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We study the processes eþe− → γISRJ=ψ , where J=ψ → πþπ−π0, J=ψ → KþK−π0, and J=ψ →
K0

SK
�π∓ using a data sample of 519 fb−1 recorded with the BABAR detector operating at the SLAC

PEP-II asymmetric-energy eþe− collider at center-of-mass energies at and near the ΥðnSÞ (n ¼ 2; 3; 4)

resonances. We measure the ratio of branching fractionsR1 ¼ BðJ=ψ→KþK−π0Þ
BðJ=ψ→πþπ−π0Þ andR2 ¼ BðJ=ψ→K0

SK
�π∓Þ

BðJ=ψ→πþπ−π0Þ . We

perform Dalitz plot analyses of the three J=ψ decay modes and measure fractions for resonances
contributing to the decays. We also analyze the J=ψ → πþπ−π0 decay using the Veneziano model. We
observe structures compatible with the presence of ρð1450Þ in all three J=ψ decay modes and measure the

relative branching fraction: Rðρð1450ÞÞ ¼ Bðρð1450Þ→KþK−Þ
Bðρð1450Þ→πþπ−Þ ¼ 0.307� 0.084ðstatÞ � 0.082ðsysÞ.

DOI: 10.1103/PhysRevD.95.072007

I. INTRODUCTION

Charmonium decays, in particular radiative and hadronic
decays of the J=ψ meson, have been studied extensively
[1,2]. One of the motivations for these studies is to search
for non-qq̄ mesons such as glueballs or molecular states
that are predicted by QCD to populate the low mass region
of the hadron mass spectrum [3].
Previous studies of J=ψ decays to πþπ−π0 show a clear

signal of ρð770Þ production [4,5]. In addition there is an
indication of higher mass resonance production in ψð2SÞ
decays [5]. This is not necessarily the case in J=ψ decays,
but neither does the ρð770Þ contribution saturate the
spectrum. Attempts have been made to describe the J=ψ
decay distribution with additional partial waves [6]. It was
found that interference effects are strong and even after
adding ππ interactions up to ≈1.6 GeV=c2 the description
remained quite poor. Continuing to expand the partial wave
basis to cover an even higher mass region would lead to a
rather unconstrained analysis. On the other hand with the
amplitudes developed in the Veneziano model, all partial
waves are related to the same Regge trajectory, which gives
a very strong constraint on the amplitude analysis [7].

While large samples of J=ψ decays exist, some branch-
ing fractions remain poorly measured. In particular the
J=ψ → KþK−π0 branching fraction has been measured by
Mark II [8] using only 25 events.
Only a preliminary result exists, to date, on a Dalitz

plot analysis of J=ψ decays to πþπ−π0 [9]. The BESII
experiment [10] has performed an angular analysis of
J=ψ → KþK−π0. The analysis requires the presence of a
broad JPC ¼ 1−− state in theKþK− threshold region, which
is interpreted as a multiquark state. However Refs. [11,12]
explain it by the interference between the ρð1450Þ and
ρð1700Þ. On the other hand, the decay ρð1450Þ → KþK−

appears as “not seen” according to the PDG listing [13]. No
Dalitz plot analysis has been performed to date on the
J=ψ → K0

SK
�π∓ decay.

We describe herein a study of the J=ψ → πþπ−π0,
J=ψ → KþK−π0, and J=ψ → K0

SK
�π∓ decays produced

in eþe− annihilation via initial-state radiation (ISR), where
only resonances with JPC ¼ 1−− can be produced.
This article is organized as follows. In Sec. II, a brief

description of the BABAR detector is given. Section III is
devoted to the event reconstruction and data selection. In
Sec. IV, we describe the study of efficiency and resolution,
while Sec. V is devoted to the measurement of the J=ψ
branching fractions. Section VI describes the Dalitz plot
analyses while in Sec. VII, we report the measurement of
the ρð1450Þ branching fraction. Finally we summarize the
results in Sec. VIII.

II. THE BABAR DETECTOR AND DATA SET

The results presented here are based on data collected
with the BABAR detector at the PEP-II asymmetric-energy
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eþe− collider located at SLAC. The data sample corre-
sponds to an integrated luminosity of 519 fb−1 [14] recorded
at center-of-mass energies at and near the ϒðnSÞ
(n ¼ 2; 3; 4) resonances. The BABAR detector is described
in detail elsewhere [15]. Charged particles are detected, and
their momenta are measured, by means of a five-layer,
double-sided microstrip detector, and a 40-layer drift cham-
ber, both operating in the 1.5 T magnetic field of a super-
conducting solenoid. Photons are measured and electrons
are identified in a CsI(Tl) crystal electromagnetic calorim-
eter (EMC). Charged-particle identification is provided
by the specific energy loss in the tracking devices, and by
an internally reflecting ring-imaging Cherenkov detector.
Muons are detected in the instrumented flux return of the
magnet. Monte Carlo (MC) simulated events [16], with
sample sizes more than 10 times larger than the correspond-
ing data samples, are used to evaluate signal efficiency and to
determine background features.

III. EVENT RECONSTRUCTION AND
DATA SELECTION

We study the following reactions:

eþe− → γISRπ
þπ−π0; ð1Þ

eþe− → γISRKþK−π0; ð2Þ

eþe− → γISRK0
SK

�π∓; ð3Þ

where γISR indicates the ISR photon.
For reactions (1) and (2), we consider only events for

which the number of well-measured charged-particle tracks
with transverse momenta greater than 0.1 GeV=c is exactly
equal to 2. The charged-particle tracks are fitted to a
common vertex with the requirements that they originate
from the interaction region and that the χ2 probability of
the vertex fit be greater than 0.1%. We observe prominent
J=ψ signals in both reactions and optimize the signal-to-
background ratio using the data by retaining only selection
criteria that do not remove significant J=ψ signal.We require
the energy of the less-energetic photon from π0 decays to be
greater than 100 MeV. Each pair of photons is kinematically
fitted to a π0 requiring it to emanate from the primary vertex
of the event, and with the diphoton mass constrained to the
nominal π0 mass [13]. Due to the soft-photon background,
we do not impose a veto on the presence of additional
photons in the final state but we require exactly one π0

candidate in each event. Particle identification is used in two
different ways. For reaction (1), we require two oppositely
charged particles to be loosely identified as pions. For
reaction (2), we loosely identify one kaon and require that
neither track be a well-identified pion, electron, or muon.
For reaction (3), we consider only events for which the

number of well-measured charged-particle tracks with

transverse momentum greater than 0.1 GeV=c is exactly
equal to 4, and for which there are no more than five photon
candidates with reconstructed energy in the EMC greater
than 100MeV. We obtainK0

S → πþπ− candidates by means
of a vertex fit of pairs of oppositely charged tracks, for
which we require a χ2 fit probability greater than 0.1%.
Each K0

S candidate is then combined with two oppositely
charged tracks, and fitted to a common vertex, with the
requirements that the fitted vertex be within the eþe−

interaction region and have a χ2 fit probability greater than
0.1%. We select kaons and pions by applying high-
efficiency particle identification criteria. We do not apply
any particle identification requirements to the pions from
the K0

S decay. We accept only K0
S candidates with decay

lengths from the J=ψ candidate decay vertex greater than
0.2 cm, and require cos θK0

S
> 0.98, where θK0

S
is defined as

the angle between the K0
S momentum direction and the line

joining the J=ψ and K0
S vertices. A fit to the πþπ− mass

spectrum using a linear function for the background and a
Gaussian function with mean m and width σ gives m ¼
497.24 MeV=c2 and σ ¼ 2.9 MeV=c2. We select the K0

S
signal region to be within �2σ of m and reconstruct the K0

S
four-vector by summing the three-momenta of the pions
and computing the energy using the known K0

S mass [13].
The ISR photon is preferentially emitted at small angles

with respect to the beam axis (see Fig. 1), and escapes
detection in the majority of ISR events. Consequently, the
ISR photon is treated as a missing particle.
We define the squared mass M2

rec recoiling against the
πþπ−π0, KþK−π0, and K0

SK
�π∓ systems using the four-

momenta of the beam particles (pe�) and of the recon-
structed final state particles:

M2
rec ≡ ðpe− þ peþ − ph1 − ph2 − ph3Þ2; ð4Þ

where the hi indicate the three hadrons in the final states.
This quantity should peak near zero for both ISR events and
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FIG. 1. (a) Distribution of θISR for events in the J=ψ → πþπ−π0

ISR signal region. The dashed line indicates the θISR ¼ 230 angle.
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for exclusive production of eþe− → h1h2h3. However, in
the exclusive production the h1h2h3 mass distribution
peaks at the kinematic limit. We select the ISR reactions
(in the following also defined as ISR regions) requiring

jM2
recj < 2 GeV2=c4 ð5Þ

for reaction (1) and (2) and

jM2
recj < 1.5 GeV2=c4 ð6Þ

for reaction (3).
We reconstruct the three-momentum of the ISR photon

from momentum conservation as

pISR ¼ pe− þ peþ − ph1 − ph2 − ph3 : ð7Þ

Table I gives the ranges used to define the ISR signal regions
for the three J=ψ decaymodes.We show in Fig. 1, for events
in the J=ψ → πþπ−π0 ISR signal region, the distribution of
θISR, the angle of the reconstructed ISR photon with respect
to the e− beam direction in the laboratory system. We
observe a narrow peak close to zero with a tail extending up
to 1400 while background events from J=ψ sidebands are
distributed over the full angular range. Since angular cover-
age of the EMC starts at θ > 230, we improve the signal to
background ratio for J=ψ events where θISR > 230, by
removing events for which no photon shower is found in
the EMC in the expected angular region. Therefore, we
require the difference between the predicted polar and
azimuthal angles from pISR and the closest photon shower
to be jΔθj < 0.1 rad and jΔϕj < 0.05 rad.We do not use the
information on the energy since some photons may not be
fully contained in the EMC.
For reaction (1) we define the helicity angle θh as the

angle in the πþπ− rest frame between the direction of the
πþ and the boost from the πþπ−. We observe that residual
background from eþe− → γπþπ− is concentrated at
jcos θπj ≈ 1 and therefore we remove events having
jcos θπj > 0.95. A very small J=ψ signal is observed in
the events removed by this selection. No evidence is found
for background from the ISR reaction eþe− → γISRKþK−.
Figure 2 shows the M2

rec distributions for the three
reactions in the J=ψ signal regions, in comparison to the
correspondingM2

rec distributions obtained from simulation.

A peak at zero is observed in all distributions indicating the
presence of the ISR process. We observe some discrepancy
for reactions (1) and (2) due to some inaccuracy in
reconstructing slow π0 in the EMC. Figure 3 shows the
πþπ−π0, KþK−π0, and K0

SK
�π∓ mass spectra in the ISR

region, before applying the efficiency correction. We
observe strong J=ψ signals over relatively small back-
grounds and no more than one candidate per event. We
perform a fit to the πþπ−π0, KþK−π0, and K0

SK
�π∓ mass

spectra. Backgrounds are described by first-order poly-
nomials, and each resonance is represented by a simple

TABLE I. Ranges used to define the J=ψ signal regions, event
yields, and purities for the three J=ψ decay modes.

J=ψ Signal region Event Purity
decay mode (GeV=c2) yields %

πþπ−π0 3.028–3.149 20417 91.3� 0.2
KþK−π0 3.043–3.138 2102 88.8� 0.7
K0

SK
�π∓ 3.069–3.121 3907 93.1� 0.4
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FIG. 2. Distributions of M2
rec for eþe− → γISRJ=ψ, where (a)

J=ψ → πþπ−π0, (b) J=ψ → KþK−π0, and (c) J=ψ → K0
SK

�π∓.
In each figure the data are shown as points with error bars, and the
MC simulation is shown as a histogram.
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Breit-Wigner function convolved with the corresponding
resolution function (see Sec. IV). Figure 3 shows the fit
result, and Table II summarizes the mass values and yields.
We observe (not taking into account systematic uncertain-
ties) a J=ψ mass shift ofþ2.9,þ4.1, and −2.2 MeV=c2 for
the three decay modes.

IV. EFFICIENCY AND RESOLUTION

To compute the efficiency, J=ψ MC signal events for the
three channels are generated using a detailed detector

simulation [16] in which the J=ψ decays uniformly in
phase space. These simulated events are reconstructed and
analyzed in the same manner as data. The efficiency is
computed as the ratio of reconstructed to generated events.
We express the efficiency as a function of the m12 mass
(πþπ− for J=ψ → πþπ−π0, KþK− for J=ψ → KþK−π0,
and K0

SK
� for J=ψ → K0

SK
�π∓) and cos θh defined in

Sec. III. To smooth statistical fluctuations, this efficiency is
then parametrized as follows [17].
First we fit the efficiency as a function of cos θh in

separate intervals ofm12, in terms of Legendre polynomials
up to L ¼ 12:

εðcos θhÞ ¼
X12
L¼0

aLðm12ÞY0
Lðcos θhÞ: ð8Þ

For each value of L, we fit the mass dependent coefficients
aLðm12Þ with a seventh-order polynomial in m12. Figure 4
shows the resulting fitted efficiency εðm12; cos θhÞ for each
of the three reactions. We observe a significant decrease
in efficiency at low m12 for cos θ ∼�1 and 1.1 <
mðKþK−Þ < 1.5 GeV=c2 due to the difficulty of recon-
structing low-momentum tracks (p < 200 MeV=c in the
laboratory frame), which arise because of significant
energy losses in the beampipe and inner-detector material.
The mass resolution, Δm, is measured as the difference

between the generated and reconstructed πþπ−π0,
KþK−π0, and K0

SK
�π∓ invariant-mass values. These dis-

tributions, for the J=ψ decays having a π0 in the final state,
deviate from Gaussian shapes due to a low-energy tail
caused by the response of the CsI calorimeter to photons.
We fit the distributions using the sum of a Crystal Ball
function [18] and a Gaussian function. The root-mean-
squared values are 24.4 and 22.7 MeV=c2 for the J=ψ →
πþπ−π0 and J=ψ → KþK−π0 final states, respectively. The
mass resolution for J=ψ → K0

SK
�π∓ is well described by a

single Gaussian having a σ ¼ 9.7 MeV=c2.

V. J=ψ BRANCHING RATIOS

We compute the ratio of the branching fractions for
J=ψ → KþK−π0 and J=ψ → πþπ−π0 according to

R1 ¼
BðJ=ψ → KþK−π0Þ
BðJ=ψ → πþπ−π0Þ ¼ NKþK−π0

Nπþπ−π0

επþπ−π0

εKþK−π0
; ð9Þ
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FIG. 3. (a) The πþπ−π0, (b) KþK−K0, and K0
SK

�π∓ mass
spectra in the ISR region. In each figure, the solid curve shows
the total fit function and the dashed curve shows the fitted
background contribution.

TABLE II. Results from the fits to the mass spectra and
efficiency corrections. Errors are statistical only.

J=ψ decay
mode χ2=NDF

J=ψ mass
(MeV=c2) Signal yield 1=ε

πþπ−π0 90=105 3099.8�0.2 19560�164 15.57�1.05
KþK−π0 129=95 3101.0�0.2 2002�48 18.31�0.63
K0

SK
�π∓ 127=96 3094.7�0.2 3694�64 15.15�0.33
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where Nπþπ−π0 and NKþK−π0 represent the fitted yields for
J=ψ in the πþπ−π0 and KþK−π0 mass spectra, while
επþπ−π0 and εKþK−π0 are the corresponding efficiencies. We
estimate επþπ−π0 and εKþK−π0 for the J=ψ signals by making
use of the 2D efficiency distributions described in Sec. IV.
To remove the dependence of the fit quality on the
efficiency functions we make use of the unfitted efficiency
distributions. Due to the presence of non-negligible back-
grounds in the J=ψ signals, which have different distribu-
tions in the Dalitz plot, we perform a sideband subtraction

by assigning a weight w ¼ f=εðm12; cos θÞ, where f ¼ 1
for events in the J=ψ signal region and f ¼ −1 for events
in the sideband regions. The size of the sum of the two
sidebands is taken to be the same as that of the signal
region. Therefore we obtain the weighted efficiencies as

εhþh−π0 ¼
P

N
i¼1 fiP

N
i¼1 fi=εðm12; cos θiÞ

; ð10Þ

where N indicates the number of events in the signalþ
sidebands regions. The resulting yields and efficiencies are
reported in Table II.
We note that in Eq. (9) the number of charged-particle

tracks and γ’s is the same in the numerator and in the
denominator of the ratio, so that several systematic uncer-
tainties cancel. We estimate the systematic uncertainties as
follows. We modify the signal fitting function, describing
the J=ψ signals using the sum of two Gaussian functions.
The uncertainty due to efficiency weighting is evaluated by
computing 1000 new weights obtained by randomly
modifying the weight in each cell of the εðm12; cos θÞ
plane according to its statistical uncertainty. The widths of
the resulting Gaussian distributions yield the estimate of the
systematic uncertainty for the efficiency weighting pro-
cedure. These values are reported as the uncertainties on
1=ε in Table II. We assign a 1% systematic uncertainty for
the identification of each of the two kaons, from studies
performed using high statistics control samples. The con-
tributions to the systematic uncertainties from different
sources are given in Table III and combined in quadrature.
We obtain

R1 ¼
BðJ=ψ → KþK−π0Þ
BðJ=ψ → πþπ−π0Þ

¼ 0.120� 0.003ðstatÞ � 0.009ðsysÞ: ð11Þ

The PDG reports BðJ=ψ→πþπ−π0Þ¼ð2.11�0.07Þ×10−2,
while the branching fraction BðJ=ψ → KþK−π0Þ has
been measured by Mark II [8] using 25 events, to be
ð2.8� 0.8Þ × 10−3. These values give a ratio RPDG

1 ¼
0.133� 0.038, in agreement with our measurement.
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FIG. 4. Fitted detection efficiency in the cos θh vsm12 plane for
(a) J=ψ→πþπ−π0, (b) J=ψ→KþK−π0, and (c) J=ψ→K0

SK
�π∓.

Each bin shows the average value of the fit in that region.

TABLE III. Fractional systematic uncertainties in the evalu-
ation of the ratios of branching fractions.

Effect R1 (%) R2 (%)

Efficiency 7.5 7.0
Background subtraction 1.3 1.0
Particle identification 2.0 1.8
K0

S reconstruction 1.1
π0 reconstruction 3.0
Mass fits 0.8 0.8
Total 7.9 8.0
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We perform a test of the R1 measurement using a
minimum bias procedure. We remove all the selections
used to separate reactions (1) and (2), except for the
requirements on M2

rec and obtain the events yield for
J=ψ → πþπ−π0. To obtain the J=ψ → KþK−π0 yield,
we apply very loose identifications of the two kaons to
remove the large background and the strong cross feed
from the J=ψ → πþπ−π0 final state. We observe a loss of
the J=ψ signal which is estimated by MC to be 3.6%. The
ratios between the two minimum bias yields, corrected for
the above efficiency loss gives directly the ratio of the two
branching fractions which is in good agreement with the
previous estimate.
Using a similar procedure as for the measurement ofR1,

correcting for unseen K0
S decay modes, we compute the

ratio of the branching fractions for J=ψ → K0
SK

�π∓ and
J=ψ → πþπ−π0 according to

R2 ¼
BðJ=ψ → K0

SK
�π∓Þ

BðJ=ψ → πþπ−π0Þ

¼
NK0

SK
�π∓

Nπþπ−π0

επþπ−π0

εK0
SK

�π∓

¼ 0.265� 0.005ðstatÞ � 0.021ðsysÞ: ð12Þ

Systematic uncertainties on the evaluation ofR2 include
0.46% per track for charged tracks reconstruction, 3% and
1.1% for π0 and K0

S reconstruction, and 0.5% and 1% for
the identification of pions and kaons, respectively. The
contributions to the total systematic uncertainty are sum-
marized in Table III.
The branching fraction BðJ=ψ → K0

SK
�π∓Þ has been

measured by Mark I [19], using 126 events, to be
ð26� 7Þ × 10−4. Using the above measurements we obtain
an estimate of R2:

RPDG
2 ¼ 0.123� 0.033; ð13Þ

which deviates by 3.6σ from our measurement.
As a cross-check, using the above R1 and R2 measure-

ments and adding in quadrature statistical and systematic
uncertainties, we compute

R3 ¼
BðJ=ψ → K0

SK
�π∓Þ

BðJ=ψ → KþK−π0Þ ¼ 2.21� 0.24 ð14Þ

in agreement with the expected value of 2.

VI. DALITZ PLOT ANALYSIS

We perform Dalitz plot analyses of the J=ψ → πþπ−π0,
J=ψ → KþK−π0, and J=ψ → K0

SK
�π∓ candidates in the

J=ψ mass region using unbinned maximum likelihood fits.
The likelihood function is written as

L ¼
YN
n¼1

�
fsigðmnÞ · εðx0n; y0nÞ

P
i;jcic

�
jAiðxn; ynÞA�

jðxn; ynÞP
i;jcic

�
j IAiA�

j

þ ð1 − fsigðmnÞÞ
P

ikiBiðxn; ynÞP
ikiIBi

�
; ð15Þ

where
(i) N is the number of events in the signal region;
(ii) for the nth event, mn is the πþπ−π0, KþK−π0, or

K0
SK

�π∓ invariant mass;
(iii) for the nth event, xn ¼ m2ðπþπ0Þ, yn ¼ m2ðπ−π0Þ

for πþπ−π0; xn ¼ m2ðKþπ0Þ, yn ¼ m2ðK−π0Þ for
KþK−π0; xn ¼ m2ðK�π∓Þ, yn ¼ m2ðK0

Sπ
∓Þ for

K0
SK

�π∓;
(iv) fsig is the mass-dependent fraction of signal ob-

tained from the fits to the πþπ−π0, KþK−π0, and
K0

SK
�π∓ mass spectra;

(v) for the nth event, εðx0n; y0nÞ is the efficiency para-
metrized as a function x0n ¼ m12 and y0n ¼ cos θh
(see Sec. IV);

(vi) for thenth event, theAiðxn; ynÞ represent the complex
signal-amplitude contributions described below;

(vii) ci is the complex amplitude of the ith signal
component; the ci parameters are allowed to vary
during the fit process;

(viii) for the nth event, the Biðxn; ynÞ describe the back-
ground probability-density functions assuming that
interference between signal and background ampli-
tudes can be ignored;

(ix) ki is the magnitude of the ith background compo-
nent; the ki parameters are obtained by fitting the
sideband regions;

(x) IAiA�
j
¼ R

Aiðx; yÞA�
jðx; yÞεðm12; cos θÞdxdy and

IBi
¼ R

Biðx; yÞdxdy are normalization integrals;
numerical integration is performed on phase-space-
generated events with J=ψ signal and background
generated according to the experimental distributions.

Parity conservation in J=ψ → πþπ−π0 restricts the pos-
sible spin-parity of any intermediate two-body resonance
to be JPC ¼ 1−−; 3−−;…. Amplitudes are parametrized
using Zemach’s tensors [20,21]. Except as noted, all fixed
resonance parameters are taken from the Particle Data
Group averages [13].
For reaction (1), we label the decay particles as

J=ψ → πþ1 π
−
2 π

0
3: ð16Þ

Indicating with pi the momenta of the particles in the J=ψ
center-of-mass rest frame, for a resonance Rjk decaying as
Rjk → jþ kwe also define the three-vectors ti as the vector
part of

tμi ¼ pμ
j − pμ

k − ðpμ
j þ pμ

kÞ
m2

j −m2
k

m2
jk

; ð17Þ
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with i; j; k cyclic. We make use of the pi vectors to describe
the angular momentum L between Rjk and particle i, and
the ti vectors to describe the spin of the Rjk resonance.
Since the J=ψ resonance has spin-1 and needs to be
described by a vector, the only way to obtain this result
is to perform a cross-product between the pi and ti three-
vectors. Indicating with ρ a generic spin-1 resonance,
Table IV reports the list of amplitudes used to describe
the J=ψ decays. Due to Bose symmetry, the amplitudes are
symmetrized with respect to the ρ charge. The Table also
reports the expression for the nonresonant contribution
(NR) which should also have the J=ψ quantum numbers.
For reaction (2), we label the decay particles as

J=ψ → Kþ
1 K

−
2 π

0
3: ð18Þ

In this case two separate contributions are listed in Table IV,
one in which the intermediate resonance is a K�� → K�π0
and the other where the intermediate resonance is a
ρ0 → KþK−. The Table also lists the amplitude for the
K�

2ð1430Þ�K∓ contribution. This decay mode can only
occur in D-wave. To obtain this amplitude, we construct
rank-2 tensors Ti ¼ tji t

k
i − jtij2δjk=3 to describe the spin-2

of the K�
2ð1430Þ� resonance and Pi ¼ pj

ip
k
i − jpij2δjk=3 to

describe the angular momentum between the K�
2ð1430Þ�

and theK∓. The two rank-2 tensors are then contracted into
vectors ki to obtain the spin of the J=ψ resonance. We
obtain the components of ki as kli ¼

P
λ¼3
λ¼1 T

m;λ
i Pλ;n

i −
Tn;λ
i Pλ;m

i with l; m; n cyclic [22].
The amplitudes for reaction (3) are similar to those from

reaction (2). In this case we label the decay particles as

J=ψ → K�
1 K

0
S2π

∓
3 : ð19Þ

The efficiency-corrected fractional contribution fi due
to resonant or nonresonant contribution i is defined as
follows:

fi ¼
jcij2

R jAiðxn; ynÞj2dxdyR jPjcjAjðx; yÞj2dxdy
: ð20Þ

The fi do not necessarily sum to 100% because of
interference effects. The uncertainty for each fi is evaluated

by propagating the full covariance matrix obtained from
the fit.
Similarly, the efficiency-corrected interference fractional

contribution fij, for i < j are defined as

fij ¼
R
2Re½cic�jAiðxn; ynÞAjðxn; ynÞ��dxdyR jPjcjAjðx; yÞj2dxdy

: ð21Þ

In all the Dalitz analyses described below we validate the
fitting algorithms using MC simulations with known input
amplitudes and phases. We also start the fitting procedure
both on MC and data from random values. In all cases the
fits converge towards one single solution.

A. Dalitz plot analysis of J=ψ → π +π −π0

1. Isobar model

We perform a Dalitz plot analysis of J=ψ → πþπ−π0
in the J=ψ signal region given in Table I. This region
contains 20417 events with ð91.3� 0.2Þ% purity, defined
as S=ðSþ BÞ, where S and B indicate the number of
signal and background events, respectively, as determined
from the fit to the πþπ−π0 mass spectrum shown in
Fig. 3(a). Sideband regions are defined as the ranges
2.919–2.980GeV=c2 and3.198–3.258GeV=c2, respectively.

TABLE IV. Amplitudes considered in J=ψ → πþπ−π0, J=ψ → KþK−π0, and J=ψ → K0
SK

�π∓ Dalitz plot analysis. BW indicates the
Breit-Wigner function.

J=ψ decay mode Decay Amplitude

πþπ−π0 ρπ BWρðm13Þðt2 × p2Þ þ BWρðm23Þðt1 × p1Þ þ BWρðm12Þðt3 × p3Þ
NR ðt1 × p1Þ þ ðt2 × p2Þ þ ðt3 × p3Þ

KK̄π K�K̄ BWK� ðm13Þðt2 × p2Þ þ BWK� ðm23Þðt1 × p1Þ
K�

2ð1430ÞK̄ BWK�
2
ðm13Þðk2Þ þ BWK�

2
ðm23Þðk1Þ

ρπ BWρðm12Þðt3 × p3Þ
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FIG. 5. Dalitz plot for the J=ψ → πþπ−π0 events in the signal
region.
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Figure 5 shows the Dalitz plot for the J=ψ signal region
and Fig. 6 shows the Dalitz plot projections. We observe
that the decay is dominated by ρð770Þπ amplitudes
which appear as nonuniform bands along the Dalitz plot
boundaries.
We first perform separate fits to the J=ψ sidebands with

an incoherent sum of amplitudes using the method of the
channel likelihood [23]. We find significant contributions
from ρð770Þ resonances with uniform distributions of
events along their bands, as well as from an incoherent
uniform background. The resulting amplitude fractions are
interpolated into the J=ψ signal region and normalized to

the fitted purity. Figure 6 shows the projections of the
estimated background contributions as shaded.
For the description of the J=ψ Dalitz plot, amplitudes are

added one at a time to ascertain the associated increase of
the likelihood value and decrease of the 2D χ2 computed on
the ðmðπþπ−Þ; cos θhÞ plane. We test the quality of the fit
by examining a large sample of MC events at the generator
level weighted by the likelihood fitting function and by the
efficiency. These events are used to compare the fit result
to the Dalitz plot and its projections with proper
normalization. The latter comparison is shown in Fig. 6,
and good agreement is obtained for all projections. We
make use of these weighted events to compute a 2D χ2

over the Dalitz plot. For this purpose, we divide the Dalitz
plot into a number of cells such that the expected
population in each cell is at least five events. We compute
χ2 ¼ PNcells

i¼1 ðNi
obs − Ni

expÞ2=Ni
exp, where Ni

obs and Ni
exp are

event yields from data and simulation, respectively.
We leave free in the fit the ρð770Þ parameters and obtain

results which are consistent with PDG averages [13]. We
also leave free the ρð1450Þ and ρð1700Þ parameters in the
fit and obtain a significant improvement of the likelihood
with the following resonances parameters:

mðρð1450ÞÞ ¼ 1429� 41 MeV=c2;

Γðρð1450ÞÞ ¼ 576� 29 MeV;

mðρð1700ÞÞ ¼ 1644� 36 MeV=c2;

Γðρð1700ÞÞ ¼ 109� 19 MeV: ð22Þ

We also test the presence of the isospin violating decay
ω → πþπ−. We notice that the ωð782Þπ0 contribution has a
rather small fraction (0.08� 0.03) but its fitted amplitude is
(0.013� 0.002). To obtain the statistical significance for
this contribution, we remove the ωð782Þπ0 amplitude. We
obtainΔð−2 logLÞ ¼ 27.7 andΔχ2 ¼ 17 for the difference
of two parameters which corresponds to a significance of
4.9σ. We also include the spin-3 ρ3ð1690Þπ contribution
but it is found consistent with zero.
Table V summarizes the fit results for the amplitude

fractions and phases. We note that the ρð770Þπ amplitude
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FIG. 6. The J=ψ → πþπ−π0 Dalitz plot projections. The super-
imposed curves result from the Dalitz plot analysis described in
the text. The shaded regions show the background estimates
obtained by interpolating the results of the Dalitz plot analyses of
the sideband regions.

TABLE V. Results from the Dalitz plot analysis of the J=ψ → πþπ−π0 channel. When two uncertainties are given, the first is statistical
and the second systematic. The error on the amplitude is only statistical.

Final state Amplitude Isobar fraction (%) Phase (radians) Veneziano fraction (%)

ρð770Þπ 1.0 114.2� 1.1� 2.6 0.0 133.1� 3.3
ρð1450Þπ 0.513� 0.039 10.9� 1.7� 2.7 −2.63� 0.04� 0.06 0.80� 0.27
ρð1700Þπ 0.067� 0.007 0.8� 0.2� 0.5 −0.46� 0.17� 0.21 2.20� 0.60
ρð2150Þπ 0.042� 0.008 0.04� 0.01� 0.20 1.70� 0.21� 0.12 6.00� 2.50
ωð783Þπ0 0.013� 0.002 0.08� 0.03� 0.02 2.78� 0.20� 0.31
ρ3ð1690Þπ 0.40� 0.08
Sum 127.8� 2.0� 4.3 142.5� 2.8
χ2=ν 687=519 ¼ 1.32 596=508 ¼ 1.17
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provides the largest contribution. We also observe an
important contribution from the ρð1450Þπ amplitude, while
the contributions from higher ρ0 resonances are small. We
also notice that the ρð1700Þπ amplitude is significant even
if the resulting fraction is very small, which can be
attributed to the presence of important interference effects.
To illustrate the contributions from higher ρ states, we

plot in Fig. 7(a), a binned scatter diagram of the helicity

angle θπ3 vs π1π2 mass for the three possible combina-
tions. The curved bands on the top and bottom are
reflections from the other combinations. Selecting events
j cos θπj < 0.2 almost completely removes these reflec-
tions and gives a more clear representation of the ππ
mass spectrum, shown in Fig. 7(b) with a logarithmic
scale for the sum of the three ππ mass combinations.
We also compare the fit projections with the results
from a fit where only the ρð770Þπ contribution is
included. The distribution shows clearly the presence
of higher excited ρ resonances contributing to the
J=ψ → πþπ−π0 decay.
The NR contribution has been included but does not

improve the fit quality. The sum of the fractions is
significantly different from 100%. Denoting by nð¼ 8Þ
the number of free parameters in the fit, we obtain χ2=ν ¼
687=519 (ν ¼ Ncells − n).
We compute the uncorrected Legendre polynomial

moments hY0
Li in each πþπ− and π�π0 mass interval by

weighting each event by the relevant Y0
Lðcos θhÞ function.

These distributions are shown in Figs. 8 and 9. We also
compute the expected Legendre polynomial moments from
the weighted MC events and compare with the experimen-
tal distributions. We observe a reasonable agreement for all
the distributions, which indicates that the fit is able to
reproduce most of the local structures apparent in the Dalitz
plot. We also notice a few discrepancies in the high ππ mass
region indicating the possible presence of additional
unknown excited ρπ contributions not included in the
present analysis.
Systematic uncertainty estimates for the fractions and

relative phases are computed in different ways.
(i) The purity function is scaled up and down by its

statistical uncertainty.
(ii) The parameters of each resonance contributing to the

decay are modified within one standard deviation of
their uncertainties in the PDG averages.

(iii) The Blatt-Weisskopf [24] factors entering in
the relativistic Breit-Wigner function have been
fixed to 1.5 ðGeV=cÞ−1 and varied between 1 and
4 ðGeV=cÞ−1.

(iv) We make use of the efficiency distribution without
the smoothing described in Sec. IV.

(v) To estimate possible bias, we generate and fit MC
simulated events according to the Dalitz plot fitted
results.

The different contributions are added in quadrature in
Table V.

2. Veneziano model

The particular approach used in this analysis follows
recent work described in Ref. [7]. The dynamical assump-
tions behind the Veneziano model are the resonance
dominance of the low-energy spectrum and resonance-
Regge duality. The latter means that all resonances are
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FIG. 7. (a) Binned scatter diagram of cos θπ3 vs mðπ1π2Þ. (b)
and (c) ππ mass projection in the j cos θπj < 0.2 region for all the
three ππ charge combinations. The horizontal lines in (a) indicate
the cos θπ selection. The dashed line in (b) is the result from the fit
with only the ρð770Þπ amplitude. The fit in (b) uses the isobar
model and the shaded histogram shows the background distri-
bution estimated from the J=ψ sidebands. The fit in (c) uses the
Veneziano model.
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located on Regge trajectories and that Regge poles are the
only singularities of partial waves in the complex angular
momentum plane. Therefore, there are no “unaccounted
for” backgrounds and the Veneziano amplitude is used to
fully describe the given reaction. A single Veneziano
amplitude of the type

An;m ¼ Γðn − αðsÞÞΓðn − αðtÞÞ
Γðnþm − αðsÞ − αðtÞÞ ð23Þ

has “predetermined” resonance strengths. Here α is the
Regge trajectory, s and t are the Mandelstam variables and
n;m are integers. The position of resonances is determined
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by poles of the amplitude, i.e. resonances in the sðtÞ-channel
are determined by poles of the first (second)Γ function in the
numerator, respectively. Resonance couplings are deter-
mined by residues of the amplitude at the poles. In the
model these are therefore determined by the properties of the
Γ function and the form of the Regge trajectory. Which
resonances are excited depends, however, on the quantum
numbers of external particles. Thus the amplitude in Eq. (23)
should be considered as a building block rather than a
physical amplitude. The latter is obtainedby forming a linear
combination of the An;m’s with parameters that are reaction
dependent, i.e. fitted to the data. e.g.

AX→abc ¼
X
n;m

cX→abcðn;mÞAn;m: ð24Þ

In this analysis a modified set of amplitudes An;m, which
incorporate complex trajectories were used. Unlike the
isobar model, the Veneziano model describes an infinite
number of resonances. The resonances are not independent,
the correlation between resonance masses, mR and spins
JR is described by the Regge trajectory function αðsÞ such
that αðm2

RÞ ¼ JR. Once the parameters c in Eq. (24) are
determined by fitting data, it is possible to compute the
coupling constants of resonances to the external particles.
Weak resonances may not be apparent in the data. They
however are analytically connected to other, stronger res-
onances and determining the latter helps to constrain the
couplings to the former. For example, the ρ3 meson is
expected to lie on the same Regge trajectory as the ρ. Thus
coupling of the ρ in J=ψ → ρπ → 3π determines coupling of
the J=ψ to the ρ3.
In the Veneziano model the complexity of the model is

related to n which is related to the number of Regge
trajectories included in the fit. The number of free param-
eters also increases with n. The integer m in Eq. (23) is
related to the number of daughter trajectories and it is
restricted by 1 ≤ m ≤ n. The lower limit on m guarantees
that J=ψ decay amplitude has the expected high-energy
behavior and the upper limit eliminates double poles in
overlapping channels. We fit the data varying n from 1 to 8
and test the improvement in the likelihood function and the
2D χ2. We find that no improvement is obtained with n > 7.
Taking n ¼ 7 themodel requires 19 free parameters. Using a
modified expression of Eq. (20) we obtain the fractions
given in Table V. We observe a reduction of the ρð1450Þπ
contribution by more than a factor of 10 compared to the
results from the isobar model. However the ρð2150Þπ
amplitude has a much larger contribution. We also observe
a better fit quality as compared with the isobar model. The
projection of the fit on the ππ mass in the j cos θπj < 0.2
region is shown in Fig. 7(c).
We note that the isobar model gives a better description

of the ρð1450Þ region, while the Veneziano model describes
better the high mass region. This may indicate that other
resonances, apart from the low mass ρ resonances, are
contributing to the J=ψ decay.

B. Dalitz plot analysis of J=ψ → K +K −π0

We perform a Dalitz plot analysis of J=ψ → KþK−π0 in
the J=ψ signal region, defined in Table I, which contains
2102 events with ð88.8� 0.7Þ% purity, as determined from
the fit shown in Fig. 3(b). Figure 10 shows the Dalitz plot
for the J=ψ signal region and Fig. 11 shows the Dalitz plot
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FIG. 10. Dalitz plot for the J=ψ → KþK−π0 events in the
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projections. We observe that the decay is dominated by the
K�ð892Þ�K∓ amplitude. We also observe a diagonal band
which we tentatively attribute to the ρð1450Þ0π0 amplitude.
As in the previous section, we fit the J=ψ sideband

regions to determine the background distribution. Due to the
limited statistics and the low background, we take enlarged
sidebands, defined as the ranges 2.910–3.005 GeV=c2 and
3.176–3.271 GeV=c2, respectively. Also in this case we fit
these sidebands using noninterfering amplitudes described
by relativistic Breit-Wigner functions using the method of
the channel likelihood [23]. The K�K̄ contributions are
symmetrized with respect to the kaon charge. Sideband
regions are dominated by the presence of K�ð892ÞK̄ and
K�

2ð1430ÞK̄ amplitudes.
We fit the J=ψ → KþK−π0 Dalitz plot using the isobar

model. Also in this case amplitudes are added one at a
time to ascertain the associated increase of the likelihood
value and decrease of the 2D χ2 computed on the

ðmðKþK−Þ; cos θhÞ plane. The results from the best fit
are summarized in Table VI. We observe the following
features:

(i) The decay is dominated by the K�ð892Þ�K∓
and ρð1450Þ0π0 amplitudes with smaller contribu-
tions from the K�

2ð1430Þ�K∓ and K�
1ð1410Þ�K∓

amplitudes.
(ii) We fix the ρð1450Þ and ρð1700Þ mass and width

parameters to the values obtained from the J=ψ →
πþπ−π0 Dalitz plot analysis. This improves the
description of the data, in comparison with a fit
where the masses and widths are fixed to the PDG
values [13].

(iii) K�ð1680ÞK, ρð1700Þ, ρð2100Þ, and NR have been
tried but do not give significant contributions.

We therefore assign the broad enhancement in the KþK−

mass spectrum to the presence of the ρð1450Þ resonance:
the present data do not require the presence of an exotic
contribution. In evaluating the fractions we compute
systematic uncertainties in a similar way as for the analysis
of the J=ψ → πþπ−π0 final state.
We compute the uncorrected Legendre polynomial

moments hY0
Li in each KþK− and K�π0 mass interval

by weighting each event by the relevant Y0
Lðcos θÞ function.

These distributions are shown in Figs. 12 and 13. We
also compute the expected Legendre polynomial moments
from the weighted MC events and compare these with the
experimental distributions. We observe good agreement
for all the distributions, which indicates that the fit is
able to reproduce the local structures apparent in the
Dalitz plot.

TABLE VI. Results from the Dalitz plot analysis of the J=ψ →
KþK−π0 signal region. When two uncertainties are given, the
first is statistical and the second systematic.

Final state Fraction (%) Phase (radians)

K�ð892Þ�K∓ 92.4� 1.5� 3.4 0.0
ρð1450Þ0π0 9.3� 2.0� 0.6 3.78� 0.28� 0.08
K�ð1410Þ�K∓ 2.3� 1.1� 0.7 3.29� 0.26� 0.39
K�

2ð1430Þ�K∓ 3.5� 1.3� 0.9 −2.32� 0.22� 0.05
Total 107.4� 2.8
χ2=ν 132=137 ¼ 0.96
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FIG. 12. Legendre polynomial moments for J=ψ → KþK−π0 as a function of KþK− mass. The superimposed curves result from the
Dalitz plot analysis described in the text.
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C. Dalitz plot analysis of J=ψ → K0
SK

�π∓
We perform a Dalitz plot analysis of J=ψ → K0

SK
�π∓ in

the J=ψ signal region defined in Table I. This region
contains 3907 events with ð93.1� 0.4Þ% purity, as deter-
mined from the fit shown in Fig. 3(c). Figure 14 shows the
Dalitz plot for the J=ψ signal region and Fig. 15 shows the
Dalitz plot projections.
As in the previous sections, we fit the J=ψ sideband

regions to determine the background distribution using the
channel likelihood [23] method.
We fit the J=ψ → K0

SK
�π∓ Dalitz plot using the isobar

model. Amplitudes have been included one by one testing
the likelihood values and the 2D χ2 computed on the
ðmðK0

SK
�Þ; cos θhÞ plane. The results from the best fit are

summarized in Table VII. We observe the following
features:

(i) The decay is dominated by the K�ð892ÞK̄,
K�

2ð1430ÞK̄, and ρð1450Þ�π∓ amplitudes with
a smaller contribution from the K�

1ð1410ÞK̄
amplitude.

(ii) We obtain a significant improvement of the descrip-
tion of the data by leaving free theK�ð892Þmass and
width parameters and obtain

mðK�ð892ÞþÞ ¼ 895.6� 0.8 MeV=c2;

ΓðK�ð892ÞþÞ ¼ 43.6� 1.3 MeV;

mðK�ð892Þ0Þ ¼ 898.1� 1.0 MeV=c2;

ΓðK�ð892Þ0Þ ¼ 52.6� 1.7 MeV: ð25Þ

The measured parameters for the charged K�ð892Þþ
are in good agreement with those measured in τ
lepton decays [13].

(iii) We fix the ρð1450Þ and ρð1700Þ parameters to the
values obtained from the J=ψ → πþπ−π0 Dalitz plot
analysis. This improves the description of the data in
comparison with a fit where the masses and widths
are fixed to the PDG values [13].

(iv) K�ð1680ÞK̄, ρð1700Þπ, ρð2100Þπ, and NR ampli-
tudes have been tried but do not give significant
contributions.
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We therefore assign the broad enhancement in the K0
SK

�

mass spectrum to the presence of the ρð1450Þ� resonance.
In evaluating the fractions we compute systematic
uncertainties in a similar way as for the analysis of the

J=ψ → πþπ−π0 and J=ψ → KþK−π0 final states. We
compute the uncorrected Legendre polynomial moments
hY0

Li in each K0
SK

�, K�π∓, and K0
Sπ

∓ mass interval by
weighting each event by the relevant Y0

Lðcos θÞ function.
These distributions are shown in Fig. 16 as functions
of the K0

SK
� mass and in Fig. 17 as functions of the Kπ

mass, combining the K0
Sπ

∓ and K�π∓ distributions. We
also compute the expected Legendre polynomial moments
from the weighted MC events and compare them with
the experimental distributions. We observe good agree-
ment for all the distributions, which indicates that the fit
is able to reproduce the local structures apparent in the
Dalitz plot.

VII. MEASUREMENT OF THE ρð1450Þ0
RELATIVE BRANCHING FRACTION

In the Dalitz plot analysis of J=ψ → KþK−π0, the data
are consistent with the observation of the decay
ρð1450Þ0 → KþK−. This allows a measurement of its
relative branching fraction to ρð1450Þ0 → πþπ−.
We notice that the Veneziano model gives a ρð1450Þ

contribution which is 10 times smaller than the isobar
model. No equivalent Veneziano analysis of the J=ψ →
KþK−π0 decay has been performed, therefore we
perform a measurement of the ρð1450Þ relative branch-
ing fraction using the isobar model only.
We have measured in Sec. V [Eq. (11)] the ratio

R ¼ BðJ=ψ → KþK−π0Þ=BðJ=ψ → πþπ−π0Þ and obtain
R ¼ 0.120� 0.003� 0.009. From the Dalitz plot analysis
of J=ψ → πþπ−π0 and J=ψ → KþK−π0 we obtain the
ρð1450Þ0 fractions whose systematic uncertainties are
found to be independent. From the Dalitz plot analysis
of J=ψ → πþπ−π0 we obtain

B1 ¼
BðJ=ψ → ρð1450Þ0π0ÞBðρð1450Þ0 → πþπ−Þ

BðJ=ψ → πþπ−π0Þ
¼ ½ð10.9� 1.7ðstatÞ � 2.7ðsysÞÞ=3.�%
¼ ð3.6� 0.6ðstatÞ � 0.9ðsysÞÞ%: ð26Þ

From the Dalitz plot analysis of J=ψ → KþK−π0 we
obtain

B2 ¼
BðJ=ψ → ρð1450Þ0π0ÞBðρð1450Þ0 → KþK−Þ

BðJ=ψ → KþK−π0Þ
¼ ð9.3� 2.0ðstatÞ � 0.6ðsysÞÞ%: ð27Þ

We therefore obtain
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FIG. 15. The J=ψ → K0
SK

�π∓ Dalitz plot projections. The
superimposed curves result from the Dalitz plot analysis de-
scribed in the text. The shaded regions show the background
estimates obtained by interpolating the results of the Dalitz plot
analyses of the sideband regions.

TABLE VII. Results from the Dalitz plot analysis of the J=ψ →
K0

SK
�π∓ signal region. When two uncertainties are given, the

first is statistical and the second systematic.

Final state Fraction (%) Phase (radians)

K�ð892ÞK̄ 90.5� 0.9� 3.8 0.0
ρð1450Þ�π∓ 6.3� 0.8� 0.6 −3.25� 0.13� 0.21
K�

1ð1410ÞK̄ 1.5� 0.5� 0.9 1.42� 0.31� 0.35
K�

2ð1430ÞK̄ 7.1� 1.3� 1.2 −2.54� 0.12� 0.12
Total 105.3� 3.1
χ2=ν 274=217 ¼ 1.26
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Bðρð1450Þ0 → KþK−Þ
Bðρð1450Þ0 → πþπ−Þ ¼ B2

B1

·R

¼ 0.307� 0.084ðstatÞ � 0.082ðsysÞ: ð28Þ

VIII. SUMMARY

We study the processes eþe−→γISRJ=ψ where
J=ψ→πþπ−π0, J=ψ→KþK−π0, and J=ψ→K0

SK
�π∓ using

a data sample of 519 fb−1 recordedwith theBABAR detector
operating at the SLAC PEP-II asymmetric-energy eþe−
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FIG. 16. Legendre polynomial moments for J=ψ → K0
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�π∓ as a function of K0
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� mass. The superimposed curves result from the
Dalitz plot analysis described in the text.
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collider at center-of-mass energies at and near the ϒðnSÞ
(n¼2;3;4) resonances.Wemeasure the branching fractions:

R1¼BðJ=ψ→KþK−π0Þ
BðJ=ψ→πþπ−π0Þ ¼0.120�0.003ðstatÞ�0.009ðsysÞ, and

R2¼BðJ=ψ→K0
SK

�π∓Þ
BðJ=ψ→πþπ−π0Þ ¼0.265�0.005ðstatÞ�0.021ðsysÞ. We

perform Dalitz plot analyses of the three J=ψ decay modes
and measure fractions for resonances contributing to the
decays. We also perform a Dalitz plot analysis of J=ψ →
πþπ−π0 using the Veneziano model. We observe structures
compatible with the presence of ρð1450Þ0 in both J=ψ →
πþπ−π0 and J=ψ → KþK−π0 and measure the ratio
of branching fractions: Rðρð1450Þ0Þ ¼ Bðρð1450Þ0→KþK−Þ

Bðρð1450Þ0→πþπ−Þ ¼
0.307� 0.084ðstatÞ � 0.082ðsysÞ.
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APPENDIX: INTERFERENCE FIT FRACTIONS
AND VENEZIANO MODEL COEFFICIENTS

The central values and statistical errors for the
interference fit fractions are shown in Tables VIII,
IX, and X, for the J=ψ → πþπ−π0, J=ψ → KþK−π0,
and J=ψ → K0

SK
�π∓, respectively. Table XI reports

the fitted cX→abcðn;mÞ coefficients with statistical
uncertainties from the Veneziano model description
of J=ψ → πþπ−π0.

TABLE VIII. Interference fit fractions (%) and statistical
uncertainties from the Dalitz plot analysis of J=ψ→πþπ−π0.
The amplitudes are: (A0) ρð770Þπ, (A1) ρð1450Þπ, (A2) ρð1700Þπ,
(A3) ρð2150Þπ, (A4) ωð783Þπ0. The diagonal elements are the
same as the conventional fit fractions.

A0 A1 A2 A3 A4

A0 114.2�1.1 −10.4�0.8 0.7�0.1 0.1�0.1 −1.1�0.3
A1 10.9�1.7 −1.7�0.6 −0.2�0.1 0.0�0.0
A2 0.8�0.2 −0.07�0.02 0.0�0.0
A3 0.04�0.01 0.0�0.0
A4 0.08�0.03

TABLE IX. Interference fit fractions (%) and statistical un-
certainties from the Dalitz plot analysis of J=ψ → KþK−π0. The
amplitudes are: (A0) K�ð892Þ�K∓, (A1) ρð1450Þ0π0, (A2)
K�ð1410Þ�K∓, (A3) K�

2ð1430Þ�K∓. The diagonal elements are
the same as the conventional fit fractions.

A0 A1 A2 A3

A0 92.4� 1.5 −5.5� 0.6 −0.7� 0.1 −0.9� 0.2
A1 9.3� 2.0 2.2� 0.7 2.1� 0.4
A2 2.3� 1.1 3.3� 0.9
A3 3.5� 1.3

TABLE X. Interference fit fractions (%) and statistical uncer-
tainties from the Dalitz plot analysis of J=ψ → K0

SK
�π∓. The

amplitudes are: (A0) K�ð892ÞK̄, (A1) ρð1450Þ�π∓, (A2)
K�

1ð1410ÞK̄, (A3) K�
2ð1430ÞK̄. The diagonal elements are the

same as the conventional fit fractions.

A0 A1 A2 A3

A0 90.5� 0.9 −5.4� 0.4 0.1� 0.1 −1.3� 0.2
A1 6.3� 0.8 −0.1� 0.5 1.9� 0.3
A2 1.5� 0.5 3.3� 1.6
A3 7.1� 1.3

TABLE XI. Fitted cX→abcðn;mÞ coefficients with statistical un-
certainties from theVenezianomodel description of J=ψ → πþπ−π0.

n m cX→abcðn;mÞ
1 1 0.5720� 0.0016
2 1 0.7380� 0.0027
3 1 0.1165� 0.0014

2 4901� 426
4 1 354� 53

2 1781� 49
5 1 −137.4� 3.4

2 2087� 245
3 −248� 25

6 1 1869� 86
2 −354� 10
3 9.8� 0.3

7 1 1084� 132
2 63.5� 13.7
3 −1.0� 0.4
4 6259� 335

J. P. LEES et al. PHYSICAL REVIEW D 95, 072007 (2017)

072007-18



[1] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989).
[2] J. Z. Bai et al. (BES Collaboration), Phys. Rev. D 68,

052003 (2003).
[3] V. Mathieu, N. Kochelev, and V. Vento, Int. J. Mod. Phys. E

18, 1 (2009).
[4] J. Z. Bai et al. (BESII Collaboration), Phys. Rev. D 70,

012005 (2004).
[5] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 710,

594 (2012).
[6] P. Guo, R. Mitchell, and A. P. Szczepaniak, Phys. Rev. D 82,

094002 (2010).
[7] A. P. Szczepaniak and M. R. Pennington, Phys. Lett. B 737,

283 (2014).
[8] M. E. B. Franklin et al. (Mark II Collaboration), Phys. Rev.

Lett. 51, 963 (1983).
[9] L. P. Chen and W. Dunwoodie (Mark III Collaboration),

Report No. SLAC-PUB-5674, 1991.
[10] M Ablikim et al. (BESII Collaboration), Phys. Rev. Lett. 97,

142002 (2006).
[11] B. A. Li, Phys. Rev. D 76, 094016 (2007).
[12] X. Liu, B. Zhang, L.-L. Shen, and S.-L. Zhu, Phys. Rev. D

75, 074017 (2007).
[13] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,

100001 (2016).

[14] J. P. Lees et al. (BABAR Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 726, 203 (2013).

[15] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 479, 1 (2002); 729, 615
(2013).

[16] The BABAR detector Monte Carlo simulation is based
on GEANT4 [S. Agostinelli et al., Nucl. Instrum. Methods
Phys. Res., Sect. A 506, 250 (2003)] and EVTGEN [D. J.
Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152
(2001)].

[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79,
112001 (2009).

[18] M. J. Oreglia, Ph.D. thesis, Stanford University, 1980;
J. E. Gaiser, Ph.D. thesis, Stanford University, 1982;
T. Skwarnicki, Ph.D. thesis, Institut of Nuclear Physics,
Cracow 1986.

[19] F. Vannucci et al. (Mark I Collaboration), Phys. Rev. D 15,
1814 (1977).

[20] C. Zemach, Phys. Rev. 133, B1201 (1964).
[21] C. Dionisi et al., Nucl. Phys. B169, 1 (1980).
[22] P. Colangelo (private communication).
[23] P. E. Condon and P. L. Cowell, Phys. Rev. D 9, 2558 (1974).
[24] J. Blatt and V. Weisskopf, Theoretical Nuclear Physics

(John Wiley & Sons, New York, 1952).

DALITZ PLOT ANALYSES OF … PHYSICAL REVIEW D 95, 072007 (2017)

072007-19

https://doi.org/10.1016/0370-1573(89)90074-4
https://doi.org/10.1103/PhysRevD.68.052003
https://doi.org/10.1103/PhysRevD.68.052003
https://doi.org/10.1142/S0218301309012124
https://doi.org/10.1142/S0218301309012124
https://doi.org/10.1103/PhysRevD.70.012005
https://doi.org/10.1103/PhysRevD.70.012005
https://doi.org/10.1016/j.physletb.2012.03.036
https://doi.org/10.1016/j.physletb.2012.03.036
https://doi.org/10.1103/PhysRevD.82.094002
https://doi.org/10.1103/PhysRevD.82.094002
https://doi.org/10.1016/j.physletb.2014.08.060
https://doi.org/10.1016/j.physletb.2014.08.060
https://doi.org/10.1103/PhysRevLett.51.963
https://doi.org/10.1103/PhysRevLett.51.963
https://doi.org/10.1103/PhysRevLett.97.142002
https://doi.org/10.1103/PhysRevLett.97.142002
https://doi.org/10.1103/PhysRevD.76.094016
https://doi.org/10.1103/PhysRevD.75.074017
https://doi.org/10.1103/PhysRevD.75.074017
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1016/j.nima.2013.04.029
https://doi.org/10.1016/j.nima.2013.04.029
https://doi.org/10.1016/S0168-9002(01)02012-5
https://doi.org/10.1016/S0168-9002(01)02012-5
https://doi.org/10.1016/j.nima.2013.05.107
https://doi.org/10.1016/j.nima.2013.05.107
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1103/PhysRevD.79.112001
https://doi.org/10.1103/PhysRevD.79.112001
https://doi.org/10.1103/PhysRevD.15.1814
https://doi.org/10.1103/PhysRevD.15.1814
https://doi.org/10.1103/PhysRev.133.B1201
https://doi.org/10.1016/0550-3213(80)90249-7
https://doi.org/10.1103/PhysRevD.9.2558

