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CONBUILDMAT-S-17-07052 

Response to Reviewer #2  

The paper deals with the proposal of a numerical algorithm for spatially generating ellipsoidal 
inclusions within a three-dimensional domain. Different packing densities are obtained following real 
grading curves. 

Some aspects need to be better explained: 

- Can this method be applied to other different aggregate types besides natural aggregates, e.g. 
graded aggregates? 

At this stage, the algorithm is able to handle ellipsoidal geometries only and for this reason the 
method is more reliable when the inclusions are given by natural aggregates. Anyway it can be 
applied even if graded aggregates are considered, having in mind that a slightly higher error in 
calculating volumes could occur. 

- Please clarify why three different shape ratios have been considered in the example of Section 5.1 

Based on the grading curves developed in Ref. [30], the aggregate shape ratios are not given. For this 
reason, when numerically reproducing this experimental case, we have assumed three different 
shape ratios for each sieve: two characterized by the maximum and minimum dimension, 
respectively, which are necessary to retain the corresponding passing of a given aggregate, and a 
third shape ratio which is an average between the first two configurations. Three shape ratios have 
been considered for each sieve in order to realistically diversify the aggregate shape ratios of the 
grading curve in a reasonable way.  

- Why have coarse aggregates been taken into account only? Is it possible to consider also the fine 
part of a grading curve in the analyses? 

In principle the described procedure is able to reproduce the whole grading curve, i.e. coarse and 
fine aggregates. However, considering that the fine part would lead to a very large number of 
inclusions and a huge computational effort without a considerable benefit in the numerical 
simulation of the real grading curve, the coarse part only has been taken into account. 

Moreover, as explained at the end of Section 1, the algorithm is aimed to reproduce samples at a 
meso-scale level; at this scale the coarse fraction is the one referred as aggregates, being particles of 
diameter less than 5mm generally included within the cement paste. 
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The paper is interesting and only few modifications are required. 

There should be a space between a number and the appropriate unit, for example 1 mm, not 1mm. 
Moreover, the units should not be in italic font. 

The manuscript has been corrected 

 

page 3, line 45: ... and the the divide ... 
page 5, line 85: approximated to -> approximated by  
page 7, above equation (11): ... there exists a position vector exists satisfying ... 
page 8, lines 103 and 104: it is not clear that \lambda is from the space R^3. \lambda is a value, it is 
not a vector. 
page 9, line 119: mesostracture -> mesostructure  
page 11, line 168: algorith -> algorithm  
page 18, line 247: originary > originally 

Please consider the corrections within the paper  
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1. Introduction

The packing density can strongly influence the performance of granular ma-

terials like concrete and the costs related to its production. The basic concept

of a packing method is to minimize the voids content by studying an optimum

mixture of coarse and fine aggregates, so minimizing the amount of the required5

binder and water in the mix. The packing of a cementitious material depends

basically on the aggregates size and shape and on the applied packing method

itself. While the first parameter is determined by choosing recommended grad-

ing curves and the latter is easily guaranteed by a satisfactory vibration during

casting, the second one can not always be optimized since it is strictly related to10

aggregate availability. He et al. [1] demonstrated for mono-sized particles that

polyhedra with larger sphericity can be packed to a higher density. Sphericity

is defined as the surface area ratio of a sphere with a particle, equivalent in

volume. Xu and Chen [2] reached a similar conclusion for polydispersed ellip-

soidal particles. Similarly in 2D, Xu et al. [3] found that, when ellipses slightly15

deviate from circles, the packing fraction rises to the maximum value, otherwise

it decreases.

When numerically modeling concrete at the mesoscopic scale, i.e. at the scale

of its constituents, it is significant to reproduce the real particle packing which

is related to the w/c ratio and therefore, practically, to concrete workability and20

final strength.

The packing of spheres was first theoretically and experimentally investigated

in [4] for mixes with very large size difference between the fine and coarse parti-

cles. Later Stovall et al. [5] developed a model to predict the packing density of

multi-sized grain mixtures, including the loosening and wall effects, i.e. taking25

into account particle interactions and interactions of the particles at the bound-

aries.

With the advances in computer simulations many works have focused on the

development of algorithms for the random distribution of non-overlapping par-

ticles. In most studies the assumption of spherical aggregates is made for sake30
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of simplicity [6-8], however some works deal with more complex geometries,

e.g. Wittmann et al. [9] generated 2D rounded aggregates by using the mor-

phological law developed by Beddow and Meloy [10] and angular aggregates as

polygons, of randomly varying number of edges and angles; more recently Wang

et al. [11] developed a procedure for generating random aggregate structures for35

rounded and angular aggregates based on Wittmann's findings but here angular

aggregates are generated as polygons with prescribed elongation ratios, rather

than just as randomly shaped polygons. Three-dimensional studies involving

ellipsoids are reported in [12-15], while Williams and Philipse [16] used sphero-

cylinders to better simulate the elongation of real particles, such as fibers.40

As regards the packing algorithm, two are mainly adopted in the scientific lit-

erature: the take-and-place method [9, 11, 17], which consists in randomly po-

sitioning a number of particles necessary to satisfy the sieving classes in which

the grading curve can be divided, proceeding from large to small particles; and

the divide-and-fill method [18], which consists in subdividing the whole domain45

in 2D or 3D into sub-regions and fill them with grain particles, based on the

grading curve and the aggregate fraction. An optimized algorithm to pack very

large volumes of spherical entities, enriched by a genetic module, has been more

recently developed in [7]: this method is derived from [19] and it is found to sig-

nificantly improve the speed of convergence of the sequential packing algorithm50

of spheres. In line with a “parent-child” model, it adaptively shifts and shrinks

the search space in the control volume by employing feasible (with satisfied con-

straints) and infeasible (with unsatisfied constraints) spheres in the population

of “children” to find a sphere with maximum radius. By doing so the mod-

ule can search the free space within a domain to inscribe the maximum-sized55

spheres among the previously packed ones, in an optimal way.

Within this framework the work proposes an original, mathematically-based

formulation for the ellipsoidal particle size distribution within a 3D space and it

discusses its performance when spherical inclusions are employed. The method

takes inspiration from the divide-and-fill method but it is improved by the in-60

troduction of a control step of new concept and implementation, which allows
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further packing and an optimized use of the free available space. The study is

directed towards a three-dimensional modeling of cement-based composite mate-

rials at the mesocopic scale in order to manage space discretization in agreement

with the Finite Element Method (FEM) and perform numerical analyses in the65

context of continuum mechanics [20].

2. Grading curves in concrete materials

The size distribution of aggregate particles in concrete can be defined either

by means of grading curves or from sieve analyses.

Several types of ideal grading curves can be applied, the most known and ac-

ceptable of them is Fuller's curve [21], which is described by a simple equation

relating the percentage of aggregates passing through one sieve Pi to the cor-

responding sieve diameter di and the maximum dimension of the aggregates

Dmax:

Pi = 100
√
di/Dmax. (1)

It is well known that Fuller's curve gives good results for low-workability mixes.

To obtain a better compaction maintaining a good workability, Bolomey's curve

[22] is to be preferred. Equation (1) is modified according to Bolomey into:

Pi = A+ (100−A)
√
di/Dmax (2)

where the parameter A accounts for the impact of adding fine particles in the

mix and it derives from imposing an arbitrary percentage A at the 80 µm sieve.

In general, grading curves do not consider the geometry of aggregates, but only70

the maximum diameter and that related to the current passing percentage.

However the geometry must play a role in the compaction process which can

not be neglected when modeling a mesoscopic structure that resembles the real

one.

European standards [23] give some indications on how to determine the shape75

index of coarse aggregates; the method applies for natural or artificial aggre-

gates, including lightweight aggregates, and it classifies an aggregate according

4



to two main dimensions: the length of a grain L and its thickness E, defined

respectively as the maximum and the minimum distance between two parallel

planes tangential to the particle surface. An aspect ratio L/E greater than 3 ac-80

counts for non-cubic particles and, in this sense, the test leads to the evaluation

of the percentage of cubic or non-cubic grain fractions of a given mix.

a) b)

Figure 1: Aggregate ratio L/E = 1; aggregate ratio L/E = 3.

If one accepts that, in line with the European standard, the non-cubic con-

dition defines the usability limit of aggregates in a mix, particles with ratio

1 ≤ L/E ≤ 3 can be conveniently approximated by ellipsoids more than spheres85

(for which L/E = 1) and in this range an ellipsoidal representation is still

acceptable; it may be not so for higher L/E ratios.

a) b)

Figure 2: Spheric aggregate a); ellipsoidal aggregate b).

3. Theoretical background

3.1. Ellipsoidal formulation

An ellipsoid surface satisfies the following equation:

f(x) =
x2

l2x
+
y2

l2y
+
z2

l2z
− 1 = 0 (3)
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where x, y, z are the position vector components of vector: x = [x, y, z]T while90

l = [lx, ly, lz] are the semidiameters of the ellipses obtained by sectioning the

ellipsoids with the coordinate planes.

Figure 3: Sectioned ellipsoid.

Equation (3) in matrix notation yields [24]:

f(x) = xTBx (4)

where B is the associated matrix:

B(l) =


1/l2x 0 0 0

0 1/l2y 0 0

0 0 1/l2z 0

0 0 0 −1

 (5)

rescaling the position vector x as xT = [x, y, z, 1]T .

In this “standard” notation, the ellipsoid is centered in the Cartesian reference

system and the principal axes are the coordinate axes.

Any rotated or translated ellipsoid is obtained by applying the rotational R and
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translational T operators to this initial configuration:

R(e) =


e1x e2x e3x 0

e1y e2y e3y 0

e1z e2z e3z 0

0 0 0 1

 T(o) =


1 0 0 0

0 1 0 0

0 0 1 0

−ox −ox −oz 1

 (6)

where e = [e1, e2, e3] is the base vector for the new reference system and o is

the new centre.

Therefore the most general expression for the equation of an ellipsoid arbitrarilly95

oriented in a 3D space is:

xTMx = 0 (7)

where M is the generic ellipsoid matrix after roto-translation, which can be

defined as M = R(TBTT )RT in agreement with [25].

3.2. A criterion for detecting overlapping of ellipsoidal particles

At this step, given two ellipsoids E0 and E1 defined by their associated

matrices M0 and M1, respectively, the functions of the external surfaces are

defined by:

xTM0x = 0 ; xTM1x = 0 (8)

while the solid volumes satisfy the following inequalities:

xTM0x < 0 ; xTM1x < 0. (9)

The E0 function can be rewritten with a multiplying scalar factor λ without

loss in generality:

xTλM0x = 0. (10)

If the two ellipsoids E0 and E1 overlap on a region in space it means that

there exists a position vector x∗ satisfying both Equations (9) which yields to:

x∗T (λM0 −M1)x∗ = x∗TM0(λI−M−1
0 M1)x∗ = 0. (11)
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This relationship admits a solution if:

det
(
M0(λI−M−1

0 M1)
)

= 0 (12)

but (12) represents an eigenvalues/eigenvectors problem where the parameters100

λi are the eigenvalues. Based on the values they assume, specific relationships

between the ellipsoidal inclusions are envisaged [25, 26]: if all the λi > 0 ∈ R,

then one ellipsoid properly contains the other, i.e. they totally penetrate each

other; if some λi < 0 ∈ R, then the two ellipsoids are separated (a plane exists

for which the ellipsoids are on opposite sides); finally, if all the λi are complex105

(all λi ∈ C), then the two ellipsoids intersect, i.e. they overalp in some parts.

Figure 4: Penetration condition between two ellipsoids in 2D.

An algorithm aimed to randomly distribute in space non-intersecting ellip-

soidal inclusions should prevent the occurrence of the first and the third case

above. Particularly, to exclude the condition in which an ellipsoid contains the

other, as reported in Fig. 4, a simple check can be implemented: given the

position vectors of the centres of the two ellipsoids, x0 and x1, if the distance d

between the two centres is less than the sum of the two minimum radii lmin,0,

lmin,1, i.e.:

d = |x1 − x0| < lmin,0 + lmin,1 (13)

then the two ellipsoids penetrate each other and one contains the other.

The second unforeseen event is avoided by applying the overlapping detection

algorithm represented by Equation (12) and more directly by analysing the

roots.110
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3.3. Random distribution of the mesostructure

The grading curve for a specific mix design determines the maximum num-

ber of ellipsoids that can be randomly placed in a sample, i.e. a control volume

CV , in relation to the real volume fraction.

For example, by taking into account a CV of volume Vc and a maximum aggre-115

gate percentage equal to p% of the CV , the required total volume of aggregates

equals Va = p%Vc. In agreement with the grading curve, being Va known, the

single volume fraction for each aggregate nominal dimension Vai can finally be

determined.

In the following an algorithm for the random generation of the mesostructure120

of concrete is conceptually outlined, while its numerical implementation is dis-

cussed in the next Section.

A first trial random configuration can be found by placing the inclusions one by

one in the CV (starting from the largest), avoiding penetration and intersection

with pre-existing particles. When ellipsoidal inclusions are considered, a ran-125

dom distribution is guaranteed provided that each ellipsoid is characterized by

a randomly defined position of its centre in space and random rotations of the

principal axes, which can be easily obtained via a random generator tool.

The location of a particle which is non-intersecting may require a maximum

number of trials (Nmax) and if the trials overcome Nmax then the Nmax-th ag-130

gregate is discarded. At this point two ways are possible: i) another ellipsoid

is randomly generated and the positioning scheme is repeated until a first ran-

domly defined ellipsoid with successful placement, or ii) the discarded ellipsoid

is actually retained, provided that the intersecting particles in the neighbour-

hood are shifted of a certain amount in a way that no intersection occurs with135

the retained inclusion and the sorrounding particles.

The latter approach, called dislocation procedure, is here implemented; it is in-

spired by the “Metropolis scheme” reported in [27] and it is proved to be more

efficient than the first one, for particle distribution purposes.

For sake of simplicity a 2D dislocation sequence is reported in Fig. 5: starting140

from an initial configuration (Fig. 5 a), the last possible Nmax-th randomly
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generated trial inclusion is found to intersect some surrounding particles (Fig.

5 b, c), therefore this inclusion is retained even if not successful, and the in-

tersecting particles in the neighbourhood are moved opposite to the centre of

the “unlucky” inclusion (the shift direction given by the unit vector n), until145

the non-intersecting check is satisfied, i.e. the imposed shifts of the surrounding

particles equal the sum of the radius of the sphere circumscribed to the “un-

lucky” inclusion and the radius of the sphere circumscribed to the intersecting

particle itself (i.e. tangency condition between circumscribed spheres, (Fig. 5

d). A translation is retained if, in the new configuration, the shifted inclusion150

does not overlap to any particle nearby; this must be satisfied by all the replaced

surrounding particles (Fig. 5 e) before the trial inclusion is finally added (Fig.

5 f).

a) b) c)

d) e) f)

Figure 5: Dislocation sequence in a 2D configuration a)-f).
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4. Numerical implementation

Once the dimensions of the parallelepiped sample, or CV , are defined, the155

proposed algorithm divides the domain in sub-domains in which the real grading

curve has to be satisfied. The code can handle mesostructure simulations for

cubic samples of 75 mm minimum edge, which is reasonable for cementitious

materials, and a Bolomey’s grading curve with a maximum sieve of 16 mm in

diameter.160

For each sub-domain the algorithm tries to place a specific ellipsoid, defined by

Equations (3-7), with a random approach, i.e. with random position of cen-

tre and orientation of axes; the inclusions are defined in number for each sieve

diameter by the grading curve. For each trial inclusion a check against intersec-

tion with prior particles is made through Equation (12) and against penetration165

through Equation (13), and the dislocation procedure is activated if some inter-

ferences between inclusions are detected when the trials to insert a new ellipsoid

overcome Nmax.

The illustrated algorithm has been implemented in Visual Basic language, which

has allowed also the production of a user-friendly graphical interface for this tool170

(Fig. 6).
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Figure 6: Graphical interface of the random generation tool for ellipsoidal inclusions created

in Visual Basic language.

Once the non-intersecting ellipsoidal mesostructure is characterized in a set

of vectors for each inclusion: o (centre), e (axes orientation) and l (axes di-

mensions), the solid geometry has been generated using the OPEN CASCADE175

library [28], the specific one for CAD processing. Specifically, Phyton program-

ming language has been employed, by means of the pythonOCC library [29],

which allows to generate ellipsoids of given centre, orientation and dimension

(starting from a sphere and scaling it along the three axes) and operate in a

Boolean way between solids to dig the sample in correspondence of the inclu-180

sions, so to distinguish it from the volume occupied by the aggregates.

An example of the code programmed in Phyton language, generating and visu-

alizing spheres in a sample, is reported in box. 1.

12



for i in range(len(sp)):

center=gp Pnt(sp[i][0],sp[i][1],sp[i][2])

agg = BRepPrimAPI MakeSphere(center,sp[i][6]/2)

aggSh = agg.Shape()

boxTrim = OCC.BRepAlgoAPI.BRepAlgoAPI Cut(boxSh,aggSh)

boxSh = boxTrim.Shape()

#-

Box 1: sphere generation into the sample in Phyton language using phytonOCC library

The corresponding output is shown in Fig. 7: the sample at the mesoscopic

scale is made by coarse aggregates of various dimensions (Fig. 7 a) and the185

matrix (cement paste and fine aggregate fractions, Fig. 7 b). The matrix has

voids in correspondence of the aggregate position in such a way that no solid

interference occurs when the two parts are assembled into a unique solid biphasic

model and are assigned to them two different material properties.

a) b)

Figure 7: Aggregates a); matrix b).

5. Example190

5.1. Concrete with natural gravel aggregates

The efficiency of the algorithm has been tested on the real grading curve

reported in [30] for a mix design using natural gravel as aggregates. The coarse
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fraction has been assumed ranging between 25 mm to 5 mm in diameter, subdi-

vided into the passing fractions reported in Tab. 1. It represents itself the 55%195

of the total sample volume; from a numerical point of view finer particles are

considered embedded into the matrix.

Diameter [mm] Passing [%]

25.0 100.0

16.0 64.3

12.5 46.6

8.0 19.2

4.0 7.9

Table 1: Grading curve of concrete with gravel aggregates, derived from [30].

The grading curve has been divided into 7 different diameters Di: D=(22

mm; 19 mm; 16 mm; 13 mm; 10 mm; 7 mm; 5 mm) and the corresponding

passing percentages have been obtained by interpolatig the data in Tab. 1. A200

maximum shape ratio L/E = 2.5 has been considered and to each nominal Di

three different particles (M0
i ,M

1
i ,M

2
i ) have been associated, to reasonably dif-

ferentiate in shape the inclusions: a sphere (M0
i , with 2lx = 2ly = 2lz = Di);

an ellipsoid with the maximum allowed shape ratio (M2
i , with 2lx = Di; 2ly =

Di+1; 2lz = Di/2.5) and an ellipsoid M1
i with average dimensions between M0

i205

and M2
i .

a) b) b)

Figure 8: Aggregate-types for a nominal sieve diameter M0
i a); M1

i b); M2
i c).
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Each fraction of diameter Di has a volume Vi determined in relation to the

grading curve. The volume fraction for the three ellipsoids Va,i is obtained by

defining a frequency parameter for each one of the three ellipsoidal prototypes210

in the mesostructure, M0
i , M1

i , M2
i , through a coefficient γ, which accounts for

the variation in shape of the particles in a same grain fraction. This parameter

must be assumed, as in this case, if no information are given on the shape of

the aggregates, i.e. in the majority of situations.

Then Va,i = γVi. Particularly, particles M0
i have been assumed to fill each215

volumetric fraction Vi by 50% (i.e. γ = 50%), while particles M1
i and M2

i by

25% of each volume fraction Vi. In principle, any shape at any percentage can

be assigned to each Vi.

The parameters characterizing the ellipsoids of each volume fraction are listed

in Tab. 2.220
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Di Passing Vi γ Va,i 2lx 2ly 2lz Type

[mm] [%] [%] [%] [%] [mm] [mm] [mm]

22 97.21 2.7896 1.00 2.789 22.0 22.0 16.0 M1
0

19 90.57 6.636 0.50 3.318 19.0 19.0 19.0 M0
1

0.25 1.659 19.0 18.0 13.3 M1
1

0.25 1.659 19.0 17.0 7.6 M2
1

16 81.44 9.1344 0.50 4.567 16.0 16.0 16.0 M1
2

0.25 2.283 16.0 15.0 11.2 M2
2

0.25 2.283 16.0 14.0 6.4 M3
2

13 71.26 10.1748 0.50 5.087 13.0 13.0 13.0 M1
3

0.25 2.543 13.0 12.0 9.1 M2
3

0.25 2.543 13.0 11.0 5.2 M3
3

10 61.50 9.7572 0.50 4.878 10.0 10.0 10.0 M1
4

0.25 2.439 10.0 9.0 7.0 M2
4

0.25 2.439 10.0 8.0 4.0 M3
4

7 53.62 7.8816 0.50 3.940 7.0 7.0 7.0 M1
5

0.25 1.970 7.0 6.5 4.9 M2
5

0.25 1.970 7.0 6.0 2.8 M3
5

5 50.1 3.4924 0.50 1.746 5.0 5.0 5.0 M1
6

0.25 0.873 5.0 4.5 3.5 M2
6

0.25 0.873 5.0 4.0 2.0 M3
6

Table 2: Input data for determinig the expected numerical grading curve of the concrete mix

with gravel aggregates characterized in [30].

Only to particles with the biggest diameter (D0 = 22 mm) one unique ge-

ometry (M1
0 ) has been assigned, due to the low volume fraction, which may be

reasonably represented by few particles, if not just one.

The data in Tab. 2 are the input data for determining the expected numerical225

grading curve.

The real grading curve has been reproduced via both ellipsoids of different shape
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spheres, to compare the efficiency of the algorithm (Fig. 9). The grading curve

has been reconstructed by including the dislocation procedure illustrated above.

Since the algorithm necessarily makes use of a maximum number of attempts230

to insert a new inclusion, Nmax = 100, not all of the expected aggregates can

be inserted, so a certain percentage of error is envisaged, compared to the ex-

perimental data (real grading curve).

Figure 9: Experimental-numerical comparison of the real and simulated grading curve; exper-

imental results from [30].

The maximum error obtained with ellipsoids occurs in the fine fraction and

it is equal to 5%, with an average error of 3%. By using only spheric particles,235

a more refined distribution of diameters is necessary to estimate the same error,

which is computationally more expensive. In this example a diameter variations

of 1 mm for spheres has been implemented, in the range 5− 22 mm, obviously

neglecting in this case the aggregate shape ratio.

This result seems also in line with the finding that ellipsoidal inclusions allow240

to fill a volume in a better way than spheric inclusions.
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5.2. Concrete with recycled aggregates

Sometimes sustainable solutions are preferred in concrete mix design to pre-

serve natural resources such as gravel. One example is represented by the use

of recycled aggregates from demolition waste as an alternative to natural aggre-245

gates [20]. They are characterized by a peculiar irregular nature resulting from

crushing and a two-phase nature given by the coexistence of originally natural

aggregates and attached old mortar. The latter justifies the lower quality of

recycled-aggregate concrete obtained by partially or totally replacing natural

aggregates with recycled ones.250

The use of recycled aggregates has not gained popularity yet but the perfor-

mance of fresh and hardened recycled-aggregate concrete is being studied ex-

tensively, together with new packing methods for this kind of mixes, which are

necessary in reason of their lower workability if compared to conventional con-

crete, as the water absorption capability of the recycled material is higher due255

to its porous structure [31].

The following example takes into consideration a concrete mix with recycled

aggregates satisfying the Bolomey's law, computed for a maximum size of aggre-

gates in the mixture of 22.4 mm and an A coefficient in Equation (2), depending

on the shape of the aggregates and on the consistency of the class, equal to 12260

[32].

The mixture is composed by 350 kg/m3 of cement CEM I 52.5R with a w/c

ratio equal to 0.45. The global volume of aggregates is distributed as follows:

9.2% of recycled aggregates, 39.8% of coarse natural aggregates (gravel) and

51% of fine natural aggregates (sand), the overall aggregates representing 73%265

of the total sample volume, with the coarse fraction equal to 36% of the total

aggregate volume.

The grading curve of the coarse fraction is reported in Tab. 3.
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Diameter [mm] Passing [%]

16.0 100.0

14.0 93.3

12.5 88.0

10.0 78.3

8.0 69.6

6.3 61.4

Table 3: Grading curve of a concrete with recycled aggregates.

The algorithm, inclusive of the dislocation procedure, has been used to repro-

duce the real grading curve with spheric particles only. This example compares270

the results obtained by considering two possible maximum numbers of attempts

to collocate an inclusion, i.e. 100 and 150.

The comparison between the real and the numerical solution (Fig. 10) shows

again a fairly good agreement, despite the expected irregular shape of these type

of aggregates partially included in the mix.275

The grading curve has been divided into 11 different aggregate diameters, with

dimension ranging from 15 to 5 mm, with an interval of 1 mm; the maximum

volume fraction at each diameter has been obtained by interpolating the passing

through each sieve reported in Tab. 3.

280
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Figure 10: Experimental-numerical comparison of the real and simulated grading curve of a

concrete mix with recycled aggregates.

The maximum error is again encountered in placing the finest aggregates,

equal to 6.7% for the optimal algorithm considering 150 maximum attempts,

with an average error equal to only 1.62%. Despite the negligible increase in

the number of attempts, the higher Nmax the more reliable the simulated grain

packing.285

Conclusions

An algorithm to randomly distribute in space ellipsoidal inclusions and in

agreement with real grading curves for concrete materials has been outlined;

the simulated packing densities are proved to be very close to the experimental

values both for regular round aggregates, which can be better approximated290

with ellipsoids, and aggregates of irregular shape, like crushed particles from

demolition waste.

The novelty of the approach stands on the dislocation procedure introduced into

the algorithm to minimize voids and enhance packing between particles without

overlapping.295
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The same algorithm applied to polydispersed spheres reaches similar packing

density values, though with a more refined grain size distribution in input if

compared to ellipsoidal inclusions, which is more expensive from the computa-

tional point of view.

Such an algorithm appears to be particularly suitable for being implemented300

into FE codes devoted to analyse composite materials via continuum models.
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[22] J. Bolomey, Granulation et prévision de la résistance probable des bétons,

Travaux 19 (30) (1935) 228-232.

[23] UNI EN 933-4 - Tests for geometrical properties of aggregates − Determi-355

nation of particle shape − Shape index, 2008.

[24] T. Larsson, An efficient ellipsoid-OBB intersection test. Journal of Graph-

ics, GPU, and Game Tools 13 (1) (2008) 31-43.

[25] S. Alfano, M.L. Greer, Determining if two solid ellipsoids intersect, J. Guid.

Control Dynam. 26 (1) (2003) 106-110.360

[26] W. Wang, J. Wang, M.S. Kim, An algebraic condition for the separation

of two ellipsoids, Comput. Aided Geom. D 18 (2001) 531-539.

[27] S. Torquato, Random heterogeneous materials: microstructure and macro-

scopic properties. Springer-Verlag, New York, 2002.

[28] https://www.opencascade.com/365

[29] http://www.pythonocc.org/

[30] M. Cetraro, S. De Paola, M. Massaccesi, G. Menditto, G. Porco, Curve di

correlazione per il controllo della affidabilit dei calcestruzzi ordinari [Cor-

relation curves for reliability assessment of ordinary concretes]. In: Calces-

truzzi autocompattanti: progettazione, produzione e controlli sperimentali,370

Centro Studi e Ricerche Sposato P&P srl, Sibari (CS) Italy, 9, 2003.

[31] S. Pradhan, S. Kumar, S.V. Barai, Recycled aggregate concrete: Particle

Packing Method (PPM) of mix design approach, Constr Build Mater. 152

(2017) 269-284.

23



[32] G. Mazzucco, G. Xotta, B. Pomaro, C.E. Majorana, F. Faleschini, C. Pel-375

legrino, Mesoscale Modelling of Concrete with Recycled Aggregates. In:

10th International Conference on Mechanics and Physics of Creep, Shrink-

age, and Durability of Concrete and Concrete Structures, September 2015.

24


