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The present research is the first comprehensive study regarding the thermophilic anaerobic degradation
of cheese wastewater, which combines the evaluation of different reactor configurations (i.e. single and
two-stage continuous stirred tank reactors) on the process efficiency and the in-depth characterization of
the microbial community structure using genome-centric metagenomics. Both reactor configurations
showed acidification problems under the tested organic loading rates (OLRs) of 3.6 and 2.4 g COD/L-
reactor day and the hydraulic retention time (HRT) of 15 days. However, the two-stage design reached
a methane yield equal to 95% of the theoretical value, in contrast with the single stage configuration,
which reached a maximum of 33% of the theoretical methane yield. The metagenomic analysis identified
22 new population genomes and revealed that the microbial compositions between the two configu-
rations were remarkably different, demonstrating a higher methanogenic biodiversity in the two-stage
configuration. In fact, the acidogenic reactor of the serial configuration was almost solely composed by
the lactose degrader Bifidobacterium crudilactis UC0001. The predictive functional analyses of the main
population genomes highlighted specific metabolic pathways responsible for the AD process and the
mechanisms of main intermediates production. Particularly, the acetate accumulation experienced by the
single stage configuration was mainly correlated to the low abundant syntrophic acetate oxidizer Tep-
idanaerobacter acetatoxydans UC0018 and to the absence of aceticlastic methanogens.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The dairy industry consists of several production divisions, each
one of them generating considerable amounts of effluent waste-
water streams. Especially, during the cheese making process,
different types of residues are discarded at various steps of the
production chain. Cheese whey permeate (WP) is a by-product
originating from the cheese manufacturing process during the
step of proteins recovery by ultrafiltration and/or diafiltration. It
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mainly contains lactose and therefore is often used to standardize
the nutritional composition and taste of milk. However, in most
cases, WP is not exploited and thus is considered as high strength
wastewater (i.e. BOD5/COD ratio is usually higher than 0.5)
(Prazeres et al., 2012). It is estimated that the annual production of
WP at global scale can be over 108 tons per year (Grba et al., 2002).
A less knownwaste derives from the portioning and shaving phases
of hard-cheese manufacturing process, and it consists in a cheese
powder waste (CP), which mainly contains proteins and fats.
Especially, in Italy, the production of two Protected Designation of
Origin (PDO) hard-cheeses, Grana Padano and Parmigiano
Reggiano, counted more than 182,000 t and 137,000 t, respectively
in 2015 (ISMEA, 2016). These volumes suggest a considerable
amount of waste derived from each cheese mould. From the above,
it is obvious that the residues of dairy industry require an effective
treatment before their disposal to the final recipients.

Several biological treatments have been proposed to processWP
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including anaerobic digestion (AD), lactose hydrolysis, ethanol,
hydrogen or lactic acid fermentations, enzyme production, and
microbial fuel cells (Cota-Navarro et al., 2011; Prazeres et al., 2012;
Schirru et al., 2014). Among them, AD for biogas production is
considered as a sustainable solution for waste valorization and
energy recovery. AD is a complex biological process involving
different microbial consortia to break down organic matter into
several by-products and finally to biogas, which is mainly
composed by methane and carbon dioxide. This overall process
consists of four steps namely hydrolysis, acidogenesis, acetogenesis
and methanogenesis (Batstone et al., 2008); the resulting methane
can be used for electricity and thermal energy generation or by
performing additional purification steps biomethane can substitute
natural gas (Kougias et al., 2017).

Nevertheless, the high sodium content, acidic pH and low
alkalinity of WP hampers its treatment by biological processes
(Backus et al., 1988; Ghaly, 1996; Castell�o et al., 2009). In order to
overcome such technical challenges, different reactor configura-
tions (Stamatelatou et al., 2014) were tested or co-digestion stra-
tegies were employed in order to efficiently degrade wastewater
from cheese-making processes (Gelegenis et al., 2007; Hagen et al.,
2014). The majority of these studies have been performed under
mesophilic conditions and the few works reporting thermophilic
reactor operation are focusing on simultaneous production of H2
and CH4 in two steps (Fernandez et al., 2015; Kisielewska et al.,
2014). However, it is well known that thermophilic conditions,
even if they are more sensitive to inhibitors, pose several advan-
tages in biogas production, such as higher methane production
rates and shorter hydraulic retention times (Harris and Dague,
1993; Wiegant et al., 1986; Zinder et al., 1984). To the best of our
knowledge, information regarding thermophilic operation of
anaerobic reactors fed exclusively with cheese wastewater and by-
products for biogas production is missing.

Another crucial parameter, which determines the degradation
efficiency of these wastes, is the microbial consortium involved in
the AD process. Understanding the diversity and dynamics of such
community will lead to process optimization by calibrating oper-
ational parameters and by enhancing preferred microbial path-
ways, which will result in higher CH4 yields. A way to achieve this
goal is via genome-centric metagenomics, which employs shotgun
sequencing, de novo assembly of the obtained reads and binning of
the scaffolds in population genomes (Campanaro et al., 2016).

This study aims to compare the efficiency of two thermophilic
reactor configurations, single and two-stage continuous stirred
tank reactors (CSTRs), on the anaerobic degradability of a mixture
of cheesewastes, namelyWP and CP. Furthermore, we analyzed the
reactors’ metagenomes via Total Random Sequencing (TRS) and
metagenomic binning strategy. Functional analyses of the main
population genomes (PGs) were also carried out, in order to high-
light possible connections with the main intermediates produced
Table 1
Substrates and feedstocks physico-chemical characteristics.

Parameter WP CP

pH 6.30± 0.20 5.10± 0.20
TS (g/L) 36.62± 3.35 854.03± 6.43
VS (g/L) 33.37± 3.00 826.70± 19.37
COD (g/L) 33.98± 2.99 1545.95± 36.13
Total VFA (g/L) 0.05± 0.01 0.53± 0.17
Lactic acid (g/L) 0.41± 0.01 0
TKN (g/L) 0.26± 0.05 69.81± 0.10
NH4

þ-N (g/L) 0 9.37± 0.02
Lipids (g/L)a 0 290.00a

a Data estimated considering the lipid content established by the PDO regulation in 1
5067-20094.pdf), whose powder waste was used in the experiment as indicated in the
along the process, such as volatile fatty acids (VFAs).

2. Materials and methods

2.1. Substrates characterization and feedstock preparation

The cheese whey permeate was obtained from Arla, Denmark,
and stored at �20 �C, in 2 L bottles. The Grana Padano PDO cheese
waste powder (from the portioning phase of manufacturing pro-
cess) was obtained from Colla S.p.A., Italy, and stored in vacuum-
sealed bags at 4 �C. Before usage, the whey permeate was thawed
at 4 �C for 1e2 days. The feedstock was prepared by mixing the two
substrates by hands and it was kept homogenized with a magnetic
stirrer during the feeding times. The chemical composition of each
substrate and mixed feedstock are shown in Table 1.

2.2. Reactors’ configurations and process parameters

The setup consisted of a single (R1) and a two-stage CSTRs (R2
and R3, respectively); each setup had a total working volume of 3 L.
The working volume of the two-stage configuration was split be-
tween the acidogenic reactor (R2; 0.6 L) and the methanogenic
reactor (R3; 2.4 L). Each reactor was filled with inoculum, obtained
from Snertinge thermophilic biogas plant (Denmark), which is
mainly fed with livestock manure (pig and cattle) and wastes from
food industry. The inoculum had a pH of 8.1, total solids (TS) and
volatile solids (VS) content of 31.71± 0.04 and 21.45± 0.05 g/L,
respectively. The total volatile fatty acids (VFAs), total Kjeldahl Ni-
trogen (TKN) and ammonium nitrogen (NH4

þ-N) concentrations
were 0.13± 0.02, 3.78± 0.01, 3.15± 0.01 g/L, respectively. The re-
actors were mixed by magnetic stirrers (stirring intensity equal to
150 rpm) and were kept at thermophilic conditions (55± 1 �C) us-
ing thermal jackets. R1 and R2 were fed four times per day with a
mixture of whey permeate (WP) and cheese powder (CP), while R3
was fed with the effluent from R2. Each time the reactors were fed
with fresh substrate, equal volume of effluent digestate was
removed from the reactors by pneumatic pressure. The hydraulic
retention time (HRT) was set at 15 days, for both configurations
(split in 3 and 12 days in R2 and R3, respectively). The organic
loading rates (OLRs) tested were initially 3.6 g COD/L-reactor day
(Phase I), then, due to acidification problems, 2.4 g COD/L-reactor
day (Phase II). Sodium bicarbonate addition in R1 and R3 was
applied whenever the pH dropped below 6.5.

2.3. Analytical methods

The daily biogas production of R1 (single stage reactor) and R3
(methanogenic reactor of the two-stage configuration) were
measured by an automated gas meter (Angelidaki et al., 1992). Total
Solids (TS), Volatile Solids (VS), Chemical Oxygen Demand (COD),
Feedstock (Phase I) Feedstock (Phase II)

5.50± 0.20 5.50± 0.20
46.01± 4.89 34.55± 3.90
42.46± 3.21 31.89± 2.41
54.02± 3.39 36.01± 2.54
0.05± 0.01 0.04± 0.01
0.41± 0.01 0.31± 0.01
1.03± 0.05 0.77± 0.04
0.10± 0.01 0.08± 0.01
3.20a 2.40a

00 g of Grana Padano cheese (https://www.granapadano.it/public/file/tabNutriGPit-
“Materials and methods” section.
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pH, ammonium nitrogen (NH4
þ�N) and Total Kjeldahl Nitrogen

(TKN) were measured according to the Standard Methods (APHA,
2005). Samples from reactors were collected for pH and VFA ana-
lyses twice per week. VFA samples were determined using a gas
chromatograph (GC-2010; Shimadzu) with a flame ionization de-
tector and FFAP column as described previously (Kougias et al.,
2013). Lactic acid concentration was measured by HPLC (Agilent
1100) with a BioRad-Aminex HPX-87H column using 4mM H2SO4
as eluent at a flow rate of 0.6mL/min. The biogas composition was
measured twice per week, using a gas chromatograph with a
thermal conductivity detector (GC-TCD) as described by Kougias
et al. (2014). The biochemical methane potential (BMP) of the
substrate was determined following the protocol described by
Angelidaki et al. (2009) and the measurements were carried out by
a gas chromatograph with a flame ionization detector (FID), as
described previously (Kougias et al., 2015). Macronutrients were
measured via inductively coupled plasma optical emission spec-
trometry (ICP-OES), after the thermochemical pretreatment of
0.25 g freeze-dried sample. In particular, 9mL of 65% nitric acid,
3mL of 37% hydrochloric acid and 0.5mL of 30% hydrogen peroxide
were used to digest the sample, along with treatment in a micro-
wave unit. The mixture was then centrifuged and diluted prior
analysis. All analyses were performed in replicate samples.
2.4. Metagenomic sequencing and microbial communities analyses

Triplicate samples were taken at the reactors’ steady state
conditions of Phase II and genomic DNA was extracted from all
reactors with RNA PowerSoil DNA Elution Accessory Kit (MOBIO
Laboratories, Carlsbad, CA). DNA quality and quantity were
analyzed using NanoDrop (ThermoFisher Scientific, Waltham, MA)
and Qubit fluorimeter (Life Technologies, Carlsbad, CA). Samples
were sequenced, using NextSeq 500 sequencing technology and
Nextera XT kit (Illumina, San Diego, CA) for library preparation
(150 þ 150 bp). Quality filtering and adaptors removal were carried
out using Trimmomatic software (v0.33) (Bolger et al., 2014). De
novo assembly was executed by CLC Genomics workbench v. 5.1
(CLC Bio, Aarhus, DK, USA) using kmer 63 and bubble size 60. Gene
finding was performed with Prodigal (v2.6.2) run in metagenomic
mode (Hyatt et al., 2012). Genes were annotated according to KEGG
using GhostKOALA (Kanehisa et al., 2016) and to EggNOG 4.5.1
using eggNOG-mapper (Huerta-Cepas et al., 2016). Scaffolds were
binned into Population Genomes (PGs) using two strategies: Met-
aBAT (v0.25.4) (parameters –specific, -m 1500) (Kang et al., 2015)
and the “Hierarchical Clustering followed by Canopy Profile
Fig. 1. CH4 yield of the single stage (R1) and two-stage (R2-R3) c
selection” (HCCP) (Campanaro et al., 2016). In order to improve the
binning strategies, the coverage profile of the scaffolds was deter-
mined by aligning the shotgun sequences derived from other pro-
jects on the assembly. Only samples providing a percentage of
aligned sequences higher than 20% were considered (Kougias et al.,
2016; Treu et al., 2016). Completeness and “contamination” of the
PGs were estimated using “lineage wf” workflow of CheckM and
the PGs obtained from the two approaches were compared using
the “bin-compare”module of the same software (Parks et al., 2015).
PGs identified using both binning strategies were retained from the
HCCP procedure. For all the PGs, gene prediction was improved
comparing results from two different software, Prodigal (Hyatt
et al., 2012) and GeneMarkS (Besemer et al., 2001), and merging
the final results with a perl script previously described (Campanaro
et al., 2014). Functional analysis of the PGs was based on KEGG
annotation via FOAM software (Prestat et al., 2014). Module
completion ratio (MCR) in each functional module of the KEGG
database was evaluated using MAPLE-2.3.0 (http://www.genome.
jp/tools/maple/help.html). Taxonomical assignment for the PGs
was achieved by comparing results from PhyloPhlAn (v0.99)
(Segata et al., 2013), CheckM (Parks et al., 2015) and the 16S rRNA
taxonomic assignment obtained according to the BLASTn results
from the NCBI 16S ribosomal database. The presence of genomes
belonging to the same species in the NCBI microbial genome
database and in PGs recovered in previous assemblies was deter-
mined using Average Nucleotide Identity (ANI) calculation as pre-
viously described (Campanaro et al., 2017). Abundance of genes and
PGs in different reactors was considered as directly related to
scaffold coverage as previously described (Campanaro et al., 2014).
Coverage values determined for PGs were visualized with MeV
(Saeed et al., 2003).

Raw sequence data have been deposited at Sequence Read
Archive (SRA) under the BioProject PRJNA394669 and the acces-
sions SAMN07367931 - SAMN07367939.
3. Results and discussion

3.1. Reactors' process monitoring and configurations’ comparison

Considering the first operation phase, during which the OLR was
set to 3.6 g COD/L-reactor day, both configurations (single and two-
stage) showed increased instability in terms of CH4 yield (Fig. 1).
Such instabilities can be mostly addressed to the difficulties in
maintaining the CP well homogenized in the permeate fraction. This
canprovoke irregularorganicdaily loads, inparticularof the insoluble
onfigurations, during the two phases (I and II) investigated.

http://www.genome.jp/tools/maple/help.html
http://www.genome.jp/tools/maple/help.html
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CP lipid fraction, which could have affected the methanogenic com-
munity. It has beenpreviously found that lipid toxicity is higherunder
thermophilic conditions, especially concerning acetate-utilizing
methanogens (Hwu and Lettinga, 1997). In addition, process over-
acidification (Fig. 2) related to the feed characteristics could also be
involved in the performance instability. Indeed, the acidic pH and the
lack of buffer capacity of the whey permeate caused abrupt drops in
pH, which could affect specific members of the microbial consortia
involved in the AD food chain, resulting in slowermetabolic activities
(Ahring et al., 1995). Indeed, total VFAs concentration increased in R1
and R3, accumulating mostly acetate and butyrate (Fig. 2). This
increment can inhibit specific taxa of acetogenic bacteria or meth-
anogenic archaea, decelerating the whole process and affecting the
methane yield. It is worth noting that the low concentration of pro-
pionate (less than 1 g/L) in R1 and R3 indicates an efficient syntrophic
association between the propionate-degraders, which produce ace-
tate and H2, and the methanogenic communities (Kim et al., 2002;
Fig. 2. pH and VFAs profiles of the single stage (R1) and t
Van Lier et al., 1993).
Despite the addition of sodium bicarbonate to recover the pH in a

suitable range formethanogenesis, theprocess remainedunstable for
both configurations. In addition to the lipid toxicity effect, the over-
acidification that was concurrently experienced after day 66 in both
R1 and R3 reactors could be also related to an inhibitory action pro-
voked by the concentration of potassium in the feed (Table 2). It was
previously observed that Kþ at concentrations higher than 0.4 g/L can
inhibit particularly the aceticlastic methanogens (Kugelman and
McCarty, 1965). This inhibition was also reported at higher extent
under thermophilic conditions (Kugelman and McCarty, 1965).

In order to overcome the problems due to the feed character-
istics, which led to process instabilities in terms of methane pro-
duction (Phase I, Fig. 1), the OLRwas reduced to 2.4 g COD/L-reactor
day (Phase II, Fig. 1). The decrease of the OLR managed to improve
the efficiency of the two-stage configuration, which maintained a
stable profile in terms of CH4 yield (300± 33mL CH4/g CODadded),
wo-stage (R2-R3) CSTRs, during Phase I and Phase II.



Table 2
Most abundant macronutrients in the feedstock, expressed in g/Kg of dry matter, at
Phase I and II.

Element Concentration (Phase I) Concentration (Phase II)

Ca 10.47± 0.31 7.86± 0.23
K 22.19± 1.54 16.66± 1.16
Mg 1.61± 0.01 1.21± 0.01
Na 6.91± 0.25 5.19± 0.19
P 7.33± 0.37 5.50± 0.28
S 2.10± 0.04 1.58± 0.03

Fig. 3. Microbial community composition of the CSTRs: single stage configuration R1 (a), ac
percentages indicate the relative abundance of the PGs assigned to the taxonomic groups a
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corresponding to a maximum of 95% of the theoretical value
(Angelidaki et al., 2011) (Fig. 1). On the contrary, the single stage
reactor exhibited pH instability, showing a further increase in ac-
etate concentration up to 10 g/L (Fig. 2). Despite the addition of
sodium bicarbonate for the maintenance of pH values over 6.5, the
reactor was performing at an inhibited steady state condition
(100± 16mL CH4/g CODadded), reaching a maximum of 33% of the
theoretical CH4 yield. The higher process efficiency of the two-stage
configuration could be mainly due to the pre-acidification step
occurring in R2. Similar findings were also found in a mesophilic
CSTR-UASB system digesting diluted cheese whey (Diamantis et al.,
2014). The acidogenic reactor (R2) maintained a stable pH (i.e.
idogenic R2 (b) and methanogenic R3 (c) reactors of the two-stage configuration. The
s described in Material and Methods section.
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3.9± 0.1) all along the duration of the process. Moreover, the con-
centration of VFAs was stabilized after the OLR reduction (Phase II)
having values between 4.5 and 7 g/L (Fig. 2).

Butyrate was the intermediate compound showing the highest
accumulation level (3.5± 1.1 g/L), followed by acetate (1.6± 0.4 g/L),
whereas propionate was almost absent. The VFAs composition of
R2 could have also favored the two-stage performance since
butyrate and acetate were found to be the best precursors for
methane production (McCarty and Smith, 1986; Stronach et al.,
1986; Speece, 1996). Moreover, the lack of propionate in this
reactor probably contributed to avoid potential toxicity effects on
the methanogenic community of R3 (Barredo and Evison, 1991).

3.2. Genome-centric metagenomics and predictive functional
analyses

The obtained assembly had a total length of more than 160 Mbp
(N50: 5442) indicating that almost the total community was
Fig. 4. Heat map of relative abundance of the 50 PGs identified in the study (R1: single stage
b, c: replicates). The red stars indicate the common “microbial core” between R1 and R3.
represented in the assembled scaffolds (since it included 86%e99%
of the reads, depending on sample). To assign a putative functional
role to the species present, a genome-centric approach was applied
to the assembly. The binning strategy assigned the scaffolds to the
microbial species and identified 50 PGs, 19 of them having esti-
mated completeness higher than 90% and average contamination
around 2%. The success of the applied strategy is highlighted by the
high percentage of scaffolds that were assigned to a genome, with
only few left unassigned (less than 40%). The presence of previously
sequenced genomes identified in the present project was verified
by comparing the reconstructed PGs of this study with the genome
sequences deposited in the Microbial Genome Resources (NCBI)
and reported in previous genome-centric investigations (Kougias
et al., 2016; Treu et al., 2016; Mosbaek et al., 2016; Stolze et al.,
2016; Vanwonterghem et al., 2016). From this analysis, it was
found that 12 PGs were assigned to known species, 16 were iden-
tified in previous genome-centric studies, and 22 PGs were newly
identified. The new PGs weremostly assigned to Clostridia class and
; R2: acidogenic reactor of the two-stage; R3: methanogenic reactor of the two-stage; a,
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none of them was classified at species level.
Investigation of the proteins function and identification of the

metabolic pathways encoded in the PGs, allowed to draw some
correlations between the abundance of the PGs and the presence of
key metabolic intermediates. For practical reasons, only the highly
abundant and most complete PGs were selected in this analysis
(coverage >3 and completeness >70%). Subsequently, by selecting
the pathways having completeness higher than 70%, it was possible
to obtain a “single-species level”metabolic reconstruction (Fig. A4).

The microbial consortium established in the reactors under
investigationwas a result of the physico-chemical characteristics of
the feed, namely acidic pH and presence of lactose as the main
carbon source. Indeed, the bacterial community of the current
study was found to be remarkably different compared to previously
investigated AD microbiomes, even if the same thermophilic
inoculum was used (Bassani et al., 2015; Campanaro et al., 2016)
(Fig. 3).

The predictive functional analysis based on KEGG annotation,
showed that the higher biodiversity found in the two-stage
configuration (including both Bacteria and Archaea) (Fig. 3) resul-
ted in a higher number of ABC transporters (27) for amino acids and
lipo-oligosaccharides intake, as well as genes involved in amino
Fig. 5. Metabolic reconstruction of the most important PGs discussed. The main VFA metabo
The genes present in the corresponding PG are indicated with colored dots.
acids and fatty acid metabolisms (65). Thus, it can be assumed that
awider range of intermediate compoundswere available as feed for
the microbial consortia of the serial CSTRs.

3.2.1. Single stage reactor (R1)
The single stage reactor R1 showed a dominance of three phyla:

Firmicutes (57%), Synergistetes (21%) and Thermotogae (17%)
(Fig. A1a). It is worth noticing the absence of the phylum Bacter-
oidetes, which is generally one of the most abundant phylum in
biogas reactors (around 10%), frequently involved in the hydrolytic
step of AD (Campanaro et al., 2016; Fontana et al., 2016; Luo et al.,
2016; Stolze et al., 2016). Interestingly, each phylum identified in R1
was represented by a single species, highlighting the effect of
feedstock on the bacterial population established in the reactor
(Fig. 3a).

Despite the differences between the configurations, the two
methanogenic reactors, R1 and R3, shared a “microbial core”
composed by four Bacteria species (Fig. 4): Coprothermobacter
proteolyticus sp. UC0011, Defluviitoga tunisiensis UC0050, Anaero-
baculum hydrogeniformans UC0046 and Clostridiales sp UC0015.
These PGs were previously associated to the hydrolytic step of the
thermophilic anaerobic digesters (Campanaro et al., 2016; Maune
lisms (acetate and butyrate), E-M, Leloir, W-L pathway and TCA cycle, are represented.
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and Tanner, 2012; Maus et al., 2016; Sasaki et al., 2011). In R1, the
species Defluviitoga tunisiensis UC0050 and Clostridiales sp. UC0015
(belonging to Thermotogae and Firmicutes phyla, respectively) were
the main responsible for lactose fermentation. In particular, the
EggNog functional analysis predicted in both species the presence
of all the subunits composing theMalEFG transporter, which allows
the import of disaccharides (including lactose) in the cell. The
presence of this transporter in Defluviitoga tunisiensis was also
supported by previous studies (Maus et al., 2016). The continuous
lactose fermentation led to the production of acetate (Fig. 5);
however, the absence of aceticlastic methanogens in R1 and the low
abundance of syntrophic acetate oxidizing bacteria, such as Tepid-
anaerobacter acetatoxydans UC0018, resulted in accumulation of
acetic acid, and concomitantly, deterioration of the AD process.
Tepidanaerobacter acetatoxydans was previously isolated from an
ammonium-rich, mesophilic CSTR fed with silage (Westerholm
et al., 2011). The functional analysis of UC0018 showed a com-
plete WoodeLjungdahl (W-L) pathway (Fig. A4 and A5) in which
the reducing equivalents generated from the glycolysis are re-
oxidized by the reduction of two molecules of CO2 to acetate. The
EggNog analysis confirmed the presence of genes encoding the
enzymes involved in the pathway, from the CO2 reduction to the
acetate formation (Fig. 5). It is worth noticing that an inefficient H2

removal by H2-scavengers, such as hydrogenotrophic metha-
nogens, could have affected the metabolic activity of Tepid-
anaerobacter acetatoxydans UC0018, from acetate-oxidizer to
acetate-producer (Müller et al., 2015), participating to the acetate
accumulation occurred in R1.

Focusing on the archaeal community in R1, the abundance was
approximately around 2% (Fig. A2a), similarly to values found in
reactors fed with other substrates (Luo et al., 2016; Stolze et al.,
2016). The reactor was dominated by one class of methanogens
namely Methanobacteria, which represented the 87% of the total
archaeal population (Fig. A3a). The instability of the pH in R1
frequently led to over-acidification, reaching values lower than 6.5.
It could be hypothesized that this effect reduced the biodiversity of
the methanogenic community, which generally grow in a pH range
of 6.5e8.5 (Weiland, 2010). This unfavorable environment allowed
mostly the growth of one species, Methanothermobacter wolfeii
UC0008 (Fig. 4), which can utilize H2/CO2 or formate as the sole
carbon and energy source (Wasserfallen et al., 2000). However,
even if in lower abundance, it was also found another hydro-
genotrophic methanogens, Methanothermobacter thermauto-
trophicus UC0010 (Wasserfallen et al., 2000) (Fig. 4). The difficulties
exhibited by R1 to maintain the pH in the optimum range, led to a
partial inhibition of the methanogenic hydrogenotrophic activity,
hampering syntrophic associations for acetate disposal. Moreover,
it is worth highlighting that the absence of acetate-scavengers,
such as aceticlastic methanogens, can be the consequence of a
lipid toxicity effect, which is more evident in a single stage
configuration than in a two-stage design. Moreover, the lack of
acetate-utilizing methanogens in R1 can be one of the principal
explanations for the higher acetate concentration reached in this
reactor.

3.2.2. Two-stage, acidogenic reactor (R2)
The bacterial selection imposed by the feed was particularly

evident in the acidogenic reactor of the serial configuration (R2),
which specifically represented the hydrolytic and acidogenic pha-
ses of the AD process. In this reactor, Actinobacteria was the most
abundant taxon (82%) (Fig. A1b) even though it generally accounts
as minor fraction in AD reactors (Campanaro et al., 2016; Fontana
et al., 2016). This phylum was composed by a single species, Bifi-
dobacterium crudilactis UC0001, a PG very similar to species pre-
viously isolated from raw milk and raw milk cheeses (Delcenserie
et al., 2007). UC0001 was the main responsible for lactose
fermentation in the reactor, showing a complete pathway for
galactose degradation, including the enzyme b-galactosidase (lacZ)
responsible for lactose hydrolysis (Fig. 5 and Fig. A4). The ability of
B. crudilactis to import lactose in the cell and then acidify it was also
described by Delcenserie et al. (2007).

The reactor R2 was additionally populated by other species
present in lower abundance, such as Pseudomonas lundensis
UC0042 and Leuconostoc pseudomesenteroides UC0016 (7% and 5%,
respectively) (Fig. 3b).

The functional analysis of Pseudomonas lundensis UC0042
revealed a complete b-oxidation pathway (Fig. A4). In particular, it
exhibited a set of proteins correlated to acetyl-CoA production and
its subsequent conversion into butanoyl-CoA (Fig. 5 and Fig. A7),
explaining the presence of butyrate at high concentration in R2.
This metabolic activity was also supported by Morales et al. (2005),
who identified a high production of butyrate in milk inoculated
with P. lundensis. The metabolic reconstruction of this species also
supported the presence of pathways involved in amino acids
degradation, namely methionine, histidine, tyrosine and leucine. A
deeper analysis performed using EggNogg annotation, showed that
this PG encoded 21 proteases, among which some secreted (e.g.
subtilisin). These results suggested a crucial role of Pseudomonas
lundensis UC0042 in the degradation of proteins present in the
feeding substrate.

This reactor also showed a higher abundance of Clostridiaceae
spp. and, in particular, of Clostridium spp. (Fig. 3b), which could
have contributed to the sugars degradation in R2 (Hung et al., 2011).
The remarkably different microbial composition exhibited by this
reactor, indicates a higher specialization in the hydrolytic and
acidogenic activities, which might have contributed to the higher
process efficiency of the two-stage configuration.

As expected, no Archaea were found in R2 since the pH was
prohibitive for methanogenic growth (3.9± 0.1) (Weiland, 2010)
(Fig. A2b).

3.2.3. Two-stage, methanogenic reactor (R3)
The methanogenic reactor of the serial configuration (R3) pre-

sented the highest microbial richness when compared to the other
reactors (Fig. A1c). This divergence could be mainly due to the feed
of R3, which was mainly composed by the VFAs produced in the
acidogenic reactor (R2), resulting in different metabolic activities
and functionalities in the two configurations.

Among bacterial population, Bacteroidetes phylum (11%
abundance) was included and represented by only one species,
Bacteroidetes sp. UC0002 (Fig. 3c). Differently from other PGs
belonging to the Bacteroidetes phylum in previous studies
(Campanaro et al., 2016; Luo et al., 2016; Stolze et al., 2016),
the predictive functional investigation performed on Bacter-
oidetes sp. UC0002 did not classify it to the hydrolytic step of
the AD food chain but assigned a role in amino acids intake
and degradation, as well as in fatty acids biosynthesis. More-
over, from the KEGG functional analysis was suggested an
ability of Bacteroidetes sp. UC0002 to perform the reductive
TCA cycle, by encoding five fundamental enzymes (fdr, suc, icd,
ACO, PC) (Fig. 5 and Fig. A8).

It is worth noticing the high abundances of Syntrophomonas sp.
UC0014 and Syntrophaceticus sp. UC0017 in R3 (Fig. 3c). UC0014
was one of the PGs (together with P. lundensisUC0042 in R2) having
a complete b-oxidation pathway (Fig. A4). This suggested an
involvement of Syntrophomonas sp. UC0014 in the syntrophic
oxidation of the butyrate produced in the acidogenic reactor R2 into
acetate (Fig. 5 and Fig. A9). Considering Syntrophaceticus sp.
UC0017, its functional analysis revealed a complete
WoodeLjungdahl (W-L) pathway, which can be likely utilized in
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the oxidative direction (Fig. 5 and Fig. A10). It was demonstrated
that strictly related species such as S. schinkii can oxidize acetate to
hydrogen and/or formate, whose usage by hydrogenotrophic
methanogens makes the reaction energetically favored (Manzoor
et al., 2015).

It is interesting to note the specific presence (~4%) of Chloroflexi
spp. in R3 (Fig. 3c). Despite the metabolic functions of bacteria
belonging to this group are still poorly characterized, few studies
established the potential role of Chloroflexi spp. in carbohydrates
degradation (Ariesyady et al., 2007).

Even though the archaeal abundance was comparable between
the two configurations (approximately 2%; Fig. A.2a, A.2c), R3 had a
more biodiverse population of methanogens, that were assigned to
three different classes (Fig. A3), namely Methanobacteria (38%),
Methanomicrobia (34%), Thermoplasmata (28%). They correspond to
a core population of three equally abundant methanogens: Meth-
anothermobacter wolfeii UC0008, Methanosarcina thermophila
UC0006 and Methanomassiliicoccus sp. UC0009 (Fig. 4). Meth-
anomassiliicoccus species can produce methane by reducing
methanol with hydrogen (Dridi et al., 2012) but they can also utilize
methylamines to perform methylotrophic methanogenesis
(Poulsen et al., 2013). Methanosarcina thermophila, can instead
utilize acetate, methanol, methylamines and H2/CO2 (Zinder et al.,
1985). The H2 generated from the b-oxidation pathway per-
formed by Syntrophomonas sp. UC0014 can be transferred to
hydrogenotrophic methanogens, such as Methanothermobacter
wolfeii UC0008 and the generalist Methanosarcina thermophila
UC0006, which act as H2 sinks and support the syntrophic associ-
ation between species. Utilization of H2 by the Archaea shifts the
reaction equilibrium towards acetate oxidation, increasing the en-
ergy gain of the bacterial species (Sieber et al., 2010; Stams and
Plugge, 2009).

The higher biodiversity in methanogenic taxa could be one of
the reasons why R3 was more efficient, since a wider range of
metabolic intermediates can be converted to methane. This could
avoid the accumulation of specific compounds such acetate, which
concentration was found to be remarkably increased in the single
stage reactor configuration R1.

4. Conclusions

In conclusion, this study allowed gaining new insights on the
anaerobic digestion of dairy wastes, identifying constraints about
reactor configurations and highlighting the main metabolic
players of the complex microbial consortia. The superior perfor-
mance of the two-stage configuration was mainly due to the pre-
acidification step, which allowed a better distribution of the mi-
crobial species in suitable habitat for their metabolic activities. In
particular, Bifidobacterium crudilactis UC0001 was the main
lactose degrader in the acidogenic phase of AD, whereas a wider
set of methanogenic archaea (Methanothermobacter wolfeii
UC0008, Methanosarcina thermophila UC0006 and Meth-
anomassiliicoccus sp. UC0009) was responsible for the higher
methane yield reached by the serial configuration. Moreover, it
was evident that the acetate concentration exhibited by the single
stage reactor was mainly due to the lack of aceticlastic metha-
nogens and to the partial inhibition of the methanogenic
hydrogen scavengers Methanothermobacter wolfeii UC0008 and
Methanothermobacter thermautotrophicus UC0010, hampering the
activity of the low abundant syntrophic acetate oxidizer species
such as Tepidanaerobacter acetatoxydans UC0018.

The findings of this work can be further utilized for develop-
ment of reactor designs aiming high rate/yield methane production
from dairy wastewater and serve as complementary foundation for
deciphering the biogas microbiome.
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