̃W, [X, θY ]] + [W, D̃[X, θY ]],

and (4.3) holds.
Finally, we prove (iv), using induction on h and k. We need to prove the identity

(Dh,k), given by

E[X, θY ] = [EX, θY ] + [X, θEY ] ∀X ∈ gh ∀Y ∈ gk.

First we suppose that k = 1. The identity (Dh,1) is equivalent to

[E[X, θY ], Z] = [[EX, θY ], Z] + [[X, θEY ], Z]

for all X ∈ gh, all Y ∈ g1 and all Z ∈ g1, by Proposition 4.2. Write W for [X,Z]
in gh+1. Since E is a derivation, from the Jacobi identity and the definition of E

[E[X, θY ], Z]− [[EX, θY ], Z]− [[X, θEY ], Z]

= E[[X, θY ], Z]− [[X, θY ], EZ]− [[EX, θY ], Z]− [[X, θEY ], Z]

= E[[X,Z], θY ] + E[X, [θY, Z]]− [[X, θY ], EZ]− [[EX, θY ], Z]− [[X, θEY ], Z]

= E[[X,Z], θY ] + [EX, [θY, Z]] + [X, [θEY, Z]] + [X, [θY,EZ]]

− [[X, θY ], EZ]− [[EX, θY ], Z]− [[X, θEY ], Z]

= E[[X,Z], θY ] + [θY, [EX,Z]] + [θEY, [X,Z]] + [θY, [X,EZ]]

= E[W, θY ]− [EW, θY ]− [W, θEY ].

We deduce that if (Dh+1,1) holds, the last line vanishes, hence the first line vanishes,
and (Dh,1) holds. Since (Dh,1) holds for large positive h (because there is nothing
to prove as gh = {0}), (Dh,1) holds for all positive h.
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Now suppose that (Dh,1) and (Dh,k) hold where 1 ≤ k < h. Take X ∈ gh,
Y1 ∈ g1 and Y2 ∈ gk. Then

E[X, θ[Y1, Y2]]− [EX, θ[Y1, Y2]]− [X, θE[Y1, Y2]]

= E[[X, θY1], θY2] + E[θY1, [X, θY2]]− [[EX, θY1], θY2]− [θY1, [EX, θY2]]

− [X, [θEY1, θY2]]− [X, [θY1, θEY2]]

= [E[X, θY1], θY2] + [[X, θY1], θEY2] + [θEY1, [X, θY2]] + [θY1, E[X, θEY2]]

− [[EX, θY1], θY2]− [θY1, [EX, θY2]]− [X, [θEY1, θY2]]− [X, [θY1, θEY2]]

= [[EX, θY1], θY2] + [[X,EθY1], θY2] + [[X, θY1], θEY2] + [θEY1, [X, θY2]]

+ [θY1, [EX, θY2]] + [θY1, [X, θEY2]]− [[EX, θY1], θY2]− [θY1, [EX, θY2]]

− [X, [θEY1, θY2]]− [X, [θY1, EθY2]]

= [[X,EθY1], θY2] + [[X, θY1], θEY2] + [θEY1, [X, θY2]] + [θY1, [X, θEY2]]

− [X, [θEY1, θY2]]− [X, [θY1, EY2]]

= 0.

By Proposition 4.2, (Dh,k+1) also holds. By induction, (Dh,k) holds whenever
h ≥ k ≥ 0. �

Theorem 4.5. Suppose that D is a skew-symmetric height preserving derivation
of n. Then the following are equivalent:

(i) there exists a height preserving derivation D̃ of g whose restriction to n co-
incides with D;

(ii) D = ad(W ) for some W ∈ m;
(iii) (Eγ,δ) holds for all γ, δ ∈ Σ+.
(iv) (Eγ,δ) holds for all γ, δ ∈ ∆.

Further, if any of these conditions hold, then D̃ is root space preserving.

Proof. Suppose that (i) holds. Since all derivations of g are inner, D̃ = ad(W )
for some W ∈ g. Evidently ad(W ) preserves height if and only if W ∈ g0. Thus
W ∈ m⊕ a. Since D is skew-symmetric, W ∈ m, and (ii) is proved.

If (ii) holds, then the Jacobi identity and the fact that θW = W imply that

D[[X, θY ], Z]

= ad(W )[[X, θY ], Z]

= [[ad(W )X, θY ], Z] + [[X ad(W )θY ], Z] + [[X, θY ], ad(W )Z]

= [[ad(W )X, θY ], Z] + [[X, θ ad(W )Y ], Z] + [[X, θY ], ad(W )Z]

= [[DX, θY ], Z] + [[X, θDY ], Z] + [[X, θY ], DZ],

and (iii) holds.
It is trivial that (iii) implies (iv).
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Suppose that (iv) holds. We are going to construct a derivation Ẽ that extends
the derivation E of Theorem 4.4 to the simple Lie algebra g and preserves heights.

When X ∈ g0 ⊕ n, we set ẼX = EX. When X ∈ g0 ⊕ θn, we define

(4.4) ẼX = θE(θX).

These definitions agree when X ∈ g0 by part (ii) of Theorem 4.4. It follows from
the definition that

(4.5) θẼθ = Ẽ.

Finally, to show that D̃ is a derivation, we have to verify that

D̃[U, V ] = [D̃U, V ] + [U, D̃V ] ∀U, V ∈ g.

By linearity, it suffices to demonstrate this for U ∈ gh and V ∈ gk, for all possible
heights h and k. There are various cases to consider. We label the relevant identity
(Dh,k):

D̃[U, V ] = [D̃U, V ] + [U, D̃V ] ∀U ∈ gh ∀V ∈ gk.

Case 1: h ≥ 0 and k ≥ 0. This case is trivial as Ẽ coincides with E on g0 ⊕ n.
Case 2: h ≤ 0 and k ≤ 0. In this case, we take X, Y ∈ g0⊕θn, so θX, θY ∈ g0⊕n,
and then

Ẽ[X, Y ] = θE[θX, θY ] = θ[EθX, θY ] + θ[θX,EθY ]

= [ẼX, Y ] + [X, ẼY ],

and (Dh,k) holds.
Case 3: hk < 0. We need to show that

(Dh,k) Ẽ[X, Y ] = [ẼX, Y ] + [X, ẼY ] ∀X ∈ gh ∀Y ∈ gk.

If h + k ≥ 0, this follows from part (iv) of Theorem 4.4 and (4.5); otherwise, we
conjugate by θ, as in Case 2.

We conclude with the observation that if Ẽ = ad(Z) for some Z ∈ m then Ẽ is
root space preserving. �

5. Derivations of n

We are now able to consider a nilpotent Lie algebra n that arises in the Iwasawa
decomposition of a real simple Lie algebra g. We write D(n) for the space of root
space preserving derivations of n.

Theorem 5.1. If g is simple and not isomorphic to so(n, 1) or su(n, 1), then every
D in D(n) is given by

D = ad(W ),

where W ∈ m⊕ a.
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The main theorem follows from this and Proposition 3.1.
We prove Theorem 5.1 by showing that every derivation is the sum of a sym-

metric and a skew-symmetric derivation, and treating these separately. The sym-
metric derivations are handled using the following lemma, which reduces matters
to showing that symmetric derivations act by scalars on the root spaces.

Lemma 5.2. If a derivation D of n acts by a real scalar λα on each root space gα
where α ∈ ∆, then D = ad(H) for some H ∈ a.

Proof. Since D is a derivation, it is determined by the λα where α is simple; further,
the simple roots form a basis of Hom(a,R) and so there exists H ∈ a such that
α(H) = λα for each simple root. Hence D = ad(H). �

Remark 5.3. A similar observation is valid when g is complex and D acts by a
complex scalar on each root space, since every derivation of a complex Lie algebra
is complex linear. Hence Theorem 5.1 is trivial when g is a split or complex Lie
algebra. In fact, in the split case (that is, when all the roots have multiplicity 1)
it follows that D(n) = ad(a). In particular, Theorem 5.1 holds for the algebras
with root system Dn (where n ≥ 4), E6, E7, E8 or G2, since these are either split
or complex, by the classification.

The skew-symmetric derivations are treated using Theorem 4.5, which shows
that a skew-symmetric derivation D lies in ad(m) when the identity (Eα,β) holds
for all simple roots α and β. For convenience, we recall this identity:

(Eα,β) D[[X, θY ], V ] = [[DX, θY ], V ] + [[X, θDY ], V ] + [[X, θY ], DV ]

for all X, Y ∈ gα and all V ∈ gβ.
Another key ingredient of our proof, which we use in parallel with the previous

observation, is a reduction to Lie agebras of rank at most two. Recall that if E is
a subset of Σ, then gE denotes the subalgebra of g generated by all the spaces gε,
where ε ∈ E. We also denote by mE and nE the algebras m ∩ gE and n ∩ gE, and
by ΣE the root subsystem Σ ∩ span(E).

Now we come to the proof proper. We first consider the rank one case; this is
known, and we just state what we need. Next, we consider the real rank two case,
and the third step is to consider the case where the real rank is higher than two.

5.1. The rank one algebras. The algebras are well known (see, for instance,
Weyl [23]) and the root space preserving derivations are well known. We summarise
the results in the following proposition for the convenience of the reader. As the
simple algebras for which D(n) 6= ad(m⊕ a) are rank one, a case-by-case analysis
is appropriate.

Proposition 5.4 (Riehm [20], Saal [21]). Let g be a simple Lie algebra of real
rank one. Then D(n) = Dsym(n)⊕Dskew(n). Moreover,

(i) if g = so(1, n+ 1), then D(n) = sl(n,R)⊕ R;
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(ii) if g = su(1, n+ 1), then D(n) = sp(n,R)⊕ R;
(iii) if g = sp(1, n+ 1), then D(n) = sp(n− 1)⊕ sp(1)⊕ R;
(iv) if g = f(4,−20), then D(n) = so(7)⊕ R.

In all cases, the summand R corresponds to ad(a). In the first two cases, Dsym(n)
strictly contains ad(a); in the last two cases, Dsym(n) coincides with ad(a). In all
cases, Dskew(n) coincides with ad(m).

Remark 5.5. In the first two cases, n is not rigid enough to prevent the occurrence
of derivations that are not in ad(m⊕ a).

Proof. This follows from the work of Riehm [20] and Saal [21]; see also Folland
[12] and Pansu [19]. Alternatively, the reader may combine the results about H-
type algebras with the description of the rank one simple Lie algebras in terms of
H-type algebras by Cowling, Dooley, Korányi and Ricci [10]. �

Corollary 5.6. Suppose that g is a simple Lie algebra of arbitrary rank, and D is
a skew-symmetric root space preserving derivation of n. Then the identity (Eα,α)
holds for all positive roots α.

Proof. For all roots α, the restriction D|n{α} is a skew-symmetric root space pre-
serving derivation, and from Theorem 5.1 we deduce that D|n{α} ∈ ad(m{α}). Then
(Eα,α) holds by Theorem 4.5. �

5.2. The rank two algebras. Let g be a simple Lie algebra of rank two and
denote by n an Iwasawa subalgebra of g. We shall prove that each root space
preserving derivation of n is the sum of a symmetric and a skew-symmetric deriva-
tion, that the symmetric derivation lies in ad(a), and that the skew-symmetric
part satisfies (Eα,β) for all α and β in Σ+.

Before we analyse the various cases, we need a general result about derivations
which we will use when the root system is of type B2 or BC2.

Lemma 5.7. Suppose that α, β and α+β are positive roots while α−β and α+2β
are not roots, and that D ∈ D(n). Then

(5.1) DT[U,X] = [DTU,X] + [U,DTX] ∀U ∈ gβ ∀X ∈ gα.

Proof. By Proposition 5.4, the skew-symmetric part of the restriction of D to gβ
coincides with ad(Z) for some Z in mβ. Write D0 for D − ad(Z). Since ad(Z)
is a skew-symmetric derivation, D satisfies (5.1) if and only if D0 does. Thus, by
replacing D by D0 if necessary, there is no loss of generality in assuming that the
restriction of D to gβ is symmetric.

We need to show (5.1). The eigenvectors of D|gβ span gβ, and so by linearity it
will suffice to show (5.1) when U is an eigenvector of D and X is arbitrary. Take
U in gβ \ {0} and λ ∈ R such that DU = λU . By Lemma 3.9, ad(U) : gα → gα+β

is surjective, and so it will suffice to show that〈
DT[U,X], [U, Y ]

〉
=
〈
[DTU,X], [U, Y ]

〉
+
〈
[U,DTX], [U, Y ]

〉
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for the eigenvector U in gβ and arbitrary X and Y in gα. Now, by the hypothesis
that D is a root space preserving derivation, the choice of U , (3.2), the Jacobi
identy, and the fact that α− β is not a root, the left hand side is equal to

〈[U,X], D[U, Y ]〉 = 〈[U,X], [DU, Y ]〉+ 〈[U,X], [U,DY ]〉
= 〈[U,X], [λU, Y ]〉 − 〈X, [θU, [U,DY ]]〉
= 〈[λU,X], [U, Y ]〉 − 〈X, [[θU, U ], DY ]〉 − 〈X, [U, [θU,DY ]]〉
= 〈[λU,X], [U, Y ]〉 − 〈X,α([θU, U ])DY 〉
=
〈
[DTU,X], [U, Y ]

〉
− α([θU, U ])

〈
DTX, Y

〉
and similarly

〈
[U,DTX], [U, Y ]

〉
is equal to

−
〈
DTX, [θU, [U, Y ]]

〉
= −

〈
DTX, [[θU, U ], Y ]

〉
−
〈
DTX, [U, [θU, Y ]]

〉
= −

〈
DTX,α([θU, U ])Y

〉
= −α([θU, U ])

〈
DTX, Y

〉
.

The result now follows. �

5.2.1. The case A2. Until further notice, we assume that g has root system A2,
the simplest indecomposible root system of rank 2. We label the simple roots α
and β, so that the highest root is α+β and Σ+ = {α, β, α+β}. With the notation
of Lemma 3.8, Σ1 = {α, β} and Σ0 = ∅. We shall use the result of Ciatti [5,
Proposition 4.1] about the structure of n, giving a proof for the convenience of the
reader. We first recall that n is an H-type algebra, and for Z ∈ gα+β, the map JZ
on gα ⊕ gβ is determined by the condition that

〈JZX, Y 〉 = 〈Z, [X, Y ]〉 ∀X, Y ∈ gα ⊕ gβ.

Lemma 5.8. For every nontrivial X in gα,

(5.2) gβ = {JZX : Z ∈ gα+β}
and

(5.3) gα = {JZ′JZX : Z,Z ′ ∈ gα+β}.

Proof. We may and shall assume that X is a unit vector, and take Y ∈ gβ. By
(3.12) and the Jacobi identity,

J[Y,X]X = [[Y,X], θX] = [[θX,X], Y ] = β([θX,X])Y = Y,

which proves that Y ∈ {JZX : Z ∈ gα+β}.
Now, by (3.13), JZ is a linear isomorphism that exchanges gβ and gα for all

nonzero Z in gα+β, so (5.3) follows from (5.2). �

Proposition 5.9. Every root space preserving derivation of n is the sum of a
symmetric and a skew-symmetric derivation.
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Proof. By Lemma 3.8, n is H-type. The result follows from Corollary 2.5. �

Proposition 5.10. Every symmetric root space preserving derivation D of n lies
in ad(a).

Proof. From Corollary 2.8, D is the sum of a symmetric derivation D0 that vanishes
on gα+β and ad(H) for some H in a. Since D0 is symmetric and preserves root
spaces, we may take an eigenvector X of D0 in gα with corresponding eigenvalue
λ. By Proposition 2.1 and Lemma 5.8, D0 anticommutes with the maps JZ and
so acts as −λ on gβ, and hence as λ on gα. This implies that D0 lies in ad(a) by
Lemma 5.2. �

Proposition 5.11. The basic derivation identity (Eγ,δ) holds as γ and δ range
over the set {α, β} of simple roots. Consequently, every derivation D in Dskew(n)
is equal to ad(Z) for some Z in m.

Proof. Recall the basic derivation identity (Eγ,δ), that is, the identity

D[[X, θY ], Z] = [[DX, θY, Z] + [[X, θDY ], Z] + [[X, θY ], DZ]

for all X, Y ∈ gγ and all Z ∈ gδ. By Theorem 4.5, it suffices to prove (Eγ,δ) as γ
and δ range over {α, β}. The identities (Eα,α) and (Eβ,β) hold by Corollary 5.6.

Now we prove (Eα,β). Suppose that X, Y ∈ gα and Z ∈ gβ. Since β − α is not
a root,

D[[X, θY ], Z]− [[DX, θY ], Z]− [[X, θDY ], Z]− [[X, θY ], DZ]

= D[[X,Z], θY ]− [[DX,Z], θY ]− [[X,Z], θDY ]− [[X,DZ], θY ]

= D[[X,Z], θY ]− [D[X,Z], θY ]− [[X,Z], θDY ]

= D[W, θY ]− [DW, θY ]− [W, θDY ],

where W = [X,Z] ∈ gα+β; it will suffice to prove that this is 0 for all W ∈ gα+β

and all Y ∈ gα. By the definition of JW , for W ∈ gα+β, we may rewrite the last
expression as

DJWY − JDWY − JWDY,
and since D is a skew-symmetric derivation, this is 0 by (2.4).

We exchange the roles of α and β to prove the remaining identity. �

5.2.2. The case B2. Until further notice, we assume that g has root system B2.
We denote by α and β the simple roots, with β longer than α. Hence ω = 2α+ β
and Σ+ = {α, β, α + β, 2α + β}.

The first proposition is the basic result: it establishes that every element of D(n)
is a sum of a symmetric and a skew-symmetric derivation.

Proposition 5.12. If D is in D(n), then its transpose DT is also in D(n).
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Proof. By Lemma 3.8, the algebra gα⊕ gα+β ⊕ g2α+β is H-type. By Corollary 2.5,
the restriction of DT to this H-type algebra is a derivation. Hence it suffices to
show that

DT[U,X] = [DTU,X] + [U,DTX]

for all X in gα and all U in gβ. The proposition now follows from Lemma 5.7. �

Now we describe the symmetric derivations.

Proposition 5.13. Every derivation D in Dsym(n) is equal to ad(H) for some H
in a.

Proof. By Lemma 3.5, gα ⊕ gα+β ⊕ g2α+β is an H-type algebra. In light of Corol-
lary 2.8, we may assume that D vanishes on g2α+β, by subtracting ad(H) for a
suitable H in a.

The derivation D, being symmetric, may be diagonalized with real eigenvalues.
We fix eigenvectors U in gβ with eigenvalue λ and X in gα with eigenvalue µ. Since
D is a derivation,

D[[U,X], X] = (λ+ 2µ)[[U,X], X].

Now α and β satisfy the hypotheses of Lemma 3.10, and so [[U,X], X] is nonzero.
Since D vanishes on g2α+β,

λ+ 2µ = 0.

We vary the eigenvector U , holding X fixed: this shows that λ is independent of
X. Similarly, µ is independent of U . By Lemma 5.2, this implies the proposition.

�

Proposition 5.14. The basic derivation identity (Eγ,δ) holds as γ and δ range
over the set {α, β} of simple roots. Consequently, every derivation D in Dskew(n)
is equal to ad(Z) for some Z in m.

Proof. Recall the basic derivation identity (Eγ,δ), that is, the identity

D[[X, θY ], Z] = [[DX, θY, Z] + [[X, θDY ], Z] + [[X, θY ], DZ]

for all X, Y ∈ gγ and all Z ∈ gδ. Again by Theorem 4.5, we need to prove (Eγ,δ)
as γ and δ range over {α, β}. The identities (Eα,α) and (Eβ,β) hold by Corollary
5.6.

Now we prove (Eβ,α). Suppose that X, Y ∈ gβ and Z ∈ gα. Since β − α is not
a root,

D[[X, θY ], Z]− [[DX, θY ], Z]− [[X, θDY ], Z]− [[X, θY ], DZ]

= D[[X,Z], θY ]− [[DX,Z], θY ]− [[X,Z], θDY ]− [[X,DZ], θY ]

= D[[X,Z], θY ]− [D[X,Z], θY ]− [[X,Z], θDY ]

= D[W, θY ]− [DW, θY ]− [W, θDY ],
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where W = [X,Z] ∈ gα+β; it will suffice to prove that this is 0 for all W ∈ gα+β

and all Y ∈ gβ. By Lemma 3.9, ad(Y ) maps gα onto gα+β, so it will suffice to
prove that

D[[U, Y ], θY ]− [D[U, Y ], θY ]− [[U, Y ], θDY ] = 0

for all U ∈ gα and all Y ∈ gβ. Since α− β is not a root, [[R, S], θT ] = [R, [S, θT ]]
for all R ∈ gα and all S, T ∈ gβ, whence

D[[U, Y ], θY ]− [D[U, Y ], θY ]− [[U, Y ], θDY ]

= D[[U, Y ], θY ]− [[DU, Y ], θY ]− [[U,DY ], θY ]− [[U, Y ], θDY ]

= D[U, [Y, θY ]]− [DU, [Y, θY ]]− [U, [DY, θY ]]− [U, [Y, θDY ]]

= 〈α, β〉 ‖Y ‖2DU − 〈α, β〉 ‖Y ‖2DU − [U, [DY, θY ]]− [U, [Y, θDY ]]

= [[DY, θY ] + [Y, θDY ], U ].

Now if X ⊥ Y , then [X, θY ] ∈ m and hence

[X, θY ] + [Y, θX] = θ[X, θY ] + [Y, θX] = [θX, Y ] + [Y, θX] = 0.

Applying this with X equal to DY finishes the proof of (Eβ,α).
It remains to prove (Eα,β). Take X, Y ∈ gα and U,Z ∈ gβ. Then

〈D[[X, θY ], Z]− [[DX, θY ], Z]− [[X, θDY ], Z]− [[X, θY ], DZ], U〉
= −〈[[X, θY ], Z], DU〉+ 〈[DX, θY ], [U, θZ]〉

+ 〈[X, θDY ], [U, θZ]〉+ 〈[X, θY ], [U, θDZ]〉
= 〈[X, θY ], [DU, θZ]〉 − 〈DX, [[U, θZ], Y ]〉
− 〈X, [[U, θZ], DY ]〉 − 〈X, [[U, θDZ], Y ]〉

= −〈X, [[DU, θZ], Y ]〉+ 〈X,D[[U, θZ], Y ]〉
− 〈X, [[U, θZ], DY ]〉 − 〈X, [[U, θDZ], Y ]〉

= 〈X,D[[U, θZ], Y ]− [[DU, θZ], Y ]− [[U, θZ], DY ]− [[U, θDZ], Y ]〉 .

This shows that (Eα,β) and (Eβ,α) are equivalent, so we are done.
Note that we have not used the fact that 2α and 2(α+ β) are not roots, so this

argument holds in the BC2 case too. �

This completes our discussion of the algebras with root system B2. We remind
the reader that C2 is the same as B2. The algebras with root system G2 are covered
by Remark 5.3. It remains to consider the algebras with root system BC2.

5.2.3. The case BC2. Until further notice, we assume that g has root system BC2.
Denote by α and β the simple roots, with α orthogonal to the highest root ω. Then
Σ+ = {α, 2α, β, α + β, 2α + β, 2α + 2β} and ω = 2α + 2β.

Note that {±2α,±β,±(2α + β),±(2α + 2β)} is a root subsystem of type B2,
write nsub for g2α ⊕ gβ ⊕ g2α+β ⊕ g2α+2β. The results of the previous subsection
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apply to the root space preserving derivations of the subalgebra nsub to give us
information about derivations of n.

The first step is to establish the analogue of Proposition 5.12.

Proposition 5.15. If D is in D(n), then its transpose DT is also in D(n).

Proof. By linearity, it suffices to show that

(5.4) DT[X, Y ] = [DTX, Y ] + [X,DTY ] ∀X ∈ gγ ∀Y ∈ gδ,

as γ and δ range over Σ+. As D and hence also DT preserve root spaces, this is
trivial unless γ + δ is a root. Moreover, by Corollary 2.5, the restrictions of DT

to the H-type algebras gβ ⊕ gα+β ⊕ g2α+β ⊕ g2α+2β and gα ⊕ g2α are derivations,
and by Proposition 5.12, the restriction of DT to gβ ⊕ g2α ⊕ g2α+β ⊕ g2α+2β is a
derivation.

Thus it suffices to prove (5.4) when (γ, δ) is either (α, β) or (α, α+ β). Lemma
5.7 takes care of the case when γ = α and δ = β.

Since 2(2α + β) is not a root, Proposition 5.4 implies that there exists Z in
m2α+β that agrees with the skew-symmetric part of D on g2α+β. By subtracting
ad(Z) from D if necessary, we may suppose that D is symmetric on g2α+β. Now
Corollary 3.7 gives (5.4). �

Once again, we consider the symmetric derivations.

Proposition 5.16. If the root system of g is BC2, then every derivation in Dsym(n)
is given by ad(H) for some H in a.

Proof. By Proposition 5.13, the restriction of D to nsub is given by ad(H) for some
H in a. By subtracting ad(H) if necessary we may suppose that D vanishes on
nsub; it will then suffice to show that D is trivial.

To do this, we pick an eigenvector X of D in gα with eigenvalue λ and U ∈
gβ \ {0}. Since D is a derivation and DU = 0

D[[U,X], X] = 2λ[[U,X], X].

However, D[[U,X], X] = 0, since [[U,X], X] lies in g2α+β ⊂ nsub. Since [[U,X], X] 6=
0 by Lemma 3.10, λ = 0, and D is trivial on gα. Since D is also trivial on gβ, it is
trivial on gα+β, and hence trivial on all the root spaces. �

We conclude our discussion of the rank 2 case with a description of the skew-
symmetric derivations.

Proposition 5.17. The basic derivation identity (Eγ,δ) holds as γ and δ range
over the set {α, β} of simple roots. Consequently, every derivation D in Dskew(n)
is equal to ad(Z) for some Z in m.

Proof. This follows from Proposition 5.14, which also holds in the root system
BC2, and Theorem 4.5. �
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5.3. The general case. Now we prove Theorem 5.1. Henceforth, g denotes a real
simple Lie algebra of rank at least 3, and n is an Iwasawa nilpotent subalgebra of
g.

Proposition 5.18. Suppose that D is a derivation of n. Then DT is also a
derivation of n.

Proof. By linearity, this follows provided that

DT[X, Y ] = [DTX, Y ] + [X,DTY ]

for all X ∈ gγ and all Y ∈ gδ where γ and δ range over Σ+. This is obvious if γ+δ
is not a root, while if γ + δ is a root, then it follows by restricting D to n{γ,δ}. �

Proposition 5.19. Suppose that D is a symmetric derivation of n. Then D lies
in ad(a).

Proof. Again, by restricting to rank two subalgebras, we may show that D acts as
a scalar on each root space. By Lemma 5.2, D ∈ ad(a). �

Proposition 5.20. Suppose that D is a skew-symmetric derivation of n. Then D
lies in ad(m).

Proof. Let D be a skew-symmetric root space preserving derivation of n. Again,
by restricting to rank two subalgebras, we may show that D satisfies the basic
derivation identity (Eγ,δ) whenever γ and δ are positive roots. Hence D ∈ ad(m)
by Theorem 4.5. �
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[16] Korányi, A., Geometric properties of Heisenberg type groups, Adv. Math. 56 (1986), 28–38.
[17] Kostant, B., On the existence and irreducibility of certain series of representations, Bull.

Amer. Math. Soc. 75 (1969), 627–642.
[18] Ottazzi, A., and Warhurst, B., Contact and 1-quasiconformal maps on Carnot groups, J.

Lie Theory 21 (2011), 787–811.
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Università di Padova, Via Marzolo 9, 35121 Padova, ITALY
E-mail address: paolo.ciatti@unipd.it

University of New South Wales, UNSW Sydney 2052, AUSTRALIA
E-mail address: m.cowling@unsw.edu.au


