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BIFURCATION AND SEGREGATION IN QUADRATIC TWO-POPULATIONS
MEAN FIELD GAMES SYSTEMS

Marco Cirant1 and Gianmaria Verzini2

Abstract. We search for non-constant normalized solutions to the semilinear elliptic system

⎧
⎪⎨

⎪⎩

−ν∆vi + gi(v
2
j )vi = λivi, vi > 0 in Ω

∂nvi = 0 on ∂Ω∫
Ω

v2
i dx = 1, 1 ≤ i, j ≤ 2, j ̸= i,

where ν > 0, Ω ⊂ RN is smooth and bounded, the functions gi are positive and increasing, and both
the functions vi and the parameters λi are unknown. This system is obtained, via the Hopf−Cole trans-
formation, from a two-populations ergodic Mean Field Games system, which describes Nash equilibria
in differential games with identical players. In these models, each population consists of a very large
number of indistinguishable rational agents, aiming at minimizing some long-time average criterion.
Firstly, we discuss existence of nontrivial solutions, using variational methods when gi(s) = s, and
bifurcation ones in the general case; secondly, for selected families of nontrivial solutions, we address
the appearing of segregation in the vanishing viscosity limit, i.e.

∫

Ω

v1v2 → 0 as ν → 0.
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1. Introduction

We consider the following semilinear elliptic system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ν∆v1 + g1(v2
2)v1 = λ1v1

−ν∆v2 + g2(v2
1)v2 = λ2v2 in Ω∫

Ω v2
1 dx =

∫
Ω v2

2 dx = 1, v1, v2 > 0
∂nv1 = ∂nv2 = 0 on ∂Ω.

(1.1)
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Here Ω ⊂ RN is a smooth bounded domain, normalized in such a way that

|Ω| = 1,

ν > 0, and both the functions vi and the parameters λi are unknown. The interaction functions gi ∈ C2([0,∞))
satisfy

• C−1
g s ≤ gi(s) ≤ Cgs ∀s ≥ 0,

• gi is strictly increasing, g′i(1) > 0, (1.2)

for some Cg > 0 (i = 1, 2).
The elliptic system (1.1) arises in the context of Mean Field Games (briefly MFG) theory. MFG is a branch

of Dynamic Games which has been proposed independently by Lasry and Lions [21–23] and Caines, Huang,
Malhamé [18, 19] in the engineering community, with the aim of modeling and analyzing decision processes
involving a very large number of indistinguishable rational agents. Here, we focus on MFG with two competing
populations, where every individual of the ith population (i = 1, 2) is represented by a typical agent, and whose
state is driven by the controlled stochastic differential equation

dX i
s = −ai

sds +
√

2ν̃ dBi
s,

where Bi
s are independent Brownian motions. The agent chooses her own velocity ai

s in order to minimize a
cost of long-time-average form

J i(X i
0, a

1, a2) = lim inf
T→∞

1
T

∫ T

0
E
[
|ai

s|2

2
+ gi((m̂j)s)

]
ds,

where m̂j denotes the empirical density of the players belonging to the other population (i.e. j = 3 − i). It
has been shown (see in particular [16]) that equilibria of the game (in the sense of Nash) are captured by the
following system of non-linear elliptic equations

⎧
⎪⎨

⎪⎩

−ν̃∆ui(x) + 1
2 |∇ui(x)|2 + λi = gi(mj(x))

−ν̃∆mi(x) − div(∇ui(x)mi(x)) = 0 in Ω∫
Ω midx = 1, mi > 0, i = 1, 2.

(1.3)

The unknowns ui,λi provide the value functions of typical players and the average costs respectively. On the
other hand, the unknowns mi represent the stationary distributions of players of the ith population implementing
the optimal strategy, that is, the long time behavior of agents playing in an optimal way. We suppose that the
state X i

s is subject to reflection at ∂Ω; this motivates the Neumann boundary conditions.
Note that the individual cost J i is increasing with respect to m̂j , as we are supposing that gi is increasing.

In other words, every agent is lead to avoid regions of Ω where an high concentration of competitors is present.
For this reason, our MFG model is expected to show phenomena of segregation between the two populations.
In particular, segregation should arise distinctly in the vanishing viscosity regime, namely when the Brownian
noise (whose intensity is controlled by ν̃) becomes negligible with respect to interactions. We will explore this
aspect in terms of qualitative properties of the two distributions m1, m2.

Another key feature of this model is the quadratic dependence of the cost J i with respect to the velocity
ai. It has been pointed out (see [21, 24]) that the so-called Hopf−Cole transformation partially decouples the
equations in (1.3), reducing the number of the unknowns. Precisely, if we let

v2
i := mi = e−ui/ν̃ and ν = 2ν̃2,

then (1.3) becomes (1.1). We will therefore consider (1.1) and transpose the obtained results to the original
system (1.3).
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Before proceeding with the analysis of the reduced system (1.1), a few bibliographical remarks are in or-
der. First of all, while the single population case has received a considerable attention, few papers deal with
mathematical aspects of the multi-population setting. We mention that a preliminary study of (1.1)–(1.3) has
been made in [10], while a non-stationary version of (1.3) is considered in [20]. The latter work provides also
a motivation for (1.3) based on pedestrian crowd models. Our MFG system can be also seen as a simplified
version of the population models presented in [1].

Since |Ω| = 1,
v1 ≡ v2 ≡ 1, λ1 = g1(1), λ2 = g2(1)

is a solution of (1.1) for every value of ν. We will refer to it (or, with some abuse, to the pair (v1, v2) ≡ (1, 1)) as
the trivial (or constant) solution. The aim of our investigation is twofold: firstly, to show the existence of families,
indexed by ν, of nontrivial Nash equilibria for (1.1); secondly, to analyze possible segregation phenomena for
such families, as ν → 0.

Definition 1.1. The pair (v1, v2) is a Nash equilibrium for (1.1) if each vi achieves

λi := inf
{∫

Ω

[
ν|∇w|2 + gi(v2

j )w2
]

dx : w ∈ H1(Ω),
∫

Ω
w2 dx = 1

}
.

It is easy to show (see Lem. 2.1 ahead) that a pair (v1, v2) is a Nash equilibrium if and only if (up to a change
of sign of its components) it solves (1.1) with multipliers (λ1,λ2).

Definition 1.2. We say that a set of solutions

Σ ⊂
{
(ν, v1, v2) ∈ R × C2,α(Ω) × C2,α(Ω) : (ν, v1, v2) satisfies (1.1) for some (λ1,λ2)

}

segregates if it contains sequences {(νn, v1,n, v2,n)}n with νn → 0, and for every such sequence it holds
∫

Ω
v1,nv2,n → 0 as n → ∞.

One important feature of system (1.1) is that its unknowns are both the functions vi, which are required
to be normalized (in the L2 sense), and the parameters λi. Despite the large literature devoted to existence
results for semilinear elliptic systems, only few papers deal with normalized solutions, mainly when searching
for solitary waves associated to nonlinear Schrödinger systems [3,4,26–28]. Note that all these papers are based
on variational methods, since the systems they consider are of gradient type. This is not the case for (1.1),
except when the interactions gi are linear functions.

On the other hand, segregation issues have received much attention in the last decade, and by now a large
amount of literature is dedicated to this subject, see e.g. [6–9,11,12,15,25,29,31,33], the recent survey [32], and
references therein. Mainly two types of competitions have been widely investigated, namely the Lotka−Volterra
type (e.g. gi(s) = ai

√
s), and again the variational one. Furthermore in these papers segregation (as defined in

Def. 1.2) is a first easy step, while all the effort is done to show that the convergence of v1v2 to 0 is very much
stronger than merely L1. Conversely, in our situation, even the L1 convergence is not clear at all, mainly due
to the unknown behavior of the parameters λi. For instance, the set of trivial solutions does not segregate at
all. Actually, this is one of the main difficulties we have to face.

Motivated by the above discussion, we first treat the variational case

gi(s) = γis, for some γi > 0.

In such a case, as we mentioned, (1.1) has a gradient structure, at least in dimension N ≤ 3: Nash equilibria
can be obtained as critical points of the functional

Iν(v1, v2) =
∫

Ω

[
1
γ1

|∇v1|2 +
1
γ2

|∇v2|2 +
1
ν

v2
1v2

2

]
dx
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constrained to the manifold

M =
{

(v1, v2) ∈ H1(Ω) × H1(Ω) :
∫

Ω
v2
1 dx =

∫

Ω
v2
1 dx = 1

}
.

As a consequence, existence of solutions can be obtained by direct minimization of Iν |M . Regarding the asymp-
totic behaviour of such minimizers, using techniques contained in [26] we can show Γ -convergence to the following
limiting problem:

min
{∫

Ω

[
1
γ1

|∇v1|2 +
1
γ2

|∇v2|2
]

dx : (v1, v2) ∈ M, v1 · v2 ≡ 0,

}
. (1.4)

It can be proved that such minimum is achieved, and, among other properties, that any minimizer (V1, V2) is
such that V1

√
γ2 − V2

√
γ1 ∈ C2,α(Ω), for every 0 < α < 1 (see Prop. 3.3 ahead). As a matter of fact, we can

prove the following.

Theorem 1.3 (Variational case). Let N ≤ 3, gi(s) = γis, γi > 0, and let µ1 > 0 denote the first positive
Neumann eigenvalue of −∆ in Ω. Then, for every

0 < ν ≤ γ1γ2

µ1(γ1 + γ2)
,

the minimum of Iν |M is achieved by a pair (v1,ν , v2,ν), which is a nontrivial Nash equilibrium for (1.1).
Moreover, any family of minimizers exhibits segregation: up to subsequences,

vi,ν → Vi in H1(Ω) ∩ Cα(Ω) as ν → 0,

for every α < 1, where (V1, V2) achieves (1.4).

Turning to the general case, since (1.1) has no variational structure, one is lead to search for solutions using
topological methods. In particular, it is natural to use bifurcation theory to find nontrivial solutions (ν, v1, v2)
branching off from the trivial ones

T = {(ν, 1, 1) : ν > 0} ⊂ R × C2,α(Ω) × C2,α(Ω).

We denote by S the closure of the set of nontrivial solutions of (1.1), so that a bifurcation point is a point
of S ∩ T . The classical bifurcation theory by Rabinowitz [14, 30] can be applied to our setting to obtain the
following.

Theorem 1.4. Let g1, g2 satisfy assumption (1.2), let µ∗ > 0 denote a positive Neumann eigenvalue of −∆ in
Ω, and let

ν∗ =
2
√

g′1(1)g′2(1)
µ∗ ·

• If µ∗ has odd multiplicity then there exists a continuum C∗ ⊂ S such that (ν∗, 1, 1) ∈ C∗ and
– either (ν∗∗, 1, 1) ∈ C∗, where ν∗∗ = 2

√
g′1(1)g′2(1)/µ∗∗ and µ∗∗ ̸= µ∗ is another positive Neumann

eigenvalue;
– or C∗ is unbounded; furthermore, in dimension N ≤ 3, C ∩ {(ν, v1, v2) : ν ≥ ν̄} is bounded for every
ν̄ > 0, and C∗ contains a sequence (νn, v1,n, v2,n) such that, as n → +∞,

νn → 0, ∥(v1,n, v2,n)∥C2,α → +∞.

• If µ∗ is simple (with eigenfunction ψ∗) then the set of non-trivial solutions is, near (ν∗, 1, 1), a unique smooth
curve with parametric representation

ν = ν(ε), v = (1, 1) + εv∗ + o(ε),

where ν(0) = ν∗ and v∗ =
(
−ψ∗√g′1(1),ψ∗√g′2(1)

)
.
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Remark 1.5. Sharper asymptotic expansions are provided in Remark 4.6 ahead, in case both gi are more
regular.

Remark 1.6. For generic domains, infinitely many eigenvalues µn are odd, and we have infinitely many bi-
furcation points νn → 0, with associated branches Cn. As a consequence, picking (ν̃n, v(n)) ∈ Cn with both
|ν̃n − νn| → 0 and ∥v(n) − (1, 1)∥ → 0, one can construct families of nontrivial solutions that not only do not
exhibit segregation, but even tend to the trivial solution as ν → 0. As a matter of fact, to avoid this phenomenon
and obtain segregation, it is crucial to select families belonging to a single bifurcation branch (to compare this
theorem with the classical results by Rabinowitz, recall that here the natural bifurcation parameter is 1/ν,
rather than ν itself).

The previous remark shows that one can not expect segregation for a generic family of nontrivial solutions. It
is then natural to ask whether segregation occurs for the bifurcation branches above described, at least for the
unbounded ones. According to Theorem 1.4, in order to find unbounded branches of nontrivial solutions we first
have to find odd eigenvalues of −∆ in Ω, and then to exclude that the corresponding branch goes back to the
set of trivial solutions. Usually, in the bifurcation framework, both conditions can be satisfied when working
with the first eigenvalue of the linearized problem: indeed, on one hand such eigenvalue is simple; on the other
hand, it is usually possible to carry over to the full branch the nodal characterization of the corresponding
eigenfunction. Notice that this is not our case, since the first Neumann eigenvalue is 0 and it does not provide a
bifurcation point, while the first positive eigenvalue µ1 is actually the second one. Another way to exploit these
ideas is to work in dimension N = 1.

Theorem 1.7. Let g1, g2 satisfy assumption (1.2) and N = 1. For any k ∈ N, k ≥ 1 there exists a continuum
Ck of solutions, such that:

• if (ν, v1, v2) ∈ Ck then both vi have exactly k − 1 critical points;

• Ck ∩ T =
{(

2
√

g′
1(1)g′

2(1)

π2k2 , 1, 1
)}

;

• h ̸= k implies Ch ∩ Ck = ∅;
• each Ck contains sequences with ν → 0 and ∥(v1, v2)∥C2,α → +∞;
• each Ck segregates.

The proof of Theorem 1.7 is split in two parts: firstly, we characterize each branch Ck by the number of oscil-
lations of its components, in the spirit of the original application by Rabinowitz to nonlinear Sturm−Liouville
problems [30]; secondly, we prove segregation by a blow-up analysis, exploiting some Liouville-type results for
entire solutions to ODEs systems on R having a finite number of oscillations.

Once segregation is obtained, we have that the segregating branches converge, up to subsequences, to some
limiting profiles. As a consequence, some natural questions arise, about the type of convergence as well as about
the properties of the limiting profiles. Restricting the analysis to the first branch C1, which contains pairs with
monotone components, we can deepen the analysis which leads to segregation. Indeed in this case the emerging
free boundary in the segregation limit consists in exactly one point, and the rate of convergence can be estimated
sharply using ideas introduced in [5], to treat the one-dimensional variational case.

Theorem 1.8. Let g1, g2 satisfy assumption (1.2), N = 1 and let C1 be as in Theorem 1.7. Then, any sequence
{(νn, vn,λn)}n ⊂ C1 such that νn → 0 is uniformly bounded in Lipschitz norm, and it holds

vi,n → Vi in H1(Ω) ∩ Cα(Ω) as νn → 0,

for every α < 1, where (V1, V2) is the minimizer (unique up to reflections) achieving (1.4) with γi = g′i(0) ≥ C−1
g .

Remark 1.9. We expect that most of the results of Theorems 1.7 and 1.8 can be extended to higher dimension,
in the radial setting.
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It is easy to see that the convergence above is optimal: indeed, in case of Lipschitz convergence, both Vi would
be C1, a contradiction with their explicit expression provided in Proposition 3.3. Up to our knowledge, this is
the first paper obtaining optimal bounds for competitions which are not of power-type, even though only in
dimension N = 1 (or in the radial case). The only other paper dealing with generic competitions is [33], where
uniform bounds in the planar case N = 2, not necessarily radial, are obtained.

Let us also point out that along the first branch the problem – which is not variational – inherits a variational
principle in the limit. This is a remarkable fact, since it shows a deep connection between the variational
problem (1.4) and the nonvariational system (1.1). This phenomenon was already observed, in a different
situation, in [13].

Of course, all the results we obtained for system (1.1) can be restated for the original MFG system (1.3),
recalling that

mi = v2
i , ui = −2ν̃ ln vi.

Finally, let us also mention that the true multidimensional case N ≥ 2, as well as the case of 3 or more
populations, are of interest: they will be the object of future studies.

The present paper is structured as follows: in Section 2 we list a few preliminary results; Section 3 is devoted
to the analysis of the variational case, and to the proof of Theorem 1.3, while Section 4 contains the bifurcation
arguments and the proof of Theorem 1.4; the Sturm-type characterization of the nontrivial solutions in dimension
N = 1 is developed in Section 5, and the proof of Theorem 1.7 is completed in Section 6, by showing segregation;
finally, the proof of Theorem 1.8 is contained in Section 7.

Notation. Throughout the paper, i denotes an index between 1 and 2, and j = 3 − i. With a little abuse
of terminology, we say that (v1, v2) solves (1.1) (or even that (ν, v1, v2) does) if there exist λ1,λ2 such that
(v1, v2,λ1,λ2) satisfies (1.1) (for some prescribed ν).

We will denote by (µk)k≥0 the non decreasing sequence of the eigenvalues of −∆ with homogeneous Neumann
boundary conditions, namely µk is such that

{
−∆ψk = µkψk in Ω,

∂nψk = 0 on ∂Ω,
(1.5)

for some eigenvector ψk ∈ C2,α(Ω), which constitute an orthonormal basis of L2(Ω). The first eigenvalue µ0 = 0
is simple and its corresponding eigenfunction is ψ ≡ 1.

Given a function u, u±(x) = max(±u(x), 0) denote its positive and negative parts. Finally, C, C1, C2, . . .
denote (positive) constants we need not to specify.

2. Preliminaries

In this section we collect some preliminary results and some estimates of frequent use.

Lemma 2.1. The pair (v1, v2) is a Nash equilibrium if and only if, up to a change of sign of each component,
it is a (classical) solution of (1.1).

Proof. Considering vj as fixed, we have that vi is an L2-normalized eigenfunction of the Neumann realization
of the operator

H1(Ω) ∋ w 2→ −ν∆w + gi(v2
j )w,

and that λi is the corresponding eigenvalue. But then vi is strictly positive (up to a change of sign) if and only
if it is the first eigenfunction, i.e. it achieves the infimum in Definition 1.1. In particular, the proof of the strict
positivity in Ω is a routine application of the Maximum Principle and Hopf’s Lemma. !
Lemma 2.2. Let (v1, v2) solve (1.1). Then, either it is trivial, or

min
Ω

gi(v2
j ) < λi < max

Ω
gi(v2

j ), i = 1, 2.
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Proof. Integrating the equation for vi we can write
∫

Ω

[
λi − gi(v2

j )
]
vi dx = ν

∫

∂Ω
∂nvi dσ = 0,

and since vi is positive, we deduce that either λi − gi(v2
j ) ≡ 0, i.e. vj is constant, or minΩ gi(v2

j ) < λi <
maxΩ gi(v2

j ).
Now, if both vi and vj are not constant, then the second alternative follows. Let vi be constant: then

its equation implies gi(v2
j ) ≡ λi, so that also vj is constant. Finally, both such constants must be 1 by the

L2-constraint (recall that |Ω| = 1). !

Remark 2.3. The above lemma shows that, for Nash equilibria, having a constant component implies being
the trivial solution (in this sense, the terminology “constant solution” is not ambiguous). In fact, if unique
continuation for (1.1) holds, then any solution such that one component is constant in a (non-empty) open
Ω0 ⊂ Ω must be the trivial one. This is always true, in particular, in dimension N = 1 (see Sect. 5).

Lemma 2.4. Let (v1, v2) solve (1.1). The following identities hold, for every i:

ν

∫

Ω
|∇vi|2 +

∫

Ω
gi(v2

j )v2
i = λi;

ν

∫

Ω

∣∣∣∣
∇vi

vi

∣∣∣∣
2

+ λi =
∫

Ω
gi(v2

j ).

In particular, the multipliers λi satisfy

C−1
g

∫

Ω
v2
1v

2
2 ≤ λi ≤ Cg. (2.1)

Proof. To obtain the two identities it suffices to use integration by parts after multiplying the equation for vi

by vi and 1/vi, respectively. Since
∫

Ω v2
i = 1 and C−1

g s ≤ gi(s) ≤ Cgs, (2.1) follows. !

Corollary 2.5. A sufficient condition for {(νn, v1,n, v2,n)}n to segregate is that, for the corresponding multipli-
ers,

either λ1,n → 0, or λ2,n → 0,

as n → ∞.

3. The variational case

This section is devoted to the proof of Theorem 1.3. Such proof relies on ideas contained in [26], even though in
that paper a different problem is considered (Dirichlet conditions, symmetric interaction, auto-catalytic reaction
terms). For this reason we describe the main ideas here, and refer the reader to [26] for more details.

In the following we assume that N ≤ 3 and

gi(s) = γis, γi > 0.

As we already noticed, the corresponding system has a gradient structure. For easier notation we make a change
of variables, setting

β =
1
ν

, ṽ1 =
√
γ2v1, ṽ2 =

√
γ1v2. (3.1)
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With this notation system (1.1) becomes
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∆ṽ1 + βṽ2
2 ṽ1 = λ1ṽ1

−∆ṽ2 + βṽ2
1 ṽ2 = λ2ṽ2 in Ω∫

Ω ṽ2
1 = γ2,

∫
Ω ṽ2

2 = γ1, ṽ1, ṽ2 > 0
∂nṽ1 = ∂nṽ2 = 0 on ∂Ω

(3.2)

(of course, the multipliers λi here are suitable multiples of those of the original system). Also for (3.2) positive
solutions are Nash equilibria, among which the trivial one is the pair (√γ2,

√
γ1). Solutions to (3.2) are critical

points of the functional

Jβ(ṽ1, ṽ2) =
∫

Ω

[
|∇ṽ1|2 + |∇ṽ2|2 + βṽ2

1 ṽ2
2

]

constrained to the manifold

M̃ =
{

(ṽ1, ṽ2) ∈ H1(Ω) × H1(Ω) :
∫

Ω
ṽ2
1 = γ2,

∫

Ω
ṽ2
2 = γ1

}

(recall that, since N ≤ 3, the exponent p = 4 is Sobolev subcritical and thus Jβ is of class C1).

Lemma 3.1. For every β > 0 the value

cβ := inf̃
M

Jβ is achieved by (ṽ1,β , ṽ2,β) ∈ M̃,

which is a Nash equilibrium for (3.2). Furthermore, if

β ≥ γ1 + γ2

γ1γ2
µ1

(where µ1 is the first positive Neumann eigenvalue of −∆ in Ω) then (ṽ1,β , ṽ2,β) is nontrivial.

Proof. Since Jβ is weakly l.s.c. in H1, and M̃ is weakly closed, the minima (ṽ1,β , ṽ2,β) exist by the direct method.
Moreover, since ∫

Ω

[
|∇ṽi|2 + βṽ2

j ṽ2
i

]
= Jβ(ṽ1, ṽ2) −

∫

Ω
|∇ṽj |2,

we have that such minima correspond to Nash equilibria for the original problem (the converse, of course, is
false). We are left to prove that, for β large, (ṽ1,β , ṽ2,β) ̸= (√γ2,

√
γ1). To do that, we will choose a suitable

competitor in the definition of cβ : let ψ1 be an eigenfunction associated to µ1. Then ψ1 changes sign (indeed it
is orthogonal to the eigenfunction ψ0 = 1, associated to µ0 = 0) and we can find non-zero constants a± such
that (a+ψ+, a−ψ−) ∈ M̃ . Then

cβ < Jβ(a+ψ
+, a−ψ

−) = (γ1 + γ2)µ1

(equality can not hold since (a+ψ+, a−ψ−) can not solve (3.2)) while

Jβ(
√
γ2,

√
γ1) = γ1γ2β. !

Once we have solved the problem for β > 0 fixed, we are ready to show Γ -convergence as β → +∞. Let

J∞(ṽ1, ṽ2) :=

⎧
⎨

⎩

∫

Ω

[
|∇ṽ1|2 + |∇ṽ2|2

]
when

∫

Ω
ṽ2
1 ṽ

2
2 = 0

+∞ otherwise
and c∞ := inf

M̃
J∞.
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Lemma 3.2. As β → +∞,

cβ → c∞ and (up to subs.) ṽi,β → Ṽi in H1(Ω) ∩ C0,α(Ω),

where (Ṽ1, Ṽ2) ∈ M̃ achieves c∞.

Proof. First of all, we notice that, for every (ṽ1, ṽ2) fixed,

β1 ≤ β2 ≤ +∞ =⇒ Jβ1(ṽ1, ṽ2) ≤ Jβ2(ṽ1, ṽ2).

We deduce that cβ is increasing in β and bounded by c∞, thus it converges. If the pair (ṽ1,β , ṽ2,β) achieves cβ ,
β < +∞, then cβ ≤ c∞ implies

both ∥(ṽ1,β , ṽ2,β)∥2
H1 ≤ c∞ + γ1 + γ2, and

∫

Ω
ṽ2
1,β ṽ2

2,β ≤ c∞
β

·

We infer the existence of (Ṽ1, Ṽ2) such that, up to subsequences, ṽi,β → Ṽi, weakly in H1 and strongly in Lp,
p = 2, 4. In particular (Ṽ1, Ṽ2) ∈ M and Ṽ1 · Ṽ2 ≡ 0. We have

c∞ ≥ lim cβ = lim Jβ(ṽ1,β , ṽ2,β) ≥ lim inf
∫

Ω
|∇ṽ1,β |2 + |∇ṽ2,β |2 ≥

∫

Ω
|Ṽ1|2 + |Ṽ2|2 ≥ c∞.

Thus (Ṽ1, Ṽ2) achieves c∞, and the inequalities above are indeed equalities, proving convergence in H1 norm
and hence strong H1 convergence. Furthermore, by a standard Brezis−Kato argument, the H1 bounds along
the sequence imply uniform ones (see [26], Proof of Cor. 1.6, p. 1264 for further details).

The last thing to prove is the boundedness in C0,α (which will imply convergence in C0,α too, by Ascoli’s
Theorem). Notice that (ṽ1,β , ṽ2,β) satisfies (3.2), and that 0 ≤ λi ≤ c∞/γi. As a consequence, boundedness of
the Hölder seminorm can be obtained as in Theorem 1.1 of [25], which provides the same result in the case of
Dirichlet boundary conditions: since the proofs in [25] use blow-up arguments, in order to cover the Neumann
case one just has to replace odd extensions (from the half-space to RN ) with even ones. More precisely, this
replacement has to be performed in Lemmas 3.4–3.6 of [25]. !

End of the proof of Theorem 1.3. The proof of such theorem easily descends from Lemmas 3.1 and 3.2, when
going back to the original unknowns (3.1). In particular, notice that (Ṽ1, Ṽ2) ∈ M̃ achieves c∞ if and only if
(Ṽ1/

√
γ2, Ṽ2/

√
γ1) ∈ M achieves (1.4). !

To conclude this section, we collect some properties of the minimizers associated to c∞.

Proposition 3.3. Let (Ṽ1, Ṽ2) ∈ M̃ achieve c∞. Then Ṽ1 · Ṽ2 ≡ 0 and there exist parameters Λi such that

−∆(Ṽ1 − Ṽ2) = Λ1Ṽ1 − Λ2Ṽ2

(in particular, Ṽ1 − Ṽ2 ∈ C2,α(Ω)).
Furthermore, in dimension N = 1, let Ω = (0, 1). Then, the unique minimizer is (up to the reflection

x ↔ 1 − x)

Ṽ1(x) =
√

2γ2

x0
cos
(

π

2x0
x

)
· χ[0,x0](x),

Ṽ2(x) =
√

2γ1

1 − x0
cos
(

π

2(1 − x0)
(1 − x)

)
· χ[x0,1](x),

and x0 =
3
√
γ2

3
√
γ1 + 3

√
γ2

.
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Proof. Let

J∗(w) =
∫

Ω
|∇w|2, M∗ =

{
w ∈ H1(Ω) :

∫

Ω
(w+)2 = γ2,

∫

Ω
(w−)2 = γ1

}
.

Then, for component-wise positive pairs, J∞(ṽ1, ṽ2)|M̃ = J∗(ṽ1 − ṽ2)|M∗ , and the first part of the proposition
follows by the Lagrange multipliers rule (and by standard elliptic regularity).

Turning to the monodimensional case, we have that (Ṽ1, Ṽ2) ∈ H1(0, 1) × H1(0, 1) satisfies

−(Ṽ1 − Ṽ2)′′ = Λ1Ṽ1 − Λ2Ṽ2, Ṽ1 · Ṽ2 ≡ 0, in (0, 1) (3.3)

with Neumann boundary conditions. By elementary considerations we deduce the existence of (at most count-
able) disjoint open intervals Ii,n, with i = 1, 2 and n ∈ Ni ⊂ N, such that

Ṽi(x) =
∑

n∈Ni

ai,n cos
(√

Λi(x − xi,n)
)
· χIi,n(x),

where

Ii,n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
0, π

2
√

Λi

)
if xi,n = 0

(
xi,n − π

2
√

Λi
, xi,n − π

2
√

Λi

)
if xi,n ∈

(
π

2
√

Λi
, 1 − π

2
√

Λi

)

(
1 − π

2
√

Λi
, 1
)

if xi,n = 1

,
∑

n

π

2
|Ii,n|a2

i,n = γj .

Now, also the pair defined by

W̃i =
2γj

π|Ii,1|a2
i,1

Ṽi|Ii,1

achieves c∞; as a consequence, W̃1 − W̃2 solves (3.3), while W̃1 − W̃2 ≡ 0 outside I1,1 ∪ I2,1. We deduce that
both Ni are singletons, and finally that

c∞ = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 1

0
(w′

1)
2 + (w′

2)
2 :

w1(x) =
√

2γ2
x1

cos
(

π
2x1

x
)
· χ[0,x1](x)

w2(x) =
√

2γ1
1−x2

cos
(

π
2(1−x2)

(1 − x)
)
· χ[x2,1](x)

0 < x1 ≤ x2 < 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

whose unique solution can be computed by elementary tools. !

4. Bifurcation results

In this section we apply tools from global bifurcation theory in order to prove Theorem 1.4. The main
references are the celebrated papers by Rabinowitz [30] and Crandall and Rabinowitz [14], which deal respectively
with global bifurcation results for odd eigenvalues, and local ones for simple eigenvalues; for some details about
the asymptotic expansions in the latter case, we refer also to [2], Chapter 5. For the reader’s convenience, we
recall here the two statements we will apply.

Theorem 4.1 ([30], Thm. 1.3). Let E be a Banach space, and let G : R×E → E, continuous and compact, be
such that

G(β, v) = βLv + H(β, v),

with L linear and compact and H(β, v) = o(∥v∥) as v → 0, uniformly on bounded β intervals.
If β∗ is a characteristic value (i.e. 1/β∗ is an eigenvalue) of L, having odd multiplicity, then

S := {(β, v) : v = G(β, v), v ̸= 0}

possesses a maximal subcontinuum C such that (β∗, 0) ∈ C, and C either is unbounded in R×E, or (β∗∗, 0) ∈ C,
where β∗∗ ̸= β∗ is another characteristic value of L.
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Theorem 4.2 ([14], Thms. 1.37, 1.18). Under the assumptions of Theorem 4.1, assume furthermore that G is
of class C2 and that ∂2

β,vG(β, 0) = L.
If β∗ is a simple characteristic value of L and v∗ ̸= 0 is such that

Ker(I − β∗L) = span{v∗}, v∗ ̸∈ R(I − β∗L),

then S is a continuous curve, locally near (β∗, 0), parameterized as

ε 2→ (β, v) = (β∗ + ϕ(ε), εv∗ + εψ(ε)),

where ϕ(0) = 0, ψ(0) = 0. If G is more regular, then also the above curve is, and one can write higher order
expansions (see Rem. 4.6).

Among different possible choices, we will apply the above results in the ambient space

E :=
{
v = (v1, v2) ∈ C2,α(Ω, R2) : ∂nvi = 0 on ∂Ω

}
.

Lemma 4.3. The map G : R × E → E defined as

u = G(β, v) ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∆u1 + βg1(v2
2)u1 = λ1u1

−∆u2 + βg2(v2
1)u2 = λ2u2 in Ω∫

Ω u2
1 dx =

∫
Ω u2

2 dx = 1, u1, u2 > 0
∂nu1 = ∂nu2 = 0 on ∂Ω,

for suitable λi, is (well-defined and) of class C2. Moreover it holds

∂vG(β, 1, 1) = βL,

where

z = Lw ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∆z1 = −2g′1(1)
[
w2 −

∫
Ω w2

]

−∆z2 = −2g′2(1)
[
w1 −

∫
Ω w1

]
in Ω∫

Ω z1 dx =
∫

Ω z2 dx = 0
∂nz1 = ∂nz2 = 0 on ∂Ω.

(4.1)

Proof. The proof is based on standard smooth dependence of simple eigenvalues (and corresponding eigenfunc-
tions) with respect to the potentials, see for instance the book ([17], Sect. 2.5). In turn, such smooth dependence
can be shown using the Implicit Function Theorem. For the reader’s convenience, we sketch some detail in the
following. Let us consider the map F : R × E × E × R2 → C0,α(Ω, R2) × R2,

F (β, v, u,λ) :=

⎛

⎜⎝

−∆u1 + βg1(v2
2)u1 − λ1u1

−∆u2 + βg2(v2
1)u2 − λ2u2∫

Ω u2
1 dx − 1∫

Ω u2
2 dx − 1

⎞

⎟⎠ . (4.2)

Let β, v be fixed. Then we can uniquely find positive eigenfunctions ui = ui(β, vj) and simple eigenvalues
λi = λi(β, vj), such that F = 0. As a consequence, it is possible to apply the Implicit Function Theorem in
order to show that

F (β, v, u,λ) = 0 ⇐⇒ (u,λ) = G̃(β, v),
with G̃ ∈ C2 (recall that each gi is of class C2). More precisely, the invertibility of ∂(u,λ)F at any of the points
above mentioned can be obtained by its injectivity (by Fredholm’s Alternative).

Since G is the projection of G̃ on E, the first part of the lemma follows. Observing that

G̃(β, 1, 1) = (1, 1,βg(1),βg(1)),

also the second part can be proved, by direct calculations. !
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In order to apply the abstract results, we need to find the eigenvalues of the operator L defined in the previous
lemma. In the following, for easier notation, we write

αi = g′i(1) > 0 (by assumption (1.2)). (4.3)

Lemma 4.4. Let L be defined as in (4.1). Then

β∗Lv∗ = v∗, v∗ ̸= 0, ⇐⇒ β∗ =
µ∗

2
√
α1α2

, v∗ = (−
√
α1ψ

∗,
√
α2ψ

∗) ,

where µ∗ is a positive Neumann eigenvalue of −∆ in Ω and ψ∗ a corresponding eigenfunction.

Proof. Recall that β∗Lv∗ = v∗ if and only if, for both i,
⎧
⎪⎨

⎪⎩

−∆v∗i = −2β∗αiv∗j in Ω∫
Ω v∗i = 0
∂nv∗i = 0 on ∂Ω.

Setting
ψ± =

√
α2v1 ±

√
α1v2,

we obtain that the above system is equivalent to
⎧
⎪⎨

⎪⎩

−∆ψ± = ∓2β∗√α1α2ψ± in Ω∫
Ω ψ± = 0
∂nψ± = 0 on ∂Ω.

Hence, if β∗ ̸= 0, we infer that β∗ is a characteristic value of L if and only if ψ+ = 0 (by the Maximum Principle)
and 2β∗√α1α2 is an eigenvalue of −∆ with zero Neumann boundary conditions. Moreover, the characteristic
vector space associated to β∗ is generated by

(−√
α1ψ

∗,
√
α2ψ

∗) . (4.4)

Finally, note that β∗ = 0 is not a characteristic value of L, as −∆ψ = 0 and
∫

Ω ψ = 0 imply that ψ ≡ 0. !

The last ingredient we need is some control on the behavior of nontrivial solutions.

Lemma 4.5. There exists a constant C > 0 such that

1. S ⊂
{
(β, v) :

∫
Ω |∇v|2 ≤ Cβ

}
;

2. S ⊂ {(β, v) : β ≥ C}.

Proof. Recalling Lemma 2.4 we have that, in the present setting,
∫

Ω
|∇vi|2 ≤ λi ≤ β

∫

Ω
gi(v2

j ) ≤ Cgβ,

and the first inclusion follows. Concerning the second one, let by contradiction (βn, vn)n ⊂ S be such that
βn → 0. Then, by the first inclusion, vn → (1, 1) in H1 and, by elliptic regularity and a Brezis−Kato argument,
also in E. We deduce that β∗ = 0 corresponds to a bifurcation point, and therefore ∂v(·−G(β, ·)) = I −βL can
not be invertible at β = 0, a contradiction. !

We are ready to prove our main bifurcation results.
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Proof of Theorem 1.4. First of all, let µ∗ be a positive Neumann eigenvalue, with odd multiplicity, and

β∗ =
µ∗

2
√
α1α2

·

Since G is compact, by Lemma 4.4 we are in a position to apply Theorem 4.1, obtaining a nontrivial branch
which satisfies one of the alternatives there. Recalling that β = 1/ν, we readily have the existence of a nontrivial
branch C in the (ν, v)-space, satisfying all the conditions in (1.1), with the possible exception of the positivity
ones. In view of Lemma 4.5 we have that

C ⊂
{

(ν, v) :
∫

Ω
|∇v|2 ≤ C1

ν
, 0 < ν ≤ C2

}
.

Note that, in principle, C ∩ {ν ≥ ε > 0} may be unbounded in C2,α. Recalling that, in dimension N ≤ 3, the
nolinearities in (1.1) are Sobolev subcritical, by standard elliptic regularity we have that H1 bounds imply C2,α

ones, so that unboundedness can happen only as ν → 0. The last thing that is left to prove, to complete the
first part of the theorem, is that the branch we obtained consists of componentwise positive pairs. This easily
follows since, by the Maximum Principle, if the pairs (v1,n, v2,n) solve (1.1), with ν = νn > 0 and λi = λi,n, and

vi,n → v̄i, νi,n → ν̄i, λi,n → λ̄i,

then either ν̄ = 0 or ν̄ > 0 and v̄1, v̄2 are strictly positive in Ω.
Coming to the second part, let µ∗ be a simple positive Neumann eigenvalue. By Lemma 4.4 we have that

∂2
β,vG(β, 0) = L. In order to apply Theorem 4.2, we only have to check the compatibility condition, which in

our case writes
(−

√
α1ψ

∗,
√
α2ψ

∗) ̸∈ R(I − β∗L)

(here ψ∗ is an eigenfunction associated to µ∗ = 2
√
α1α2β∗). By contradiction, let us assume that

(−√
α1ψ∗,

√
α2ψ∗) = (I − β∗L)w, i.e.

⎧
⎪⎨

⎪⎩

−∆wi = −2β∗αiwj + (−1)iµ∗ψ∗√αi in Ω∫
Ω wi = 0
∂nwi = 0 on ∂Ω.

Reasoning as in the proof of Lemma 4.4, it is easy to prove that w = 0, and hence ψ∗ = 0, a contradiction. !
Remark 4.6. If we suppose that g1 and g2 are smooth, then the branch S bifurcating from (β∗, 1, 1) is a
smooth curve (at least in a neighborhood of that point), and its parametrization can be made more precise. In
order to simplify the following computations, we set

(β, v) ∈ S ⇔ 0 = F̂ (β, v,λ) := F (β, v, v,βλ)

for some λ ∈ R2, where F is as in (4.2). Then, F̂ : R × E × R2 → C0,α(Ω, R2) × R2 is smooth and satisfies

F̂v(β, v,λ)[w, ℓ] =
(
−∆wi + β(2g′i(v

2
j )vivjwj + gi(v2

j )wi − ℓivi − λiwi), 2
∫

Ω
viwi

)
, (4.5)

F̂v,β(β, v,λ)[w, ℓ] = (2g′i(v
2
j )vivjwj + gi(v2

j )wi − ℓivi − λiwi, 0), (4.6)

F̂v,v(β, v,λ)[w, ℓ; h, p] =
(
β[4g′′i (v2

j )viv
2
j + 2g′i(v

2
j )vi]wjhj

+2βg′i(v
2
j )vjwjhi + 2βg′i(v

2
j )vjwihj − βℓihi − βpiwi, 2

∫

Ω
hiwi

)
, (4.7)

F̂v,v,v(β, v,λ)[w, ℓ; h, p; z, q] =
(
β[8g′′′i viv

3
j + 8g′′i vivj + 4g′′i vivj ]wjhjzj + β[4g′′i v2

j + 2βg′i]wjhjzi

+ β[4g′′i v2
j + 2g′i]wjhizj + β[4g′′i v2

j + 2g′i]wihjzj , 0). (4.8)
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If (β∗, 1, 1, g1(1), g2(1)) is a simple bifurcation point, then Ker(F̂v) is spanned by the vector V ∗ =
(−√

α1ψ∗,
√
α2ψ∗, 0, 0), and R(F̂v) = {(Ψ, ·) = 0}, where Ψ = (−√

α2ψ∗,
√
α1ψ∗, 0, 0). Therefore, arguing

as in ([2] Chap. 5), if we set

A := (Ψ, F̂v,β[V ∗]), B :=
1
2
(Ψ, F̂v,v[V ∗, V ∗]), C := − 1

6A
(Ψ, F̂v,v,v, [V ∗]3)

where all the derivatives of F̂ are evaluated at (β∗, 1, 1, g1(1), g2(1)), the following expansions hold true

β = β∗ − B

A
ε+ o(ε), (if B ̸= 0),

and
v = (1, 1) + A

B (β − β∗) · (√α1ψ∗,−√
α2ψ∗) + o(β − β∗) if B ̸= 0,

v = (1, 1) ±
(

β−β∗

C

)1/2
· (√α1ψ∗,−√

α2ψ∗) + O(β − β∗) if B = 0, C ̸= 0.

Note that in the latter case, if C > 0 (respectively, C < 0) the bifurcating branch emanates on the right
(respectively, left) of β∗. In our case, the coefficients A, B, C have the explicit form

A = −4g′1g
′
2

∫
(ψ∗)2 < 0,

B = β∗[2g′′2

√
(g′1)3 − 2g′′1

√
(g′2)3 + 3g′1g

′
2(
√

g′1 −
√

g′2)]
∫

(ψ∗)3,

C =
β∗

−6A

⎡

⎣12g′1g
′
2

√
g′1g

′
2 +

∑

i=1,2

(−8(g′j)
2g′′′i + 12g′′i (g′j

√
g′ig

′
j − (g′j)

2))

⎤

⎦
∫

(ψ∗)4,

where all the derivatives of gi are evaluated at s = 1.
We observe that if N = 1, the bifurcation is always critical, namely B = 0, as every eigenfunction ψ∗ satisfies∫

(ψ∗)3 = 0. In the variational case, where g′′i (1) = g′′′i (1) = 0, the bifurcating branch emanates on the right,
namely (β, v) ∈ S is such that β ≥ β∗ (and therefore ν ≤ ν∗), at least in a neighborhood of β∗.

5. Classification of solutions in dimension N = 1

In this section we restrict our attention to the case Ω = (0, 1) ⊂ R. Consequently, in the following (v1, v2)
denotes a solution of the problem (i, j = 1, 2, j ̸= i)

⎧
⎪⎨

⎪⎩

−νv′′i + gi(v2
j )vi = λivi in (0, 1)∫ 1

0 v2
i dx = 1, vi > 0 in [0, 1]

v′i(0) = v′i(1) = 0.

(5.1)

In particular, each vi is C2([0, 1]), and it has at least an inflection point in (0, 1) (just apply Rolle’s theorem to
v′i). Furthermore, v′′i (x) has the same sign of gi(v2

j (x)) − λi, for every x.

Lemma 5.1. vi and vj have opposite concavity at 0 and 1. More precisely:

• gi(v2
j (0)) > λi ⇐⇒ gj(v2

i (0)) < λj;
• gi(v2

j (1)) > λi ⇐⇒ gj(v2
i (1)) < λj.

Proof. Let us assume, for instance, gi(v2
j (0)) > λi and, by contradiction, gj(v2

i (0)) ≥ λj (the other cases are
analogous).
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Then v′′i (0) > 0, and there exists ξ ∈ (0, 1] such that

v′′i > 0 in [0, ξ), v′′i (ξ) = 0 (and hence gi(v2
j (ξ)) = λi). (5.2)

Notice that ξ < 1, otherwise vi would have no inflection point in (0, 1). By convexity and monotonicity we
deduce that

x ∈ (0, ξ] =⇒ vi(x) > vi(0) =⇒ gj(v2
i (x)) − λj > gj(v2

i (0)) − λj ≥ 0.

But then also vj is (convex and) increasing in [0, ξ], so that

gi(v2
j (ξ)) > gi(v2

j (0)) > λi,

in contradiction with (5.2). !

Next we exploit standard uniqueness results for ODEs in order to detect a number of situations in which a
considered solution is the trivial one.

Lemma 5.2. Let one of the following conditions hold:

1. there exists ξ ∈ [0, 1] such that

g1(v2
2(ξ)) = λ1, g2(v2

1(ξ)) = λ2, v′1(ξ) = v′2(ξ) = 0;

2. there exist 0 ≤ x1 < x2 ≤ 1 such that, for some i, vi is constant in I = [x1, x2];
3. for some i, gi(v2

j (0)) = λi;
4. for some i, gi(v2

j (1)) = λi.

Then (v1, v2) is the trivial solution.

Proof. Under the assumptions of case 1, uniqueness for the Cauchy problem
{
−νv′′i + gi(v2

j )vi = λivi in (0, 1)

vi(ξ) =
√

g−1
j (λj), v′i(ξ) = 0, i = 1, 2, j ̸= i

implies that both v1 and v2 are constant, and we can conclude exploiting the normalization in L2(0, 1).
If 2 holds, the equation for vi implies gi(v2

j (ξ)) = λi on I. But then also vj is constant in I, forcing gj(v2
i (ξ)) =

λj . Since both v′i and v′j are identically zero in I, case 1 applies.
Recalling the Neumann boundary conditions, also cases 3 and 4 can be reduced to 1: indeed, by Lemma 5.1,

gi(v2
j ) − λi vanishes at one endpoint if and only if gj(v2

i ) − λj does. !

The following key lemma asserts that between two consecutive maxima of each vi there exists an interval of
concavity of vj .

Lemma 5.3. Let 0 ≤ x1 < x2 ≤ 1 be such that, for some i,

v′i(x1) = v′i(x2) = 0, v′′i (x1) ≤ 0, v′′i (x2) ≤ 0.

Then either (v1, v2) is the trivial solution, or there exists ξ ∈ (x1, x2) such that

gj(v2
i (ξ)) < λj .

Analogously, if v′i vanishes and v′′i is nonnegative at x1, x2 then gj(v2
i (ξ)) > λj for some ξ ∈ (x1, x2).
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Proof. We have to show that, in case gj(v2
i (x)) ≥ λj for every x ∈ [x1, x2], then (v1, v2) is the trivial solution.

Under such assumption we have that
{

v′′j ≥ 0 in (x1, x2)
gi(v2

j ) ≤ λi at {x1, x2},
so that gi(v2

j ) ≤ λi in the whole [x1, x2].

Thus v′′i ≤ 0 in [x1, x2]. Since v′i = 0 at x1 and x2, we obtain that vi is constant in [x1, x2], and Lemma 5.2
(case 2) applies, concluding the proof. !

The above result provides a sharp control on the critical and inflection points of each vi, as we show in the
next sequence of lemmas.

Lemma 5.4. If (v1, v2) is non trivial then both components have only isolated critical points.

Proof. Let by contradiction ξ ∈ [0, 1] be an accumulation point for the set of critical points of vi. Of course

v′i(ξ) = 0.

We recall that, for any pair of critical points x1 < x2, if both v′′i (x1) > 0 and v′′i (x2) > 0 then there exists a
third critical point y1 ∈ (x1, x2) such that v′′i (y1) ≤ 0 (and the same holds for opposite inequalities). Using this
fact, it is not difficult to construct two sequences xn → ξ, yn → ξ such that

v′i(xn) = v′i(yn) = 0, v′′i (xn) ≥ 0, v′′i (yn) ≤ 0.

Applying repeatedly Lemma 5.3 we deduce the existence of sequences ξn → ξ, ξ
n
→ ξ such that gj(v2

i (ξ
n
)) <

λj < gj(v2
i (ξn)). This promptly yields

gj(v2
i (ξ)) = λj .

Now back to the sequence (xn), applying Rolle’s Theorem we first deduce the existence of a sequence zn → ξ
such that 0 = νv′′i (zn) = gi(v2

j (zn)) − λi, implying

gi(v2
j (ξ)) = λi,

and then of a sequence z′n → ξ with
0 = v′j(z

′
n) → v′j(ξ).

Summing up, we are in a position to apply Lemma 5.2 (case 1), obtaining that (v1, v2) is trivial, a contradic-
tion. !
Lemma 5.5. Let x0 ∈ [0, 1] be a point of local minimum for vi. Then either (v1, v2) is the trivial solution, or

gj(v2
i (x0)) < λj , gi(v2

j (x0)) > λi

(in particular, it is non degenerate). An analogous statement (with reverse inequalities) holds for local maxima.

Proof. If x0 = 0 or x0 = 1, then the statement is a consequence of Lemma 5.1. Otherwise, since x0 is an isolated
critical point, it is a strict minimum, and the following points are well defined:

x1 = inf{x ∈ [0, x0) : v′i < 0 in (x, x0)}, x2 = sup{x ∈ (x0, 1] : v′i > 0 in (x0, x)}.

Then x1, x2 satisfy the assumptions of Lemma 5.3, providing the existence of ξ ∈ (x1, x2) such that

gj(v2
i (x0)) = min

[x1,x2]
gj(v2

i ) ≤ gj(v2
i (ξ)) < λj ,

which is the first inequality required.
On the other hand, since x0 is an isolated strict minimum we have that gi(v2

j (x0)) ≥ λi in a neighborhood
of x0. Since the last inequality implies that vj is strictly concave in a neighborhood of x0, we deduce also the
second (strict) inequality. !
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Lemma 5.6. If (v1, v2) is not the trivial solution, then any critical point of each component is non degenerate.

Proof. Let us assume by contradiction that ξ is a degenerate critical point of vi. By Lemmas 5.4 and 5.5 we
have that ξ ∈ (0, 1) is an isolate inflection point. Therefore

v′i(ξ) = 0, gi(v2
j (ξ)) = λi,

and ξ is a local extremum for vj . But then Lemma 5.5 applies again, implying that either gi(v2
j (ξ)) > λi or

gi(v2
j (ξ)) < λi, a contradiction. !

Lemma 5.7. Let (v1, v2) be non trivial, and x1 < x2 be such that, for some i,

v′i(x1) = v′i(x2) = 0, v′i > 0 in (x1, x2).

Then both vi and vj have exactly one inflection point in [x1, x2]. An analogous statement holds for the opposite
monotonicity.

Proof. By Lemma 5.5 we immediately deduce the existence of ξ ∈ (x1, x2) such that

v′′j < 0 in [x1, ξ), v′′j > 0 in (ξ, x2], (5.3)

and vj has exactly one inflection point in [x1, x2].
On the other hand, the inflection points of vi are the solutions of

gj(v2
i (x)) = λj , x ∈ [x1, x2]. (5.4)

Since gj(v2
i (x1)) > λj and gj(v2

i (x2)) < λj (and again by Lem. 5.5), equation (5.4) has an odd number of
solutions. On the other hand, taking into account (5.3), equation (5.4) has at most one solution in [x1, ξ] and
one in [ξ, x2], respectively. !

Collecting the previous results we have the following characterization of nontrivial solutions.

Proposition 5.8. If (v1, v2) is not the trivial solution, then there exists k ∈ N such that both v1 and v2 have
exactly k critical points, all non degenerate, and k + 1 isolated inflection points in (0, 1).

Proof. Let ni denote the number of critical points of vi in (0, 1) (they are well defined by Lem. 5.4), and mi

the number of inflection points. Recalling that also x = 0 and x = 1 are local extrema for both components, by
Lemma 5.7 we have that ni + 1 = mi = mj = nj + 1, and the claim follows. !

We are ready to conclude the proof of the main result of this section.

Proof of Theorem 1.7 (First part). First of all let C ⊂ S be a continuum of nontrivial solutions, and

C ∋ (νn, v1,n, v2,n) → (ν̄, v̄1, v̄2), as n → +∞.

Using Proposition 5.8, it is not difficult to prove that, if the number of interior critical points of each vi,n is
constant, and equal to k, then

• either ν̄ = 0;
• or ν̄ > 0 and (v̄1, v̄2) is the trivial solution;
• or ν̄ > 0 and each v̄i has exactly k interior critical points.
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Now recall that, being N = 1 and Ω = (0, 1), the Neumann eigenvalues and eigenfunction of −∂2
xx have the

form
µk = (kπ)2, ψk = A cos(kπ x) (A ̸= 0), k ∈ N,

and every eigenvalue µk is simple. Applying Theorem 1.4 we have the existence, for every k ≥ 1, of continua Ck ⊂
S which consist, locally near (µk, 1, 1), of pairs having exactly k−1 critical points (by the local parameterization,
because also ψk has exactly k−1 critical points). The initial argument tells that each Ck is characterized by the
number of critical points of its components, so that two of them cannot meet, and each of them is unbounded
in the sense of Theorem 1.4 (since we are in dimension N = 1 ≤ 3).

We are only left to prove segregation: this is the object of the next section. !

6. Segregation in dimension N = 1

As we already mentioned (see Rem. 1.6), we can not expect that all arbitrary families of nontrivial solutions
segregate. Nonetheless, restricting our attention to Ck as in Theorem 1.7, for some fixed k, we can obtain more
precise results.

In the following, we focus on (νn, v1,n, v2,n) ⊂ Ck, a sequence of solutions of (1.1), with ν = νn > 0 and
λi = λi,n, whose components have exactly k− 1 critical points in (0, 1), all non-degenerate. For easier notation,
we will drop the subscript n throughout the proofs, except when some confusion may arise; in particular,
properties of

v1, v2,λ1,λ2 as ν → 0,

are those of the considered sequence, when νn → 0 as n → +∞.
As a first step, we want to rule out the possibility that the branch “collapses” to the trivial solution as ν → 0.

Proposition 6.1. Suppose that
v1,n → 1, v2,n → 1, νn → ν̄,

where the convergence is uniform in [0, 1]. Then, λi,n → gi(1) and ν̄ > 0.

Proof. The proof will be carried out in three steps, and considering the system solved by ui := vi − 1, which is
⎧
⎪⎪⎨

⎪⎪⎩

−νu′′
1 = (λ1 − G1(1 + u2))(1 + u1), in (0, 1)

−νu′′
2 = (λ2 − G2(1 + u1))(1 + u2),

u′
1 = u′

2 = 0 at {0, 1},∫ 1
0 (1 + u1)2 =

∫ 1
0 (1 + u2)2 = 1,

(6.1)

where we have set Gi(t) := gi(t2) for all t ≥ 0. Note that ui → 0 uniformly in [0, 1].
Without loss of generality, we set (x̄ = x̄n)

M := max
i=1,2, x∈[0,1]

|ui(x)| = u1(x̄). (6.2)

Step 1. |λi − Gi(1)|/M → 0 as n → ∞. Indeed, note first that
∫ 1
0 (1 + ui)2 = 1 implies that

∫ 1

0
ui = −1

2

∫ 1

0
u2

i . (6.3)

Moreover, a Taylor expansion in the equations of (6.1) gives

−νu′′
i =

(
λi − Gi(1) − G′

i(1)uj −
G′′

i (ξ)
2

u2
j

)
(1 + ui),
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where ξ is a bounded function in (0, 1) (uniformly with respect to n). By integrating the equation and using
the boundary conditions we obtain

(λi − Gi(1))
∫ 1

0
(1 + ui) = G′

i(1)
∫ 1

0
uj + G′

i(1)
∫ 1

0
ui uj +

∫ 1

0

G′′
i (ξ)
2

u2
j(1 + ui).

Hence, using (6.3),

|λi − Gi(1)|
∫ 1

0
(1 + ui) ≤

G′
i(1)
2

∫ 1

0
u2

j + G′
i(1)

∫ 1

0
|ui| |uj| +

∫ 1

0

G′′
i (ξ)
2

u2
j(1 + ui),

which leads to the assertion, as
∫ 1
0 (1 + ui) → 1, |ui|, |uj | ≤ M in [0, 1] and M → 0. The first conclusion of the

proposition also follows, as Gi(1) = gi(1).

Step 2. Assume by contradiction that ν̄ = 0. We proceed with a blow-up analysis, setting

ũi(x) =
1
M

ui

(√
ν x + x̄

)
∀x ∈

(
− x̄√

ν
,
1 − x̄√
ν

)
=: Ω̃n.

We have that |ũi| ≤ 1 in Ω̃n and ũ1(0) = 1. Moreover, ũi solves

−ũ′′
i =

(
λi − Gi(1)

M
− (G′

i(1) + o(1))ũj

)
(1 + ui) in Ω̃n.

Note that (up to subsequences)

Ω̃n → Ω̃∞ :=

⎧
⎪⎨

⎪⎩

[X̄, +∞) if − x̄√
ν
→ X̄ < +∞

(−∞, X̄] if 1−x̄√
ν

→ X̄ < +∞
R otherwise.

Using the equation (twice) and the uniform boundedness of ũi on Ω̃n, we argue that ũ′′′
i is bounded on compact

subsets of [0,∞), uniformly as n → ∞. Hence, ũi → Ũi ∈ C2(Ω̃∞) locally in C2,α where Ũi has at most k
intervals of monotonicity and solve, in Ω̃∞,

{
Ũ ′′

1 = G′
1(1)Ũ2

Ũ ′′
2 = G′

2(1)Ũ1,
(6.4)

in view of the conclusion of Step 1. Note that, in case Ω̃∞ ̸= R, we can use the Neumann conditions in order to
extend Ũi by even reflection around X̄ , in such a way that Ũ1, Ũ2 solve (6.4) in the whole R.

Step 3. To reach a contradiction we are going to show that system (6.4) does not admit nontrivial bounded
solutions having a finite number of oscillations (recall that Ũ1(0) = 1). We can reason as in Section 4, setting

W± =
√
α2Ũ1 ±

√
α1Ũ2,

and obtaining a decoupled system: {
W ′′

+ =
√
α1α2 W+,

W ′′
− = −√

α1α2 W−.

Therefore, since W+ is bounded it must be constant and identically zero. We deduce that Ũ1, Ũ2 are proportional,
so that

Ũ ′′
1 = −√

α1α2 Ũ1,

which forces Ũ1 ≡ 0 (since it has at most 2k monotonicity intervals in R). !
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Next we turn to the case in which ∥vi∥L∞ is uniformly bounded along the sequence, for both i. To treat such
case we need the following Liouville-type result.

Lemma 6.2. Let Vi ∈ C2(R), 0 ≤ Vi ≤ M , Λi ≥ 0 be such that

−V ′′
i = (Λi − gi(V 2

j ))Vi in R.

If both Vi have at most a finite number of monotonicity intervals, then one of the following holds:

1. either V1 ≡ 0, Λ2 = 0,
2. or V2 ≡ 0, Λ1 = 0,
3. or V1 ≡ V2 ≡ 0,
4. or gi(V 2

j ) ≡ Λi, i = 1, 2.

Proof. First of all, we can reason as in Lemma 5.2 to show that, if some Vi is constant in an interval, then
(V1, V2) is constant in R, and as a consequence we always fall in one of the above cases. Secondly, assume that
some Λi = 0: then Vi is constant, and again the lemma follows by elementary considerations.

We are left to deal with the case Λ1,Λ2 > 0 and V1, V2 non constant and strictly positive. Since both Vi have
a finite number of monotonicity intervals, the equations imply that they also have a finite number of inflection
points (and they have at least one, since they are bounded in R). We deduce the existence of a ∈ R such that,
say,

V ′
1 , V ′

2 , V ′′
1 , V ′′

2 do not change sign in (a, +∞).

In particular, the limits Vi(+∞) exist and V ′
i (+∞) = V ′′

i (+∞) = 0.
Assume that V ′

i ≥ 0 for x > a, so that V ′′
i ≤ 0 in the same interval. Then Vi(+∞) > 0, and

gi(V 2
j (x)) ≤ Λi in (a, +∞), gi(V 2

j (+∞)) = Λi −
V ′′

i (+∞)
Vi(+∞)

= Λi,

so that also V ′
j is non negative.

Now we can lower a in such a way that, say,

V ′′
1 (a) = 0.

If V ′
1 ≤ 0 for x > a, we deduce that also V ′

2 ≤ 0 in the same interval. But then Λ1 − g1(V 2
2 ) is increasing, and

V ′′
1 ≤ 0 for x > a, a contradiction since V1 is decreasing and bounded.
On the other hand, let V ′

1 ≥ 0 for x > a. Then V1(+∞) > 0, and

g1(V 2
2 (a)) = Λ1 = g1(V 2

2 (+∞)) − V ′′
1 (+∞)

V1(+∞)
= g1(V 2

2 (+∞)),

forcing V2 to be constant in [a, +∞), again a contradiction. !

Using the previous result, we can show that uniform L∞ bounds imply segregation.

Lemma 6.3. Assume that ∥vi,n∥∞ ≤ C for both i. Then, up to subsequences,

λi,n → 0, i = 1, 2,

as νn → 0.
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Proof. Let us assume by contradiction that, for instance, λ1 ̸→ 0. We choose a sequence (x1,n)n ⊂ [0, 1] such
that (omitting the subscript n)

v1(x1) := max
[0,1]

v1 ≥ 1, and put ṽi(x) := vi

(
x1 + x

√
ν
)
.

Then, ṽi solves
−ṽ′′i (x) =

(
λi − gi(ṽ2

j (x))
)
ṽi(x) in (−x1ν

−1/2, (1 − x1)ν−1/2),

∥ṽi∥∞ ≤ C, ṽi ≥ 0. The equations and (2.1) guarantee local C3 boundedness of ṽi, thus, up to subsequences,
ṽi → Vi locally in C2. Moreover, λi → Λi ≥ 0. We argue that, possibly up to an even extension, each Vi has at
most 2k intervals of monotonicity and

−V ′′
i = (Λi − gi(V 2

j ))Vi in R.

Then, Lemma 6.2 applies, but since V1(0) ≥ 1 and Λ1 > 0, we deduce that

gi(v2
j (x1)) − λi → 0 for both i, (6.5)

and also λ2 ̸→ 0 (as g2(v2
1(x1)) ≥ g2(1) > 0). We can implement the same argument using

v1(x2) := min
[0,1]

v1 ≤ 1, and w̃i(x) := wi

(
x2 + x

√
ν
)
.

Passing to the limit (we keep the same sequence λi → Λi > 0 as before), and recalling Lemma 5.5, we have that
W2(0) > 0 and then

gi(v2
j (x2)) − λi → 0 for both i. (6.6)

Combining (6.5) and (6.6), we deduce that v1 → 1 uniformly on [0, 1].
Now, since also Λ2 > 0, we can exchange the role of v1 and v2, obtaining that v2 → 1 too, in contradiction

with Proposition 6.1. !

We are left to deal with the case of max[0,1](v1,n + v2,n) → +∞, namely when v1 or v2 are not bounded
uniformly in n. To treat this situation we need to exploit the finite number of maxima of each component along
Ck, as enlighten in the following lemma (for convenience we write explicitely the dependence on n).

Lemma 6.4. Let max[0,1](v1,n + v2,n) → +∞. There exist and index i, constants C, δ > 0 (independent of n),
and a sequence of intervals In ⊂ [0, 1] such that, up to subsequences:

|In| = δ

max
In

vi,n = max
∂In

vi,n → +∞

max
In

vj,n ≤ C.

Proof. Let

Zn := {z ∈ [0, 1] : z is a local maximum for vi,n, for some i, and vi,n(z) → +∞} .

Since we are considering elements of Ck, we have that

Zn = {zl,n}l=1,...,h, z1,n < . . . < zh,n, h ≤ k + 1

(recall that, by Lemma 5.5, if z is a local maximum for vi then gi(v2
j (z)) ≤ λi). Up to subsequences, we can

assume that each zl,n is a maximum for some vi,n, with i independent of n; furthermore we can assume that,
for each l, zl,n → zl ∈ [0, 1]. We distinguish three cases.
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Case 1. For some l, zl < zl+1. We choose i so that zl,n is a local maximum for vi,n and

2δ = zl+1 − zl, In = [zl,n, zl,n + δ].

By construction, neither vi,n nor vj,n can have interior maxima which go to infinity; therefore the required
properties for maxIn vi,n follow from the fact that vi,n(zl,n) → +∞, while those for maxIn vj,n descend again
by Lemma 5.5.

Case 2. z1 = . . . = zh ̸= 1. One can reason as above, by choosing i so that zh,n is a local maximum for vi,n and

2δ = 1 − zh, In = [zh,n, zh,n + δ].

Case 3. z1 = . . . = zh ̸= 0. We can choose i so that z1,n is a local maximum for vi,n and

2δ = z1, In = [z1,n − δ, z1,n]. !

The last tool we need is the following standard comparison lemma.

Lemma 6.5 ([12], Lem. 4.4). Suppose that u ∈ C2(a, b) ∩ C([a, b]) satisfies

−u′′(x) ≤ −Mu(x), 0 ≤ u(x) ≤ A, in (a, b)

for some A, M > 0. Then, for every 0 < δ < (b − a)/2,

u(x) ≤ 2A e−δ
√

M in [a + δ, b − δ].

Proof. By comparison with the solution of −w′′ = −Mw in (a, b), w(a) = w(b) = A. !

Remark 6.6. By even reflection, we have that if u is as in Lemma 6.5 and furthermore u′(a) = 0, then the
estimate holds on any [a, b′] ⊂ [a, b), choosing δ = b − b′.

We are in a position to prove that segregation occurs also when some vi is unbounded, thus completing the
proof of Theorem 1.7.

Lemma 6.7. Let max[0,1](v1,n + v2,n) → +∞. Then (up to subs.) λi,n → 0, for some i (and the corresponding
vi,n is not uniformly bounded).

Proof. Let i, In =: [zn, zn + δ] be as in Lemma 6.4. We can assume, w.l.o.g.,

max
In

vi,n = vi,n(zn) → +∞.

We define the blow-up sequences

ṽi,n(x) :=
1

vi,n(zn)
vi,n(zn + x

√
νn)

ṽj,n(x) := vj,n(zn + x
√
νn).

Then, ṽi,n = ṽi solves
−ṽ′′i = (λi − gi(ṽ2

j ))ṽi

in (0, δν−1/2), 0 ≤ ṽi ≤ 1 and ṽi(0) = 1. Also λi − gi(ṽ2
j ) is uniformly bounded in [0, δν−1/2], by Lemmas 2.4

and 6.4. Since both ṽi and ṽ′′i are uniformly bounded on compact sets, we deduce that also ṽ′i is bounded, and
there exists V ∈ C1([0, +∞)) such that vi → V in C1([a, b]), for every [a, b] ⊂ [0, +∞).
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We claim that, if V > 0 in [a′, b′] ⊂ (0, +∞), then ṽj → 0 uniformly in [a′, b′]. Indeed, let (a, b) ⊃ [a′, b′] be
such that V ≥ η > 0 in (a, b). We deduce that, in such interval,

−ṽ′′j = (λj − gj(v2
i (z)ṽ2

i ))ṽj ≤
(
λj − C−1

g v2
i (z)

1
2
V 2

i

)
ṽj ≤ −Cv2

i (z)ṽj ,

where C > 0 depends on η and Cg. Lemma 6.5 applies, yielding

0 ≤ ṽj ≤ C1e−C2vi(z) → 0 in [a′, b′],

as C2 > 0 and vi(z) → +∞.
Now, let λi → Λ ≥ 0. We can pass to the limit in the equation of ṽi, deducing that

⎧
⎪⎨

⎪⎩

V ∈ C1([0, +∞)), 0 ≤ V ≤ 1,

V > 0 =⇒ −V ′′ = ΛV

V (0) = 1.

Let [0, a), a ≤ +∞, be the maximal interval containing 0 in which V > 0. If a < +∞, by convexity we obtain
that V (a) = 0 and V ′(a) < 0, a contradiction since V (x) must be non negative also for x > a. Therefore
a = +∞ and V is a bounded, concave function on R+, i.e. V ≡ 1 and Λ = 0. !

End of the proof of Theorem 1.7. Taking into account Corollary 2.5, the last part of the theorem follows from
Lemmas 6.3 and 6.7. !

7. Further properties of the first branch

To conclude, we complete the analysis started in Section 6 by restricting our attention to the first bifurcation
branch C1. Since k = 1, such branch consists of monotone solutions, and for concreteness we assume that the
sequence we are considering is such that v1,n is decreasing and v2,n is increasing (and νn → 0 as n → ∞).
As before, we will omit the subscript n, when no confusion arises. We denote by ξ1,n, ξ2,n ∈ (0, 1) the unique
inflection points of the considered pair:

−v′1,n(ξ1,n) = max
[0,1]

|v′1,n(x)|, v′2,n(ξ2,n) = max
[0,1]

|v′2,n(x)|.

A number of (rather elementary) a priori estimates can be deduced from the monotonicity of the components.
We collect them in the following three lemmas.

Lemma 7.1. Let v′1 < 0, v′2 > 0 on (0, 1). The following inequalities hold

v2
1(x) ≤ 1

x
∀x > 0, v2

2(x) ≤ 1
1 − x

∀x < 1, (7.1)

ξ1[v2
1(0) + v1(0)v1(ξ1) + v2

1(ξ1)] ≤ 3, (7.2)
(1 − ξ2)[v2

2(1) + v2(1)v2(ξ2) + v2
2(ξ2)] ≤ 3, (7.3)

|v′1(x)|(x − x0) ≤ x−1/2
0 ∀x0 ≥ ξ1, x ∈ [x0, 1], (7.4)

|v′2(x)|(x0 − x) ≤ (1 − x0)−1/2 ∀x0 ≤ ξ2, x ∈ [0, x0]. (7.5)

Proof. Estimates (7.1) follow by the L2 constraint:

1 ≥
∫ x

0
v2
1 ≥ x v2

1(x), 1 ≥
∫ 1

x
v2
2 ≥ (1 − x)v2

2(x).
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For the other estimates, it is crucial to observe that λ1 − g1(v2
2(ξ1)) = 0, as v′′1 (ξ1) = 0 (ξ1 is a point in (0, 1)

where v′1 achieves its minimum). The function λ1 − g1(v2
2) is decreasing, so by the equation for v1 in (1.1) we

deduce that v1 is concave on [0, ξ1] and convex on [ξ1, 1].
Concavity implies that

v1(x) ≥ v1(0) + ξ−1
1 (v1(ξ1) − v1(0))x

in [0, ξ1]. By invoking the L2 constraint of v1 and integrating,

1 ≥
∫ ξ1

0
v2
1(x)dx ≥ ξ1

3
[v2

1(0) + v1(0)v1(ξ1) + v2
1(ξ1)],

and (7.2) follows. Similarly, concavity of v2 on [ξ2, 1] produces (7.3).
By convexity of v1 on [x0, 1], and (7.1),

−v′1(x)(x − x0) ≤ −v′1(x)(x − x0) + v1(x) ≤ v1(x0) ≤ x−1/2
0 ,

for all x ∈ [x0, 1], and we have (7.4). Similarly, (7.5) follows by concavity of v2 on [0, x0]. !

Lemma 7.2. Suppose that ∥v1,n∥∞ ≤ C1. Then,

v2
1,n(x) ≥ 1

2
in [0, a1], (7.6)

where a1 = a1(C1). Similarly, if ∥v2,n∥∞ ≤ C2,

v2
2,n(x) ≥ 1

2
in [a2, 1], (7.7)

where a2 = a2(C2).

Proof. In view of the L2 constraint on v1 and its monotonicity we have that

1 =
∫ x

0
v2
1 +

∫ 1

x
v2
1 ≤ x v2

1(0) + (1 − x)v2
1(x)

for all x ∈ [0, 1]. Therefore, if a1 = (2C2
1 − 1)−1,

v2
1(a1) ≥

1 − a1v2
1(0)

1 − a1
≥ 1 − a1C2

1

1 − a1
=

1
2
·

The assertion for v1 follows. The estimate (7.7) for v2 is analogous. !

Lemma 7.3. For both i it holds
|v2

i,n(0) − v2
i,n(1)| ≤ 2

λi,n

ν
, (7.8)

ν∥v′i,n∥2
∞ ≤ λi,n∥vi,n∥2

∞. (7.9)

Proof. We will prove the assertion when i = 1, the argument is analogous when i = 2. Multiplying the equation
for v1 by v1 and integrating on [0, x] yields

−νv′1(x)v1(x) + ν

∫ x

0
(v′1)

2 =
∫ x

0
(λ1 − g1)v2

1 ,

thus
−ν

2
(v2

1)
′(x) = −νv′1(x)v1(x) ≤ λ1.
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By integrating again on [0, 1] we obtain (7.8).
On the other hand, testing the equation for v1 by v′1 and integrating on [0, ξ1] we obtain

ν

2
v′1(ξ1)

2 =
λ1

2
v1(0)2 − λ1

2
v1(ξ1)2 +

∫ ξ1

0
g1v1v

′
1,

and (7.9) follows since v′1 ≤ 0 in [0, 1]. !

After the above preliminary estimates, the first part of our analysis is devoted to show that C1 enjoys uniform
L∞ bounds as ν → 0. To this aim we need two preliminary lemmas.

Lemma 7.4. Suppose that, for some i, ∥vi,n∥∞ ≤ C and λj,n → 0. Then, there exists C′ > 0 that does not
depend on n such that

λi,n ≤ C′νn.

Proof. We will detail the proof in the case i = 1. Note that

g2(v2
1(x)) − λ2 ≥ g2(1/2) − λ2 ≥ C−1

g /2 − λ2 ≥ C−1
g /4 in [0, a1]

by the monotonicity of g2, (7.6), (1.2) and λ2 → 0. Hence,

−v′′2 = −g2(v2
1) − λ2

ν
v2 ≤

C−1
g

4ν
v2

in (0, a1), and Lemma 6.5 (or better Rem. 6.6) allows to conclude that

v2(x) ≤ 2v2(a1)e−C/
√

ν in [0, a1/2], (7.10)

for some C = C(a1, C−1
g ) > 0.

Recalling Definition 1.1, we choose w(x) :=
√

4
a1

cos
(

π
a1

x
)

for x ∈ [0, a1/2] and w ≡ 0 in [a1/2, 1] to conclude
that, for some C′ > 0,

λ1 ≤
∫ a1/2

0
ν(w′)2 + g1(v2

2)w
2 ≤ νπ

a1
+ g1

(
4v2

2(a1)e−2C/
√

ν
)
≤ νπ

a1
+

4Cge−2C/
√

ν

1 − a1
≤ C′ν,

by (1.2), (7.10) and (7.1). !

Lemma 7.5. Suppose that, for some i, ∥vi,n∥∞ → +∞. Then,

ν∥v′i,n∥2
∞ ≤ C(λj,n + ν) (7.11)

for some C > 0 that does not depend on n.

Proof. We will detail the proof in the case i = 1, thus assuming

v1(0) → +∞.

Note that |v′2| ≤ c2 in [0, 1/2] for some c2 > 0. Indeed, if v2 is bounded then Lemmas 6.7 and 7.4 imply
that λ2 ≤ C′

2ν for some C′
2 > 0, and by (7.9) it follows that ∥v′2∥2

∞ ≤ C′
2∥v2∥2

∞. On the other hand, if v2(1)
is unbounded, then ξ2 → 1 (see (7.3)), and then we have the required bound by (7.5) (choose, for example,
x0 = 3/4).

We now integrate the equation for v2 on [ξ1, 1/2], use (1.2) and
∫

v2
2 = 1 to obtain

C−1
g

∫ 1/2

ξ1

v2
1v2 ≤

∫ 1/2

ξ1

g2(v2
1)v2 = λ2

∫ 1/2

ξ1

v2 + ν(v′2(1/2) − v′2(ξ1)) ≤ λ2 + 2c2ν. (7.12)
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Let T 1 be the function

T 1(x) = ν(v′1(x))2 + [λ1 − g1(v2
2(x))]v2

1(x) + 2
∫ x

1/2
g′1(v

2
2(σ))v′2(σ)v2(σ)v2

1(σ)dσ.

T 1 is easily verified to be constant in [0, 1]. Since λ1 − g1(v2
2(x)) is decreasing and λ1 − g1(v2

2(ξ1)) = 0, λ1 −
g1(v2

2(1/2)) ≤ 0, as ξ1 ≤ 1/2 (ξ1 → 0 because v1(0) → +∞). Hence,

ν(v′1(ξ1))
2 + 2

∫ ξ1

1/2
g′1(v

2
2)v

′
2v2v

2
1dσ = T 1(ξ1) = T 1(1/2) = ν(v′1(1/2))2 + [λ1 − g1(v2

2(1/2))]v2
1(1/2)

and

ν∥v′1∥2
∞ = ν(v′1(ξ1))

2 ≤ ν(v′1(1/2))2 + 2
∫ 1/2

ξ1

g′1(v
2
2)v′2v

2
1v2dσ ≤ C(ν + λ2).

The last bound comes from |v′2| ≤ c2, |v2| ≤ 1 + c2/2, (7.12) and |v′1| ≤ c1 in [1/2, 1] (use (7.4): v1 is unbounded
and ξ1 → 0). !

As already mentioned, the previous results allow to obtain uniform bounds for the sequence we are considering.

Lemma 7.6. There exists C∞ > 0, that does not depend on n, such that

∥vi,n∥∞ ≤ C∞, i = 1, 2.

Proof. Without loss of generality, we can assume by contradiction that

v1(0) → ∞, and λ2 ≤ λ1.

Indeed, if both v1(0) and v2(1) are unbounded, such condition can be guaranteed by interchanging the role of v1

and v2. Otherwise, suppose that, say, v1(0) → ∞ and v2 is bounded: by Lemmas 6.7 and 7.4 there exists C > 0
such that λ2 ≤ Cν, while λ1/ν → ∞ (otherwise v1 would be bounded in view of (7.8)). Therefore, λ2 ≤ λ1

whenever ν is sufficiently small and we infer, by Lemma 7.5, the existence of C > 0 such that

∥v′1∥∞ ≤ C

√
λ1

ν
+ 1. (7.13)

We proceed as in the proof of Lemma 6.7, by defining the blow-up sequences

ṽ1(x) :=
1

v1(0)
v1

(
x

√
ν

λ1

)
, ṽ2(x) := v2

(
x

√
ν

λ1

)
,

Note that 0 ≤ ṽ1 ≤ 1 in [0,λ1/2
1 ν−1/2], and that ṽ1(0) = 1. Since, in such interval,

|ṽ′1(x)| =
1

v1(0)

√
ν

λ1

∣∣∣∣v
′
1

(
x

√
ν

λ1

)∣∣∣∣ ≤
C

v1(0)
→ 0

(we used (7.13)), we deduce that ṽ1 → V ≡ 1, uniformly in every [a, b] ⊂ [0, +∞). As a consequence, in any
such interval,

−ṽ′′2 =
(
λ2

λ1
− g2(v1(0)ṽ2

1)
λ1

)
ṽ2 ≤

(
1 −

C−1
g

2λ1
v2
1(0)

)
ṽ2 ≤ −C2 v2

1(0)
λ1

ṽ2,

with C > 0, and Remark 6.6 applies, yielding

ṽ2(x) ≤ ṽ2(b + 1)e−Cv1(0)/
√

λ1 ≤ 2e−Cv1(0)/
√

λ1 for x ∈ [0, b],
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for ν sufficiently small (recall (7.1)). Then

g1(ṽ2
2)

λ1
≤ C1e−C2v1(0)/

√
λ1

λ1
≤ C3

v2
1(0)

→ 0.

We can plug such estimate in the equation for ṽ1

−ṽ′′1 =
(

1 − g1(ṽ2
2)

λ1

)
ṽ1,

in order to pass to the limit and obtain

−V ′′ = V in (0, +∞),

in contradiction with the fact that V ≡ 1. !

Uniform L∞ bounds readily provide Lipschitz ones, thus yielding convergence to some limiting profiles.

Proposition 7.7. There exists C′
∞ > 0, not depending on n, such that

∥v′i,n∥∞ ≤ C′
∞ i = 1, 2.

As a consequence, up to subsequences,

vi,n → Vi in C0,α([0, 1]), with
∫ 1

0
V 2

1 =
∫ 1

0
V 2

2 = 1 and V1 · V2 ≡ 0 in [0, 1], (7.14)

and
λi,n

νn
→ ℓi > 0, (7.15)

as n → +∞.

Proof. Lemma 7.6 guarantees the uniform L∞ bound for v1, v2, hence λ1,λ2 → 0 by Lemma 6.3. As a conse-
quence we can apply Lemma 7.4, for both i, obtaining that there exists C′

i > 0 that does not depend on ν such
that

λi ≤ C′
iν.

This implies that both ν∥v′i∥2
∞ ≤ νC′

i∥v1∥2
∞, by (7.9), and, up to subsequences, both vi → Vi in C0.α and

λi/ν → ℓi ≥ 0. Since uniform convergence implies L2-one, the required properties for the limiting profiles Vi

follow (recall Cor. 2.5), and the only thing that remains to be proved is that both ℓi > 0.
Assume by contradiction that, for instance, ℓ1 = 0. Then we can use equation (7.8) to infer that V1 ≡ 1, in

contradiction with (7.14). !

Remark 7.8. Once we know that vi,n → Vi uniformly, the strong H1 convergence follows by standard argu-
ments. Indeed, by integrating the equations we have

0 ≤ 1
ν

∫ 1

0
gi(v2

j,n)vi,n dx =
λi,n

ν

∫ 1

0
vi,n dx ≤ C;

therefore, testing with vi,n − Vi we infer
∫ 1

0
v′i,n(v′i,n − V ′

i ) dx ≤ max
[0,1]

|vi,n − Vi| ·
1
ν

∫ 1

0
(λi,n + gi(v2

j,n))vi,n dx → 0.

As a consequence, weak H1 convergence implies convergence in norm, and finally strong H1 one.
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The remaining part of the section will be devoted to fully characterize the limits Vi, ℓi. To this aim, we need a
sharper analysis of the convergence of vi,n.

Lemma 7.9. Suppose that, as n → +∞, v1,n(yn) ≥ cν1/2−ϵ
n for some yn ∈ [0, 1), c > 0, 0 < ϵ ≤ 1/2. Then

there exists c1 > 0 such that

v2,n(x) ≤ 2v2,n(yn)e−c1(yn−x)ν−ϵ
n in [0, yn]. (7.16)

Proof. By the monotonicity of v1, (1.2) and (7.15),

g2(v2
1(x)) − λ2 ≥ C−1

g v2
1(x) − λ2 ≥

C−1
g c2

2
ν1−2ϵ in [0, y]

as ν → 0. Hence,

−v′′2 = −g2(v2
1) − λ2

ν
v2 ≤ −

C−1
g c2

2
ν−2ϵ v2

in (0, y), and we can conclude using Remark 6.6. !

Remark 7.10. A direct consequence of the previous lemma, which will be used thoroughly in the sequel, is
that if lim infν→0 v1(y) > 0 for some y ∈ [0, 1), then there exists c2 > 0, y < b < 1 (that does not depend on ν)
such that

v2(x) ≤ C∞e−
c2√

ν in [0, b]. (7.17)

Indeed, the assumption guarantees that v1(y) ≥ 2c > 0 for some c > 0, so, by Proposition 7.7, v1(y′) ≥ c for
some y′ > y. Hence,

v2(x) ≤ C∞e−c1(y
′−x)ν−1/2

in [0, y′],

that implies (7.17) if we choose y < b < y′, and c2 = c2(c1, b, y, y′) > 0.
Note that v1(0) ≥ 1 for all ν (otherwise the mass constraint

∫ 1
0 v2

1dx = 1 would be violated), thus

v2(0) ≤ C∞e−c2ν−1/2
= o(νa) for all a > 0. (7.18)

for some c2 > 0.
Analogous conclusions hold if v1 and v2 are interchanged.

Lemma 7.11. The limits Vi, ℓi satisfy, in [0, 1],

V1(x) =
2√
π

4
√
ℓ1 cos

(√
ℓ1x
)
· χ[

0, π
2
√

ℓ1

](x), (7.19)

V2(x) =
2√
π

4
√
ℓ2 cos

(√
ℓ2 (x − 1)

)
· χ[

1− π
2
√

ℓ2
,1

](x). (7.20)

Moreover, as n → +∞,
ξ1,n → π

2
√
ℓ1

, ξ2,n → 1 − π

2
√
ℓ2
· (7.21)

Proof. Let x1 > 0 be such that [0, x1) = {x : V1(x) > 0} (V1 is identically zero in [x1, 1]). If y < x1, v1(y) is
bounded away from zero, uniformly with respect to ν, hence v2(x) ≤ C∞e−

c2√
ν in [0, y] by (7.17). Therefore,

g1(v2
2) = o(ν) uniformly in [0, y], that is

λ1 − g1(v2
2)

ν
= ℓ1 + o(1)
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uniformly on compact subsets of [0, x1). Hence, we might pass to the limit (weakly) into the equation for v1: let
ϕ be a smooth test function, with support laying in [0, x1). The equation reads

∫ x1

0
v′1ϕ

′dx =
∫ x1

0

λ1 − g1(v2
2(x))

ν
v1ϕdx,

and passing to the limit (Prop. 7.7 ensures weak convergence in H1((0, 1)) of vi to Vi),

−V ′′
1 = ℓ1V1 in (0, x1),

V ′
1 (0) = 0 and V1(x1) = 0. Thus, being V1 positive, it has to be of the form A cos

(√
ℓ1x
)

in (0, x1), for some
A > 0. This forces x1 = π/(2

√
ℓ1). Moreover,

∫ 1
0 V 2

1 = 1, since by uniform convergence the L2-constraint passes
to the limit, and A must satisfy A = 2√

π
4
√
ℓ1. The characterization of V2 is analogous.

As for the second assertion, we argue that v1(ξ1) → 0. If not, v2(ξ1) ≤ C∞e−
c2√

ν = o(ν1/2) by (7.17), that
is not compatible with g1(v2

2(ξ1)) = λ1 ≥ c1ν. Hence, lim ξ1 ≥ x1. Suppose that lim ξ1 > x1; note that v1 is
concave on (0, ξ1), so v1(x) ≥ v1(0) + (v1(ξ1) − v1(0))x/ξ1 in [0, ξ1]. We infer

lim v1(x1) ≥ v1(0)
(

1 − lim
x1

ξ1

)
> 0,

which contradicts v1(x1) → V1(x1) = 0. Then, ξ1 → x1 = π/(2
√
ℓ1). !

The last part of our analysis focuses on the “interface” between v1 and v2, namely we are going to consider
the point xm = xm,n ∈ (0, 1) such that

mn = v1(xm,n) = v2(xm,n).

We follow ideas introduced in [5] to treat the one-dimensional variational case. Note that by strict monotonicity
of vi,n, xm,n ∈ (0, 1) is well-defined, and

mn → 0, xm,n → x0 ∈ (0, 1),

in view of (7.14) and the fact that v1,n and v2,n are bounded away from zero in neighborhoods of x = 0 and
x = 1 respectively (see Lem. 7.2).

In what follows, we will write
gi(s) = γis + hi(s), for all s ≥ 0,

where γi = g′i(0) > 0, hi(0) = 0, h′
i(0) = 0.

Remark 7.12. The functions hi have to be considered as “lower order terms” in the vanishing viscosity limit,
and we will use their Taylor expansions around s = 0, namely

hi(v2
j (x)) = ai(x)v4

j (x), h′
i(v

2
j ) = bi(x)v2

j (x),

where |ai(x)|, |bi(x)| ≤ C for some universal constant C > 0 (depending on g′′).

The “joint energy” is going to be crucial in our analysis:

T (x) :=
1
γ1

[
ν(v′1(x))2 + [λ1 − h1(v2

2(x))]v2
1(x) + 2

∫ x

xm

h′
1(v

2
2(σ))v′2(σ)v2(σ)v2

1(σ)dσ
]

+
1
γ2

[
ν(v′2(x))2 + [λ2 − h2(v2

1(x))]v2
2(x) − 2

∫ xm

x
h′

2(v
2
1(σ))v′1(σ)v1(σ)v2

2(σ)dσ
]

− v2
1(x)v2

2(x). (7.22)

Of course, along any pair (v1,n, v2,n), Tn(x) = T (x) is constant (indeed T ′
n(x) ≡ 0).
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Lemma 7.13. It holds
λ1,n

γ1
v2
1,n(0) + o(νn) = Tn =

λ2,n

γ2
v2
2,n(1) + o(νn), (7.23)

as n → +∞.

Proof. Note firstly that
∣∣∣∣
∫ x

xm

h′
i(v

2
j )v′jvjv

2
i dσ

∣∣∣∣ ≤
∫ 1

0
|biv

′
j |v3

j v2
i dσ ≤ C

∫ 1

0
v3

j v2
i ≤ C∥vivj∥∞

∫ 1

0
v2

j vi

= CCg∥vivj∥∞
∫ 1

0
gi(v2

j )vi = C′∥vivj∥∞
∫ 1

0
(νv′′i + λivi) = o(ν), (7.24)

by Remark 7.12 and uniform convergence of vivj to 0. Note also that v2
2(0) = o(ν) by (7.18).

Therefore, being v1 bounded by C∞,

T (0) =
λ1

γ1
v2
1(0) − v2

1(0)
γ1

h1(v2
2(0)) +

2
γ1

∫ 0

xm

h′
1(v

2
2)v′2v2v

2
1dσ

+
λ2 − h2(v2

1(0))
γ2

v2
2(0) − 2

γ2

∫ xm

0
h′

2(v
2
1)v′1v1v

2
2dσ − v2

1(0)v2
2(0) =

λ1

γ1
v2
1(0) + o(ν).

Similarly,

T (1) =
λ2

γ2
v2
2(1) + o(ν). !

Lemma 7.14. It holds true that
lim sup
n→+∞

m4
n

νn
< +∞.

Proof. Arguing by contradiction,
m4

ν
→ ∞,

possibly along a subsequence. Let ṽi(x) := 1
mvi

(
xm + x

√
ν

m

)
. Then, ṽi solves

−ṽ′′i =

(
λi

m2
− γiṽ

2
j −

hi(m2ṽ2
j )

m2

)
ṽi, in Iν =

(
−m2

ν
xm, (1 − xm)

m2

ν

)
·

Note that Iν tends to the whole real line as ν → 0 (xm is bounded away from x = 0 and x = 1, and m2ν−1 → ∞),
ṽi(0) = 1 and

|ṽi(y) − ṽi(0)| ≤ |y|∥v′i∥∞
√
ν

m2
→ 0, for all y ∈ [a, b] ⊂ Iν .

Thus, ṽi converges uniformly on compact subsets of Iν , as ∥v′i∥∞ is bounded by C′
∞. Moreover, λim−2 → 0

(by (7.15)) and hi(m2ṽ2
j )m−2 → 0 uniformly on compact subsets of Iν (see Rem. (7.12)). Hence,

ṽi → 1, ṽ′i → 0 locally uniformly. (7.25)

We then have

∑

i=1,2

1
γi

[
(ṽ′i(0))2 +

(
λi

m2
−

hi(m2ṽ2
j (0))

m2

)
ṽ2

i (0)

]
− ṽ2

1(0)ṽ2
2(0) =

T (xm)
m4

=
λ1

γ1m4
v2
1(0) + o(ν/m4) ≥ c1ν

γ1m4
v2
1(0) + o(ν/m4) ≥ 0 (7.26)
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by (7.23) and (7.15) when ν is close enough to zero. On the other hand, the left hand side of (7.26) goes to −1
as ν → 0 by (7.25), a contradiction. !

Lemma 7.15. As n → +∞, there exists L > 0 such that, up to a subsequence,

m4
n

νn
→ L. (7.27)

Moreover,
lim inf |v′i,n(xm,n)| > 0. (7.28)

Proof. Let us assume by contradiction that
m4

ν
→ 0.

Let ṽi(x) := 1
mvi (xm + m x). Then, ṽi solves

−ṽ′′i =
m4

ν

(
λi

m2
− γiṽ

2
j −

hi(m2ṽ2
j )

m2

)
ṽi, in Iν =

(
−xm

m
,
1 − xm

m

)
·

Note that Iν tends to the whole real line as ν → 0, ṽi(0) = 1 and ∥ṽ′i∥∞ = ∥v′i∥∞ ≤ C′
∞, so ṽi converges

uniformly on compact subsets of Iν . Moreover, λim−2 → 0 and hi(m2ṽ2
j )m−2 → 0 uniformly on compact

subsets of Iν (as in the proof of the Lem. 7.14). Hence, ṽi → Wi locally in C2(R), and W ′′
i = 0. Since Wi is

positive we have
Wi ≡ 1 in R, i = 1, 2. (7.29)

Therefore,

∑

i=1,2

1
γi

[
(ṽ′i(0))2 +

m4

ν

(
λi

m2
−

hi(m2ṽ2
j (0))

m2

)
ṽ2

i (0)

]
− m4

ν
ṽ2
1(0)ṽ2

2(0) =

T (xm)
ν

=
λ1

γ1ν
v2
1(0) + o(1) ≥ c1

γ1
v2
1(0) + o(1) > 0 (7.30)

by (7.23) and (7.15) when ν → 0. However, the left hand side of (7.26) goes to zero as ν → 0 by (7.29), that is
not possible. Hence, L > 0.

To prove (7.28) we proceed as before, setting ṽi(x) := 1
mvi (xm + m x). We have that ṽi → Wi locally in

C2(R), and (W1, W2) solves {
W ′′

1 = Lγ1W 2
2 W1,

W ′′
2 = Lγ2W 2

1 W2.

in R. W1 and W2 are also positive and monotone, so W ′
i (0) ̸= 0. We conclude by observing that |v′i(xm)| =

|ṽ′i(0)| → |W ′
i (0)| > 0. !

Lemma 7.16. As n → +∞, it holds true that

ξ1,n ≤ xm,n ≤ ξ2,n,

and
ξ1,n → x0, ξ2,n → x0. (7.31)
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Proof. Since ξ1 is the inflection point of v1 we have

C−1
g v2

2(ξ1) ≤ g1(v2
2(ξ1)) = λ1 ≤ C′

1ν,

also by invoking (1.2) and (7.15). Hence, v2(ξ1) ≤
√

(CgC′
1)ν, but v2(xm) = m ∼ 4

√
Lν by (7.27), so v2(ξ1) ≤

v2(xm) for ν sufficiently small. Monotonicity of v2 implies that ξ1 ≤ xm, while xm ≤ ξ2 is obtained by an
analogous argument at the inflection point ξ2 of v2.

Suppose now that ξ2 − ξ1 = 4η and η is uniformly bounded away from zero as ν → 0. Assume, without
loss of generality, that xm ∈ [ξ1, ξ1 + 2η] (on the other hand, if xm ∈ [ξ1 + 2η, ξ2] we interchange the roles
of v1 and v2). Note that ξ2 is the inflection point of v2, so v2 is convex on (0, ξ2), which provides v2(x) ≥
v2(xm) + v′2(xm)(x − xm) for all x ∈ (0, ξ2). Therefore,

v2(ξ1 + 3η) ≥ v2(xm) + v′2(xm)(ξ1 + 3η − xm) ≥ c(ξ1 + 3η − xm) ≥ cη > 0,

for some positive c in view of (7.28). Now we reason as in Remark 7.10 (in particular we apply (7.17) with v1

and v2 interchanged) to get
v1(ξ1 + 3η) ≤ C∞e−

c2√
ν = o(ν1/2),

but C−1
g v2

1(ξ2) ≥ g2(v2
1(ξ2)) = λ2 ≥ c2ν (again by (1.2) and (7.15)), so v1(ξ2) ≥ v1(ξ1 + 3η) as ν → 0. Being v1

decreasing, ξ2 ≤ ξ1 + 3η = ξ2 − η, which is impossible. Then, 0 ≤ ξ2 − ξ1 → 0 follows, and the second assertion
is proved as xm → x0. !

Proof of Theorem 1.8. In view of Propositions 3.3, 7.7 and Remark 7.8, the theorem will follow once we show
that the following equalities hold:

ℓ2
ℓ1

=
(
γ2

γ1

)2/3

and x0 =
3
√
γ2

3
√
γ1 + 3

√
γ2

·

To this aim, we put together all the asymptotic information (as ν → 0) we obtained so far. Firstly, πv2
1(0) ∼ 4

√
ℓ1

and πv2
2(1) ∼ 4

√
ℓ2 by (7.19) and (7.20). Hence, if we divide (7.23) by ν we obtain

ℓ1
√
ℓ1

γ1
=
ℓ2
√
ℓ2

γ2
, (7.32)

which is the first stated equality. Then, x0 = π
2
√

ℓ1
by (7.21) and (7.31). Moreover,

π

2
√
ℓ1

+
π

2
√
ℓ2

= 1.

By plugging (7.32) in the last equality we conclude. !
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[21] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 (2006) 619–625.
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[32] N. Soave, H. Tavares, S. Terracini and A. Zilio, Hölder bounds and regularity of emerging free boundaries for strongly competing

Schrödinger equations with nontrivial grouping. Nonlinear Anal. 138 (2016) 388–427.
[33] J. Wei and T. Weth, Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21

(2008) 305–317.

http://www.college-de-france.fr

	Introduction
	Preliminaries
	The variational case
	Bifurcation results
	Classification of solutions in dimension N=1
	Segregation in dimension N=1
	Further properties of the first branch
	References

