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ABSTRACT: The paper deals with a MSW landfill, located at Grumolo delle Abbadesse (North-Eastern Italy). This 

landfill was excavated to the depth of -6 m and elevated up to +12 m from the ground level. For pollution migration 

control a perimetric slurry wall was constructed and keyed into a deep and continuous low permeability layer. The finer 

part of the excavated soil is used as mineral barrier in the landfill capping system. Design and construction of mineral 

barrier involve many experimental and technological aspects. After having chosen a specific soil, water content and 

laboratory compaction energy, required to obtain permeability value  according to the national regulation, must be 

determined. It is also necessary to control water content, compaction energy, and permeability of liner actually 

compacted in situ. Wastes underlying the capping system of a landfill are very compressible and a specific degree of 

compaction may be difficult to achieve. Heavy sheep foot rollers are generally used to compact cohesive soils, but this 

choice may be in contrast with the usual equipment at disposal of contractor. The paper shows how a mineral barrier, 

mainly composed of silty clay, was put in place to cover a large MSW landfill and compacted using a heavy dumper, 

capable to achieve an adequate compaction degree. In situ hydraulic properties of liner were compared to those obtained 

by laboratory tests and to the limits imposed by the Italian regulation. The actual compaction degree  was checked by in 

situ tests. Hydraulic conductivity tests were carried out in situ, using Boutwell and Guelph permeameters, and in 

laboratory using rigid wall and flexible wall permeameter. In situ testing provides permeability values more realistic 

than those obtained in laboratory and demonstrated that the actual construction procedure was effective in order to 

obtain the design targets. 
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INTRODUCTION 1 

The main function of a Municipal Solid Waste (MSW) landfill cover system is to limit the rainwater infiltration, avoiding 2 

an excessive production of leachate. In order to have a cover system of a suitable efficiency, hydraulic conductivity of 3 

the mineral barrier shall be determined and controlled with a high accuracy.  4 

The construction of a compacted mineral barrier for covering a wide MSW landfill involves many relevant problems. As 5 

the wastes underlying the top barrier are often very compressible, a high specific degree of compaction may be difficult 6 

to achieve. Furthermore, climate conditions have a great influence on the actual compaction energy, water content of 7 

clayey liner and, consequently, on its hydraulic conductivity. 8 

The hydraulic seal of a MSW landfill is guaranteed by the confining mineral barriers, located up, side and down the waste 9 

body. Therefore, the key parameter controlling the efficiency of the barrier is hydraulic conductivity, determined by 10 

laboratory and/or in-situ permeability tests. In-situ testing provide permeability values, which should be more realistic 11 

than those evaluated in laboratory, since greater volumes of soil can be investigated and the important effects of soil 12 

macrostructure can be taken into account.  13 

This study shows how a mineral barrier, composed of a excavated soil, that is a natural but potentially re-usable waste 14 

product, designed according laboratory Proctor and permeability tests, was used to cover a very large landfill site 15 

(∼140,000 m2) for non-hazardous/municipal solid wastes (Figure 1) using a non conventional compaction technology.  16 

The field test site, constructed in order to verify the design and construction procedure, is located at Grumolo delle 17 

Abbadesse (North-Eastern Italy) (Figure 2).  18 

Detailed laboratory and in situ experimental investigation was carried out on the geotechnical characteristics of 19 

compacted soil, in order to assess the influence of several factors (compaction energy, water content, in situ compaction 20 

technology) on density and permeability of the compacted mineral liners.  21 

A silty clay soil, coming from the area surrounding the Grumolo landfill, was tested in laboratory in order to determine 22 

the water contents and laboratory compaction energies required to obtain permeability values less than that required for 23 

mineral barrier by national regulation in force. The current Italian law (Ministerial Decree 161/2012) considers in specific 24 

conditions the excavated soil as a by-product, excluded from waste legislation and usable for embankments, fillings and 25 

environmental recompositions. However, low plasticity and high hydraulic conductivity, when compacted in situ, may 26 

preclude its re-use in typical environmental work, such as mineral barrier for MSW landfills or contaminated areas.  27 

To compact clayey soils, heavy sheep foot rollers are usually used, but this choice depends on soil nature and on the field 28 

compaction equipment available by the contractor. In the present case study, a dumper, having its rear compartment 29 

loaded with various weights, was used as compacting equipment.  30 
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Field density and field permeability tests were planned for full definition of the dry density and hydraulic properties of 31 

the compacted soil, in order to validate data from previous laboratory tests carried in the design phase and to verify 32 

whether Italian rules for compaction degree and barrier hydraulic conductivity had been respected using the construction 33 

procedure. 34 

 35 

Figure 1. View of landfill 36 

 37 

Figure 2. Site location 38 

MINERAL BARRIERS FOR MSW LANDFILL COVER SYSTEMS 39 

The main functions of the cover system of a MSW landfill are to separate waste from the surrounding environment, 40 

minimize water infiltration and collect the biogas produced by waste degradation.  41 

Cover system of a MSW landfill, according to current Italian law (D.Lgs. 36/2003), must be composed of five layers, as 42 

follows: a) superficial protective cover layer; b) rain water drainage layer; c) low-hydraulic conductivity compacted 43 
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mineral layer; d) biogas drainage layer; e) regularization layer. A minimum thickness of 0.5 m and hydraulic conductivity 44 

not greater than 10-8 m/s are required for low-hydraulic conductivity compacted mineral layer.  45 

Further indications on soil to be used are not provided in the Italian regulation. Ductility and self-healing capability 46 

against high differential settlements due to the compressibility of the waste body are requirements that the barrier of cover 47 

system should have. Clayey soils show a suitable ductility when the plasticity index is between 10 % and 50%, otherwise 48 

clay becomes not enough workable. Moreover, highly plastic soils are difficult to compact, especially in landfill covers. 49 

They are sensitive to shrinkage, while drying and wetting cycles cause cracks in the compacted soil and an increase of 50 

its hydraulic conductivity. 51 

In order to achieve hydraulic conductivity not greater than 10-8 m/s, other geotechnical aspects must also be considered, 52 

i.e. passing through ASTM 200 ≥ 25%; plasticity index PI = 10% ÷ 50%; gravel percentage ≤ 40%; maximum grain size 53 

= 25 ÷ 50 mm. 54 

Due to these reasons, first of all a wide campaign of laboratory tests was carried out to investigate the effect of compaction 55 

energy and of water content on the hydraulic conductivity of the compacted excavated soil (waste soil) to be used for the 56 

cover system  of the  Grumolo landfill.   57 

 58 

LABORATORY TESTS 59 

The excavated soil has been subjected to the following laboratory tests: grain size analysis; Atterberg limits; X-ray 60 

diffractometry; scanning electron microscopy (SEM);  reduced, and standard Proctor (AASHTO) compaction tests; 61 

falling head permeability test in oedometric apparatus; constant head permeability test in triaxial cell. These test were 62 

performed in order to determine the water contents and laboratory compaction energies required to obtain permeability 63 

values less than that required for mineral barrier by national regulation in force. 64 

 Soil was classified according to the USCS (Unified Soil Classification System) as a medium plasticity inorganic clay 65 

(CL). Medium plasticity implies good ductility and workability, and self-healing capability against high differential 66 

settlement of waste, which can produce cracks in the barrier and increase its hydraulic conductivity.   67 

Table 1 lists the Atterberg limits and physical characteristics of the test soil, and Table 2 compares the values of passing 68 

through ASTM 200 sieve, plasticity index PI, gravel percentage and maximum grain size with those suggested by the 69 

Italian guidelines. Figure 3 shows soil grain size distribution. 70 

 71 

 72 

 73 
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Table 1. Average index properties and physical characteristics of test material. 74 

LL 

(%) 

LP 

(%) 

PI 

(%) 
Gs 

44 24 20 2.76 

 75 

Table 2. Geotechnical properties of the test soil 76 

 Passing sieve 0.075 

mm (%) 

Plasticity 

index (%) 

Gravel 

percentage (%) 

Max. grain 

size (mm) 

Test soil 98 18 ÷ 22 0 0.4 

Italian guidelines ≥ 25 10 ÷ 50 ≤ 40% ≤ 25 ÷ 50 

 77 

 78 

 79 

Figure 3. Grain size distribution of the test soil 80 

 81 

The classification test results show that the soil is potentially suitable as mineral barrier for the Grumolo cover system.. 82 

The upper limit of permeability according to Italian regulations is k < 10-8 m/s (D.L. 152/2006, D.L. 36/2003); compaction 83 

and permeability tests were performed to verify if this soil, compacted at different energy, matches the national regulation 84 

requirement.  85 

For this purpose compaction tests have been performed at different energies (standard and reduced energies). Moreover, 86 

oedometer and triaxial permeability tests have been carried out for the diffent energies and the water content. 87 
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The compaction test results are shown in Figure 4 and the pairs of values (ρdmax; wopt) obtained for reduced and standard 88 

Proctor compaction energies are listed in Table 3. The reduced Proctor test (Daniel and Benson, 1990; Benson and Trast, 89 

1995) corresponds to an energy level about half than that achieved with the standard Proctor test (ASTM D 698) and with 90 

the in situ compaction procedure. 91 

 92 

Figure 4. Proctor curves for different compaction energy 93 

 94 

Table 3. Maximum dry density ρd,max and optimum moisture content (O.M.C.) at reduced and standard Proctor 95 

compaction energies. 96 

 ρd,max 

[Mg/m3] 

wopt (O.M.C.) 

[%] 

Ec/EcSTD 

Reduced Proctor energy 1,57 23 0.6 

Standard Proctor energy 1,63 21 1 

 97 

Optimum moisture content (OMC) is that specific water content at which the soil should ideally be compacted in situ to 98 

obtain the maximum densification. Figures 5 and 6 show the trends of hydraulic conductivity versus water content for 99 

reduced and standard Proctor compaction energies (Figure 4), obtained in  laboratory from falling head permeability tests, 100 

with oedometric apparatus, and constant head permeability tests, in a triaxial equipment.  101 

Experimental values so obtained were always below the limit imposed by Italian regulation (bold blackline); the test soil 102 

compacted at the two different energies is therefore suitable to be used as barrier in the cover system of a MSW landfill. 103 

 104 
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 105 

 106 

 107 

 108 

Figure 5. Trends [k–w] of samples compacted with reduced (wopt = 23%) (5a) and standard Proctor energies (wopt = 109 

21%) (5b): results from falling head and constant head permeability tests. 110 

Upper limit according 
to Italian regulation 

Upper limit according 
to Italian regulation 

5a 
Reduced energy  

5b 
Standard energy 
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 111 

 112 

 113 

Figure 6. Trends [k–w] of samples compacted with reduced (wopt = 23%) and standard Proctor (wopt = 21%) energies: 114 

results from constant head (6a) and falling head permeability tests (6b). 115 

 116 

 117 

The results are in good agreement with those obtained by other authors (Benson and Trast, 1995) for similar soils with 118 

similar index properties and grain size distributions. In particular, it is highlithed that hydraulic conductivity decreases to 119 

its minimum value, close to the optimum water content, before it increases again. In addition, similar literature data 120 

(Boynton and Daniel, 1985) show that the values obtained from constant head permeability tests in triaxial cell were 121 

Upper limit according 
to Italian regulation 

Upper limit according 
to Italian regulation 

6b 
Oedometer tests 

6a 
Triaxial test 
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slightly lower (up to one order of magnitude) than those obtained from falling head permeability tests with oedometric 122 

apparatus. These differences could be due to different factors such as the higher sidewall effects in rigid wall 123 

permeameter, to the lower void ratios in flexible walls permeameter (triaxial cell) due to the higher confining pressures 124 

(isotropic stress state with σcell = 100 kPa in triaxial apparatus; anisotropic stress state with σaxial = 100 kPa in oedometric 125 

apparatus ) and to the different values of the gradients used in the different equipment (≈40 in triaxial apparatus and ≈30 126 

in oedometric apparatus) .  127 

The hydraulic conductivity values determined by means of laboratory tests represent  indicative values, nevertheless  the 128 

actual values of mineral barrier permeability are those obtained using the in situ construction procedures. This is due to 129 

the mixing and compaction techniques used in the laboratory that are more accurate than those used in situ and to the 130 

different compaction energies. Mixing procedures for dry and powdered soils are very simple in the laboratory but are 131 

much more complicated in situ, where soil is wet and could contain clods. 132 

Therefore, in the second phase of research, a field test site was realized using the proposed compaction method in order 133 

to control the liner water content, compaction energy, density, and permeability obtained in real scale. 134 

Considering the value of optimum water content obtained in laboratory using the different energy (21% for standard 135 

energy and 23 % for reduced energy) and related laboratory permeability, it was decided to use water content for field 136 

test ranging from 22% to 23,5% in order to evaluate that the water content was on the wet side and also if is possible to 137 

use the non usual compaction equipment to reach the desired compaction energy (Figure 4). 138 

 139 

FIELD TESTS 140 

Field density and field permeability tests were planned for full definition of the dry density and hydraulic properties of 141 

the field compacted soil, in order to validate data from previous laboratory tests carried out in the design phase and to 142 

verify whether Italian rules for compaction degree and barrier hydraulic conductivity limits had been respected using the 143 

proposed construction procedure. 144 

A dumper, that is not a usual equipment for field compaction, was used to compact the mineral soil that constituted the 145 

field test. Indeed, to compact clayey soils heavy sheep's foot rollers with feet which penetrates the layer properly are 146 
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generally used, producing a kind of kneading compaction. The choice of roller type depends on the nature of the soil, and 147 

on the availability and requirements of each site.  148 

The Grumolo site operators had a powerful dumper (Figure 7) for large-scale transport of materials, with two axes and 149 

six wheels (twin at rear), especially suitable for manoeuvres in restricted spaces. Its weight varied between 300÷600 kN, 150 

according to the load in the rear compartment. 151 

 152 

 153 

Figure 7. Worksite dumper 154 

 155 

To check design requirements of the mineral barrier of the cover system for the field compaction energy, built by means 156 

of the dumper , a series of field tests was carried out. 157 

The test soil was initially characterised by high natural moisture content and many aggregated clods. The soil therefore 158 

was dried out before tests could take place. This was usually done during spring and summer, and it took about three 159 

days. Clods have been therefore broken up and the soil has been spread evenly.  160 

In order to verify the real field degree of compaction the values of in situ maximum dry density were compared with 161 

those obtained in the laboratory for the two different energies. 162 

Indeed, the degree of compaction, Dc, defined as the ratio between the in-situ dry density, ρd(situ), and the maximum dry 163 

density obtained in the laboratory, ρd(max), for a fixed compaction energy, allows to check the design requirements. In the 164 

studied case, the in-situ dry density was evaluated by the sand cone method, shown in Figure 8 (ASTM D 1556). Contract 165 
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specifications normally require compaction degrees up to 90% of the maximum standard Proctor dry density obtained in 166 

laboratory. 167 

Once the design requirements in terms of degree of compaction had been verified, in-situ permeability tests were carried 168 

out with Guelph (ASTM D 5126) and Boutwell (ASTM D 6391) permeameters. 169 

 170 

Figure 8. Sand-Cone method 171 

 172 

Boutwell and Guelph Borehole Permeability Tests 173 

The most important geotechnical parameter for compacted clay used in landfill is the hydraulic conductivity because it 174 

controls the barrier efficency. Data available in literature have demonstrated that in situ hydraulic conductivities could 175 

be substantially larger than those measured on small laboratory specimens. For this purpose, it is very important to 176 

perform field permeability tests to check the real value obtained in situ by the compaction. Among the many different in  177 

situ permeability tests, the Boutwell (ASTM D 6391) and Guelph (ASTM D 5126) permeability tests were used to 178 

evaluate the in situ permeability if the Grumolo cover system mineral barrier. 179 

Boutwell Borehole permeability test 180 

Boutwell permeability test is a Two-Stage Borehole (TSB) test having a widest acceptance and used all over in the world. 181 

The TSB method (ASTM 6391) involves three dimensional infiltration, and both vertical and horizontal hydraulic 182 
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conductivities can be determined (Figure 9). This test method may be used for compacted fills or natural deposits with a 183 

mean hydraulic conductivity not greater than 10-5 m/s. 184 

 185 

Figure 9. Infiltration path scheme 186 

 187 

To perform the test, a hole at least twice larger than the diameter of the casing used for the test is drilled. The hole shall 188 

be carefully cleaned and the bottom smoothed, so that the casing can be set firmly on the bottom of the hole on undisturbed 189 

soil. A bentonite seal must be formed into the volume within hole and casing (Figure 10).  190 

 191 

 192 

Figure 10. Boutwell permeameter 193 

 194 

The rate of flow of water into soil through the bottom of the casing is determined in one or two stages, normally using a 195 

falling hydraulic head procedure. If the soil is considered anisotropic, with different hydraulic conductivity along vertical 196 

and horizontal directions, a falling-head test may be carried out in two stages (Figure 9). During Stage 1 the permeant 197 

fluid can filter only across the bottom section of the borehole; when the borehole is extended below the bottom of the 198 
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casing the permeant fluid can filter both vertically and horizontally (Stage 2). The borehole is extended for Stage 2 after 199 

Stage 1 is over (Figure 9).  200 

A limiting hydraulic conductivity is computed from the falling head data in both stages (K1 and K2). Stages 1 and 2 201 

continue until the limiting conductivity for each stage is relatively constant.  202 

Methods to calculate actual vertical and horizontal hydraulic conductivities (kv and kh) from K1 and K2, determined during 203 

the stages 1 and 2 (Figures 11-12), are described as follows. 204 

 205 

Figure 11. Stage 1 of Boutwell permeameter test 206 

 207 

STAGE 1  )tt(
2H
1Hln1GRK 12'T1 −






⋅⋅=    (1) 208 

where: 209 

• RT = ratio of kinematic viscosity of permeant at temperature of test permeant during time increment t1 to t2 to 210 

that of reference fluid and temperature. For most tests, this means water at 20°C (68°F); 211 

• G1 = (πd2/11D1) [1+a(D1/4b1)] (cm); 212 

• d = Internal Diameter of standpipe (cm); 213 
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• D1 = effective diameter of Stage 1 (cm), equals Internal Diameter of casing under dry hole conditions when no 214 

inward seepage was noted when setting casing, otherwise equals outside diameter of casing;  215 

• a = +1 for impermeable base at b1, 216 

   = 0 for infinite (greater than 20D1) depth of tested material; 217 

   = –1 for permeable base at b1; 218 

• b1= thickness of tested layer between bottom of casing and top of underlying stratum (cm). 219 

• H1 = effective head at beginning of time increment (cm), equal to distance from top of water in standpipe to top 220 

of underlying stratum or groundwater, whichever is shallower. For calculation purposes, H1 shall not exceed 221 

the height of the water column above the bottom of the casing plus 20 test diameters; 222 

• H2’ = corrected effective head (cm) at end of time increment, calculated in the same manner as H1, = H2– c; 223 

• c = change in TEG (temperature effect gauge) scale reading between times t1 and t2 (cm). An increase in the 224 

height of water in the TEG standpipe is positive; 225 

• t1 = time at beginning of increment(s); 226 

• t2 = time at end of increment(s). 227 

 228 

Figure 12. Stage 2 of Boutwell permeameter test 229 

 230 
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STAGE 2   )tt(
2H
1Hln2GRK 12'T2 −






⋅⋅=    (2) 231 

 232 

where: 233 

G2 = (d2/16FL)G3;  234 

G3 = 2ln(G4) +a ln(G5); 235 

G4 = L/D +[1+(L/D)2]1/2 236 

2
12

22

2
12

22

]L/D)-/D(4b+[1 +L/D]-/D[4b

 ]L/D)+/D(4b+[1 +L/D]+/D[4b5G =  237 

F= 1 – 0.5623 Exp (–1.566 L/D) 238 

and 239 

• L = length of Stage 2 extension below bottom of casing (cm), 240 

• D = Internal Diameter of Stage 2 extension (cm). It shall be equal to the casing ID, and 241 

• b2 = distance from center of Stage 2 extension to top of underlying stratum or groundwater (cm). 242 

 243 

Anisotropy of the mineral barrier can be considered by a coefficient of anisotropy m defined as follows: 244 

vh k/km =           (3)  245 

m
kmk h

v =⋅           (4) 246 

Knowing K1, K2, L and D, coefficient m can be determined with the following expression: 247 
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And then kv and kH can be found by: 249 

m
kmkK h

v1 =⋅=           (6) 250 

During the test the soil suction was controlled by means of tensiometers (Figure 13) in order to measure the suction of 251 

the tested layer. If the measured suction is equal to zero, the layer is saturated, while if the suction is greater than zero 252 
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the soil is unsaturated and the permeability values obtained by the previous equations must be corrected in order to 253 

consider the suction. 254 

 255 

 256 

Figure 13. Tensiometers installed on site 257 

 258 

Guelph Borehole Permeability test 259 

The Guelph Permeameter (GP) (Figure 14) is a device designed to determine quickly in-situ hydraulic conductivity of 260 

soils. The GP can be moved and used by one operator. Each test requires from 30  to 120 minutes, depending on soil 261 

nature, and a few litres of water. Tests, performed on clayey mineral barrier of landfills according to the reference standard 262 

(ASTM D 5126), involve a soil thickness ranging from 0,15 to 0,75 m below the ground level. After having excavated a 263 

shallow cylindrical hole into the investigated soil, installation of the GP can be made inside it. The GP test employs the 264 

Mariotte’s bottle principle and is carried out measuring the steady-state rate of water recharge into unsaturated soil from 265 
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the test hole. The field hydraulic conductivity kfs can be estimated by means of a constant-head test procedure. kfs is 266 

referred to the field-saturated bulb (Figure 15) of soil surrounding the test hole.  267 

 268 

Figure 14. Guelph permeameter 269 

 270 

Figure 15. “Bulb” of saturated soil 271 

 272 

Firstly a constant hydraulic head in the hole is fixed and hold at the same level of the lower part of the air tube, located 273 

at the centre of the GP. When the water level in the hole starts to drop below the air inlet tip, air bubbles come out from 274 

the tip and rise into the tank air space. Vacuum is then partially relieved and the tank provides water to the hole. Size of 275 

opening and geometry of the air inlet tip are suitable to control the air bubbles size in order to avoid fluctuations of the 276 
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well water level. When a water level is maintained constant in the hole, a bulb of saturated soil quickly develops all 277 

around, taking a shape depending on soil nature, well radius and imposed hydraulic head.  278 

The bulb shape effect is taken into account in the C factors that appear in the expression for calculating kfs. When a 279 

steady-state water flow has been reached the field saturated conductivity kfs can be determined.  280 

A certain amount of air is usually entrapped in the soil voids during the infiltration process, influencing the obtained 281 

values of k, which could be lower than obtained in a complete saturation condition. During a measurement, a wetting 282 

(but unsaturated) front moves outward from the field-saturated bulb. In this zone, it is possible to evaluate the matric flux 283 

potential, which represents the capillarity of the soil. Analysis of steady-state discharge from a cylindrical hole in 284 

unsaturated soil, as measured by the GP, accounts for all the forces contributing to three-dimensional flow of water into 285 

soils: the hydraulic thrust of water into soil, the gravitational pull of liquid out through the bottom of the well, and the 286 

capillary pull of water out of the well into the surrounding soil.  287 

Hydraulic conductivity of saturated soil, kfs, was calculated by means of the equations proposed by Elrick et al. (1989) 288 

for two experimental procedures: two-head method (5 and 10 cm), using two tanks at the same time and one-head method 289 

(5 or 10 cm), using only the internal or external tank.  290 

Shape factors C1 and C2 are a function of soil type, water height in borehole (H) and borehole radius (a). Using the two-291 

head method the factors C must be calculated for each head height H. For one-head method, only C1 needs to be calculated 292 

while for two-head method, C1 and C2 are calculated (Zang et al., 1998). 293 

( )

754,0
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One Head Method 296 

22,35RQ 11 ⋅=   combined tanks   16,2RQ 11 ⋅=   inner tank 297 

*
11
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1
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⋅
=     (7) 298 

 299 

Two Head Method 300 

22,35RQ 11 ⋅=   22,35RQ 22 ⋅=    combined tanks               16,2RQ 11 ⋅=  16,2RQ 22 ⋅=       inner tank 301 
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1122fs QGQGk ⋅−⋅=       (8) 303 



 18 

where: 304 

• R1: steady rate of fall of water related to water head H1 305 

• R2: steady rate of fall of water related to water head H2 306 

• Q1: water flow related to water head H1 307 

• Q2: water flow related to water head H2 308 

• 35,22: tank constant corresponding to the transversal area of the combined tanks (cm2) 309 

• 2,16: tank constant corresponding to the transversal area of the inner tank (cm2) 310 

• H1 : first water head height (cm),  311 

• H2 : second water head height (cm),  312 

• a : borehole radius (cm)  313 

• α*: microscopic capillary length factor which is decided according to the soil texture-structure category (It is 314 

equal to 0,01 cm-1 for compacted clayey or silty materials such as landfill caps and liners)  315 

• C1: shape factor related to water head H1 316 

• C2: shape factor related to water head H2 317 

• kfs: soil saturated hydraulic conductivity (cm/s). 318 

 319 

EXPERIMENTAL FIELD TEST RESULTS 320 

Field density tests 321 

First of all many tests were performed on the field trial to evaluate the possibility to use a dumper for compacting final 322 

cover mineral barrier.  323 

Compaction of barriers, located at the top of a landfill, is often difficult having a compressible subbase composing of 324 

MSW. This is particularly true when soil water content is high and greater than 3% of the Optimum Moisture Content 325 

(OMC). In addition the furrows, left by the dumper wheels, were quite thick (up to 0.15 m from the ground level) and 326 

required a suitable levelling to allow the successive layers to be placed and compacted. In-situ density tests carried out 327 

with a sand cone test apparatus showed that compaction energy due to the dumper depended on its variable static weight 328 

and on the number of passes (Table 4).  329 

 330 

 331 

 332 

 333 
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Table 4. Sand cone tests results 334 

 335 

 Number 

of passes 

Dumper 

weight 

[KN] 

ρd(situ) 

[Mg/m3] 

ρd(max) 

[Mg/m3] 

Dc 

[%] 

Compliance with 

design specifications 

Reduced Proctor 

energy (356 kJ/m3) 
4 400 1,55 1,57 98,7 Yes 

Standard Proctor 

energy (593 kJ/m3) 
4 450 1,55 1,63 95,1 Yes 

 336 

 337 

Increasing the load in the rear compartment of the dumper, the degree of compaction corresponding to the reduced and 338 

standard Proctor energies could be achieved without varying the number of dumper passes. In particular, for four passes 339 

a dumper weight of 400 kN is necessary to achieve a degree of compaction equal to the 98.7% of the optimum compaction 340 

obtained in laboratory with reduced Proctor energy, while the dumper weight must be equal to 450 kN to achieve a Dc 341 

equal to 95.1 % of the optimum compaction obtained in laboratory with standard Proctor energy. As previously discussed 342 

in situ soil compaction was performed at a moisture content equal to 23%, corresponding to the OMC of the reduced 343 

Proctor energy and rather close to OMC of the standard Proctor energy (on the wet side). Therefore, the proposed 344 

compaction procedure can be used to obtain the design target in terms of soil degree of compaction . 345 

For optimal cover operations, the dumper itself was therefore used at 450 kN load, although the loads sometimes had to 346 

be limited, to avoid damage to components such as geocomposites under the mineral barrier. 347 

 348 

In-situ permeability tests 349 

A further important aspect in the mineral liner design is to assess its in situ hydraulic conductivity and to compare it with 350 

those obtained by laboratory permeability tests using reduced and standard Proctor energies. For this purpose different 351 

section of field trial test were constructed using initial water content ranging from 22% to 23.5%. 352 

The results of in situ permeability test obtained using Guelph and Boutwell permeameters (Figure 16) on field test are 353 

reported respectively in (Table 5) and in Figure 17. 354 

The test results refer to an in situ degree of compaction equal to the 95.1 % of the optimum compaction obtained in 355 

laboratory with standard Proctor energy. 356 
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 357 

 358 

Figure 16. Test field during the permeability tests 359 

 360 

Table 5. Results of permeability tests carried out with Guelph permeameter. 361 

 362 

kfs [m/s] 

8,8*10-9 

2,6*10-9 

3,5*10-8 

1,4*10-8 

 363 

 364 

The values of permeability obtained using the Guelph permeameter  range  from 10-9 to 10-8 m/s. This may be due to the 365 

relatively small size and the uncompleted saturation of the bulb involved in seepage, and the heterogeneity of the mineral 366 

barrier. The experimental values obtained by means of Boutwell tests were always less than the maximum limit imposed 367 

by the national regulations (10-8 m/s). Figure 17 shows the trend of the coefficient k, obtained by Boutwell tests, versus  368 

the liner water content. Permeability decreases with the increase of on site water content and then it becomes steady for 369 

w values greater than 22.5 %. This trend is very similar to that obtained with laboratory test. The accuracy of the in situ 370 

measurements seems to be very similar to that obtained in laboratory.  371 

The k values are lower than limit imposed by the Italian regulation equal to 10-8 [m/s]. Indeed, Boutwell permeameter is 372 

one of the most suitable instruments to assess the hydraulic conductivity of a compacted soil. With respect to the Guelph 373 
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permeameter, installation, testing and data processing are much more complex, but the accuracy of the obtained 374 

permeability is greater. 375 

Moreover, comparing the values of permability obtained in situ and in laboratory at the same water content (equal to 376 

22.5%) it is possible to observe that the permeability values are quite similar and that the in situ values are 5 time lesser 377 

than those obtained in laboratory by means of triaxal permeability test. This circumstance could be due to the in situ 378 

suction and in the soil macrostructure. 379 

On the base of laboratory and field test results it was decided to build the real cover system mineral barrier at a water 380 

content eqaul to 23 % using a dumper of 450 kN adopted for each layer at least 4 passes.  381 

 382 

Figure 17. Trend of hydraulic conductivity k1 versus water content 383 

 384 

 385 

CONCLUSIONS 386 

A wide campaign of laboratory and field investigations were carried out in order to design the mineral barrier of Grumolo 387 

delle Abbadesse (Italy) MSW landfill, using non standard field compaction procedure.  388 

In the first part of the research, the suitability of the excavated soil for the construction of the cover mineral barrier was 389 

investigated and the water contents and laboratory compaction energies, required to obtain permeability according to the 390 

national regulation were determined. Therefore, the excavated soil was used to construct the mineral barrier.  391 

Then it was investigated the efficiency of non standard compaction procedure to put in place the mineral barrier. In 392 

particular water content, compaction energy, and permeability of liner obtained using the not usual compaction method 393 
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were determined and compared with the degree of compaction and the hydraulic permability obtained in laboratory for 394 

different energies.   395 

The in situ  effective degree of compaction of the barriers was checked by sand cone tests.  Hydraulic conductivity tests 396 

were carried out in laboratory using rigid and flexible wall permeameters and in situ by means of Boutwell and Guelph 397 

apparatus .  398 

In-situ permeability tests provided more realistic values than those evaluated in laboratory, due to the greater volumes of 399 

involved soil and to the important effects of soil macrostructure taken into account.  400 

In situ tests demonstrated that the construction and compaction procedures (i.e. initial water content, breakage of the 401 

greater clods) were effective in order to obtain the design targets. In particular, it has been found that to achieve the design 402 

requirements four passes of a dumper weighiting 450 KN are necessary. 403 

Use of a big dumper to compact the mineral barrier seemed to provide an adequate compaction energy, changing the 404 

weight of the rear compartment. Finally the test results highlighted the important aspect of driver training. Workers were 405 

familiar with the dumper and quickly acquired the expertise to use it for this new finality, as shown by the good spatial 406 

homogeneity of the mineral barrier properties. 407 

 408 
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