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SWIM-LIKE MOTION OF BODIES IMMERSED IN AN IDEAL FLUID

Marta Zoppello1 and Franco Cardin2

Abstract. The connection between swimming and control theory is attracting increasing attention
in the recent literature. Starting from an idea of Alberto Bressan [8] we study the system of a planar
body whose position and shape are described by a finite number of parameters, and is immersed in a
2-dimensional ideal and incompressible fluid in terms of gauge field on the space of shapes. We focus on
a class of deformations measure preserving which are diffeomeorphisms whose existence is ensured by
the Riemann Mapping Theorem. After making the first order expansion for small deformations, we face
a crucial problem: the presence of possible non vanishing initial impulse. If the body starts with zero
initial impulse we recover the results present in literature (Marsden, Munnier and oths). If instead
the body starts with an initial impulse different from zero, the swimmer can self-propel in almost
any direction if it can undergo shape changes without any bound on their velocity. This interesting
observation, together with the analysis of the controllability of this system, seems innovative.
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Introduction
In this work we are interested in studying the self-propulsion of a deformable body in a fluid. This kind of

systems is attracting an increasing interest in recent literature. Many authors focus on two different type of
fluids. Some of them consider swimming at micro scale in a Stokes fluid [2,4–6,27,35,40], because in this regime
the inertial terms can be neglected and the hydrodynamic equations are linear. Others are interested in bodies
immersed in an ideal incompressible fluid [8,18,23,30,33] and also in this case the hydrodynamic equations turn
out to be linear.
We deal with the last case, in particular we study a deformable body -typically a swimmer or a fish- immersed in
an ideal and irrotational fluid. This special case has an interesting geometric nature and there is an attractive
mathematical framework for it. We exploit this intrinsically geometrical structure of the problem inspired
by [39, 40] and [32], in which they interpret the system in terms of gauge field on the space of shapes. The
choice of taking into account the inertia can apparently lead to a more complex system, but neglecting the
viscosity the hydrodynamic equations are still linear, and this fact makes the system more manageable. The
same fluid regime and existence of solutions of these hydrodynamic equations has been studied in [18] regarding
the motion of rigid bodies.
We start from an early idea of Alberto Bressan [8] and some unpublished developments, according to which the
shape changes can be described by a finite number of parameters. These kind of systems, where the controls are
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precisely given by further degrees of freedom of the systems, have been first studied deeply by Aldo Bressan,
see e.g. [9–11]. In this framework we show that the composed system “fluid-swimmer” is Lagrangian geodesic.
Next, coupling this fact with some techniques developed in [33], we are able to show that the kinetic energy
of the system (i.e. the Lagrangian) is bundle-like, a concept by Bruce Reinhart [38] and introduced in control
theory by Franco Rampazzo in [37]. This leads us to express the equations of motion as linear control equations,
where any quadratic term is vanishing, radically simplifying our final analysis on the system. The geometric
construction of the control dynamic equations follows substantially the line of thought of [13,29].
At a first glance, the deformations of the swimmer are naturally given by diffeomorphisms, that are infinite
dimensional objects. By considering a planar setting and making use of complex analysis, as suggested in [14,33]
the Riemann Mapping Theorem plays a crucial role in describing the shape changes of the swimmer. It turns
out that the diffeomorphisms can be parametrized by appropriate complex converging series. In the literature
other authors exploit the same way of describing the shape changes by conformal maps, for example in [14]
in the environment of the Stokes approximate regime or in [33] in the case of an ideal and irrotational fluid,
in which they take into account only a finite number of terms to represent the diffeomorphisms. We follow
substantially an analogous approach to merge this idea with the setting of Alberto Bressan. The choice of using
a finite number of parameters means that the kind of deformations that we consider is more restricted but still
enough to describe a wide range of swimmers.
In order to have a more manageable system that the one in [33], we establish a connection between the use of
complex and real shape parameters. We show that, if we consider small shape changes, a well precise choice
of the real and imaginary part of the shape parameters leads to obtain exactly the same deformation proposed
in [32], which use a rather different parametrization governed by suitable small deformation. Therefore we get
a description of our system with a finite number of parameters/coordinates, which is useful to apply the idea of
controlling the shape coordinates to steer the swimmer between two different configurations. In this environment
we recover the well known Scallop Theorem [3] in the case in which we suppose to have only one real shape
parameter. Thanks to the idea of using a finite number of parameters we can reduce our dynamic equations
to a control system. The controllability issue has been recently linked to the problem of swimming [2, 3, 22, 27]
since it helps in solving effectively motion planning or optimal control problems.

We point out that in the Stokes regime there are interesting results, for example in [27] the authors study
the controllability of a swimmer which performs small deformations around the sphere, or in [23] in which he
considers the swimming mechanism as a ‘broken-line’-like structure, formed by an ordered sequence of finitely
many sets. Even in [2, 16] they study the controllability of a slender swimmer composed by N links immersed
in a viscous fluid at low Reynolds number.
In the present work we deal with the ideal and irrotational case, neglecting viscosity. In particular differently
from what was done in other works, we focus our attention on a crucial problem: the presence of an initial
impulse. The case of zero initial linear momentum is studied in literature concerning systems of different nature:
both in the multi-particle or many-bodies field, [19–21], and shape changing bodies, [30,32–34], as the equation
of motion are a driftless affine control system whose controllability can be studied using classical techniques.
Instead, the case of a non vanishing initial impulse leads us to a more complex system since the equations of
motion involve also a non zero drift term and their controllability is more tricky to study. Therefore we have
two contributions to the motion of the system: the first one that is purely geometrical and determined by the
structure of the problem, and the second one, strictly linked to the presence of a non vanishing initial impulse.
The controllability of this kind of systems is studied in detail, and among other facts it is worth noting that we
need at least three real shape parameters to make the system controllable.

We have three state parameters, three conjugate variables and at least three controls. Despite the evident
complexity of the computations linked to this number of variables, we managed to obtain interesting results.

The plan of the paper is the following. In Section 1 we present in some detail the geometric aspects useful
to formulate our problem. The proper geometrical setting of the swimmer in a 2-dimensional fluid is faced in
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Section 2. Section 3 contains an exhaustive study, in a complex setting, of the deformation of the body, together
with the construction of the equation of motion. We deal with all the controllability issues in Section 4.

1. Preliminaries
This section covers some auxiliary mathematical topics, in particular from Lie groups, fiber bundles and

connections that we shall need later. This summary will be helpful to set the notation, fill in some gaps, and
to provide a guide to the literature for needed background.

1.1. Lie Groups
Let us start from some geometric and algebraic notions on Lie groups, that arise in discussing conservation

laws for mechanical and control systems and in the analysis of systems with some underlying symmetry.

Definition 1.1. A Lie group is a smooth manifold G that is a group with identity element e = gg−1 = g−1g,
and for which the group operations of multiplication, (g, h) 7→ gh for g, h ∈ G, and inversion, g 7→ g−1, are
smooth.

Before giving a brief description of some of the theory of Lie groups we mention an important example: the
group of linear isomorphisms of Rn to itself. This is a Lie group of dimension n2 called the general linear group
and denoted by GL(n,R). The conditions for a Lie group are easily checked. This is a manifold, since it is an
open subset of the linear space of all linear maps of Rn to itself; the group operations are smooth, since they
are algebraic operations on the matrix entries.

Definition 1.2. A matrix Lie group is a set of invertible n×n matrices that is closed under matrix multiplication
and that is a submanifold of Rn×n.

Lie groups are frequently studied in conjunction with Lie algebras, which are associated with the tangent
spaces of Lie groups as we now describe.

Definition 1.3. For any pair of n× n matrices A, B we define the matrix Lie bracket [A,B] = AB −BA.

Proposition 1.1. The matrix Lie bracket operation has the following two properties:
(i) For any n× n matrices A and B, [B,A] = −[A,B] (skew-symmetry).
(ii) For any n× n matrices A, B, and C,

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0. (This is known as the Jacobi identity.)

As is known, properties (i) and (ii) above are often thought as the definition of more general Lie brackets
(than AB −BA) on vector spaces called Lie algebras.

Definition 1.4. A (matrix) Lie algebra g is a set of n × n matrices that is a vector space with respect to the
usual operations of matrix addition and multiplication by real numbers (scalars) and that is closed under the
matrix Lie bracket operation [·, ·].

Proposition 1.2. For any matrix Lie group G, the tangent space at the identity TIG is a Lie algebra.
As usual, for matrix Lie groups one denotes e = I

We now describe an example that plays an important role in mechanics and control.
The plane Euclidean Group

Consider the Lie group of all 3× 3 matrices of the form(
R d
0 1

)
(1.1)
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where R ∈ SO(2) and d ∈ R2. This group is usually denoted by SE(2) and is called the special Euclidean
group. The corresponding Lie algebra, se(2), is three-dimensional and is spanned by

A1 =

0 −1 0
1 0 0
0 0 0

 A2 =

0 0 1
0 0 0
0 0 0

 A3 =

0 0 0
0 0 1
0 0 0

 . (1.2)

The special Euclidean group is of central interest in mechanics since it describes the set of rigid motions and
coordinate transformations on the plane. Let G be a matrix Lie group and let g = TIG be the corresponding
Lie algebra. The dimensions of the differentiable manifold G and the vector space g are of course the same, and
there must be a one-to-one local correspondence between a neighborhood of 0 in g and a neighborhood of the
identity element I in G. An explicit local correspondence is provided by the exponential mapping exp : g 7→ G,
which we now describe. For any A ∈ Rn×n (the space of n× n matrices). exp(A) is defined by

exp(A) := I +A+ 1
2!A

2 + 1
3!A

3 + . . . (1.3)

This map for SE(2) can be defined by the exponential of the elements of the Lie algebra se(2). More precisely

exp(θA1) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (1.4)

exp(xA2) =

1 0 x
0 1 0
0 0 1

 exp(yA2) =

1 0 0
0 1 y
0 0 1

 . (1.5)

Since [Ai,Aj ] = 0 for all i, j = 1, 2, 3, we have that ∀(θ, x, y) ∈ R3 ≡ g = se(2) :

exp(θA1 + xA2 + yA3) = exp(θA1) exp(xA2) exp(yA3)

that is clearly elements of SE(2).
We now define the action of a Lie group G on a manifold Q. Roughly speaking, a group action is a group

of transformations of Q indexed by elements of the group G and whose composition in Q is compatible with
group multiplication in G.
Definition 1.5. Let Q be a manifold and let G be a Lie group. A left action of a Lie group G on Q is a smooth
mapping Φ : G×Q 7→ Q such that

(i) Φ(e, q) = q for all q ∈ Q,
(ii) Φ(g,Φ(h, q)) = Φ(gh, q) for all g, h ∈ G and q ∈ Q,
(iii) Φ(g, ·) is a diffeomorphism for each g ∈ G.
A Lie group acts on its tangent bundle by the tangent map. We can consider the left or the right action of

G on g by: TeLgξ or TeRgξ, where Lg and Rg denote left and right translations, respectively; so if g = g(t) is
a curve in G, then there exists a time dependent ξ(·) ∈ g such that

ġ(t) = TeLg(t)ξ(t) = g(t)ξ(t) (1.6)

and similarly for the right action.
Given left action of a Lie group G on Q, Φ : G × Q → Q, and ξ an element of the Lie algebra g then
Φξ : R×Q→ Q : (t, q) 7−→ Φ(exp tξ, q) is a flow on Q, the corresponding vector field on Q is called infinitesimal
generator of Φ corresponding to ξ, is denoted by ξQ(q)

ξQ(q) = d

dt
Φ(exp tξ, q)|t=0 . (1.7)
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1.2. Fiber Bundles and Connections
Fiber bundles provide a basic geometric structure for the understanding of many mechanical and control

problems.
A fiber bundle essentially consists of a given space (the base) together with another space (the fiber) attached

at each point, plus some compatibility conditions. More formally, we have the following:

Definition 1.6. Let S be a differentiable base manifold and G a Lie group. A differentiable manifold Q is
called principal fiber bundle if the following conditions are satisfied:

1 G acts on Q to the left, freely and differentiably:

Φ : G×Q→ Q (1.8)

writing Φ(g, q) = Φg · q = g · q .
2 S = Q/G and the canonical projection π : Q→ S is differentiable
3 Q is locally trivial, namely every point s ∈ S has a neighborhood U such that π−1(U) ⊂ Q is isomorphic
to U × G, in the sense that q ∈ π−1(U) 7→ (π(q), φ(q)) ∈ U × G is a diffeomorphism such that φ :
π−1(U)→ G satisfies φ(g · q) = gφ(q),∀g ∈ G

An important additional structure on a bundle is a connection. Suppose we have a bundle and consider
(locally) a section of this bundle, i.e., a choice of a point in the fiber over each point in the base. We call such
a choice a “field”. The idea is to single out fields that are “constant”. For vector fields on a linear space, for
example, it is clear what we want such fields to be; for vector fields on a manifold or an arbitrary bundle, we have
to specify this notion. Such fields are called “horizontal”. A connection is used to single out horizontal fields,
more precisely fields which live in a subspace of the the tangent space, and is chosen to have other desirable
properties, such as linearity.

Definition 1.7. Let (Q,S, π,G) be a principal fiber bundle. the kernel of Tqπ denoted by Vq := {v ∈ TqQ|Tqπ(v) = 0},
is the subspace of TqQ tangent to the fiber through q and is called vertical subspace. A connection on the prin-
cipal fiber bundle is a choice of a tangent subspace Hq ⊂ TqQ at each point q ∈ Q called horizontal subspace
such that:

(1) TqQ = Hq ⊕ Vq
(2) For all g ∈ G and q ∈ Q, TqΦg ·Hq = Hg·q
(3) Hq depends differentiably on q

Hence, for any q ∈ Q, we have that Tqπ determines an isomorphism Hq
∼= Tπ(q)S: for all TqQ 3 v = vVq +vHq

and we have that Tπ(q)(v) = vHq ∈ S. In other words the choice of an horizontal subspace can be seen also as
the choice of a vector valued “connection one form” which vanishes on the horizontal vectors.

It follows the definition

Definition 1.8. An Ehresmann connection A is a vector valued one form such that
(i) A is vertical valued: Aq : Tq −→ Vq is a linear map for each point q ∈ Q
(ii) A is a projection: A(v) = v for all v ∈ Vq.

In the special case in which (Q,S, π,G) is a principal fiber bundle the previous conditions on A : TQ −→ g
read:

(i) A(ξQ(q)) = ξ for all ξ ∈ g and q ∈ Q, where ξQ(q) is the infinitesimal generator of the left action of G
on Q (1.7).

(ii) A is equivariant:
A(Tq(Φg(v))) = Adg(A(v))
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for all v ∈ TqQ and g ∈ G where Φg denotes the given action of G on Q and where Ad denotes the
adjoint action of G on g defined as

Adg := Te(Lg ◦Rg−1) : g→ g .

Therefore it is evident that the horizontal subspace Hq is the kernel of Aq.
n the case in which there is a metric h(q) in our manifold Q, we have a special way to define the horizontal
subspace: it is the orthogonal with respect to the metric to the vertical subspace.

Hq = {w ∈ TqQ : 〈w, h(q)v〉 = 0,∀v ∈ Vq} . (1.9)

In this special case our connection A is called mechanical connection (see [31] and therein references). We now
would like to express the connection in coordinates, in order to do this we first introduce the following definition

Definition 1.9. Let us consider the following diagram

Q

S ⊃ U

π σ where π ◦ σ = id|U

The functions like σ are sections and we call Γ(U,Q) the set of all sections from U in Q.

Alternatively often a connection is introduced as a derivation ∇ as follows. Let ∇ be a map

∇ : Γ(Q)→ Γ(Q⊗ T ∗S) such that
∇(σ1 + σ2) = ∇(σ1) +∇(σ2)
∇(fσ) = f∇(σ) + σ ⊗ df if f is a C∞ function.

Let now e be a local basis of sections of the principal fiber bundle, in this basis the connection one-form A can
be expressed as

eaA
a
b = ∇eb a, b = 1 · · · dim(Q).

If we change basis in Γ(Q), say e = ẽΩ, the connection A changes, i.e.

ẽÃ =∇ẽ = ∇(eΩ−1) = (∇e)Ω−1 + edΩ−1 = eAΩ−1 + edΩ−1

= ẽΩAΩ−1 + ẽΩdΩ−1

therefore A and Ã satisfy the following relation

Ã = ΩAΩ−1 + ΩdΩ−1 . (1.10)

Let u(t) be a smooth curve in S passing through the point P = u(0). Let q ∈ QP = π−1(P ) be any point in
the fiber of Q over P . We would like to find a smooth curve γ(t) in Q such that π(γ(t)) = u(t), γ(0) = q, and
γ′(t) ∈ Hγ(t) (i.e., the tangent vectors to the curve γ(t) are horizontal).

From the usual theory of differential equations it follows that such a curve γ(t) exists and is unique, at
least locally at any point q ∈ Q (i.e., for small values of t). The curve γ is called a horizontal lift of u (see
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Figure 1). Regarding the tangent vectors, for any q ∈ Q and any vector u̇ ∈ Tπ(q)S there exists a unique vector
v ∈ Hq ⊂ TqQ such that Tqπ : v 7→ u̇. The vector v is called the horizontal lift of u̇.

Given an Ehresmann connection we can define the horizontal lift of curves in S, hence we can also define a
notion of parallel transport that allows us to identify different fibers of Q.

P=u(0) Q=u(t) 

π-1(P)=QP 

q γ(t) 

π-1(Q)=QQ 

Figure 1. Horizontal lift γ(t), of the curve u(t) that starts at P and ends at Q.

Note that, in general, the parallel transport will be path-dependent. If we start with two different curves
u1(t) and u2(t), such that u1(0) = u2(0) = P and u1(t̄) = u2(t̄) = S, then the horizontal lifts γ1 and γ2 at a
point q ∈ QP will not meet, in general, at a point in the fiber QS , i.e., we will have γ1(t̄) 6= γ2(t̄). This gap
on the fiber is called holonomy and depends on the choice of the connection and on the topology of the base
manifold. In particular if it is connected the holonomy depends on the basepoint only up to conjugation [24].

2. Geometrical setting
In this section we present the geometrical framework underlying dynamical control systems. We derive the

equations of motion and discuss how to use the geometrical tools introduced before to gain informations on our
system.

2.1. Geometry of control equations
In this subsection we derive the local dynamic equations for the control system (Q, h,F) where F is a smooth

k-dimensional foliation on Q, and h is the Riemaniann metric on the manifold Q, as done in [29]. As is well
known, on a set U ⊂ Q adapted for the foliation, F coincides with the model foliation of Rn by k-dimensional
hyperplanes. Let φ : U −→ Rn, φ(P ) = (x, y) be a local chart of Q in U , distinguished for F , so that φ maps
F|U into the trivial fibration π(x, y) = y. Set q = (x, y) ∈ Q; given a path u(t) ∈ π(φ(U)), we suppose that for
every t, the reaction forces that implement the (ideal) constraint y ≡ u(t) are workless with respect to the set
Vq(t)U = kerTq(t)π of the virtual displacements compatible with the constraint y ≡ u(t).

Let (Q, h,F) be a foliated Riemanian manifold, let U ⊂ Q be an open set adapted for F an let q = (x, y). If
T (q, q̇) = 1

2 q̇
th(q)q̇ is the kinetic energy of the unconstrained system (Q, h,F), then the kinetic energy of the

system subject to the time dependent constraint y ≡ u(t) is T (x, u(t), ẋ, u̇(t)). The related dynamic equations
are, in Lagrangian formalism

d

dt

∂T

∂ẋ
− ∂T

∂x
= 0 . (2.1)
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These can be put in Hamiltonian form by performing a partial legendre transformation on the ẋ- variables.
When we identify y with u(t) and ẏ with d

dtu(t), the above Lagrange equations are equivalent to

ẋ = ∂H

∂p
(x, p, u, u̇) ṗ = −∂H

∂x
(x, p, u, u̇) . (2.2)

We call these equations control equations. Let

q̇th(q)q̇ = ẋtCẋ+ ẋtMẏ + ẏtMtẋ+ ẏtBẏ (2.3)

be the local block representation of the metric h in φ(U), where C,B are symmetric and invertible respectively
k × k and (n− k)× (n− k) matrices.

To every q ∈ U denote with HqU the subspace orthogonal to VqU = kerTqπ with respect to h. Referring to
the local expression of h in U , it is easy to see that HqU is the space orthogonal to the vectors (ei, 0)i=1···n with
respect to the metric h .

HqU = {(ẋ, ẏ) ∈ TqU such that C(q)ẋ+M(q)ẏ = 0} .

Therefore HqU can be equivalently assigned through the VqU -valued connection one form defined in 1.8

A(q) = (dx+ C(q)dy)⊗ ∂

∂x
where (see 2.6 ) C = C−1M (2.4)

whose kernel and range are respectively HqU and VqU . Now we consider the orthogonal splitting of a vector
into its horizontal ad vertical components

v = vv + vh = A(q)v + hor(Tqπv) = (ẋ+ Cẏ, 0) + (−Cẏ, ẏ)

Using the above decomposition, we get the induced splitting of the kinetic energy metric tensor into its vertical
and horizontal part:

h(q)dq ⊗ dq = C(q)A(q)⊗A(q) +K(q)dy ⊗ dy (2.5)
where K(q) = B −MtC−1M.

Definition 2.1. The Riemannian metric h is bundle-like for the foliation F iff on a neighborhood U with
adapted coordinates (x, y) the above orthogonal splitting of g holds with K = K(y).

The importance of this notion will be clear in the following subsection (2.1.1). Using this notation we want
to rewrite the control equations.

From
p = ∂T

∂ẋ
= Cẋ+Mẏ

we obtain
ẋ = C−1p− C−1Mu̇ = C−1p− Cu̇ . (2.6)

Substituting (2.6) in (2.3) and recalling that −∂H∂x = ∂T
∂x we have

ṗ = −∂H
∂x

= ∂T

∂x
= −1

2p
t ∂C−1
∂x

p+ pt
∂C

∂x
u̇+ 1

2 u̇
t ∂(B −MtC−1M)

∂x
u̇ . (2.7)

Therefore the control equations are{
ẋ = C−1p− C−1Mu̇

ṗ = − 1
2p
t ∂C−1

∂x p+ pt ∂C∂x u̇+ 1
2 u̇

t ∂(B−MtC−1M)
∂x u̇ .

(2.8)
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We now introduce, following [29], the global version of the above dynamic equations when Q is the total space
of a surjective submersion π : Q −→ S. Let V Q be the vertical subbundle and V ∗Q the dual of V Q. Denote
with pQ : T ∗Q −→ Q the cotangent projection and set π̃ := π ◦ pQ, π̃ : V ∗Q −→ S. If (x, y) are local fibered
coordinates on Q, (x, y, p) are local fibered coordinates on V ∗Q. Moreover, denote with z = (x, p) the local
coordinates on the π̃-fiber over y. Now, to every y ∈ S, π̃−1(y) is a fiber canonically simplettomophic to
T ∗(π−1(y)), representing the phase space of the constrained system restricted to the π-fiber over y.

T ∗Q

V ∗Q
(x, y, p)

Q

π

(x, y)

TQ

pQ

(x, y, ẋ, ẏ)

S
y

π̃

Suppose that a control vector field u̇ is given on S and that the path u(t) is an integral curve of u̇. Then the
dynamic equations (2.6) and (2.7) are the local expression of a vector field Du̇ over V ∗Q that projects on u̇ by
π̃. Moreover the field Du̇ is tangent to the fiber of π̃ only if the control is trivial: u̇ vanishing. Let us suppose
that the control is given by a curve u : [t1, t2]→ S in S that is the integral curve of the vector field u̇. Thus the
movement of the system is described by a differentiable curve γ : [t1, t2] → Q such that π(γ(t)) = u(t). Note
that dγ

dt : [t1, t2] → TQ is the natural increase of the curve γ in the fiber tangent to Q. Composing dγ
dt with

the Legendre transform LTQ→ T ∗Q and with the projection τ : T ∗Q→ V ∗Q we obtain the parametric curve
γ̂ = τ ◦ L ◦ dγdt : [t1, t2]→ V ∗Q which represent the evolution of the system taking into account the control.

Let horQ : TS −→ TQ denote the horizontal lift of the Ehresmann connection, introduced in the previous
section, and pQ the cotangent projection, using the above definitions we introduce the function

Ku̇ : V ∗Q −→ R Ku̇ ◦ p−1
Q (q) = (horQ(q)(u̇))th(q)horQ(q)(u̇)

Theorem 2.1. To every control vector field u̇ on S, the corresponding dynamic vector field Du̇ can be expressed
as the sum of three terms:

Du̇ = XH0 −XKu̇ + hor(u̇) (2.9)
with

XH0 = C−1p
∂

∂x
− 1

2p
t ∂C−1

∂x
p
∂

∂p
(2.10)

−XKu̇ = 1
2 u̇

t ∂K

∂x
u̇
∂

∂p
(2.11)

hor(u̇) =
( ∂
∂y
− C ∂

∂x
+ pt

∂C

∂x

∂

∂p

)
u̇ (2.12)
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where XH0 is the Hamiltonian vector field corresponding to the case of locked control, XKu̇ is the Hamiltonian
vector field on V ∗Q associated to Ku̇ and hor is the horizontal lift of an Ehresmann connection on π̃ : V ∗Q −→ S
entirely determined by π and the metric. These equations are exactly the control equations (2.8).

Proof: [13] 2

2.1.1. The importance of initial impulse
In what follows let us suppose that the metric h is bundle like.

Proposition 2.2. The control system (2.8) is of two different types depending on the value of the initial value
of the x conjugate variables p.

(1) Case p(0) = 0
The system (2.8) is an affine non linear driftless control system;

(2) Case p(0) 6= 0
The system (2.8) is an affine non linear control system with drift.

Proof: Since we have supposed to have a bundle like metric we have that

∂K(y)
∂x

= ∂(B −MtC−1M)(y)
∂x

= 0 .

Therefore the control equation (2.8) becomes{
ẋ = C−1p− C−1Mu̇

ṗ = − 1
2p
t ∂C−1
∂x p+ pt ∂C∂x u̇

(2.13)

Case p(0) = 0.
The function p(t) = 0 is the unique solution of (2.13)2 according to the Cauchy theorem. Thus (2.13)1 becomes
a driftless control system.

ẋ = −C−1Mu̇

It is clear that this last equation is entirely determined by the connection (see (2.4)). Therefore in the case of
null initial impulse case only the geometry of the system determines its motion.
Case p(0) 6= 0.
In this case the equation (2.13)2 has no trivial solution that is p(t) 6= 0. Thus (2.13)1 is a non linear control
system with drift determined exactly by the presence of a non zero p

ẋ = C−1p− C−1Mu̇

The presence of the drift is crucial because in this case the motion of the system is determined both by the
connection (given by the geometry) and by the impulse, that is non zero. This proves the importance of the
initial value of p. 2

In this work we analyze both the cases. The one with zero initial impulse is well studied in literature for
many systems [19–21,32,33]. The one with p(0) 6= 0 is becoming of increasing interest since the presence of the
impulse influences deeply the motion, as we have seen. We deal with this problem that is more complex and
tricky to study because of the presence of the drift.
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2.2. Geometric and dynamic phase
As we have seen, in the general theory, connections are associated with bundle mappings, which project

larger spaces onto smaller ones. The larger space is the bundle, and the smaller space is the base. Directions
in the larger space that project to a point are vertical directions. The connection is a specification of a set
of directions, the horizontal directions, at each point, which complements the space of vertical directions. In
general, we can expect that for a horizontal motion in the bundle corresponding to a cyclic motion in the base,
the vertical motion will undergo a shift, called a phase shift, between the beginning and the end of its path. The
magnitude of the shift will depend on the curvature of the connection and the area that is enclosed by the path
in the base space: it is exactly the holonomy. This shift in the vertical element is often given by an element of
a group, such as a rotation or translation group, and is called also the geometric phase. Referring to what
said in the previous subsection, the motion is determined only by the geometrical properties of the system if
it starts with zero initial impulse. In many examples, the base space is the control space in the sense that the
path in the base space can be chosen by suitable control inputs to the system, i.e. changes in internal shape. In
the locomotion setting, the base space describes the internal shape of the object, and cyclic paths in the shape
space correspond to the movements that lead to translational and rotational motion of the body.
Nevertheless the shape changes are not the only ones to determine a net motion of the body. More generally,
this motion can always be decomposed into two components: the geometric phase, determined by the shape
of the path and the area enclosed by it, and the dynamic phase, driven by the internal kinetic energy of
the system characterized by the impulse. It is important to stress the difference between the two phases. The
geometric phase is due entirely to the geometric structure of the system. Instead the dynamic phase is present
if and only if the system has non zero initial impulse or if the impulse is not a conserved quantity, in our context
we refer to what is explained in subsection 2.1.1. More precisely if the curvature of the connection is null, not
necessarily the system does not move after a cyclic motion in the base: a net motion can result if the system
starts with non zero initial impulse, and this motion is entirely due to the dynamic phase.

Shape	  space	  

Horizontal	  li1	  (p*=0)	  

p*≠	  0	  

Geometric	  phase	  

Dynamic	  phase	  

Figure 2. Geometric phase and dynamic phase.

Figure (2) shows a schematic representation of this decomposition for general rigid body motion. In this
figure the sphere represents the base space, with a loop in the shape space shown as a circular path on the sphere.
The closed circle above the sphere represents the fiber of this bundle attached to the indicated point. Given
any path in the base (shape) space, there is an associated path, called the horizontal lift, that is independent
of the time parametrization of the path and of the initial vertical position of the system. Following the lifted
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path along a loop in the shape space leads to a net change in vertical position along the fiber. This net change
is just the geometric phase. On top of that, but decoupled from it, there is the motion of the system driven
by the impulse, (if it is not zero) which leads to the dynamic phase. Combining these two provides the actual
trajectory of the system.

2.3. Gauge potential
Let us consider a planar body immersed in a 2 dimensional fluid, which moves changing its shape. For the

moment we do not specify the kind of fluid in which it is immersed that can be either ideal and incompressible or
a viscous one with low Reynolds number. Our aim is to show that the motion of this deformable body through
the fluid is completely determined by the geometry of the sequence of shapes that the idealized swimmer
assumes, and to determine it. This idea was introduced by Shapere and Wilczek in [40] [39] and developed
in [14], where they apply geometrical tools to describe the motion of a deformable body in a fluid, focusing their
attention on the Stokes regime.
The configuration space of a deformable body is the space of all possible shapes. We should distinguish between
the space of shapes located somewhere in the plane and the more abstract space of unlocated shapes. The latter
space can be obtained from the space cum locations by making the quotient with the group of rigid motions
in the plane, i.e declaring two shapes with different centers of mass and orientation to be equivalent. The first
problem we wish to solve can be stated as follows: what is the net rotation and translation which results when a
deformable body undergoes a given sequence of unoriented shapes? The problem is intuitively well posed: when
a body changes its shape in some way a net rotation and translation is induced. For example, if the system is
composed simply by the body, its net rigid motion can be computed by making use of the law of conservation
of momentum, if instead the body is immersed in an ideal incompressible fluid this motion can be found by
solving the Euler equations for the fluid flow with boundary condition on the surface of the body with the shape
corresponding to the given deformation.
These remarks may seem straightforward, but we encounter a crucial ambiguity trying to formulate the problem
more specifically. Namely how can we specify the net motion of an object which is continuously changing shape?
To quantify this motion it is necessary to attach a reference frame to each unlocated shape. This is equivalent
to choosing a standard location for each shape; more precisely to each unlocated shape there now corresponds a
unique located shape. Once a choice of standard locations for shapes has been made, then we shall say that the
rigid motion required to move between two different configurations is the displacement and rotation necessary
to align their centers and axes. In what follows we shall develop a formalism, already used in [40] [39], which
ensures us that the choice of axes for the unlocated shapes is completely arbitrary and that the rigid motion on
the physical space is independent from this choice. This will be clear soon below.
For a given sequence of unlocated shapes S0(t), the corresponding sequence of located shapes S(t) are related
by

S(t) = R(t)S0(t) (2.14)
where R is a rigid motion. This relation expresses how to recover the located shapes S(t) given the unlocated
ones, i.e. S0(t). It is clear that we are dealing with a fiber bundle: the located shapes S(t) live on the big
manifold Q = SE(2)× S and the unlocated ones, S0(t), live on the base manifold obtained by the quotient of
the manifold Q by the plane euclidean group SE(2), i.e S = Q/SE(2).

To make (2.14) more explicit we introduce a matrix representation for the group of Euclidean motions, of
which R is a member. A two dimensional rigid motion consisting of a rotation R followed by a translation d
may be represented as a 3× 3 matrix

[R, d] =
(
R d
0 1

)
(2.15)

where R is an ordinary 2×2 rotation matrix, d is a 2 component column vector. This is the matrix representation
of the plane euclidean group action SE(2) on the manifold Q where the located shapes S(t) live on.
Now in considering the problem of self propulsion we shall assume that our swimmer has control over its form
but cannot exert net forces and torques on itself. A swimming stroke is therefore specified by a time-dependent
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sequence of forms, or equivalently unlocated shapes S0(t). The located shape will then be expressed exactly by
formula (2.14).

Our problem of determining the net rigid motion of the swimmer thus resolves itself into the computation of
R(t) given S0(t). In computing this displacement it is most convenient to begin with infinitesimal motions and
to build up finite motions by integrating. So let us define the infinitesimal motion A(t) by

dR
dt

= R
(
R−1 dR

dt

)
≡ RA . (2.16)

In this formula we can recognize the differential equation corresponding to formula (1.6), from which we under-
stand that A take values in the Lie algebra of the plane euclidean group: g = se(2). For any given infinitesimal
change of shape A, formula (2.16), describes the net overall translation and rotation which results. We can
integrate it to obtain

R(t2) = R(t1)P̄ exp
[∫ t2

t1

A(t) dt
]

(2.17)

where P̄ denotes a reverse path ordering, known in literature as chronological series [1]:

P̄ exp
[∫ t2

t1

A(t) dt
]

= 1 +
∫
t1<t<t2

A(t) dt+
∫∫

t1<t
′<t<t2

A(t)A(t
′
) dt dt

′
+ · · ·

The assignment of center and axes can be arbitrary, so we should expect that physical results are independent
of this assignment. How does this show up in our formalism? A change in the choice of centers and axes can
equally well be thought of as a change (rigid motion) of the standard shapes, let us write

S̃0 = Ω(S0)S0 . (2.18)

The located shapes S(t) being unchanged, (2.14) requires us to define [40] [39]

R̃(t) = R(t)Ω−1(S0(t))

From this, the transformation law of A follow

Ã = ΩAΩ−1 + ΩdΩ−1

dt
(2.19)

from which we can recognize the transformation laws (1.10) of an Ehresmann connection called also Gauge
potential. Our freedom in choosing the assignment of axes shows up as a freedom of gauge choice on the space
of standard shapes. Accordingly the final relationship between physical shapes is manifestly independent of
such choices.
Our aim will be to compute this gauge potential A ∈ se(2) in function of the unlocated shapes S0 that our
swimmer is able to control.

3. Swimming in an ideal fluid
We focus on a swimmer immersed in an ideal and incompressible fluid. The dynamical problem of its self

propulsion has been reduced to the calculation of the gauge potential A. In our model we assume that the
allowed motions, involving the same sequence of forms will include additional time-dependent rigid displace-
ments. In other words the actual motion will be the composition of the given motion sequence S0(t) and rigid
displacements.
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3.1. System of coordinates
Let (O, e1, e2) be a reference Galilean frame by which we identify the physical space to R2. At any time

the swimmer occupies an open smooth connected domain B and we denote by F = R2 \ B̄ the open connected
domain of the surrounding fluid. The coordinates in (O, e1, e2) are denoted with x = (x1, x2)T and are usually
called spatial coordinates. Let us call (−x2, x1)T = x⊥.
Attached to the swimmer, we define also a moving frame (O∗, e∗1, e∗2). Its choice is made such that its origin
coincides at any time with the center of mass of the body. This frame represents the choice of the axes in the
space of unlocated shapes. As we have shown before, the computation of the net rigid motion of the swimmer
due to shape changes is independent from this choice that accordingly is arbitrary. The fact that this frame has
always its origin in the center of mass is a matter of convenience: indeed this choice, and others (see Remark
3.1), tell us that the body frame is the one in which the kinetic energy of the body is minimal [26].
We denote by x∗ = (x∗1, x∗2)T the related so called body coordinates. In this frame and at any time the swimmer
occupies a region B∗ and the fluid the domain F∗ := R2 \ B̄∗.
We define also the computational space, that is the Argand-Gauss plane which we will need only to perform
explicit calculations, endowed with the frame (O,E1,E2) and in which the coordinates are denoted z = (z1, z2)T .
In this space D is the unit disk and O := R2 \ D̄.

Remark 3.1 (Minimal Kinetic Energy). In order to simplify the calculations, since, as said in the previous
section, the choice of the body frame is arbitrary, we use the one of the minimal kinetic energy. It is the one
in which the velocity of the center of mass is null. This condition is clearly satisfied if its origin coincides with
the center of mass at any time. Moreover in this frame the angular momentum with respect to the body frame
has to be null.

Remark 3.2. The orientation of the body frame remains arbitrary and does not effect the fact that it is the
frame of minimal kinetic energy. One of the most used conventions to define a possible orientation of such a
system is to choose as axes the eigenvectors of the moment of inertia of our body. Obviously as we have said
before this choice does not effect the located shape, since it is independent on the choice of the frame.

3.2. Shape changes
Banach spaces of sequences. Inspired by [33], we denote any complex sequence by c := (ck)k≥1 where for

any k ≥ 1, ck := ak + ibk ∈ C, ak, bk ∈ R. Most of the complex sequences we will consider live in the Banach
space

S :=
{

(ck)k≥1 :
∑
k≥1

k(|ak|+ |bk|) < +∞
}

endowed with its natural norm ‖c‖S :=
∑
k≥1 k(|ak|+ |bk|). This space is continuously embedded in

T :=
{

(ck)k≥1 : sup
z∈∂D

∣∣∑
k≥1

kckz
k
∣∣ < +∞

}
whose norm is ‖c‖T := supz∈∂D |

∑
k≥1 kckz

k|, where D is the unit disk of the computational space.

Definition 3.1. x We call D the intersection of the unit ball of T with the space S.

This space will play an important role in the description of the shape changes that will follow.
Finally we introduce also the Hilbert space

U :=
{

(ck)k≥1 :
∑
k≥1

k(|ak|2 + |bk|2) < +∞
}

whose norm is ‖c‖U :=
√∑

k≥1 k(|ak|2 + |bk|2). According to Parseval’s identity we have
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∑
k≥1

k|ck|2 ≤
∑
k≥1

k2|ck|2 = 1
2π

∫ 2π

0

(∑
k≥1

kcke
−ikθ)2

dθ ≤ sup
z∈∂D

∣∣∑
k≥1

kckz
k
∣∣2

Therefore we have the following space inclusions

S ⊂ T ⊂ U

We have introduced these spaces because they will be crucial in the description of the shape changes of the
idealized swimmer.

3.2.1. Description of the shape changes
Following the line of thoughts of [33] and [14] the shape changes of the swimmer are described with respect

to the moving frame (O∗, e∗1, e∗2) by a C1 diffeomorphism χ(c), depending on a shape variable c ∈ D which maps
the closed unit disk D̄ of the computational space onto the domain B∗ in the body frame. The diffeomorphisms
χ(c) allows us to associate to each sequence c a shape of the swimmer in the body frame. We can write,
according to our notation, that for any c ∈ D (see definition 3.1),

χ(c) : C ⊃ D̄ → R2 ≡ (O∗, e∗1, e∗2) (3.1)
and B̄∗ = χ(c)(D̄).
We now explain how to build the map χ(c) for any given sequence c, see Fig 3.

e1* 

θ 
 

d 

B 

O e1 

e2* 

e2 

Figure 3. The physical space and the body frame.

Theorem 3.1 (Riemann Mapping Theorem). Let K be a simply connected open bounded subset of C with
0 ∈ K. Then there exists an holomorphic isomorphism f : D → K with f(0) = 0. Any other isomorphisms
with f(0) = 0 are of the form z 7→ f(rz) with r ∈ ∂D a rotation. All functions f can be extended to an
homeomorphism of D̄ onto K̄ if and only if ∂K is a Jordan curve.
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Defining C∞ = {C∪∞}, if O = C∞ \D̄, from the isomorphism f we have also an isomorphism from D to the
exterior F∗; we apply to F∗ the inversion ρ(z) := 1

z obtaining the open simply connected G, we find another
Riemann- isomorphism g : D → G with g(0) = 0. Then we consider h = ρ ◦ g = 1

g : D → F∗. The function g
is injective around zero, therefore g′(0) 6= 0, it follows that h has a pole of the first order in zero and therefore
has a Laurent expansion

h(z) = 1
z

+ g
′′(0)
2 +

∞∑
k=1

ckz
k . (3.2)

We now have the area theorem [36]: if a function like h is injective on the punctured disk then we have

∞∑
k=1

k|ck|2 ≤ 1 . (3.3)

If we want an isomorphism of O on F∗ we take φ(c)(z) = h( 1
z )

φ(c)(z) = z +
∞∑
k=1

ck
zk
. (3.4)

We now suppose that the boundary of B∗ is a Jordan curve, i.e. simple closed curve in the plane, therefore
the function φ(c) can be extended to homeomorphism on the boundary. Now φ(c) : Ō → F∗ can be extended
continuously to all C∞ setting in the interior of D

χ(c)(z) := z +
∑
k≥1

ckz̄
k , (z ∈ D̄) (3.5)

Since z̄ = 1
z on ∂D we deduce that the following map is continuous in C for all c ∈ D:

Φ(c)(z) :=
{
χ(c)(z) if z ∈ D
φ(c)(z) if z ∈ Ō = C∞ \D .

(3.6)

Proposition 3.2. For all c ∈ D, χ(c) : D̄ → B̄∗ and φ(c) : Ō → F̄∗ are both well defined and invertible.
Further, χ(c)|D is a C1 diffeomorphism, φ(c)|O is a conformal mapping and Φ(c) is a homeomorphism form C
onto C.

Proof: To prove that χ(c) is a C1 diffeomorphism, the idea is to show that its Jacobian assumes maximum on
the boundary of the disc D and thus that ∀c ∈ D, χ(c) − Id is a strict contraction in D. Invoking the local
inversion theorem we have the thesis on χ(c).
We use roughly the same arguments to prove that φ(c) is locally a conformal mapping. Since both χ(c)(z)− z
and φ(c)(z)− z are contractions, also Φ(c)(z)− z it is. Therefore the fixed point theorem leads us to conclude
that Φ(c) is a homeomorphism form C onto C.
More details of the proof can be found in [33] pag 333. 2

Remark 3.3. Despite the generality of the Riemann Mapping Theorem, the way in which we decided to represent
our diffeomorphism, lead us to some restrictions. Indeed in order to be sure that also χ(c) is well defined -from
proposition 3.2- we need to impose the restrictive condition c ∈ D, see (3.3), meaning that the shape variables
have to be finitely bounded for both the norms of S and T . To summarize we can say that to use the shape
variable c ∈ D allows us to describe all of the bounded non-empty connected shapes of the body that are not too
far from the unit ball.
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3.3. Rigid motions
The overall motion of our body in the fluid is, as said before, the composition of its shape changes with a

rigid motion. The shape changes have been described in the previous subsection and, as we will see, the Gauge
potential A described at the beginning depends only on the shape variable c that is

A = A(c) (3.7)

this will be evident in the next sections.
The net rigid motion is described by an element of the planar euclidean group as explained in subsection 2.3.
More precisely it is given by a translation d, which is the position of the center of mass, and a rotation R of an
angle θ, that gives the orientation of the moving frame (O∗, e∗1, e∗2) with respect to the physical one.
Let the shape changes be frozen for a while and consider a physical point x attached to the body. Then
there exists a smooth function t 7→ (d(t), θ(t)) such that the point’s coordinates in (O, e1, e2) are given by
x = R(θ)x0 + d. Next compute the time derivative expression (ḋ, θ̇). We deduce that the Eulerian velocity
of the point is vd(x) = θ̇(x − d)⊥ + ḋ. It can be also expressed in the moving frame (O∗, e∗1, e∗2) and reads
v∗d = θ̇(x∗)⊥ + ḋ∗ where (

ḋ∗
θ̇

)
= R(θ)T

(
ḋ
θ̇

)
(3.8)

where R is an element of the euclidean group SE(2) of pure rotation.

Remark 3.4. Notice that ḋ∗ is not the time derivative of some d∗ but only a symbol to expresse the velocity ḋ
in the body frame.

Let us return to the general case where the shape changes are taken into account. We deduce that the
Eulerian velocity at a point x of B is

v(x) = θ̇(x− d)⊥ + ḋ +R(θ)χ̇(c)[χ(c)−1(R(θ)T (x− d))]

where the last term represent the velocity of deformation and is computed taking into account that x =
RT (θ)x∗ = RT (θ)χ(c)(z). When we express this velocity in the moving frame we get

v∗(x∗) = (θ̇x∗
⊥

+ ḋ∗) + χ̇(c)(χ(c)−1(x∗)) , (3.9)

which is more compact and will be useful in what follows.

3.4. Dynamics for ideal fluid
In this section we use some well known ideas developed for example in some works of A. Bressan [8], which

further simplify the system of our idealized swimmer.

3.4.1. A mechanical setting for fluid and body system
We assume that the shape changes of our swimmer can be described by a finite number of shape parameters,

i.e. c = (c1, · · · , cm), thus we can call q = (q1, · · · , qm+3) = (d, θ, c1, · · · , cm). This choice is widely spread
in recent literature as in [8, 32], and implies that we focus only on a class of deformations which consist of
particular shape changes that are sufficient to describe a wide range of swimmer behaviors. Let us call χ̃ the
diffeomorphism which describes the superimposition of the shape changes with a rigid motion, more precisely
χ̃(q)(z) := [R(θ),d]◦χ(c)(z) Assuming that there are no external forces, we wish to derive a system of equations
describing the net motion of the body due to the shape changes and of the surrounding fluid expressed in the
moving frame. Let N = m+ 3 and

T (q, q̇) = 1
2

N∑
i,j=1

Ai j(q)q̇iq̇j (3.10)
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describe the kinetic energy of the body. For simplicity, we assume that the surrounding fluid has unit density.
Calling v = v(x, t) its velocity at the point x, the kinetic energy of the surrounding fluid is given by

K =
∫
F

|v(x)|2

2 dx . (3.11)

If the only active force is due to the scalar pressure p, the motion of the fluid is governed by the Euler equation
for non-viscous, incompressible fluids:

vt + v · ∇v = −∇p (3.12)
supplemented by the incompressibility condition

div v = 0.

In addition, we need a boundary condition〈
v −

N∑
k=1

∂χ̃(q)(z)
∂qk

q̇k, −z
χ̃
′(q)(z)
|χ̃′(q)(z)|

〉
= 0 (3.13)

−z χ̃
′
(q)(z)

|χ̃′ (q)(z)| = n(x), (x = χ̃(q)(z), z ∈ ∂D) denotes the unit outer normal to the set χ̃(c)(D) = B at the point
x, and is computed making the complex derivative of the function χ̃(q)(z) expressed in polar coordinates that
is

n = i
∂σ(χ̃(q)(eiσ))
|∂σ(χ̃(q)(eiσ))|

= −eiσ χ̃
′(q)(eiσ)
|χ̃′(q)(eiσ)| = −z χ̃

′(q)(z)
|χ̃′(q)(z)| (3.14)

which states that the velocity of the fluid has to be tangent to the surface of the body. To find the evolution of
the coordinate q, we observe that

d

dt

∂T

∂q̇k
= ∂T

∂qk
+ Fk k = 1 · · ·N , (3.15)

where T is the kinetic energy of the body and Fi are the components of the external pressure forces acting on
the boundary of B. To determine these forces, we observe that, in connection with a small displacement of the
qi coordinate, the work done by the pressure forces is

δW = −δqk ·
∫
∂D

〈
−z χ̃

′(q)(z)
|χ̃′(q)(z)| ,

∂χ̃(q)
∂qk

(z)
〉
p(χ̃(q)(z))J(q)(z) dσ . (3.16)

The equation of motion are

d

dt

∂T

∂q̇k
= ∂T

∂qk
−
∫
∂D

〈
−z χ̃

′(q)(z)
|χ̃′(q)(z)| ,

∂χ̃(q)
∂qk

(z)
〉
p(χ̃(q)(z))J(q)(z) dσ . (3.17)

We now show that, in the case of irrotational flow, the coupled system can be reduced to a finite dimensional
impulsive Lagrangian system. It is well known (see [18,28]) that the velocity field of the fluid can be determined
by setting v = ∇ψ and solving the Neumann problem in the exterior domain

∆ψ = 0 x ∈ F
n · ∇ψ = n · v(x)|x=χ̃(q)(z) x ∈ ∂B
|ψ| → 0 |x| → ∞

(3.18)
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where the boundary condition reads

n · v(x) = −z χ̃
′(q)(z)
|χ̃′(q)(z)| ·

∑
k

∂χ̃(q)
∂qk

(z)q̇k . (3.19)

Let us now consider the function φ̃(q) : R2 \D → R2 defined by the composition of φ(q)(z) with the rigid
motion [R,d], that clearly on the boundary of D coincides with the function χ̃(q). From the linearity of (3.18)
the solution will be linear in q̇.

ψ(z,q, q̇) =
N∑
k=1

γk(z,q)q̇k . (3.20)

The motion of the fluid can be obtained by solving the ordinary differential equation

d

dt
φ̃(q)(z) = ∂ψ

∂xL
(x,q, q̇)|x=φ̃(q)(z) (3.21)

precisely

vL(x,q, q̇) =
∑
k

∂φ̃(q)
∂qk

(z)q̇k =
∑
k

∂γk
∂xL

(x,q)q̇k|x=φ̃(q)(z) (3.22)

This has to be true for all curve R 3 t 7−→ q(t), thus we have

∂φ̃(q)
∂qk

(z) = ∂γk
∂xL

(x,q)|x=φ̃(q)(z) . (3.23)

We now prove that the term of the equations of motion relative to the pressure forces is a kinetic term

Fk =−
∫
∂D

−z φ̃
′(q)(z)
|φ̃′(q)(z)|

∂φ̃(q)
∂qk

(z)p(φ̃(q)(z))J(q)(z) dσ =

−
∫
∂D

−z φ̃
′(q)(z)
|φ̃′(q)(z)|

∂γk
∂xL

(φ̃(q)(z))p(φ̃(q)(z))J(q)(z) dσ =

= −
∫
∂B
nL(x) ∂γk

∂xL
p dx

(3.24)

applying the divergence theorem to (3.24)

=
∫
x∈F

∂

∂xL
( ∂γk
∂xL

p) dx =
∫
x∈F

(
p∆γk︸︷︷︸

=0

+∇γk · ∇p
)
dx =

=
∫
x∈F
∇γk · ∇p dx =

∫
z∈R2\D

∂φ̃(q)
∂qk

·
(
−v,t−v · ∇v

)
Ĵ(q)(z) dz =

= −
∫
z∈R2\D

∂φ̃(q)
∂qk

· d
dt
vĴ(q)(z) dz =

= −
∫
z∈R2\D

[ d
dt

(∂φ̃(q)L
∂qk

vL)− vL
∂2φ̃(q)
∂qj∂qk

q̇k]Ĵ(q)(z) dz

where Ĵ(q)(z) is the determinant of the jacobian matrix of the function φ̃(c)(z). Let us define

T f = 1
2

∫
x∈F
|v|2 dx = 1

2

N∑
i,j

Ãi j q̇iq̇j
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then
Fk = −

( d
dt

∫
x∈F

∂|v|2

∂q̇k
dx−

∫
x∈F

∂|v|2

∂qk
dx
)

= − d

dt

∂T f

∂q̇k
+ ∂T f

∂qk

In conclusion the system body+fluid is geodesic of Lagrangian

T = T body + T f (3.25)

In what follows for simplicity we will express all the quantities in the moving frame (O∗, e∗1, e∗2), denoting the
total kinetic energy in this frame as

∗
T . We will now compute explicitly the Lagrangian. Let us start with

the kinetic energy of the swimmer. Since we have chosen the body frame as the one of minimal kinetic energy,
according to Konig theorem, there is a decoupling between the kinetic energy of the body due to its rigid motion
and that due to its shape changes, recalling (3.10):

∗
T
body

:= 1
2m|ḋ

∗|2 + 1
2I(c)θ̇2 + 1

2

∫
B∗

∣∣∣χ̇(c)(χ(c)−1(x∗))
∣∣∣2 dm∗ (3.26)

where I(c) is the moment of inertia of the body thought as rigid with frozen shape, and the last term being the
kinetic energy of deformation. It can be computed as follows:∫

B∗

∣∣∣χ̇(c)(χ(c)−1(x∗))
∣∣∣2 dm∗ =

∫
D

∣∣χ̇(c)(z)
∣∣2 dm0 = πρ0

m∑
k=1

|ċk|2

k + 1

where we used the formula (3.5) to compute the integral. Note that accordingly to remark (3.2) the kinetic
energy of the body in the frame (O∗, e∗1, e∗2) does not depend on the orientation of the frame but only on its
angular velocity.

3.4.2. Kinetic energy of the fluid
Since we are interested on the effect of the shape changes of the swimmer on the fluid, in this subsection we

will compute all the quantities in the body frame. As we have seen in subsection 2.3 we can recover the rigid
motion of the swimmer due to its deformation, exploiting the Gauge potential.
The kinetic energy of the fluid reads

∗
T
f

:= 1
2

∫
F∗
|u∗|2 dm∗f = 1

2

∫
F∗
|∇ψ∗|2 dm∗f . (3.27)

There u∗ = ∇ψ∗ and ψ∗ is the solution of the Neumann problem
∆ψ∗ = 0 x ∈ F∗

n(x∗) · ∇ψ∗ = n(x∗) · v(x∗)|x∗=χ(q)(z) x∗ ∈ ∂B∗

|ψ∗| → 0 |x∗| → ∞
(3.28)

which is the same Neumann problem (3.18) expressed in the body frame. Indeed since the Laplacian operator
is invariant under rototranslations, the function ψ∗(x∗) = ψ([R(θ),d](x)) is harmonic.

We will use complex analysis to compute the potential function ψ∗. We define the function ξ(z) :=
ψ∗(φ(c)(z)), (z ∈ O), where ψ∗ is the potential function defined in (3.28) expressed in the moving frame
and recalling (3.4) φ(c)(z) is the conformal map from Ō = C \ D to the external domain F∗ . According to
classical properties of conformal mappings, the function ξ is harmonic in O and the following equality holds:

1
2

∫
F∗
|∇ψ∗|2 dm∗f = 1

2

∫
O
|∇ξ|2 dm0

f . (3.29)
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The main advantage of this substitution is that ξ is defined in the fixed domain O, whereas ψ∗ was defined in
F∗ depending on c.
In the moving frame is now easier to compute explicitly the boundary condition of the Neumann problem. The
outer normal to ∂B∗ is, recalling (3.14)

n(x∗) := n1(x∗) + in2(x∗) = −z φ
′(c)(z)
|φ′(c)(z)| (3.30)

where φ′(c)(z) is the complex derivative of φ(c). Recalling the following identity

∂nξ
r
j (z)

|φ′(c)(z)| = ∂nψ
∗r
j (x∗) (x∗ = φ(c)(z)) (3.31)

and taking into account the expression (3.9) of v∗, we deduce that the Neumann boundary condition (3.19)
reads

∂nξ(z) = ∇ξ · n = −ḋ∗1<(zφ
′
(c)(z))− ḋ∗2=(zφ

′
(c)(z))− θ̇=(φ(c)(z)zφ

′
(c)(z))

−<(χ̇(c)zφ
′
(c)(z)) .

(3.32)

This equality leads us to introduce the functions ξrj (c) (j = 1, 2, 3) and ξd(c) as being harmonic in O and
satisfying the following Neumann boundary conditions:

∂nξ
r
1(c)(z) = −<(zφ

′
(c)(z)), (3.33)

∂nξ
r
2(c)(z) = −=(zφ

′
(c)(z)), (3.34)

∂nξ
r
3(c)(z) = −=(φ(c)(z)zφ

′
(c)(z)), (3.35)

∂nξ
d(c)(z) = −<(χ̇(c)zφ

′
(c)(z)), (z ∈ ∂D). (3.36)

In this way we spilt the harmonicity and the Neumann boundary conditions of the function ξ into the same
properties for the functions ξrj (c) (j = 1, 2, 3) and ξd(c).
Next we have for all c ∈ D

<(χ̇(c)zφ
′
(c)(z)) =

m∑
k=1

ȧk<(zk+1φ
′
(c)(z)) + ḃk=(zk+1φ

′
(c)(z))

Proposition 3.3 (Potential decomposition). According to the Kirchhoff law the following holds in the Sobolev
space H1(O):

ξ(c) = ḋ∗1ξ
r
1(c) + ḋ∗2ξ

r
2(c) + θ̇ξr3(c) + 〈ξd(c), ċ〉, (3.37)

From the linearity of this expression with respect to ḋ∗, θ̇, ċ and since the gradient function preserves the
linearity, we deduce that the kinetic energy of the fluid is a quadratic function of ḋ∗, θ̇, ċ.

3.5. The Gauge potential and the equations of motion
According to what proved in the preceding section the Lagrangian of our system is a quadratic form in

(ḋ∗, θ̇, ċ), therefore it can be written in blocks as follows

∗
T (ḋ∗, θ̇, ċ) = 1

2

(
(ḋ∗

T

, θ̇)Mr(c)
(

ḋ∗
θ̇

)
+ 2(ḋ∗

T

, θ̇)N(c)ċ + ċTMd(c)ċ
)

(3.38)

where Mr, N and Md play the role of the matrices C M and B, introduced in the section 2.1.1, respectively
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Remark 3.5. It is worth noting that in the physical space the kinetic energy is

T (d, θ, c, ḋ, θ̇, ċ)

When it is expressed in the body frame instead it becomes

∗
T (c, ḋ∗, θ̇, ċ)

This expression does not depend on d and θ due to the symmetry of our model with respect to the position and
orientation of the body in the fluid.

As we have seen in the first section we are interested in determining the Gauge potential A associated to our
system which is

A = R−1 dR
dt

=

θ̇( 0 1
−1 0

)
R(θ)T

(
ḋ1
ḋ2

)
0 0 0

 =

θ̇( 0 1
−1 0

) (
ḋ∗1
ḋ∗2

)
0 0 0

 . (3.39)

Since all the matrices Mr, N and Md depend only on c, the kinetic energy is independent from d and θ and
the metric that it defines is bundle like (see Definition 2.1). In the principal fiber bundle SE(2)×S → S, the
Gauge potential A depends on the kinetic energy, through the equation of motion, therefore also A does not
depend on the state variables.
We now need to determine (ḋ∗1, ḋ∗2, θ̇). In order to do this we compute the Hamiltonian associated to the
Lagrangian function performing a partial legendre transformation on the q̇∗ variables.
Before passing to formal calculations we recall how to interpret the connection introduced before in the cotangent
bundle setting following the steps presented in subsection 2.1.1. This construction was presented also in [13,29].
Let V Q be the vertical subbundle and V ∗Q the dual of V Q. Denote with pQ : T ∗Q −→ Q the cotangent
projection and set π̃ := π ◦ pQ, π̃ : V ∗Q −→ S. If (d, θ, c) are local fibered coordinates on Q, (d, θ, c,p∗) are
local fibered coordinates on V ∗Q. Suppose that a control vector field ċ is given on S and that the path c(t) is
an integral curve of ċ. Then the equation of motion are the local expression of a vector field Dċ over V ∗Q that
projects on ċ by π̃. Moreover the field Dċ is tangent to the fiber of π̃ only if the control is vanishing.
Recalling that q = (q1, · · · , qm+3) = (d, θ, c)

p∗ =
(∂ ∗T
∂q̇∗i

)
i=1,2,3

= Mr(c)
(

ḋ∗
θ̇

)
+ N(c)ċ

which defines the translational and angular impulses of the system body plus fluid. From this we obtain(
ḋ∗
θ̇

)
= M−1

r (c)p∗ −M−1
r (c)N(c)ċ . (3.40)

This expression is very convenient to study the motion of the shape-changing body since it gives the velocity
with respect to the shape variable.

It is easy to recognize the terms of the sum in which the control equations are split according to Theorem
2.1 :

XH0 =
(
M−1
r (c)p∗

0

)
XKċ = 0

and
hor(ċ) =

(
−M−1

r (c)N(c)ċ
ċ

)
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Note thus that we are exactly in the case of a bundle-like metric Therefore the equation of motion regarding
the state variables are exactly the ones given by formula (3.40).

To obtain the equation of motion regarding the conjugate variables, we follow the method explained in
Lamb [25] and Munnier [33]: we introduce P and Π, the translational and angular impulses, as well as L and
Λ, the impulses relating to the deformations:(

P
Π

)
= Mr(c)

(
ḋ∗
θ̇

)
.

(
L
Λ

)
= N(c)ċ ,

p∗ =
(

P + L
Π + Λ

)
.

(3.41)

We start from the Lagrange equations

d

dt

∂T

∂q̇i
− ∂T

∂qi
= 0, i = 1, 2, 3

and recall that
∗
T (c, ḋ∗, θ̇, ċ) = T (c, R(θ)ḋ∗, θ̇, ċ).

Therefore recalling that ∂θR(θ) = R(π2 )R(θ)

d

dt

∂T

∂ḋ
− ∂T

∂d = d

dt

( ∂ ∗T
∂ḋ∗

R(θ)
)

= d

dt
(P + L)− θ̇(P + L)⊥

d

dt

∂T

∂θ̇
− ∂T

∂θ
= d

dt
(∂

∗
T

∂θ̇
)−R(θ)T ḋ · (P + L)⊥ =

= d

dt
(Π + Λ)− ḋ∗ · (P + L)⊥

(3.42)

from these equations we get
d

dt

(
p∗1
p∗2

)
+ θ̇

(
−p∗2
p∗1

)
= 0 ,

d

dt
p∗3 − ḋ∗2p∗1 + d∗1p

∗
2 = 0 .

(3.43)

Therefore the equation of motion in the body coordinates are

(
ḋ∗

θ̇

)
= M−1

r (c)p∗ −M−1
r (c)N(c)ċ

ṗ∗1 = θ̇p∗2
ṗ∗2 = −θ̇p∗1
ṗ∗3 = ḋ∗2p

∗
1 − ḋ∗1p∗2

(3.44)

Notice that these equations are exactly the ones presented in [32] which describe the evolution of the state
and the conservation of the impulse.

3.5.1. Simplification of the deformations
Since we are interested in studying small deformation around a circular shape, see remark 3.3, in order to

describe it we are interested only in expressing the distance from the origin of each point on circle’s boundary
in function of the shape parameters c = a + ib. Let us consider deformation described by m shape parameters.
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According to formula (3.5) the deformation can be written as:

χ(c)(z) = z +
m∑
k=1

ckz̄
k for z ∈ D

therefore the modulus of a point on the boundary described in polar coordinates by z = eiσ is given by

|χ(c)(z)|2 =(z +
m∑
k=1

ckz̄
k)(z̄ +

m∑
k=1

c̄kz
k) =

(
1 +

m∑
k=1

(ak cos((k + 1)σ) + bk sin((k + 1)σ))

+
m∑

h,k=1
(ak + ibk)(ah − ibh)

)
(3.45)

taking the square root and using the Taylor expansion around c = 0 which corresponds to the circular shape
we obtain

|χ(c)(z)| =
(
1 +

m∑
k=1

(ak2 cos((k + 1)σ) + bk
2 sin((k + 1)σ))

)
+

m∑
k=1

o(c2
k) (3.46)

where we can neglect all the terms of order grater or equal than 2 supposing ak, bk small for all k, for example
of order ε small.

For example in the case m = 2 taking

a1 = 2εs1 b1 = 0 a2 = 2εs2 b2 = 2εs3 (3.47)

we find exactly the formula for the swimmer deformation proposed by Mason and Burdick in [32]:

F (σ, s) =
[
1 + ε(s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ))

]
, (3.48)

where F represents the distance of a point on the boundary from the origin, in the body frame.
This will be the formula for the deformation that we will take from now on.

Remark 3.6. The fact that we are neglecting the terms of order ε2 is not in contrast with what said in [33].
They consider that the points can rotate on the boundary at high frequency producing a macroscopic identical
deformation, leading to different dynamics. Instead our type deformations (3.46) do not allow this kind of
behavior since it is a radial one.

We can express the equation of motion (3.44) using the real parameters sk as shape parameters instead of
ck obtaining: 

(
ḋ∗

θ̇

)
= M̄−1

r (s)p∗ − M̄−1
r (s)N̄(s)ṡ

ṗ∗1 = θ̇p∗2
ṗ∗2 = −θ̇p∗1
ṗ∗3 = ḋ∗2p

∗
1 − ḋ∗1p∗2

(3.49)

where the matrices M̄r and N̄ have the same physical meaning of the matrices Mr and N but are expressed
using the real shape parameters s.
From now on we focus only on shape transformations near the identity, like (3.48) so that we can use real shape
parameters to describe the deformation of the system.
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3.5.2. Curvature of the connection: geometric and dynamic phase
In this subsection we deal with the problem of having a net motion performing cyclical shape changes. Look-

ing at equations (3.49)1 is evident that there are two contributions: the one of M−1
r (s)p∗ which involves the

impulse and −M−1
r (s)N(s)ṡ which is entirely geometrical.

• p∗ = 0

First, let us suppose that the system starts with zero initial impulse, i.e. p∗(0) = 0. With this as-
sumption the last three equations of the system (3.49) have as unique solution the null one therefore,
the first term of equation (3.49)1 vanishes and the infinitesimal relationship between shape changes and
body velocity is described by the local form of the connection computed above. Moreover we take into
account the reconstruction relation (3.8), which links the state velocity expressed in the body frame
with the one expressed in the physical frame,

ġ =
(

ḋ
θ̇

)
= −

(
R(θ) 0

0 1

)
M−1
r (s)N(s)ṡ = −gAi(s)ṡi (3.50)

where g is an element of the planar euclidean group SE(2). From these we recognize the expression of
the Gauge potential (2.16).
We would like to find a solution for this equations that will aid in designing or evaluating motions that
arise from shape variations. Because SE(2) is a Lie group this solution will generally have the form

g(t) = g(0)ez(t)

where z ∈ se(2), the Lie algebra relative to SE(2). An expansion for the Lie algebra valued function
z(t) is given by the Campbell-Hausdorff formula

z = Ā+ 1
2[A,A] + 1

3 [[A,A], A] + 1
12 [A, [A,A]] + · · · , (3.51)

A(t) ≡
∫ t

0
A(τ)ṡ(τ) dτ

To obtain useful results in the spatial coordinates, examine the group displacement resulting from a
periodic path α : [0, T ]→ Rm, such that α(0) = α(T ). Taylor expand Ai about α(0) and then regroup,
simplify, apply integration by parts and use that the path is cyclic

z(α) = −1
2Fij(α(0))

∫
α

dsi dsj + 1
3(Fij,k − [Ai, Fjk])(α(0))

∫
α

dsi dsj dsk + · · · (3.52)

where
Fij ≡ Aj,i −Ai,j − [Ai, Aj ]

is called curvature of the connection.
For proportionally small deformations, the displacement experienced during one deformation cycle is:

gdisp = ez(α) ≈ exp
(
−1

2Fij(α(0))
∫
α

dsi dsj
)
. (3.53)

If the curvature F is not null this displacement gives us the so called geometric phase that is the
statement of the well-known Ambrose-Singer theorem [12].
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Remark 3.7. If we consider a swimmer that has only two shape parameters, m = 2, formula (3.53)
will give us a displacement that at leading order is proportional to the area enclosed by the periodic curve
in the shape space, as it has been already showed in [5]. Our result is a generalization of this to case in
which the shape space has dimension greater than two.

• p∗ 6= 0

Let now suppose that the system starts with an initial impulse which is non zero. Thus the last
three equations of (3.49) are not trivial. First of all we need to integrate this equations, which in
function of the deformation s and ṡ take the form

ṗ∗
1 =

(
M−1
r (s)p∗)

3
p∗

2 −
(
A(s)ṡ

)
3
p∗

2

ṗ∗
2 = −

(
M−1
r (s)p∗)

3
p∗

1 +
(
A(s)ṡ

)
3
p∗

1

ṗ∗
3 =

(
M−1
r (s)p∗)

2
p∗

1 −
(
A(s)ṡ

)
2
p∗

1 −
(
M−1
r (s)p∗)

1
p∗

2 +
(
A(s)ṡ

)
1
p∗

2

(3.54)

these can be solved once the shape s is prescribed as a function of time, and as before we choose a
periodic shape path α : [0, T ]→ Rm,with α(0) = α(T ).
Let us now consider the equation of motion regarding the state variables. We have both the contribu-
tions: the geometrical one, already studied in the case with zero impulse, and also the one depending
on the impulse p∗.

ġ = g
(
M−1
r (s)p∗ −Ai(s)ṡi

)
. (3.55)

As before the integration of this term along α(t) gives

gdisp = g(0)ez(t)

where
z = Z + 1

2[Z,Z] + 1
3 [[Z,Z], Z] + 1

12 [Z, [Z,Z]] + · · · , (3.56)

Z :=
∫ t

0
M−1
r (τ)p∗(τ)−A(τ)ṡ(τ) dτ

In order to see that gdisp is effectively the sum of two contribution let us focus on the third equation of
(3.55). It is

θ̇ =
(
M−1
r (s)p∗

)
3 −

(
A(s)ṡ

)
3

from this we can easly recognize two terms. The first one integrated along α is∫ T

0

(
M−1
r (α(τ))p∗(τ)

)
3 dτ , (3.57)

which value depends strictly on the evolution of the impulse p∗ given by equations (3.49)2−4. The
second term is the geometric contribution analyzed in the previous section, more precisely the third
component of (3.50), which depends on the curvature of the connection.
Once we have integrated this system and obtained the time evolution of θ we can solve also the ODEs
regarding ḋ which are

ḋ = R(θ)
(
M−1
r (s)p∗

)
1,2 −R(θ)

(
A(s)ṡ

)
1,2 . (3.58)

Also for these two equations it is clear that there are two terms. One is always the geometric one,
depending only on the shape s and ṡ. They are exactly the same first two components of (3.50), i.e.
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the displacement with null initial impulse. The other one integrated over α gives∫ T

0
R(θ(τ))

(
M−1
r (α(τ))p∗(τ)

)
1,2 dτ (3.59)

which is due to the presence of the impulse.
The two additional terms (3.57) and (3.59) are exactly the so called dynamic phase presented in
section 2.2 and represent the gap on the fiber (d1, d2, θ) performed by the swimmer after a periodical
change of shape. Therefore the displacement with null initial impulse and that one with a non vanishing
one, differ for the dynamic phase term, which influences both the orientation and the position of the
system at time T .

4. Controllability
In the previous section we proved that after a periodic shape deformation the system experiences a net

displacement which is different if it starts with zero initial impulse or not. In this section we will see if this
difference occurs also in the ability of the system to move between two different configurations changing shape,
i.e. in its controllability through shape parameters.
To this end, we introduce some classical definition and results that will be useful in what follows

4.1. Tools in geometric control theory
Let us consider the following control system

q̇ = F(q, u) (4.1)

where q are local coordinates for smooth manifold Q with dimQ = n and u : [0, T ] → U ⊂ Rm is the set of
admissible controls. The unique solution of (4.1) at time t ≥ t0 with initial condition q(t0) = q0 and input
function u(·) is denoted q(t, t0, q0, u).

Definition 4.1. • The reachable set RV (q0, T ) is the set of points in Q which are reachable from q0 at
exactly time T > 0, following trajectories which, for t ≤ T remain in a neighborhood V of q0

• The system (4.1) is locally accessible from x0 if, for any neighborhood V of q0 and all T > 0 the set
RVT (q0) =

⋃
t≤T R

V (q0, t) contains a non empty open set.
• The system (4.1) is locally strong accessible from q0 if for any neighborhood V of q0 and all T > 0
sufficiently small, the set RV (q0, T ) contains a non empty open set.

• The system (4.1) is controllable, if for every q1 , q2 ∈ Q exists a finite time T > 0 and an admissible
control u : [0, T ]→ U such that q(T, 0, q1, u) = q2

Let now suppose the system (4.1) to be an affine non linear control system, namely

q̇ = F(q, u) = f(q) +
m∑
j=1

gj(q)uj . (4.2)

We now present some general results for this type of control systems

Definition 4.2. The strong accessibility algebra C0 is the smallest subalgebra of the Lie algebra of smooth
vector fields on M containing the control vector fields g1 . . . gm, which is invariant under the drift vector field
f , that is [f,X] ∈ C0, ∀X ∈ C0, every element of the algebra C0 is a linear combination of repeated Lie brackets
of the form [Xk, [Xk−1, [. . . , [X1, gj ] . . .]]] for j = 1 . . .m and where Xi ∈ {f, g1, . . . , gm}.

The strong accessibility distribution C0 is the corresponding involutive distribution C0(q) = {X(q)|X ∈
C0}.
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Proposition 4.1. Let qe be an equilibrium point of the system (4.2). The linearization of the system (4.2) at
qe is controllable if

rank
[
g|∂f
∂q
g|
(∂f
∂q

)2
g| . . . |

(∂f
∂q

)n−1
g
]
|qe = n . (4.3)

We say that the Strong Accessibility Rank Condition at q0 ∈ Q is satisfied if

dimC0(q0) = n (4.4)

Proposition 4.2. We say that the system (4.2) is locally strong accessible from q0 if the strong accessibility
rank condition is satisfied.

Proposition 4.3. If the system (4.2) is driftless, namely

q̇ =
m∑
i=1

uigi(q) (4.5)

its controllability is equivalent to its strong accessibility.

Let us recall the definition of iterated Lie brackets [15]

Definition 4.3. Let f ∈ C∞ and g ∈ C∞ we define by induction on k ∈ N adkfg ∈ C∞

ad0
fg := g

adk+1
f g := [f, adkfg], ∀k ∈ N.

We are now ready to give a sufficient condition for small time local controllability

Theorem 4.4. Assume that the controlled vector fields g1 · · · gm generate a Lie algebra Lie{g1 · · · gm} that
satisfies Lie{g1 · · · gm} = TqQ for all q in Q then the corresponding affine system

q̇ = f(q) +
m∑
i=1

gi(q)ui

is strongly controllable whenever there are no restrictions on the size of the controls.

4.2. Swimmer controllability
Let us consider the control system (3.44), since they involve the impulse p∗ we have two different type of

control system depending on the initial value of this impulse. If it is zero, we have a non linear drifltess affine
control system, whose controllability can be proved with classical techniques, instead if it is not zero we have a
non linear affine system with drift, which is more tricky to study.

Remark 4.1 (Scallop Theorem). Note that in the case of zero initial impulse, if we have only one real shape
parameter we are exactly in the case of the famous Scallop Theorem according to which if the swimmer
performs a cyclical shape change α the net motion of the swimmer after a period is null.(

∆d
∆θ

)
=
∫ T

0
A(s(t))ṡ(t) dt =

∫ α(T )

α(0)
A(α) dα = 0 since α(0) = α(T ) . (4.6)

Now let us study the controllability of this system in both cases of interest: p∗0 = 0 and p∗0 6= 0.
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4.2.1. Case p∗(0) = 0

In this subsection we want to study the controllability of the system which starts with zero impulse. Accord-
ing to what said before this means that we deal with a non linear driftless affine control system.

Case of 3 real shape parameters

In this section we study exactly the case of three real controls, then we will generalized the results obtained to
a larger number of parameters. More in detail, suppose that the deformation of our swimmer is governed by
s1, s2, s3 which in polar coordinates in the body frame is precisely (3.48) introduced before:

F (σ, s) = 1 + ε(s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ)) . (4.7)

Here ε is the small parameter introduced in subsection 3.5, which represents the amplitude of the deformation
with respect to the reference circular configuration (ε = 0). From now on we will use this particular deformation
to describe the shape changes of our swimmer.
The perfect irrotational fluid has density ρ and the potential ψ∗ can be determined solving the Laplace problem
with Neumann boundary conditions following the steps described the preceding sections.
After that it is possible to compute the expression of the connection and the equation of motion



ḋ∗

θ̇
ṗ∗

1
ṗ∗

2
ṗ∗

3
ṡ1
ṡ2
ṡ3


=



−(1− µ)s2
−(1− µ)s3

0
0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1+

+



−s1
0

2πρs3
M

2πρs3p
∗
2

M

− 2πρs3p
∗
1

M

s1p
∗
2

0
1
0


ε2u2 +



0
−s1
− 2πρs2

M

− 2πρs2p
∗
2

M
2πρs2p

∗
1

M

−s1p
∗
2

0
0
1


ε2u3

(4.8)

with µ = 2πρ
M+πρ and M the mass of our body.

Due to the change of variables (3.8), the equations of motion have to be supplemented with a so-called
reconstruction equation allowing to recover d knowing θ:
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ḋ
θ̇
ṗ∗

1
ṗ∗

2
ṗ∗

3
ṡ1
ṡ2
ṡ3


=



R(θ)

(−(1− µ)s2
−(1− µ)s3

0

)
0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1+

+



R(θ)

( −s1
0

2πρs3
M

)
2πρs3p

∗
2

M

− 2πρs3p
∗
1

M

s1p
∗
2

0
1
0


ε2u2 +



R(θ)

( 0
−s1
− 2πρs2

M

)
− 2πρs2p

∗
2

M
2πρs2p

∗
1

M

−s1p
∗
2

0
0
1


ε2u3 .

(4.9)

Theorem 4.5. The system (4.9) is controllable.

Proof: First of all note that system (4.9) is clearly of the type

q̇ =
3∑
i=1

gi(θ,p∗, s)ui .

Since the initial impulses are zero it is reduced to only six non trivial equations, indeed we easily have that

p∗(t) = 0 ∀t

is a solution of the equations regarding p∗ (3.54).
Accordingly to theorem (4.3) to prove the controllability it suffices to verify the Lie algebra rank condition, i.e
dim

(
Lie{gi}i=1,2,3

)
= 6. We compute all the vector fields gi and the Lie brackets of the first order [gi, gj ] with

i 6= j (details in the Appendix) and compute their determinant

det
{
g1, g2, g3, [g1, g2], [g2, g3], [g1, g3]

}
=

4πµρε18 (µM − 2π(µ− 1)ρ
(
s2

2 + s2
3
))

M2 (4.10)

which is not null except for values s2 = s3 = 0. Since we can control the shape parameters we are always able
to move from these configurations, and therefore cross the submaifolds defined by the equations s2 = s3 = 0.
Thus we can conclude that g1, g2, g3, [g1, g2], [g2, g3], [g1, g3] are always linearly independent and dim(Lie{gi, i =
1, 2, 3}) = 6, which proves the controllability result. 2

Remark 4.2. Note that even considering in the dynamics the terms of order greater than ε2 the determinant
(4.10) cannot be null. Indeed these higher terms would add to it only terms of order greater than ε18. Therefore
we limit ourselves to study what happens with a dynamics of order ε2.

General Case: m > 3

In this subsection we deal with a generalization of the previous controllability result. Suppose that the shape
of the swimmer is described by m real parameters si, i = 1 · · ·m, which define a transformation near to the
identity, whose expression is a generalization of formula (4.7). Moreover recall that we are still in the assumption
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that the swimmer starts with zero initial impulse in body coordinates. In this case the equation of motion turn
out to be 

ẋ
ẏ

θ̇
ṡ1
...
ṡm


=

m∑
i=1

g̃iui . (4.11)

Note that also in this case, since the initial value of p∗ is null, p∗(t) = 0 is still a solution and therefore p∗ does
not appear in the system. We now investigate the controllability of the system (4.11).

Theorem 4.6. The system (4.11) is controllable.

Proof: First of all observe that if we keep constant and equal to zero the last m− 3 controls, i.e. ui = 0, i =
4 · · ·m the last m − 3 equations gives us easily si(t) ≡ 0 ∀t, ∀m ≥ 4. This means that the shape of the
swimmer is actually described by only 3 parameters. Therefore the remaining control equations have to be the
same of the ones obtained in the previous section with m = 3. This implies that the first six components of the
vectors g̃j |si≡0i=4···m, j = 1, 2, 3 have to be equal to the vectors gi defined before. As a consequence we have
that

Lie{
(
gi
0

)
, i = 1, 2, 3} ⊂ Lie{g̃i, i = 1 · · ·m} . (4.12)

Moreover we have also that the vector space generated by the last m−3 vector fields g̃i evaluated at si ≡ 0, i =
1, 2, 3 have to be contained in the Lie algebra generated by all the g̃i, since they are some of the generators.

span{g̃j |si≡0, i=1,2,3, j ≥ 4} ⊂ Lie{g̃i, i = 1 · · ·m} . (4.13)

Furthermore we have also obviously that

Lie{
(
gi
0

)
, i = 1, 2, 3} ∩ span{g̃j |si≡0, i=1,2,3, j ≥ 4} = {0} . (4.14)

This implies

dim
(
Lie{g̃i, i = 1 · · ·m}

)
≥ dim

(
Lie{

(
gi
0

)
, i = 1, 2, 3}

)
︸ ︷︷ ︸

=6

+

+ dim
(
span{g̃j |si≡0, i=1,2,3, j ≥ 4}

)
︸ ︷︷ ︸

≥m−3

(4.15)

where the first equality derives from the proof done before in the case m = 3.
Thus finally we obtain that

dim
(
Lie{g̃i, i = 1 · · ·m}

)
≥ m+ 3 (4.16)

which proves the controllability of the system. 2
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4.2.2. Case p∗0 6= 0
Let us suppose that our deformable body has an initial constant impulse p∗0 that is not null. As a consequence

our control system is a system with drift of dimension m+ 6.

Case of 3 shape parameters

We start we the simplest case of three control shape parameters; Since we start with an initial impulse that is
not null we have the following control system with drift



ḋ∗

θ̇
ṗ∗

1
ṗ∗

2
ṗ∗

3
ṡ1
ṡ2
ṡ3


=



M−1
r (s)p∗

(M−1
r (s)p∗)3p

∗
2

(M−1
r (s)p∗)3p

∗
1

(M−1
r (s)p∗)2p

∗
1 − (M−1

r (s)p∗)1p
∗
2

0
0
0


+

+



−(1− µ)s2
−(1− µ)s3

0
0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1 +



−s1
0

2πρs3
M

2πρs3p
∗
2

M

− 2πρs3p
∗
1

M

s1p
∗
2

0
1
0


ε2u2 +



0
−s1
− 2πρs2

M

− 2πρs2p
∗
2

M
2πρs2p

∗
1

M

−s1p
∗
2

0
0
1


ε2u3 .

(4.17)

Which taking into account the reconstruction equations becomes
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ḋ
θ̇
ṗ∗

1
ṗ∗

2
ṗ∗

3
ṡ1
ṡ2
ṡ3


=



R(θ)M−1
r (s)p∗

(M−1
r (s)p∗)3p

∗
2

(M−1
r (s)p∗)3p

∗
1

(M−1
r (s)p∗)2p

∗
1 − (M−1

r (s)p∗)1p
∗
2

0
0
0


+

+



R(θ)

(−(1− µ)s2
−(1− µ)s3

0

)
0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1 +



R(θ)

( −s1
0

2πρs3
M

)
2πρs3p

∗
2

M

− 2πρs3p
∗
1

M

s1p
∗
2

0
1
0


ε2u2

+



R(θ)

( 0
−s1
− 2πρs2

M

)
− 2πρs2p

∗
2

M
2πρs2p

∗
1

M

−s1p
∗
2

0
0
1


ε2u3 .

(4.18)

Theorem 4.7. The system (4.18) is strongly controllable if there are no restrictions on the size of the controls,
except at least on submanifolds of co-dimension greater than one defined by p∗1 = 0, p∗2 = 0, p∗3 = constant 6= 0.
Moreover these submanifolds are invariant and the control system restricted to them is strongly controllable if
there are no restrictions on the size of the controls.

Proof: The system (4.18) is clearly of the type

q̇ = f(q) +
3∑
i=1

gi(q)ui . (4.19)

Applying theorem (4.4) to prove the strong controllability, we have to verify that the Lie algebra generated by
the vector fields gi has the same dimension of the tangent space, i.e dim(Lie{gi, i = 1, 2, 3}) = 9. Thus we
compute the Lie brackets of zero, first and second order of the vectors gi (the detailed expressions are in the
Appendix).

The determinant of these vector fields is
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det
{

g1,g2,g3, [g1,g2], [g1,g3], [g2,g3], [g1[g2,g3]], [g2[g2,g3]], [g3[g2,g3]]
}

=

8192
M10 π

7µp∗
2ρ

7s2
2s

2
3ε

36(Mp∗
2 − 2πp∗

1ρs2s3)(
M2(p∗

1((2(µ− 3)µ+ 3)s2 − µs3) + +p∗
2((2µ− 3)s2 + ((9− 4µ)µ− 6)s3))−

− 2π(µ− 1)Mρ
(
2µp∗

1s2
(
s2

2 − 2s2
3
)
− p∗

1(s2 + s3)
(
4s2

2 − 3s2s3 + s2
3
)
−

− p∗
2s3
(
−2µs2

2 + s2
2 + s2

3
))

+ 8π2(µ− 1)2ρ2s2s3
(
s2

2 + s2
3
)

(p∗
2s2 − p∗

1s3)
)
.

(4.20)

This is not vanishing except the following cases
• s2 = 0
This case is easily solved, indeed we are controlling ṡ2, therefore we are always able to move from this
configuration and cross the hypersurface s2 = 0.

• s3 = 0
This case is solved exactly in the same way as the preceding one.

• p∗2 = 0
We want to prove that we always have a vector field that is non tangent to this hyper surface. For
this purpose we compute the scalar product between the gradient of the determinant and each vector
field gi and see if it is non zero along the hyper surface p∗2 = 0. Let us consider for example the scalar
product with g2

(〈∇det{g1, · · · },g2〉 |p∗2 =0)M11 =

32768π9µ(p∗
1)3ρ9s3

2s
4
3ε

38
(
M2 ((−2µ2 + 6µ− 3

)
s2 + µs3

)
+ 2πMρ(2

(
µ2 − 3µ+ 2

)
s3

2+

+s2
2(s3 − µs3)− 2

(
2µ2 − 3µ+ 1

)
s2s

2
3 − (µ− 1)s3

3) + 8π2(µ− 1)2ρ2s2s
2
3
(
s2

2 + s2
3
))

this is null only in the following cases
a) s2 = 0

From which we are always able to move as we have seen before
b) s3 = 0

From which we are always able to move as we have seen before
c) p∗1 = 0

Looking at equations (4.17) this case means that we are on the submanifold p∗1 = 0, p∗2 = 0,
p∗3 = const that has co-dimension 3. In this case the system cannot leave this submanifold, which
is invariant.

d) s2 = f(s3)
Here f is a suitable function of s3 such that(

M2 ((−2µ2 + 6µ− 3
)
s2 + µs3

)
+ 2πMρ(2

(
µ2 − 3µ+ 2

)
s3

2+

+ s2
2(s3 − µs3)− 2

(
2µ2 − 3µ+ 1

)
s2s

2
3 − (µ− 1)s3

3) + 8π2(µ− 1)2ρ2s2s
2
3
(
s2

2 + s2
3
))

= 0 .

Since we are controlling both s2 and s3 we can always move from this configuration.
In any case the points in which this scalar product is zero define a submanifold of co-dimension grater
than one that we are always able to bypass. Therefore we have proved that the vector field g2 is non
tangent to the hyper surface p∗2 = 0, except in the case of p∗1 = 0, thus we are able to move from it using
suitable controls.

• p∗2 = 2πp∗1ρs2s3

M
Like in the previous case we compute the scalar product of the gradient of the determinant with g2 and
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see that it is non null except on sub manifold of co-dimension grater than one, more precisely
(〈∇det,g2〉 |

p∗2 =
2πp∗1ρs2s3

M

)M14 =

65536π9µp∗3
1 ρ9s3

2s
4
3ε

38 (M2 + 2π2ρ2s2
2s

2
3
)

(M3 ((2µ2 − 6µ+ 3
)
s2 − µs3

)
−

2πM2ρ
(
2
(
µ2 − 3µ+ 2

)
s3

2 + (4− 3µ)s2
2s3 + (4− 3µ)s2s

2
3 − (µ− 1)s3

3
)
−

4π2(µ− 1)Mρ2s2s
2
3
(
(4µ− 3)s22 + (2µ− 3)s2

3
)

+ 16π3(µ− 1)2ρ3s3
2s

2
3
(
s2

2 + s2
3
)
)

this is null only in the following cases
◦ s2 = 0, s3 = 0, p∗1 = 0, s2 = h(s3) where h is a suitable function of s3 in which the scalar product
vanishes.
These cases have been already faced and treated before.

• p∗2 = f̃(p∗1, s2, s3)
Where f̃ is a function that represents the value of p∗2 in which the last factor of the determinant is
null. Also in this case computing 〈∇det,g2〉 |p∗2=f̃(p∗1 ,s2,s3) we see that all the points in which it is null
define sub manifolds of co-dimension grater than one defined by the equation p∗1 = 0, p∗2 = 0 and
p∗3 = const 6= 0.

Finally we can conclude that the vector fields

g1,g2,g3, [g1,g2], [g1,g3], [g2,g3], [g1[g2,g3]], [g2[g2,g3]], [g3[g2,g3]]

are always linearly independent except the submanifolds defined by p∗1,2 = 0, p∗3 = const, which proves the first
part of the theorem.
These submanifolds are invariant and on them the dimension of the system reduces to 6. If we restrict to
them, we have still a system with drift, whose strong controllability can be proved verifying that the vectors
g1, g2, g3, [g1, g2], [g2, g3], [g1, g3] are linearly independent (see Theorem 4.4). Therefore the system restricted to
each of these invariant submanifolds is strongly controllable if there is no restrictions on the size of the controls.

2

General case m > 3

In the case of initial impulse not zero, as we have said before we have a control affine system with drift of
dimension m+ 6. 

ḋ∗1
ḋ∗2
θ̇
ṗ∗1
ṗ∗2
ṗ∗3
ṡ1
...
ṡm


= f̃ +

m∑
i=1

g̃iui (4.21)

Theorem 4.8. The system (4.21) is strongly controllable except at least on submanifolds of co-dimension greater
than one defined by p∗1 = 0, p∗2 = 0, p∗3 = constant 6= 0. These submanifolds are invariant and the control system
restricted to them is strongly controllable if there are no restrictions on the size of the controls.

Proof: To prove the strong controllability of the system (4.21) we exploit the theorem (4.4). Thus the condition
to prove is that the dimension of the Lie algebra genereted by the control vector fields g̃i has dimension m+ 6.
The proof is similar to the proof of the previous theorem. Using the following facts:
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• Lie{
(

gi
0

)
, i = 1, 2, 3} ⊂ Lie{g̃i, i = 1, · · · ,m}

• span{g̃j |si≡0,i=1,2,3, j ≥ 4} ⊂ Lie{g̃i, i = 1, · · · ,m}

• Lie{
(

gi
0

)
, i = 1, 2, 3} ∩ span{g̃j |si≡0,i=1,2,3, j ≥ 4} = {0}

we deduce that

dim
(
Lie{g̃i, i = 1 · · ·m}

)
≥ dim

(
Lie{

(
gi
0

)
, i = 1, 2, 3}

)
︸ ︷︷ ︸

=9

+

+ dim
(
span{g̃j |si≡0, i=1,2,3, j ≥ 4}

)
︸ ︷︷ ︸

≥m−3

.

(4.22)

Which proves that dim
(
Lie{g̃i, i = 1 · · ·m}

)
= m+ 6, except at least on the same submanifold on which the

condition is not satisfied even in the case m = 3 that are of co-dimension greater than one defined by p∗1 = 0,
p∗2 = 0, p∗3 = constant 6= 0. Again if we restrict ourselves on this invariant submanifolds, recalling that in
Theorem 4.6 we have proved that the dimension of the Lie algebra generated by the g̃i is m+ 3, the condition
of controllability of Theorem 4.4 is satisfied. Therefore the system is strongly controllable on the invariant
submanifolds if there are no restrictions on the size of the controls.

2

Conclusions and perspectives
In this paper we have investigated the geometric nature of the swimming problem of a 2-dimensional de-

formable body immersed in an ideal irrotational fluid.
We faced a new problem: the study of the controllability properties of a dynamical system which can start with
a non zero initial impulse. Reinterpreting the hydrodynamic forces exerted by the fluid on the body, as kinetic
terms, and describing the shape changes with a finite number of parameters, we derive the equation of motion
of the system. At first we analyze the displacement of the system due to periodic deformations, analyzing the
differences due to the presence or not of an initial impulse. Then we study these differences also in the ability
of the system to move between two fixed configurations. Indeed using classical techniques in control theory we
are able to gain some good results for the controllability of this kind of system.
If it starts with zero initial impulse we recover results present in the literature. We are always able to find a
suitable rate of deformation which makes the swimmer moving between two different fixed configurations. If
instead the body starts with an initial impulse different from zero, the swimmer can self-propel in almost any
direction if it can undergo shape changes without any bound on their velocity.
The fact that we take into account the presence of an initial impulse not null, and the analysis of the control-
lability of this system seems innovative and makes the study of the self-propulsion of deformable bodies in an
ideal fluid more accurate and complete.
The approach described in this paper can be extended in a number of natural ways. To begin with, we have
restricted our attention to planar swimmers. The general 3-dimensional case is conceptually straightforward,
even though the way of describing the shape changes should be different.
The study of bodies that change their shape using only a finite number of parameters is the initial point of
a more complex study of controlling the deformation by diffeomorphisms. Future work will also explore the
optimal control problem associated to these kind of systems, especially in the case of non zero initial impulse.
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Appendix
The vector Fields gi and their Lie brackets of the first order mentioned in theorem 4.5 are

g1 = ε2


R(θ)

(−(1− µ)s2
−(1− µ)s3

0

)
1
0
0

 g2 = ε2


R(θ)

( −s1
0

2πρs3
M

)
0
1
0



g3 = ε2


R(θ)

( 0
−s1
− 2πρs2

M

)
0
0
1

 .

(4.23)

The Lie brackets generated by these vector fields are

[g1, g2] = ε4



2πs2s3(µ−1)ρ sin(θ)−cos(θ)(Mµ−2πs2
3(µ−1)ρ)

M
sin(θ)(2πs2

3(µ−1)ρ−Mµ)−2πs2s3(µ−1)ρ cos(θ)
M
0
0
0
0



[g1, g3] = ε4



sin(θ)(Mµ−2πs2
2(µ−1)ρ)−2πs2s3(µ−1)ρ cos(θ)

M

− cos(θ)(Mµ−2πs2
2(µ−1)ρ)+2πs2s3(µ−1)ρ sin(θ)

M
0
0
0
0



[g2, g3] = ε4



2πs1ρ(s2 sin(θ)+s3 cos(θ))
M

2πs1ρ(s3 sin(θ)−s2 cos(θ))
M

− 4πρ
M
0
0
0

 .

(4.24)
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The vector fields that we need to compute the Lie algebra generated by gi in theorem 4.7 are

g1 = ε2



R(θ)

−(1− µ)s2
−(1− µ)s3

0


0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


g2 = ε2



R(θ)

 −s1
0

2πρs3
M


2πρs3p

∗
2

M

− 2πρs3p
∗
1

M
s1p
∗
2

0
1
0



g3 = ε2



R(θ)

 0
−s1
− 2πρs2

M


− 2πρs2p

∗
2

M
2πρs2p

∗
1

M
−s1p

∗
2

0
0
1


.

(4.25)
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Their Lie brackets of the first order are

[g1,g2] = ε4



2πs2s3(µ−1)ρ sin(θ)−cos(θ)(Mµ−2πs2
3(µ−1)ρ)

M
sin(θ)(2πs2

3(µ−1)ρ−Mµ)−2πs2s3(µ−1)ρ cos(θ)
M

0
0
0

2πs3(µ−1)ρ(p∗1s2−p∗2s3)−Mp∗2 (µ−2)
M

0
0
0



[g1,g3] = ε4



sin(θ)(Mµ−2πs2
2(µ−1)ρ)−2πs2s3(µ−1)ρ cos(θ)

M

− cos(θ)(Mµ−2πs2
2(µ−1)ρ)+2πs2s3(µ−1)ρ sin(θ)

M

0
0
0

(2πs2(µ−1)ρ(p∗1s2+p∗2s3)−M(p∗1 (µ−1)+p∗2 ))
M

0
0
0



[g2,g3] = ε4



2πs1ρ(s2 sin(θ)+s3 cos(θ))
M

2πs1ρ(s3 sin(θ)−s2 cos(θ))
M

− 4πρ
M

− 4πρ(Mp∗2 −2πp∗1s2s3ρ)
M2

− 8π2p∗2s2s3ρ
2

M2
2πp∗1s1ρ(s2+s3)

M

0
0
0


.

(4.26)
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Finally the only non zero brackets of the second order are

[g1, [g2,g3]] = ε6



− 2π(2µ−3)ρ(s2 sin(θ)+s3 cos(θ))
M

2π(2µ−3)ρ(s2 cos(θ)−s3 sin(θ))
M

0
0
0

2πρ(M(p∗1 (s2+s3)+2p∗2s3(µ−1))+4πs2s3(µ−1)ρ(p∗2s2−p∗1s3))
M2

0
0
0



[g2, [g2,g3]] = ε6



2πs1ρ(sin(θ)(3M−2πs2
3ρ)+2πs2s3ρ cos(θ))

M2
2πs1ρ(2πs3ρ(s2 sin(θ)+s3 cos(θ))−3M cos(θ))

M2

0
16π2s3ρ

2(Mp∗1 +2πp∗2s2s3ρ)
M3

− 16π2s3ρ
2(Mp∗2 −2πp∗1s2s3ρ)

M3
2πs1ρ(Mp∗1 +2πp∗2s3ρ(3s2+s3))

M2

0
0
0



[g3, [g2,g3]] = ε6



2πs1ρ(cos(θ)(3M−2πs2
2ρ)+2πs2s3ρ sin(θ))

M2
2πs1ρ(3M sin(θ)−2πs2ρ(s2 sin(θ)+s3 cos(θ)))

M2

0
16π2s2ρ

2(Mp∗1 −2πp∗2s2s3ρ)
M3

− 16π2s2ρ
2(Mp∗2 −2πp∗1s2s3ρ)

M3
2πs1ρ(Mp∗1 −2πp∗2s2ρ(s2+3s3))

M2

0
0
0


.

(4.27)
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