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Abstract: We focus on the nonhomogeneous backward heat problem of finding the initial temperature
θ = θ(x, y) = u(x, y, 0) such that

{{{
{{{
{

ut − a(t)(uxx + uyy) = f(x, y, t), (x, y, t) ∈ Ω × (0, T),
u(x, y, t) = 0, (x, y) ∈ ∂Ω × (0, T),
u(x, y, T) = h(x, y), (x, y) ∈ Ω,

where Ω = (0, π) × (0, π). In the problem, the source f = f(x, y, t) and the final data h = h(x, y) are determined
through random noise data gij(t) and dij satisfying the regression models

gij(t) = f(Xi , Yj , t) + ϑξij(t),
dij = h(Xi , Yj) + σijεij ,

where (Xi , Yj) are grid points of Ω. The problem is severely ill-posed. To regularize the instable solution of
the problem, we use the trigonometric least squares method in nonparametric regression associated with the
projection method. In addition, convergence rate is also investigated numerically.

Keywords: Backward heat problems, nonhomogeneous heat equation, ill-posed problems, nonparametric
regression, statistical inverse problems
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1 Introduction
The backward heat problem is a crucial issue in various physics and industrial applications as heat con-
duction theory [3], material science [21], hydrology [2, 18], groundwater contamination [23], digital remove
blurred noiseless image [6]. The main task of the backward problem is of finding the initial temperature from
the information of final temperature. As known, the problem is ill-posed (see [13] or Section 3) and, as clas-
sified by Cavalier [7], the ill-posedness is severe.

In the present paper, we consider the nonhomogeneous backward heat problem corresponding to the
two-spatial-dimensional case. It is worth noting that the idea of this paper can be applied to the higher-
dimensional problem. Let Ω = (0, π) × (0, π), T > 0 and let a : (0, T) → ℝ be a Lebesguemeasurable function
satisfying the uniform ellipticity condition 0 < a1 ≤ a(t) ≤ a2 < ∞, where a1, a2 are positive constants. We
find a function θ = θ(x, y) := u(x, y, 0) such that

ut − a(t)(uxx + uyy) = f(x, y, t), (x, y, t) ∈ Ω × (0, T), (1)
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subject to the Dirichlet boundary condition

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0, (2)

and the final condition
u(x, y, T) = h(x, y), (x, y) ∈ Ω. (3)

In reality, the exact values of the source f and the final data h are not available. We only have contami-
nated data ̃f , h̃ that affect construction of regularization method. In most of papers, the data ̃f , h̃ are given
on the whole space domain and they are used to construct an approximation for θ. The literature for the
this case of data is traditional and pretty huge. Nowadays, there are many good regularization approaches
available, among them are the Tikhonov method [8, 24], quasi-boundary value method [9, 25, 26], quasi-
reversibility method [19, 22], mollification [11], truncated expansion [16, 17] and the general filter regular-
ization method [20].

In the present paper, we will consider the data from a different point of view in which the source f and
the final temperature h will be measured at a discrete set of points and contain errors. These errors may be
generated fromcontrollable sources or uncontrollable sources. In the first case, the error is oftendeterministic
and there are many papers concerned with the problem (see, e.g., [12] and references therein). If the errors
are generated from uncontrollable sources as wind, rain, humidity, etc., then the model is random. On first
glance, such small errors will not really make sense. Statistics handles the influence of random errors and
these errors should be important enough. However, the accumulation of the small errors in the data of an
ill-posed problem can make the noise of the solution to be large and, hence, cannot be ignored. This effect is
considered in the theory of statistical inverse problems [1, Section 2.1.5, p. 48]. In this paper, we describe the
relationship between observed data and the sources f and h by means of nonparametric regression models.
Let gij(t) and dij be the observed data of f and h, and let (Xi , Yj) = (π(2i − 1)/2n, π(2j − 1)/2m) be grid points
in Ω, with i = 1, . . . , n, and j = 1, . . . ,m. We consider two models

gij(t) = f(Xi , Yj , t) + ϑξij(t), (4)
dij = h(Xi , Yj) + σijεij , i = 1, . . . , n, j = 1, . . . ,m, (5)

where ξij(t) are Brownian motions, εij ∼ N(0, 1) and σij are bounded by a positive constant Vmax, i.e.,
0 ≤ σij < Vmax for all i, j. The random variables ξij(t), εij are mutually independent. Note that, in the above
models, the stochastic processes gij(t) and the random variables dij are observable whereas ϑξij(t) and σijεij
are unknown. From the observations gij(t) and dij, we can use the nonparametric regression method to
reconstruct the final temperature h, the source f which need to estimate the initial temperature θ.

Recently, the number of articles on the statistical inverse problem and the backward problem with ran-
dom data has increased significantly. In our knowledge, we can list here some related papers. Cavalier in [7]
gave some theoretical examples about inverse problemswith randomnoise. Mair and Ruymgaart [14] consid-
ered theoretical formulas for statistical inverse estimation in Hilbert scales and applied the method for some
examples. Our paper is inspired from the paper by Bissantz and Holzmann [4] in which the authors consid-
ered a one-dimensional homogeneous backward problem. The very last papers are dealt with i.i.d. random
noises. In the present paper, we consider the nonhomogeneous backward problem with general non-i.i.d.
noises and random sources. In our opinion, it is a positive point of our paper.

To deal with the problem, we propose a “hybrid” approach in sense that it is a combination of the non-
parametric least squares (NLS) method in Statistics (see, e.g., [27, p. 57]) and the projection method in the
theory of inverse problem (see, e.g., [13, p. 66]). In particular, using the NLS method, the final temperature
h and the source f can be approximated uniquely from the observed data dij and gij(t), respectively. Then
the projection method can be applied to construct estimators which stably recover the Fourier coefficients of
the unknown function θ. The proposed approach seems to be a generalization of the one in [4] to the multi-
dimensional and nonhomogeneous problem.

After the estimation, evaluation of the bias is an important procedure. In [4], a discretization bias of the
estimators of the one-dimensional Fourier coefficients on L2 space is stated as an assumption and nomethod
is available for evaluating the bias in the Sobolev classes. To fill this gap in the two-dimensional case, we
have to find a representation of the discretization bias by high-frequency Fourier coefficients of h, f .
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The rest of the paper is divided into four parts. In Section2,we introduce thediscretization formof Fourier
coefficients. Section 3 is devoted to the ill-posedness of the problem. In Section 4, we construct estimator
θ̂ = θ̂(x, y) for the initial temperature. We also give an upper bound for the error of estimation. Finally, we
present some numerical results in Section 5.

Before going to the main parts of the paper, we introduce some notations. We denote

L2(Ω) = {g : Ω → ℝ : g is Lebesgue measurable and ∫
Ω

g2(x, y)dx dy < ∞},

with the inner product
⟨g1, g2⟩ = ∫

Ω

g1(x, y)g2(x, y)dx dy,

and the norm

‖g‖ = √∫
Ω

g2(x, y) dx dy.

Here,we recall that Ω = (0, π)×(0, π). For p, q ∈ ℤ+,weputϕp(x) = √2/π sin px andϕp,q(x, y) = ϕp(x)ϕq(y).
As known, the system {ϕp,q} is completely orthonormal in L2(Ω). For every natural numbers ℓ, k satisfying
1 ≤ ℓ ≤ n, 1 ≤ k ≤ m, we put

Vℓ,k := span{ϕp,q : p = 1, . . . , ℓ, q = 1, . . . , k}.

This set is an ℓ × k-dimensional subspace of L2(Ω) and⋃ℓ,k∈ℕ Vℓ,k = L2(Ω). We also denote by

Qℓ,k : L2(Ω) → Vℓ,k

the orthogonal projection operator on Vℓ,k.

2 Discretization form of Fourier coefficients
In this section,wewill construct the discretization formof the Fourier coefficients of the solution u of problem
(1)–(2). Since the system (ϕp,q) is an orthonormal basis of L2(Ω), the solution u has the expansion

u(x, y, t) =
∞

∑
p=1

∞

∑
q=1

up,q(t)ϕp,q(x, y),

where up,q(t) = ⟨u( ⋅ , ⋅ , t), ϕp,q⟩. We also denote

θp,q = ⟨θ, ϕp,q⟩, fp,q(t) = ⟨f( ⋅ , ⋅ , t), ϕp,q⟩, A(t) =
t

∫
0

a(τ)dτ, λp,q(t) = e−A(t)(p
2+q2).

Substituting the expansion of the function u(x, y, t) into (1) and solving the differential equation thus
obtained, we have

up,q(t) = (θp,q +
t

∫
0

λ−1p,q(τ)fp,q(τ)dτ)λp,q(t).

Hence,

u(x, y, t) =
∞

∑
p=1

∞

∑
q=1

(θp,q +
t

∫
0

λ−1p,q(τ)fp,q(τ)dτ)λp,q(t)ϕp,q(x, y). (6)

Noting that

θ(x, y) = u(x, y, 0) =
∞

∑
p=1

∞

∑
q=1

θp,qϕp,q(x, y),
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we can obtain the expansion

h(x, y) = u(x, y, T) =
∞

∑
p=1

∞

∑
q=1

(θp,q +
T

∫
0

λ−1p,q(τ)fp,q(τ)dτ)λp,q(T)ϕp,q(x, y).

It follows that

hp,q = (θp,q +
T

∫
0

λ−1p,q(τ)fp,q(τ)dτ)λp,q(T). (7)

To establish adiscretization formula for θ,wewill use the least squares estimators of thefinal temperature
functions h and of the source function f . From the Riemann sum, we claim that

hp,q ≈
π2

nm

n
∑
i=1

m
∑
j=1
h(Xi , Yj)ϕp,q(Xi , Yj).

As mentioned in [4], the discretization bias

γn,m,p,q :=
π2

nm

n
∑
i=1

m
∑
j=1
h(Xi , Yj)ϕp,q(Xi , Yj) − hp,q (8)

is not easy to handle. In [4], for brevity of the presentation, the authors only assumed that the one-dimen-
sional bias is of orderO(n−1). In the present paper, wewill give an explicitly estimate for the two-dimensional
bias. In fact, the formulas for the discretization bias will be derived from [10, Lemma 3.5] that is:

Lemma 2.1. Put
δp,q,r,s =

1
n

n
∑
i=1
ϕp(Xi)ϕr(Xi)

1
m

m
∑
j=1
ϕq(Yj)ϕs(Yj).

For p = 1, . . . , n − 1 and q = 1, . . . ,m − 1, with Xi = π(2i − 1)/2n, Yj = π(2j − 1)/2m, we have

δp,q,r,s =
{{{
{{{
{

π−2, (r, s) ± (p, q) = (2kn, 2lm),
−π−2, (r, s) ± (−p, q) = (2kn, 2lm),
0, otherwise.

If r = 1, . . . , n − 1 and s = 1, . . . ,m − 1, we obtain

δp,q,r,s =
{
{
{

π−2, r = p and s = q,
0, r ̸= p or s ̸= q.

From the latter lemma,we can represent the discretization bias γn,m,p,q byhigh-frequency Fourier coefficients
of the function h. Precisely, we have:

Lemma 2.2. Assume that h ∈ C1(Ω). Then, for p = 1, . . . , n − 1, q = 1, . . . ,m − 1,

γn,m,p,q = Pn,p,q + Qm,p,q + Rn,m,p,q , (9)

with

Pn,p,q =
∞

∑
k=1

(−1)kh2kn±p,q , Qm,p,q =
∞

∑
l=1

(−1)lhp,2lm±q ,

Rn,m,p,q =
∞

∑
k=1

∞

∑
l=1

(−1)k+l(h2kn±p,2lm−q + h2kn±p,2lm+q).

Here, for any sequences (ap,q), (bp,q), we denote
∞

∑
k=1

a2kn±p,q :=
∞

∑
k=1

a2kn+p,q +
∞

∑
k=1

a2kn−p,q ,

∞

∑
l=1
bp,2lm±q :=

∞

∑
l=1
bp,2lm+q +

∞

∑
l=1
bp,2lm−q .
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Proof. We have the transform
1
m

m
∑
j=1
h(Xi , Yj)ϕq(Yj) =

1
m

m
∑
j=1

(
∞

∑
r=1

∞

∑
s=1

hr,sϕr(Xi)ϕs(Yj))ϕq(Yj) = π−1
∞

∑
r=1
hr,qϕr(Xi) + Sq ,

where
Sq = π−1

∞

∑
r=1
ϕr(Xi)

∞

∑
l=1

(−1)lhr,2lm±q .

It follows that
1
n

n
∑
i=1

(
1
m

m
∑
j=1
h(Xi , Yj)ϕq(Yj))ϕp(Xi) =

1
n

n
∑
i=1

(π−1
∞

∑
r=1
hr,qϕr(Xi))ϕp(Xi) +

1
n

n
∑
i=1
Sqϕp(Xi)

= π−2(hp,q + Pn,p,q + Qm,p,q + Rn,m,p,q).

So equality (9) holds.

Now,we consider the discretization bias of Fourier coefficient fp,q(t) of the function f(x, y, t) from thedata-set.
For the readers convenience, we recall that

fp,q(t) = ⟨f( ⋅ , ⋅ , t), ϕp,q⟩, f(x, y, t) =
∞

∑
p=1

∞

∑
q=1

fp,q(t)ϕp,q(x, y).

As in Lemma 2.2, we can get similarly:

Lemma 2.3. Assume that f ∈ C([0, T]; C1(Ω)), p = 1, . . . , n − 1 and q = 1, . . . ,m − 1. Put

ηn,m,p,q(t) =
π2

nm

n
∑
i=1

m
∑
j=1
f(Xi , Yj , t)ϕp,q(Xi , Yj) − fp,q(t). (10)

Then
ηn,m,p,q(t) = P�n,p,q(t) + Q�

m,p,q(t) + R�
n,m,p,q(t), (11)

with

P�n,p,q(t) =
∞

∑
k=1

(−1)k f2kn±p,q(t), Q�
m,p,q(t) =

∞

∑
l=1

(−1)l fp,2lm±q(t),

R�
n,m,p,q(t) =

∞

∑
k=1

∞

∑
l=1

(−1)l+k(f2kn±p,2lm+q(t) + f2kn±p,2lm−q(t)).

Combining equalities (7), (8) and (10), we can obtain a data-explicit form for θ(x, y):

Theorem 2.4. Let M, N ∈ ℕ such that 0 < N ≤ n, 0 < M ≤ m. Assume that the functions h, f fulfill Lemma 2.2
and Lemma 2.3. If u is as in (6), we have

θ(x, y) =
N
∑
p=1

M
∑
q=1

[
π2

nm

n
∑
i=1

m
∑
j=1

(h(Xi , Yj)λ−1p,q(T) −
T

∫
0

λ−1p,q(τ)f(Xi , Yj , τ)dτ)ϕp,q(Xi , Yj)

− (γn,m,p,qλ−1p,q(T) −
T

∫
0

λ−1p,q(τ)ηn,m,p,q(τ)dτ)]ϕp,q(x, y) + (θ − QN,Mθ)(x, y),

where γn,m,p,q , ηn,m,p,q are defined as in Lemma 2.2 and Lemma 2.3.

3 The ill-posedness of the problem
From the theorem, we can consider the ill-posedness of our problem.We investigate a concrete model of data
and prove the instability of the solution in the case of random noise data. Suppose that h(x, y) = f(x, y, t) ≡ 0
and a(t) = 1, u(x, y, T) = 0. The unique solution of (1)–(2) is u(x, y, t) ≡ 0. Let the random noise data be

gij(t) = 0 + ϑξij(t), dij = 0 + εij , εij
i.i.d∼ N(0, n−1m−1)
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for i = 1, . . . , n, j = 1, . . . ,m. Wewill construct the solution of (1)-(2) with respect to the randomdata. Using
the idea of the nonparametric regression method (see the next section), we put

h
nm

(x, y) =
n−1
∑
p=1

m−1
∑
q=1

h
mn
p,qϕp,q(x, y), f

nm
(x, y, t) =

n−1
∑
p=1

m−1
∑
q=1

f
mn
p,q(t)ϕp,q(x, y),

where
h
nm
p,q =

π2

nm

n
∑
i=1

m
∑
j=1
εijϕp,q(Xi , Yj), f

nm
p,q(t) =

π2

nm

n
∑
i=1

m
∑
j=1
ξij(t)ϕp,q(Xi , Yj).

The definition implies

γn,m,p,q :=
π2

nm

n
∑
i=1

m
∑
j=1
εijϕp,q(Xi , Yj) − h

nm
p,q = 0,

ηn,m,p,q(t) :=
π2ϑ
nm

n
∑
i=1

m
∑
j=1
ξij(t)ϕp,q(Xi , Yj) − f

nm
p,q(t) = 0.

By the orthogonal property stated in Lemma 2.1, we can verify directly that

hnm(Xi , Yj) = dij , f nm(Xi , Yj , t) = gij(t).

Let u = u(x, y, t) be the solution of the system

{
{
{

ut − (uxx + uyy) = f
nm

(x, y, t), (x, y, t) ∈ Ω × (0, T),

u(x, y, T) = h
nm

(x, y), (x, y) ∈ Ω,

subject to the Dirichlet condition

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0.

We can remark that u( ⋅ , ⋅ , t) is a trigonometric polynomial with order < n (with respect to the variable x) and
order < m (with respect to the variable y). Putting θ

nm
(x, y) = u(x, y, 0), we get in view of the remark that

θ
nm
p,q := ⟨θ

nm
, ϕp,q⟩ for p ≥ n or q ≥ m. Applying Theorem 2.4 with N = n − 1,M = m − 1, we obtain

θ
nm

(x, y) =
n−1
∑
p=1

m−1
∑
q=1

(h
nm
p,q −

T

∫
0

λ−1p,q(τ)f
nm
p,q(τ)dτ)λ−1p,q(T)ϕp,q(x, y),

thus

‖θ
nm

‖2 ≥ (h
nm
n−1,m−1 −

T

∫
0

λ−1n−1,m−1(τ)f
nm
n−1,m−1(τ)dτ)

2
λ−2n−1,m−1(T).

Assuming that the random quantities εij and ξij(t) are mutually independent, we can obtain by direct
computation that limn,m→∞ E‖f

n,m
( ⋅ , t)‖2 = 0 for all t ∈ [0, T]. Moreover, by the Parseval equality, we have

‖h
nm

‖2 =
n−1
∑
p=1

m−1
∑
q=1

(h
mn
p,q)

2 =
n−1
∑
p=1

m−1
∑
q=1

π4

n2m2(
n
∑
i=1

m
∑
j=1
εijϕp,q(Xi , Yj))

2
.

Using Lemma 2.1, we obtain

E‖h
nm

‖2 =
n−1
∑
p=1

m−1
∑
q=1

π2

nm

n
∑
i=1

m
∑
j=1
Eε2ij =

(n − 1)(m − 1)
n2m2 .

Thus
lim

n,m→∞
E‖h

nm
‖2 = 0.

On the other hand, we claim that E‖θnm‖2 → ∞ as n,m → ∞. In fact, we have

E‖θnm‖2 ≥ [E(h
nm
n,m)

2 + E(
T

∫
0

e−τ(n2+m2)f
nm
p,q(τ)dτ)

2
]e2T(n2+m2) ≥

π2e2T(n2+m2)

n2m2
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andE‖θnm‖2 → +∞ as in n,m → +∞. From the latter inequality,we candeduce that theproblem is ill-posed.
Moreover, as classified in [7], the problem is severely ill-posed. Hence, a regularization method is necessary
for stable reconstruction of the initial temperature.

4 Estimators and convergence results

4.1 Nonparametric least squares method

Since the final temperature h and the source f satisfy two nonparametric regression models, we will first
consider a generalization of the models. Assume that g is a unknown function from Ω into ℝ and that the
observations Zij, i = 1, . . . , n, j = 1, . . . ,m satisfy the model

Zij = g(Xi , Yj) + εij ,

where (Xi , Yj) are as in the introduction, εij are mutually independent and Eεij = 0. We will estimate the
function g by the nonparametric least squares estimators. Using the idea of the statistical projectionmethod,
we will find the estimators in VN,M with 1 ≤ N ≤ n, 1 ≤ M ≤ m which are minimizers of the problem

ĝLSn,m,N,M = arg min
ψ∈VN,M

n
∑
i=1

m
∑
j=1

(Zij − ψ(Xi , Yj))2. (12)

From the lemma, we can obtain the explicit form of our minimizers.

Lemma 4.1. Problem (12) has a unique solution

ĝLSn,m,N,M :=
N
∑
p=1

M
∑
q=1

(
π2

nm

n
∑
i=1

m
∑
j=1
Zijϕp,q(Xi , Yj))ϕp,q .

Proof. For ψ ∈ VN,M, we have

ψ(x, y) =
N
∑
p=1

M
∑
q=1

cp,qϕp,q(x, y).

Putting c = (cp,q), p = 1, . . . , n, q = 1, . . . ,m, we can rewrite problem (12) as

ĝLSn,m,N,M = arg min
c∈ℝN×M

n
∑
i=1

m
∑
j=1

(Zij −
N
∑
p=1

M
∑
q=1

cp,qϕp,q(Xi , Yj))
2
.

Denote

L(c) =
n
∑
i=1

m
∑
j=1

(Zij −
N
∑
p=1

M
∑
q=1

cp,qϕp,q(Xi , Yj))
2
.

At the minimize point, we have

∂L
∂cℓ,k

= −2
n
∑
i=1

m
∑
j=1

(Zij −
N
∑
p=1

M
∑
q=1

cp,qϕp,q(Xi , Yj))ϕℓ,k(Xi , Yj) = 0

with ℓ = 1, . . . , N, k = 1, . . . ,M. By Lemma 2.1, we obtain

ĉℓ,k =
π2

nm

n
∑
i=1

m
∑
j=1
Zijϕℓ,k(Xi , Yj).

Hence, the nonparametric least squares estimator is

ĝLSn,m,N,M :=
N
∑
p=1

M
∑
q=1

(
π2

nm

n
∑
i=1

m
∑
j=1
Zijϕp,q(Xi , Yj))ϕp,q ,

as desired.
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4.2 Estimators of the initial temperature

Problem (1)–(2) with the discrete conditions (4)–(5) should have many infinitely solutions. So, to regularize
problem (1)–(3), one has to discretize the problem and reduce it to a finite system of linear equations. To
do this end, one popular method is the projection method. Choosing two natural numbers N,M such that
1 ≤ N ≤ n, 1 ≤ M ≤ m, we will find a solution w(x, y, t) of the problem on the subspace Vℓ,k such that

{
{
{

wt − a(t)(wxx + wyy) = ̂f LSn,m,N,M(x, y, t), (x, y, t) ∈ Ω × (0, T),

w(x, y, T) = ĥLSn,m,N,M(x, y), (x, y) ∈ Ω,
(13)

where

ĥLSn,m,N,M = arg min
h∈VN,M

n
∑
i=1

m
∑
j=1

(dij − h(Xi , Yj))2, ̂f LSn,m,N,M = arg min
f( ⋅ ,t)∈VN,M

n
∑
i=1

m
∑
j=1

(gij(t) − f(Xi , Yj , t))2.

Using Lemma 4.1 and formula (6), we deduce that system (13) has a unique solution

w =
N
∑
p=1

M
∑
q=1

(ĥp,q −
T

∫
t

λ−1p,q(τ) ̂fp,q(τ)dτ)λ−1p,q(T)ϕp,q , (14)

where
ĥp,q =

π2

nm

n
∑
i=1

m
∑
j=1
dijϕp,q(Xi , Yj), ̂fp,q =

π2

nm

n
∑
i=1

m
∑
j=1
gij(t)ϕp,q(Xi , Yj).

From (14), the estimator of the initial temperature function has the form

θ̂N,M =
N
∑
p=1

M
∑
q=1

Âp,qϕp,q , (15)

where

Âp,q = (ĥp,q −
T

∫
0

λ−1p,q(τ) ̂fp,q(τ)dτ)λ−1p,q(T).

4.3 Convergence rate of the estimator

Now, we study the convergence rate, which is the main result of this paper. We note that N,M are regulariza-
tion parameters, namely the truncation parameters in the series estimator. If the regularization parameters
are too large, the projection estimator is not convergence. Hence, we prove that a suitable choosing regular-
ization parameters is necessary. In fact, we will verify that

lim
m,n→∞

min
1≤N≤n, 1≤M≤m

E‖θ̂N,M − θ‖2 = 0.

Hereafter, for any positive numbers α, β and E, we denote the Sobolev class of functions by

Cα,β,E = {g ∈ L2(Ω) :
∞

∑
p=1

∞

∑
q=1

p2αq2β|⟨g, ϕp,q⟩|2 ≤ E2}.

The convergence rate of estimator θ̂N,M in (15) is presented by Theorem 4.8. In order to prove the theorem,we
need the evaluation for E‖θ̂N,M − θ‖2. In fact, this estimate procedure has to undergo some important steps.
In the first step, we have the following lemma.

Lemma 4.2. Let the regressionmodels (4)and (5)hold. Assume that θ ∈ Cα,β,E and0 < N < n, 0 < M < m.Then

‖θ̂N,M − θ‖2 =
N
∑
p=1

M
∑
q=1

[
π2

nm

n
∑
i=1

m
∑
j=1

(λ−1p,q(T)σijεij − ϑ
T

∫
0

λ−1p,q(τ)ξij(τ)dτ)ϕp,q(Xi , Yj)

−
T

∫
0

λ−1p,q(τ)ηn,m,p,q(τ)dτ + γn,m,p,qλ−1p,q(T)]
2
+ inf
ϕ∈VN,M

‖θ − ϕ‖2. (16)
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Proof. By the Parseval equality, we have

‖θ̂N,M − θ‖2 =
N
∑
p=1

M
∑
q=1

(Âp,q − θp,q)2 +
∞

∑
p=N+1

M
∑
q=1

θ2p,q +
N
∑
p=1

∞

∑
q=M+1

θ2p,q +
∞

∑
p=N+1

∞

∑
q=M+1

θ2p,q .

From the formula of Âp,q and θp,q , p = 1, . . . , N, q = 1, . . . ,M, we get

Âp,q − θp,q =
π2

nm
λ−1p,q(T)

n
∑
i=1

m
∑
j=1
σijεijϕp,q(xi , yj) −

T

∫
0

λ−1p,q(τ)[ ̂fp,q(τ) − fp,q(τ)]dτ − γn,m,p,qλ−1p,q(T)

with
̂fp,q(t) − fp,q(t) =

π2ϑ
nm

n
∑
i=1

m
∑
j=1
ξij(t)ϕp,q(xi , yj) + ηn,m,p,q(t).

Thus, we obtain (16).

Now, we prove that γn,m,p,q and ηn,m,p,q tend to zero as n,m → ∞. We first have:

Lemma 4.3. Assume that f( ⋅ , t) ∈ Cα,β,E for all t ∈ [0, T] and θ, h ∈ L2(Ω). Then

|hp,q| ≤ ‖θ‖λp,q(T) +
E

pαqβa1(p2 + q2)
.

Proof. From (7) and |fp,q( ⋅ )| ≤ E/(pαqβ), we have

|hp,q| ≤ ‖θ‖λp,q(T) +
E

pαqβ

T

∫
0

e−(p
2+q2) ∫Tτ a(s)ds dτ.

Since a(t) ≥ a1, we deduce
|hp,q| ≤ ‖θ‖λp,q(T) +

E
pαqβa1(p2 + q2)

.

This completes the proof.

In the next lemma, we will give an upper bound for the discretization bias of hp,q. Indeed, we have:

Lemma 4.4. Suppose that f( ⋅ , ⋅ , t) ∈ Cα,β,E and that p = 1, . . . , n − 1, q = 1, . . . ,m − 1. With γn,m,p,q defined
by (8), there is a generic constant C independent of n,m, p, q such that

|γn,m,p,q| ≤ Cn−1−α/2m−1−β/2. (17)

Proof. From (9), we have
|γn,m,p,q| ≤ |Pn,p,q| + |Qm,p,q| + |Rn,m,p,q|.

Using Lemma 4.3 gives

|Pn,p,q| ≤
∞

∑
k=1

|h2kn±p,q| ≤ ‖θ‖
∞

∑
k=1

λ2kn±p,q(T) +
∞

∑
k=1

E
(2kn ± p)αqβa1((2kn ± p)2 + q2)

≤ ‖θ‖
∞

∑
k=1

e−A(T)[(2kn±p)2+q2] +
∞

∑
k=1

E
a1[(2kn ± p)2+α + q2+β]

≤ ‖θ‖ e
−A(T)(2n−p+q2) + e−A(T)(2n+p+q2)

1 − e−2nA(T)
+

∞

∑
k=1

E
a1(2kn)2+α

≤ ‖θ‖2e
−A(T)(2n−p+q2)

1 − e−2nA(T)
+

E
a1n2+α

∞

∑
k=1

1
(2k)2+α

.

Since A(T) > a1T and 1 − e−2nA(T) ≥ 1
2 as n large, we obtain

|Pn,p,q| ≤ 4e−a1T(2n−p+q2)‖θ‖ + 2Eκα
a1n2+α

:= K1,n,m , (18)
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where we use κα := ∑∞
k=1

1
(2k)2+α < 2 for all α > 0. Similarly, we get

|Qm,p,q| ≤ 4e−a1T(2m−q+p2)‖θ‖ +
2Eκβ
a1m2+β := K2,n,m . (19)

Next, we find an upper bound for |Rn,m,p,q|. In fact, we have

|Rn,m,p,q| ≤
∞

∑
k=1

∞

∑
l=1

|h2kn±p,2lm−q| +
∞

∑
k=1

∞

∑
l=1

|h2kn±p,2lm+q| = RIn,m,p,q + RIIn,m,p,q .

Now we estimate the first term as follows

RIn,m,p,q ≤ ‖θ‖
∞

∑
k=1

∞

∑
l=1
e−A(T)[(2kn±p)2+(2lm−q)2] +

∞

∑
k=1

∞

∑
l=1

E
a1[(2kn ± p)2+α + (2lm − q)2+β]

≤
‖θ‖(e−A(T)(2n+2m−p−q) + e−A(T)(2n+2m+p−q))

[1 − e−2nA(T)][1 − e−2mA(T)]
+

∞

∑
k=1

∞

∑
l=1

E
a1[(2kn)2+α + (2lm)2+β]

.

Similarly, using the inequality x + y ≥ 2√xy (x, y ≥ 0), we obtain

RIn,m,p,q ≤ 8e−a1T(2n+2m−p−q)‖θ‖ +
Eκα,β

2a1n1+α/2m1+β/2 ,

where κα,β := ∑∞
k=1∑

∞
l=1

1
(2k)1+α/2(2l)1+β/2 < +∞ for all α, β > 0. Similarly, we get

RIIn,m,p,q ≤ 8e−a1T(2n+2m−p−q)‖θ‖ +
Eκα,β

2a1n1+α/2m1+β/2 .

Therefore
|Rn,m,p,q| ≤ 16e−a1T(2n+2m−p−q)‖θ‖ +

Eκα,β
a1n1+α/2m1+β/2 := K3,n,m .

Noting that 2(K1,n,m + K2,n,m) ≤ Cn−1−α/2m−1−β/2 and that K3,n,m ≤ O(n−1−α/2m−1−β/2), we get (17).

Remark. Writing almost verbatim (in fact, easier) the above proof, we can obtain an estimation of order
O(n−1−α/2) for the discretization bias of one-dimensional Fourier coefficients. The order is better than the
order O(n−1) assumed in [4] and it can be applied for the Sobolev class of functions. Moreover, the idea can
be generalized to the n-dimensional case.

Lemma 4.5. Assume that f( ⋅ , ⋅ , t) ∈ Cα,β,E and α, β > 1. With ηn,m,p,q(t) defined by (10), we obtain

|ηn,m,p,q(t)| ≤ C�(n−α + m−β), (20)

where 2 ≤ C� < ∞.

Proof. From (11), the triangle inequality implies

|ηn,m,p,q(t)| ≤ |P�n,p,q(t)| + |Q�
m,p,q(t)| + |R�

n,m,p,q(t)|.

Estimating directly the first term gives

|P�n,p,q(t)| ≤
∞

∑
k=1

(|f−p+2kn,q(t)| + |fp+2kn,q(t)|) ≤
∞

∑
k=1

2E
(2kn − p)α

≤
∞

∑
k=1

2E
(2kn − n)α

≤ Cαn−α .

Similarly, we also have

|Q�
m,p,q(t)| ≤ Cβm−β and |R�

n,m,p,q(t)| ≤ Cα,βn−αm−β

with 4 ≤ Cα,β < ∞. Moreover, we easily see that the upper bound of |R�
n,m,p,q(t)| is very smaller than the upper

bounds of |P�n,p,q(t)| and |Q�
m,p,q(t)| as n,m tend to infinity. Hence, we get (20).
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To prepare for the proof of the main result, we need:

Lemma 4.6. Let L > 1 and k > 0. Then
L

∫
1

eku2 du ≤
eL2k

Lk
. (21)

Proof. Putting s = u/L, we have

L

∫
1

eku2 du = L
1

∫
1/L

eL2ks2 ds ≤ L
1

∫
0

eL2ks2 ds.

Then transforming variable v = L2k(1 − s) gives

L
1

∫
0

eL2ks2 ds = eL2k

Lk

L2k

∫
0

eL
2k((1− v

L2k
)2−1) dv.

Since

L2k((1 −
v
L2k

)
2
− 1) = v

L2k((1 − v
L2k )

2 − 1)
v

≤ −v,

we have
L

∫
1

eku2 du ≤
eL2k

Lk

L2k

∫
0

e−v dv ≤ eL2k

Lk
(1 − e−L2k) ≤ eL2k

Lk
.

Therefore, (21) holds.

Finally, we are ready to state and prove two main theorems of our paper.

Theorem 4.7. Let E > 0, α, β > 1, 1 ≤ N ≤ n, 1 ≤ M ≤ m and h ∈ C1(Ω) ∩ Cα,β,E, f ∈ C([0, T]; C1(Ω) ∩ Cα,β,E).
Assume that system (1)–(2) has a (unique) solution u ∈ C1([0, 1]; L2(Ω)) ∩ C([0, T];H2(Ω)). For θ̂N,M defined
in (15), we have

E‖θ̂N,M − θ‖2 ≤
C0e2a2[(N+1)

2+(M+1)2]

2a1nm(N + 1)(M + 1) + inf
ϕ∈VN,M

‖θ − ϕ‖2,

where the positive constant C0 is independent of n,m, N,M. It follows that

min
1≤N≤n, 1≤M≤m

E‖θ̂N,M − θ‖2 ≤ min
1≤N≤n, 1≤M≤m

(
C0e2a2[(N+1)

2+(M+1)2]

nm(N + 1)(M + 1) + inf
ϕ∈VN,M

‖θ − ϕ‖2).

Proof. According to Lemma 4.2, we denote

I1 =
3π4
n2m2

N
∑
p=1

M
∑
q=1

[(
n
∑
i=1

m
∑
j=1

(λ−1p,q(T)σijεij −
T

∫
0

λ−1p,q(τ)ϑξij(τ)dτ)ϕp,q(Xi , Yj))
2

+ (
T

∫
0

λ−1p,q(τ)ηn,m,p,q(τ)dτ)
2
+ γ2n,m,p,qλ−2p,q(T)]

=
3π4
n2m2 (I1,1 + I1,2 + I1,3).

We will find upper bounds for I1,1, I1,2, I1,3. We first have

I1,1 =
N
∑
p=1

M
∑
q=1

[
n
∑
i=1

m
∑
j=1

(λ−1p,q(T)σijεij −
T

∫
0

λ−1p,q(τ)ϑξij(τ)dτ)ϕp,q(Xi , Yj)]
2

≤ 2
N
∑
p=1

M
∑
q=1

[λ−2p,q(T)(
n
∑
i=1

m
∑
j=1
ϕp,q(Xi , Yj)σijεij)

2
+ (

n
∑
i=1

m
∑
j=1
ϕp,q(Xi , Yj)

T

∫
0

λ−1p,q(τ)ϑξij(τ)dτ)
2
].
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From the Brownian motion properties, we known that E[ξij(t)ξkl(t)] = 0 for k ̸= i, l ̸= j and Eξ2ij(t) = t. By the
Hölder inequality, we obtain

E(I1,1) ≤ 2
N
∑
p=1

M
∑
q=1

(
nm
π2

Vmaxλ−2p,q(T) +
n
∑
i=1

m
∑
j=1
ϕ2
p,q(Xi , Yj)

T

∫
0

λ−2p,q(τ)dτ
T

∫
0

ϑ2Eξ2ij(τ)dτ)

≤
2nm
π2

(Vmax +
ϑ2T3

2 )
N
∑
p=1

M
∑
q=1

e2A(T)(p2+q2).

Lemma 4.6 gives

E(I1,1) ≤
2nm
π2

(Vmax +
ϑ2T3

2 )
N+1

∫
1

M+1

∫
1

e2A(T)(s2+r2) dr ds.

Thus, we obtain

E(I1,1) ≤
nme2A(T)[(N+1)2+(M+1)2]

2π2A2(T)(N + 1)(M + 1)
(Vmax +

ϑ2T3

2 ). (22)

Next we evaluate I1,2. Putting ηn,m = max{|ηn,m,p,q| : p = 1, . . . , N, q = 1, . . . ,M}, we obtain directly

I1,2 ≤
N
∑
p=1

M
∑
q=1

η2n,m(
T

∫
0

λ−1p,q(τ)dτ)
2
≤ η2n,m

N
∑
p=1

M
∑
q=1

(
T

∫
0

ea2τ(p2+q2) dτ)
2
.

Hence, it follows from Lemma 4.5 that

I1,2 ≤ η2n,m
N
∑
p=1

M
∑
q=1

e2a2T[p2+q2]

a22(p2 + q2)2
≤
e2a2T[(N+1)2+(M+1)2]

2a32T(N + 1)(M + 1)
C�2(n−α + m−β)2. (23)

Finally, we find an upper bound of I1,3. Putting γn,m = max{|γn,m,p,q| : p ∈ 1, . . . , N, q ∈ 1, . . . ,M} and
using Lemma 4.4 we have

I1,3 ≤ γ2n,mλ−2p,q(T) ≤ 8
N
∑
p=1

M
∑
q=1

(K21,n,m + K22,n,m)λ
−2
p,q(T) = 8(I�1,3 + I��1,3),

where K1,n,m and K2,n,m are defined in (18) and (19). We get

I�1,3 ≤
N
∑
p=1

M
∑
q=1

[4e−a1T(2n−p+q2)‖θ‖ + 2E
a1n2+α

]
2
λ−2p,q(T)

≤
8E2

a21n4+2α
N
∑
p=1

M
∑
q=1

λ−2p,q(T)
p2+2α

+ 32e−4na1T‖θ‖2
N
∑
p=1

M
∑
q=1

e−2a1T(q2−p)λ−2p,q(T)

≤ O(
e2A(T)[(N+1)2+(M+1)2]

n4+2α(N + 1)(M + 1)
).

Similarly, we obtain

I��1,3 ≤ O(
e2A(T)[(N+1)2+(M+1)2]

m4+2β(N + 1)(M + 1)
).

Hence, we get

I1,3 ≤ O(
e2A(T)[(N+1)2+(M+1)2]

(N + 1)(M + 1) (
1

n4+2α
+

1
m4+2β )). (24)

Therefore, combining (22), (23) and (24), we get

EI1 ≤ O(
e2a2[(N+1)2+(M+1)2]

nm(N + 1)(M + 1)),

as desired.
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Theorem 4.8. Let E > 0, α, β > 1 and h ∈ C1(Ω) ∪ Cα,β,E, f ∈ C([0, T]; C1(Ω) ∩ Cα,β,E). Assume that system
(1)–(2) has a (unique) solution u ∈ C1([0, 1]; L2(Ω)) ∩ C([0, T];H2(Ω)). Choose

Nn,m = Mn,m ∼ O(⌊log1/2 nm⌋),

where ⌊x⌋ is the greatest integer ≤ x. For θ̂Nn,m ,Mn,m defined in (15) and θ ∈ Cα,β,E, we have

min
1≤N≤n, 1≤M≤m

E‖θ̂N,M − θ‖2 ≤ E‖θ̂Nn,m ,Mn,m − θ‖2 ≤ C1 log−α0 nm,

where the positive constant C1 is independent of n,m and α0 = min{α, β}.

Proof. According to Theorem 4.7, we have

E‖θ̂N,M − θ‖2 ≤ C1∆n,m,N,M + inf
ϕ∈VN,M

‖θ − ϕ‖2,

where

∆n,m,N,M := e2a2[(N+1)2+(M+1)2]

nm(N + 1)(M + 1) .

Now, we find an upper bound for the second term. In fact, we have

inf
ϕ∈VN,M

‖θ − ϕ‖2 =
∞

∑
p=N+1

M
∑
q=1

p−2αq−2β|⟨pαqβθ, ϕp,q⟩|2 +
N
∑
p=1

∞

∑
q=M+1

p−2αq−2β|⟨pαqβθ, ϕp,q⟩|2

+
∞

∑
p=N+1

∞

∑
q=M+1

p−2αq−2β|⟨pαqβθ, ϕp,q⟩|2

≤ E2((N + 1)−2α + (M + 1)−2β + (N + 1)−2α(M + 1)−2β)
≤ 2E2((N + 1)−2α0 + (M + 1)−2α0) =: 2E2Λn,m,N,M ,

where α0 = min{α, β}. Therefore

E‖θ̂N,M − θ‖2 ≤ C�0(∆n,m,N,M + Λn,m,N,M),

where C�0 = min{C0, 2E2}.We choose the numbersN,M forminimizing the left-hand side of the latter inequal-
ity. Put

L(z, ω) = ∆n,m,z,ω + Λn,m,z,ω .

The function L(z, ω) attains its minimum at (znm , ωnm) satisfying znm , ωnm ≥ 1 and

∂L(znm , ωnm)
∂z

=
(4a2(znm + 1)2 − 1)e2a2[(znm+1)2+(ωnm+1)2]

nm(znm + 1)(ωnm + 1) −
2α0

(znm + 1)2α0−1
= 0

and
∂L(znm , ωnm)

∂ω
=

(4a2(ωnm + 1)2 − 1)e2a2[(znm+1)2+(ωnm+1)2]
nm(znm + 1)(ωnm + 1) −

2α0
(ωnm + 1)2α0−1

= 0.

We can verify that
lim

n,m→∞
znm = lim

n,m→∞
ωnm = ∞

and
F(znm + 1) = F(ωnm + 1)

with F(ρ) = 4a2ρ2α0+1 − ρ2α0−1. Since F�(ρ) > 0 for ρ > a−1/22 , we obtain znm = ωnm for n,m large enough.
Hence, we have the equation

(4a2(znm + 1)2 − 1)e4a2(znm+1)2

nm(znm + 1)2
−

2α0
(znm + 1)2α0−1

= 0

which gives limn,m→∞
log1/2 nm
znm+1 = 2√a2. Thus, we can choose Nn,m = Mn,m = ⌊znm⌋ ∼ O(⌊log1/2 nm⌋) and

obtain
E‖θ̂Nn,m ,Mn,m − θ‖2 ≤ O(log−α0 nm),

as desired.
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5 Numerical results
We illustrate the theoretical results by concrete examples. We first describe a plan for computation. Let
Ω = (0, π) × (0, π), T = 1 and

{{{
{{{
{

ut − a(t)∆u = f(x, y, t), (x, y, t) ∈ Ω × (0, 1),
u(x, y, t)!!!!∂Ω = 0, 0 ≤ t ≤ 1,

u(x, y, 1) = h(x, y), (x, y) ∈ Ω,

where the functions f, h are measured and the function a : (0, 1) → ℝ is known.
We will simulate the data for heat source term and final condition, respectively. In fact, at each point

(Xi , Yj) = (π(2i − 1)/2n, π(2j − 1)/2m), i = 1, . . . , n, j = 1, . . . ,m, using two subroutines in FORTRAN pro-
grams of John Burkardt (see [5]) and of Marsaglia and Tsang (see [15]), we make noises the heat source by
ϑξij(t) and the final data by σijεij, where ξij(t) are the normal Brownian motions and εij are the standard
normal random variables. Choosing σ2ij = σ2 = ϑ = 10−1 and 10−2, we have two following regressionmodels:

dij = h(Xi , Yj) + σεij , gij(t) = f(Xi , Yj) + ϑξij , εij
i.i.d∼ N(0, 1).

Now, we choose some numerical methods to compare errors. The first method is the trigonometric non-
parametric regression (truncated method for short) which is considered in the present paper. The second
method is the quasi-boundary value (QBV) regularization. The third method is based on the classical solu-
tion (CS for short) of the backward problem.

For the mentioned function a, we use the method Legendre–Gauss quadrature with the roots xi of the
Legendre polynomials P512(x), x ∈ [−1, 1] to calculate

AGL =
1

∫
0

a(s)ds = 1
2

512
∑
n=1

wia(
xi
2 +

1
2),

where
wi =

2
(1 + x2i )[P

�
512(xi)]2

.

In the first method, we have to set up the values of Nn,m ,Mn,m. With the quantity AGL, we can obtain the
values of Nn,m ,Mn,m from n,m by the following formula:

Nn,m = ⌊
log1/2 nm
AGL

⌋ and Mn,m = ⌊
log1/2 nm
AGL

⌋.

In each case of variance σ2ij = σ2, we compute 30 times. To calculate the error between the exact solution and
the estimator, we use the root mean squared error (RMSE) as follows:

RMSE(θ̂; θ) = √
1
nm

n
∑
i=1

m
∑
j=1

(θ̂(Xi , Yj) − θ(Xi , Yj))2.

Then we find the average of RMSE(θ̂; θ) in 30 runs order.
The second method is the quasi-boundary value (QBV) regularization with the approximation of the

initial data

θQBV(x, y) =
∞

∑
p=1

∞

∑
q=1

(
ĥp,q

ε(p2 + q2) + λp,q(T)
−

T

∫
0

λ−1p,q(τ)λp,q(T)
ε(p2 + q2) + λp,q(T)

̂fp,q(τ)dτ)ϕp,q(x, y).

The method is chosen since it is quite common and the stability magnitude of the regularization operator is
of order O(ε−1) (see [22]). As mentioned, in the QBV method, we do not have explicit stopping indices. So,
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we only calculate with p, q = 1, . . . , 20; ε = σ2 and use the formula

θQBV(x, y) ≈
20
∑
p=1

20
∑
q=1

(
ĥp,q

ε(p2 + q2) + λp,q(T)
−

T

∫
0

λ−1p,q(τ)λp,q(T)
ε(p2 + q2) + λp,q(T)

̂fp,q(τ)dτ)ϕp,q(x, y).

Finally, we consider a numerical result for the classical solution (CS for short). As the secondmethod, we
use the approximation formula

θCS(x, y) ≈
20
∑
p=1

20
∑
q=1

(ĥp,qλ−1p,q(T) −
T

∫
0

λ−1(τ) ̂fp,q(τ)dτ)ϕp,q(x, y).

We will illustrate the discussed plan by two examples. In Example 1, we consider the problem with an exact
initial datum θ having a finite Fourier expansion. In Example 2, we compute with the function θ having an
infinite Fourier expansion.

In the examples, to calculate integrals depended on the time variable t in approximation formulas, we
use the generalized Simpson approximation with 101 equidistant points 0 = t0 < t1 < ⋅ ⋅ ⋅ < t101 = 1

1

∫
0

ν(τ)dτ =
1

100[
3
8 ν(t0) +

7
6 ν(t1) +

23
24 ν(t2) +

n−3
∑
k=3

ν(tk) +
23
24 ν(t99) +

7
6 ν(t100) +

3
8 ν(t101)],

where ν(τ) = λ−1p,q(τ) ̂fp,q(τ).

Example 1. With a(t) = 2 − t, we can see that 1 = a1 ≤ a(t) ≤ a2 = 2. We have AGL = 1.5. Assume that
f(x, y, t) = 2(t3 − 2t2 − 6t + 10) sin(x) sin(y) and h(x, y) = 4 sin(x) sin(y). The exact value of u(x, y, 0) is

θ(x, y) = 5 sin(x) sin(y),

which has a finite Fourier expansion.

Figure 1 and Figure 2 present surfaces of the data and their contours (without and with noises respectively)
for the final condition and the source term. They are drawn in case σ2 = 10−1, n = m = 81 and at the time
t = 0.5, w.r.t. According to the figures, we can see the non-smoothness of two surfaces data in case of random
noise. In fact, from the contour plot within noise of the final data, we also see that the measured data is
very chaotic.

(a) True data (b) Observation data

Figure 1. The contour of two data set for final temperature.
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(a) True data (b) Observation data

Figure 2. The surface of data set for heat source at t = 0.5.

Run Estimator QBV method Classical solution

σ2 = 10−1 σ2 = 10−2 ε = 10−1 ε = 10−2 ε = 10−1 ε = 10−2
1 0.3488 0.0855 1.8493 0.6836 9.0696E+0466 7.2832E+0467
2 0.2810 0.0098 1.7936 0.6492 5.6003E+0468 1.3249E+0467
3 0.1665 0.1151 1.6715 0.6741 4.9925E+0468 7.6606E+0467
4 0.0642 0.0555 1.8313 0.6199 1.9484E+0468 8.8691E+0466
5 0.3478 0.0795 1.7854 0.5895 3.0650E+0468 9.9884E+0467
6 0.1541 0.1344 1.7437 0.6661 1.6817E+0468 1.0375E+0466
7 1.1359 0.1045 1.9001 0.6162 1.0333E+0468 5.0317E+0467
8 0.1819 0.1116 1.8155 0.6789 4.4777E+0468 2.6705E+0467
9 0.5098 0.0794 1.9957 0.6704 8.7766E+0467 1.9412E+0467

10 0.0767 0.0819 1.7344 0.6770 1.9678E+0468 7.3191E+0466
11 0.6926 0.0509 1.8346 0.6305 2.8522E+0468 3.6677E+0467
12 0.1562 0.0650 1.8199 0.6876 9.8178E+0468 6.0419E+0467
13 0.3010 0.0133 1.6247 0.6591 1.3412E+0468 4.7005E+0467
14 0.2691 0.0549 1.9827 0.6664 4.9153E+0468 2.6146E+0466
15 0.8242 0.0784 1.8294 0.6782 2.8401E+0468 2.2989E+0467
16 0.0800 0.0897 2.0291 0.6365 3.9761E+0468 3.2519E+0467
17 0.5340 0.0694 1.8317 0.6593 5.5066E+0466 4.5486E+0467
18 0.3112 0.0560 1.7623 0.6140 5.6634E+0468 4.9512E+0467
19 0.0823 0.1052 1.8327 0.6706 4.7594E+0467 1.5004E+0467
20 0.8982 0.0593 1.7463 0.6531 4.2411E+0468 3.3806E+0467
21 1.1967 0.0919 1.8337 0.6322 6.7184E+0468 3.4589E+0467
22 0.6456 0.1117 1.6554 0.6898 3.1764E+0468 8.5158E+0467
23 0.7978 0.0921 1.8755 0.6289 1.9857E+0468 1.3291E+0467
24 0.7382 0.0732 1.8330 0.6568 1.4733E+0468 1.6599E+0467
25 0.2039 0.1161 1.7400 0.6372 2.2766E+0468 2.3429E+0467
26 0.1441 0.1000 1.8158 0.6410 9.6333E+0467 3.4518E+0467
27 1.3111 0.1097 1.7632 0.6621 2.3796E+0468 3.9224E+0467
28 0.3626 0.1020 1.8254 0.6583 4.7331E+0468 7.5024E+0466
29 0.2833 0.0173 1.7640 0.6552 8.1452E+0467 1.4300E+0467
30 0.8313 0.0414 1.9595 0.6774 4.0568E+0468 4.4984E+0467

Average 0.4643 0.0785 1.8160 0.6540 divergence divergence

Table 1. Example 1: Comparing errors between methods: σ2 = 10−1 , 10−2 and n = m = 21.
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Figure 3. Example 1: The graphics of the average of RMSE in two cases σ2 = 10−1 and σ2 = 10−2.

In case of σ2 = 10−1, the error of the estimation is quite large, while, the error in case of σ2 = 10−2 is
smaller. In addition, we see that the errors (in two cases of the variance σ2ij = σ2) are decreased when n,m
are increased (see Figures 3). Table 1 shows the error of the method. We see that the error between the exact
solution with the classical solution grows very fast. In fact, the error data is quite small ε = 10−1, 10−2 but
the error solution is large ≈ 10466. This illustrates numerically the ill-posedness of our problem. On the other
hand, the error in Table 1 of the truncated method is better than the one of the QBV method.

Example 2. Let a(t) = 0.5e−t and e−1 = a1 ≤ a(t) ≤ a2 = 1. Then we calculate AGL = 0.3161. Suppose that

f(x, y, t) = e−t

π [(2e−t + (4e−t − 1) sin 2y) + (1 − 10e−t) sin 3x sin y]

and

h(x, y) = e−1

π [x(π − x) sin y − sin 3x sin y].

We easily see that the exact value of u(x, y, 0) is

θ(x, y) = 1
π [
x(π − x) sin y − sin 3x sin y],

which has an infinite Fourier expansion.

The results of Example 2 have error as in Table 2. From the results, we can obtain the same conclusions as in
Example 1.

6 Conclusion
In paper, we consider a nonhomogeneous backward problem with final data and source having random
noises. We first approximate the final data and the source by using nonparametric least squares regression
methods in statistics. The estimate of bias of the discretization is given explicitly. On the other hand, our
problem is ill-posed. Hence, a regularization is in order. We have used the projection method to approximate
stably the unknown initial temperature θ. Finally, we illustrate the theoretical part by comparing computa-
tion results of the method presented in the paper, QBV and classical solution methods.
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Run Estimator QBV method Classical solution

σ2 = 10−1 σ2 = 10−2 ε = 10−1 ε = 10−2 ε = 10−1 ε = 10−2
1 0.2702 0.1533 0.2518 0.1431 4.79E+097 4.55E+095
2 0.2111 0.1536 0.3038 0.1512 4.97E+096 1.22E+096
3 0.1865 0.1540 0.2881 0.1402 9.17E+094 2.98E+096
4 0.3827 0.1539 0.3039 0.1350 3.80E+097 2.34E+096
5 0.2872 0.1525 0.3161 0.1521 1.18E+096 2.27E+096
6 0.2492 0.1564 0.3135 0.1525 7.43E+096 1.23E+096
7 0.2468 0.1539 0.2858 0.1289 1.28E+097 1.30E+096
8 0.6985 0.1531 0.2876 0.1436 2.11E+097 3.79E+095
9 0.2923 0.1534 0.3187 0.1421 2.04E+097 2.85E+095

10 0.3177 0.1549 0.3104 0.1484 4.02E+097 1.14E+096
11 0.1931 0.1534 0.2909 0.1386 1.21E+097 6.71E+095
12 0.1957 0.1563 0.3355 0.1821 1.60E+097 6.91E+095
13 0.1964 0.1532 0.3139 0.1313 7.14E+096 1.68E+096
14 0.2875 0.1553 0.3018 0.1570 3.96E+096 1.24E+096
15 0.2700 0.1540 0.3195 0.1403 4.51E+097 2.42E+096
16 0.2558 0.1545 0.2985 0.1362 1.68E+097 5.06E+096
17 0.1976 0.1535 0.3589 0.1466 1.60E+096 2.91E+096
18 0.4981 0.1548 0.3853 0.1594 3.85E+096 2.65E+096
19 0.2723 0.1539 0.3200 0.1540 9.70E+096 2.71E+096
20 0.3152 0.1534 0.3312 0.1466 2.04E+097 1.77E+096
21 0.3284 0.1544 0.3303 0.1442 1.60E+097 1.76E+096
22 0.4009 0.1526 0.3173 0.1274 1.01E+097 3.65E+096
23 0.3175 0.1532 0.3005 0.1475 9.57E+096 1.65E+096
24 0.4426 0.1526 0.3132 0.1537 3.06E+096 8.29E+095
25 0.3158 0.1528 0.3234 0.1353 4.21E+097 2.98E+096
26 0.2715 0.1545 0.3443 0.1428 1.22E+097 2.06E+096
27 0.1848 0.1527 0.3517 0.1312 2.46E+097 2.31E+096
28 0.2695 0.1555 0.3104 0.1470 1.05E+097 1.81E+096
29 0.5497 0.1637 0.3126 0.1300 7.88E+096 4.31E+096
30 0.3161 0.1530 0.3047 0.1414 4.69E+096 8.49E+095

Average 0.3074 0.1542 0.3148 0.1443 divergence divergence

Table 2. Example 2: Comparing errors between methods: σ2 = 10−1 , 10−2 and n = m = 21.

Acknowledgment: Wewould like to thank two anonymous referees, an Associate Editor, whose constructive
comments helped to improve the presentation of the paper.

Funding: This research was supported by Vietnam National University-Ho Chi Minh City (VNU-HCM) under
the Grant number B2017-18-03.

References
[1] P. Alquier, E. Gautier and G. Stoltz, Inverse Problems and High-Dimensional Estimation, Springer, Berlin, 2011.
[2] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.
[3] J. V. Beck, B. Blackwell and S. C. R. Clair, Inverse Heat Conduction, Ill-Posed Problems, Wiley Interscience,

New York, 1985.
[4] N. Bissantz and H. Holzmann, Statistical inference for inverse problems, Inverse Problems 24 (2008), Article ID 034009.
[5] J. Burkardt, Brownian motion simulation: Simulation of Brownian motion in m dimensions, preprint, http://people.sc.fsu.

edu/~jburkardt/f_src/brownian_motion_simulation/brownian_motion_simulation.html.
[6] A. S. Carasso, J. G. Sanderson and J. M. Hyman, Digital removal of random media image degradations by solving the

diffusion equation backwards in time, SIAM J. Numer. Anal. 15 (1978), no. 2, 344–367.
[7] L. Cavalier, Nonparametric statistical inverse problems, Inverse Problems 24 (2008), Article ID 034004.

Unauthenticated
Download Date | 2/12/18 7:14 PM

http://people.sc.fsu.edu/~jburkardt/f_src/brownian_motion_simulation/brownian_motion_simulation.html
http://people.sc.fsu.edu/~jburkardt/f_src/brownian_motion_simulation/brownian_motion_simulation.html


N. D. Minh et al., A two-dimensional backward heat problem with statistical discrete data | 31

[8] J. Cheng and J. J. Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental
solution, Inverse Problems 24 (2008), no. 6, 1–18.

[9] M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems, J. Math. Anal. Appl. 301
(2005), 419–426.

[10] R. L. Eubank, Nonparametric Regression and Spline Smoothing, 2nd ed., Marcel Dekker, New York, 1999.
[11] D. N. Hao, A mollification method for ill-posed problems, Numer. Math. 68 (1994), 469–506.
[12] D. N. Hao and N. T. N. Oanh, Determination of the initial condition in parabolic equations from integral observations,

Inverse Probl. Sci. Eng. (2016), DOI 10.1080/17415977.2016.1229778.
[13] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer, Berlin, 1996.
[14] B. Mair and F. H. Ruymgaart, Statistical estimation in Hilbert scale, SIAM J. Appl. Math. 56 (1996), 1424–1444.
[15] G. Marsaglia and W. W. Tsang, The Ziggurat method for generating random variables, J. Stat. Softw. 5 (2000),

DOI 10.18637/jss.v005.i08.
[16] P. T. Nam, An approximate solution for nonlinear backward parabolic equations, J. Math. Anal. Appl. 367 (2010), no. 2,

337–349.
[17] P. T. Nam, D. D. Trong and N. H. Tuan, The truncation method for a two-dimensional nonhomogeneous backward heat

problem, Appl. Math. Comput. 216 (2010), 3423–3432.
[18] L. E. Payne, Improperly Posed Problems in Partial Differential Equations, SIAM, Philadelphia, 1975.
[19] A. Qian and J. Mao, Quasi-reversibility regularization method for solving a backward heat conduction problem, Amer. J.

Comput. Math. 1 (2011), no. 3, 159–162.
[20] H.-H. Qin and T. Wei, Some filter regularization methods for a backward heat conduction problem, Appl. Math. Comput.

217 (2011), no. 24, 10317–10327.
[21] M. Renardy, W. J. Hursa and J. A. Nohel,Mathematical Problems in Viscoelasticity, Wiley, New York, 1987.
[22] R. E. Showalter, Cauchy problem for hyper-parabolic partial differential equations, in: Trends in the Theory and Practice of

Nonlinear Analysis (Arlington 1984), North-Holland, Amsterdam (1985), 421–425.
[23] T. H. Skaggs and Z. J. Kabala, Recovering the history of a groundwater contaminant plume: Method of quasi-reversibility,

Water Resources Res. 31 (1995), no. 11, 2669–2673.
[24] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston, Washington, 1977.
[25] D. D. Trong, N. H. Tuan and P. H. Quan, A quasi-boundary value method for regularizing nonlinear ill-posed problems,

Electron. J. Differential Equations 109 (2009), 1–16.
[26] D. D. Trong, N. H. Tuan and P. H. Quan, A new version of quasi-boundary value method for a 1-D nonlinear ill-posed heat

problem, J. Inverse Ill-Posed Probl. 17 (2010), no. 9, 913–932.
[27] A. B. Tsybakov, Introduction to Nonparametric Estimation, Springer, New York, 2009.

Unauthenticated
Download Date | 2/12/18 7:14 PM


	A two-dimensional backward heat problem with statistical discrete data
	1 Introduction
	2 Discretization form of Fourier coefficients
	3 The ill-posedness of the problem
	4 Estimators and convergence results
	4.1 Nonparametric least squares method
	4.2 Estimators of the initial temperature
	4.3 Convergence rate of the estimator

	5 Numerical results
	6 Conclusion


