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A NUMERICAL METHOD FOR MEAN FIELD GAMES ON NETWORKS
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Abstract. We propose a numerical method for stationary Mean Field Games defined on a network.
In this framework a correct approximation of the transition conditions at the vertices plays a crucial
role. We prove existence, uniqueness and convergence of the scheme and we also propose a least squares
method for the solution of the discrete system. Numerical experiments are carried out.
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1. Introduction

The Mean Field Game (MFG in short) theory has been introduced in [17, 19] to describe the limit behavior
of differential games when the number of agents becomes very large. Models based on this theory can be used
to investigate crowd dynamics, consensus formation and various economical and social problems (as growth
theory, environmental policy and formation of volatility in financial markets) in which the strategy of the single
agent determines a collective behavior of the population (see [2, 12, 16]).

From a mathematical point of view, MFG theory leads to the study of a coupled system of two differential
equations: a Hamilton−Jacobi−Bellman equation and a Fokker−Planck equation, describing respectively the
optimal behavior of each single agent and the evolution of the whole population. Let us also stress that the MFG
structure of a system requires that the Fokker−Planck equation coincides with the adjoint of the linearization
of the Hamilton−Jacobi−Bellman one. There is a rapidly increasing literature concerning both the theoretical
aspects and the applications of MFG (see the review paper [14]).

A crucial point to extend the theory of MFG systems to networks is to find the appropriate transition
conditions at the vertices in order to obtain a well posed mathematical problem, coherent with the applications.
In [7], it was considered a MFG system with quadratic Hamiltonian which, by an appropriate change of variable,
can be transformed into a linear system of differential equations coupled only via the initial datum. A general
class of stationary MFG systems on networks is considered in [8], where it is proved existence and uniqueness
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of classical solutions to the problem

⎧⎪⎨
⎪⎩
−ν∂2u + H(x, ∂u) + λ = V [m], x ∈ Γ

ν∂2m + ∂(m Hp(x, ∂u)) = 0, x ∈ Γ∫
Γ

m(x)dx = 1,
∫

Γ
u(x)dx = 0.

(1.1)

Here the network Γ = (V , E) is a finite collection of points V := {vi}i∈I in R
n, connected by continuous, non

self-intersecting arcs of E := {ej}j∈J . Moreover, ν = {νj}j∈J are strictly positive numbers, the Hamiltonian H
is a collection of operators {Hj}j∈J where Hj = Hj(x, p) is a continuous, convex Hamiltonian defined on the
arc ej and Hp := {∂Hj/∂p}j∈J . Let us stress that H may be discontinuous at the vertices.

The equations in (1.1) are defined in terms of the coordinate parametrizing each arc. They have the same
optimal control interpretation as in the MFG theory in Euclidean spaces and the same structure as well (namely,
the latter is the adjoint of the linearization of the former). The system (1.1) needs to be complemented with
conditions at vertices. At each internal vertex vi we consider the transition conditions

∑
j∈Inci

νj∂ju(vi) = 0,

∑
j∈Inci

[νj∂jm(vi) + Hj,p(vi, ∂ju)mj(vi)] = 0,

uj(vi) = uk(vi), mj(vi) = mk(vi), j, k ∈ Inci (1.2)

where Inci denotes the set of the edges incident the vertex vi and Hj,p := ∂Hj/∂p. We mention, see [13], that
the first condition in (1.2) is the classical Kirchhoff condition and it prescribes the probability that an agent
reaching the vertex vi enters in the incident edge ej , j ∈ Inci; such a law is the natural modelization of some
stochastic disturb acting on each vertex while the stochastic disturb inside the edges is represented by the
Brownian motion. The second condition in (1.2) guarantees the mass conservation at vi (the sum of the fluxes
at vi is null) and it can be interpreted as the “adjoint” of the Kirchhoff’s one (see [8]); the third condition is the
continuity of u and m at vi. We remark that (1.2) are natural conditions for 2nd order problems on networks.
In fact the domain of the Laplace operator on a network is given by continuous functions on Γ which are H2

on the edges and which satisfy the Kirchhoff condition at the vertices [22]. Moreover, this transition condition
is a crucial ingredient for the validity of the maximum principle on networks.

In this paper we consider the numerical approximation of the problem (1.1) and (1.2) following the approach
in [1, 4], where a finite difference approximation of the MFG system is studied (see also [9, 15, 18] for different
approaches). Inside the edges we follow the same approach of [4] and we discretize the differential equations
in (1.1) by finite differences. The guideline to find the correct approximation of the transition conditions in (1.2)
is to reproduce at a discrete level some fundamental identities which are obtained in the continuous setting by
the weak formulation of the problem (see for example (3.22)). For this reason the discrete Hamiltonian defined
by a monotone approximation of the Hamilton−Jacobi−Bellman equation is also used in the discretization of
the Fokker−Planck equation and of the corresponding transition condition. By means of the previous identities
we prove the well-posedness of the discrete problem and the convergence to the solution of the system (1.1).

While there is a large literature about the approximation of hyperbolic problems on networks (see for ex-
ample [5, 10]), as far as we know, numerical schemes for second order differential equations on networks with
Kirchhoff conditions have been only considered in the linear case (see [20, 21]). Hence the part concerning the
approximation of the Hamilton−Jacobi−Bellman equation on the network is new and of independent interest.

The paper is organized as follows. In Section 2 we introduce assumptions and notations. Section 3 includes
three subsections concerning existence, uniqueness and convergence. In Section 4 we present a method for the
solution of the discrete system and some numerical examples illustrating the theory.
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Figure 1. Incident edges to the vertex vi: Inc+
i = {j}, Inc−i = {k, l}.

2. Notations and preliminary definitions

A network Γ in R
n is a couple (V , E) given by a finite collection of vertices V := {vi}i∈I and a finite collection

E := {ej}j∈J of continuous non self-intersecting arcs whose endpoints belong to V . We assume that each arc
ej ∈ E is parametrized by a smooth function πj : [0, lj] → R

n, lj > 0. For a function u : Γ → R we denote by
uj : [0, lj] → R the restriction of u to ej , i.e. u(x) = uj(y) for x ∈ ej , y = π−1

j (x). Given vi ∈ V , we denote by
∂ju(vi) the oriented derivative at vi along the arc ej defined by

∂ju(vi) =

⎧⎪⎨
⎪⎩

lim
t→0+

(uj(t)− uj(0))/t, if vi = πj(0);

lim
t→0+

(uj(lj − t)− uj(lj))/t, if vi = πj(lj).

Given a discretization step h = {hj}j∈J , we consider an uniform partition yj,k = khj , k = 0, . . . , Nh
j , of the

interval [0, lj] which parameterizes the edge ej (we assume that Nh
j = lj/hj is an integer). We obtain a spatial

grid on Γ by setting
Gh = {xj,k = πj(yj,k), j ∈ J, k = 0, . . . , Nh

j }. (2.1)

We define Inci := {j ∈ J : ej is incident to vi} and

Inc+
i = {j ∈ Inci : vi = πj(0)}, Inc−i = {j ∈ Inci : vi = πj(Nh

j hj)},

so that
Inci = Inc+

i ∪ Inc−i ,

as shown in Figure 1.
We set

|h| = max
j∈J
{hj}, hvi =

∑
j∈Inci

hj

2
, Nh = #(I) +

∑
j∈J

(Nh
j − 1), (2.2)

i.e. Nh is the total number of the points of Gh, having identified for each i ∈ I the #(Inci) grid points
corresponding to the same vertex vi. For a grid function U : Gh → R we denote by Uj,k its value at the grid
point xj,k.
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Definition 2.1. We say that a grid function U : Gh → R is continuous at vi if

Uj,� = Uk,m := Ui if vi = πj(�hj) = πk(mhk), j, k ∈ Inci, � ∈ {0, Nh
j }, and m ∈ {0, Nh

k },

i.e. the value of U at the vertex vi is independent of incident edge ej , j ∈ Inci. We say that a a grid function is
continuous if it is continuous at vi, for each i ∈ I.

We introduce the finite difference operators

(D+U)j,k =
Uj,k+1 − Uj,k

hj
,

[DhU ]j,k =
(
(D+U)j,k, (D+U)j,k−1

)T
,

(D2
hU)j,k =

Uj,k−1 − 2Uj,k + Uj,k+1

h2
j

·

In order to approximate the Hamiltonian Hj : [0, lj] × R → R, j ∈ J , we consider a numerical Hamiltonian
gj : [0, lj]× R

2 → R, (x, q1, q2)→ gj (x, q1, q2) satisfying the following assumptions:

(G1) monotonicity: gj is nonincreasing with respect to q1 and nondecreasing with respect to q2;
(G2) consistency: gj (x, q, q) = Hj(x, q) ∀x ∈ [0, lj], ∀q ∈ R;
(G3) differentiability: gj is of class C1;
(G4) superlinear growth: gj(x, q1, q2) ≥ α((q−1 )2 + (q+

2 )2)γ/2 −C for some α > 0, C ∈ R, γ > 1 and q± denote
the positive and negative part of q;

(G5) convexity: for all x ∈ ej, (q1, q2) �→ gj (x, q1, q2) is convex.

Numerical Hamiltonians fulfilling these requirements are provided by Lax-Friedrichs or Godunov type schemes,
see [23]. As an example, suppose that the Hamiltonian H is of the form H(x, p) = Ψ(x, |p|) where Ψ is convex,
increasing and superlinear with respect to its second argument. Then the Engquist–Osher Godunov scheme
reads as

gj(x, q1, q2) = Ψ
(
x, (min(q1, 0)2 + max(q2, 0))2

)
and the monotonicity, consistency and convexity conditions are satisfied.

Given U, W : Gh → R, we define the scalar product

(U, W )2 =
∑
j∈J

Nh
j −1∑

k=1

hjUj,kWj,k +
∑
i∈I

⎛
⎝ ∑

j∈Inc+i

hj

2
Uj,0Wj,0 +

∑
j∈Inc−i

hj

2
Uj,Nh

j
Wj,Nh

j

⎞
⎠ .

We introduce the compact and convex set

Kh = {(Mj,k)j∈J, 0≤k≤Nh
j

: M is continuous, Mj,k ≥ 0, (M, 1)2 = 1}.

The operator V [m](xj,k) is approximated by (Vh[M ])j,k where M is the piecewise constant function taking
the value Mj,k in the interval |y − yj,k| ≤ hj/2, k = 1, . . . , Nh

j − 1, j ∈ J (at the vertices only the half interval
contained in [0, lj] is considered). In particular, if V is a local operator, i.e. V [m](x) = F (m(x)), then we set
(Vh[M ])j,k = F (Mj,k). We assume that:

(V1) Vh is continuous and maps Kh on a bounded set of grid functions.

(V2) Vh is monotone, i.e. (
Vh[M ]− Vh[M̄ ], M − M̄

)
2
≤ 0⇒M = M̄.
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(V3) There exists C independent of h such that for all grid functions M ∈ Kh

‖Vh[M ]‖∞ := max
j,k
|(Vh[M ])j,k| ≤ C

|(Vh[M ])j,k − (Vh[M ])j,�| ≤ C|yj,k − yj,�| k, � = 0, . . . , Nh
j , j ∈ J.

3. A finite difference scheme for the stationary MFG system

In this section we introduce the approximation scheme for the system (1.1). For simplicity, we consider a
network Γ without boundary; appropriate boundary condition can be inserted in the scheme in a straightforward
way. At the internal grid points we consider the finite difference system

⎧⎪⎪⎨
⎪⎪⎩
−νj(D2

hU)j,k + g(xj,k, [DhU ]j,k) + Λ = (Vh[M ])j,k , k = 1, . . . , Nh
j − 1, j ∈ J

νj(D2
hM)j,k + Bh(U, M)j,k = 0, k = 1, . . . , Nh

j − 1, j ∈ J

M ∈ Kh, (U, 1)2 = 0,

(3.1)

where U , M are grid functions and Λ ∈ R. The transport operator Bh is defined for j ∈ J and k = 1 by

Bh(U, M)j,k =
1
hj

[
Mj,k

∂g

∂q1
(xj,k, [DhU ]j,k) + Mj,k+1

∂g

∂q2
(xj,k+1, [DhU ]j,k+1)−Mj,k

∂g

∂q2
(xj,k, [DhU ]j,k)

]
;

for k = 2, . . . , Nh
j − 2 by

Bh(U, M)j,k =
1
hj

[
Mj,k

∂g

∂q1
(xj,k, [DhU ]j,k)−Mj,k−1

∂g

∂q1
(xj,k−1, [DhU ]j,k−1)

+ Mj,k+1
∂g

∂q2
(xj,k+1, [DhU ]j,k+1)−Mj,k

∂g

∂q2
(xj,k, [DhU ]j,k)

]
;

for k = Nh
j − 1 by

Bh(U, M)j,k =
1
hj

[
Mj,k

∂g

∂q1
(xj,k, [DhU ]j,k)−Mj,k−1

∂g

∂q1
(xj,k−1, [DhU ]j,k−1)−Mj,k

∂g

∂q2
(xj,k, [DhU ]j,k)

]
.

We discuss now the transition conditions at the vertices, see (1.2). We discretize the Kirchhoff condition for the
function u via a 1st order approximation of the derivative and we impose the continuity at the vertices{

Sh(U, Vh[M ]− Λ)i = 0, i ∈ I,

U continuous at vi, i ∈ I,
(3.2)

where for grid functions U, V , the operator Sh : V → R is defined by

Sh(U, V )i =
∑

j∈Inc+i

[
νj(D+U)j,0 +

hj

2
Vj,0

]
−

∑
j∈Inc−i

[
νj(D+U)j,Nh

j −1 −
hj

2
Vj,Nh

j

]
. (3.3)

To discretize the transition condition for m we consider a 1st order approximation of the derivative (the conti-
nuity of M at the vertices is included in the definition of Kh)

T h(M, U)i = 0 i ∈ I, (3.4)
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where for grid functions U, M , operator T h : V → R is defined by

T h(M, U)i =
∑

j∈Inc+i

[
νj(D+M)j,0 + Mj,1

∂g

∂q2
(xj,1, [DhU ]j,1)

]

−
∑

j∈Inc−i

[
νj(D+M)j,Nh

j −1 + Mj,Nh
j −1

∂g

∂q1
(xj,Nh

j −1, [DhU ]j,Nh
j −1)

]
= 0. (3.5)

Remark 3.1. For the discretization of the differential equations in (1.1) inside the edge, we follow the same
approach in [1,4] and we refer to these papers for motivations and explanations. We just recall that the transport
operator Bh comes from the discretization of the quantity∫

ej

mHp(x, ∂u)∂w dx

for a test function w, which is connected with the weak formulation of the Fokker−Planck equation on the
network.

For the the approximation of the transition conditions in (1.2), we use a standard 1st order discretization
of the normal derivative of u and m with the sign depending if the vertex corresponds to either the initial
point or the terminal one in the parametrization of the edge. The flux term in the Kirchhoff condition for m is
approximated in a upwind fashion depending always on the orientation of the edge. Finally the additional term
hj

2 ((Vh[M ])−Λ
)

in (3.2), which vanishes for h→ 0, is necessary to obtain the identity (3.22) which plays a key
role in the uniqueness and convergence results.

Note that at a vertex vi, we have respectively #(Inci) values Uj and #(Inci) values Mj , corresponding to
the restrictions of these functions to the incident edges ej, j ∈ Inci. Since (3.2) and (3.4) gives #(Inci) linear
conditions, the value of U and M at vi is univocally determined.

Summarizing the approximation scheme for the stationary problem (1.1) is given by the (3.1)−(3.5). In the next
subsections we study existence, uniqueness and convergence of the scheme.

3.1. Existence

We prove existence of a solution to (3.1)−(3.5) by a fixed point argument. We preliminarily need to prove
existence, uniqueness and regularity for the first equation in (3.1) with transition conditions (3.2), see Lemma 3.5.
This result is obtained, as in the continuous case, by approximating the limit ergodic problem (3.15) with the
sequence of problems (3.6), which contains a zero order term ρUρ, and passing to the limit for ρ→ 0. For this
we need to estimate, uniformly in ρ, the discrete gradient of Uρ (see Lem. 3.14).

Lemma 3.2. Let V : Gh → R be a continuous grid function and assume that g satisfies (G1)−(G3). For ρ > 0,
there is a unique solution to the problem⎧⎪⎪⎨

⎪⎪⎩
−νj(D2

hUρ)j,k + g(xj,k, [DhUρ]j,k) + ρUρ
j,k = Vj,k, k = 1, . . . , Nh

j − 1, j ∈ J

Sh(Uρ, V − ρUρ)i = 0, i ∈ I

Uρ continuous at vi, i ∈ I.

(3.6)

Proof. To prove the existence we show that the map F : R
Nh → R

Nh

defined by

F(U) =

⎧⎨
⎩

1
ρ

(
νj(D2

hU)j,k − g(xj,k, [DhU ]j,k) + Vj,k

)
, j ∈ J , k = 1, . . . , Nh

j − 1;

1
ρhvi
Sh(U, V )i, i ∈ I;

(where hvi as in (2.2)) admits a fixed point.
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Set r = (maxj,k |H(xj,k, 0)| + ‖V ‖∞)/ρ. By the regularity of g the map F is continuous from Br = {U ∈
R

Nh

: ‖U‖∞ ≤ r} to R
Nh

. Assume that U ∈ ∂Br, hence maxj∈J, k=0,...,Nh
j
|Uj,k| = r. Consider first the case

Uj,k = r for some j ∈ J , k ∈ {1, . . . , Nh
j − 1}. Since (D2

hU)j,k ≤ 0, D+Uj,k ≤ 0 and D+Uj,k−1 ≥ 0, by the
monotonicity and the consistency of g we get

νj(D2
hU)j,k − g(xj,k, [DhU ]j,k) ≤ −H(xj,k, 0)

and therefore
F(U)j,k ≤

1
ρ

(−H(xj,k, 0) + Vj,k) ≤ r.

Hence F(U)j,k ≤ Uj,k and F(U)j,k �= μUj,k if μ > 1.
Now assume that there exists i ∈ I such that Ui = r for some i ∈ I (Ui is the common value of Uj,k at vi)

then (D+U)j,0 ≤ 0 if vi = πj(0), (D+U)j,Nh
j −1 ≥ 0 if vi = πj(Nh

j ) and therefore

F(U)i ≤
2

ρhvi

⎛
⎝ ∑

j∈Inc+i

hj

2
Vj,0 +

∑
j∈Inc−i

hj

2
Vj,Nh

j

⎞
⎠ ≤ r.

Hence F(U)i ≤ Ui and F(U)i �= μUi if μ > 1. Arguing in a similar way if either Uj,k = −r or Ui = −r, we have
that F(U) �= μU for all μ > 1 and U ∈ ∂Br. Hence by the Leray−Schauder fixed point theorem there exists
Uρ ∈ Br such that F(Uρ) = Uρ and therefore a solution of (3.6). We also have the estimate

‖Uρ‖∞ ≤
1
ρ

(
max
j,k
|H(xj,k, 0)|+ ‖V ‖∞

)
. (3.7)

We prove uniqueness of the solution to (3.6). Let U1, U2 be two solutions of (3.6) and assume by contradiction
that maxj,k(U1

j,k − U2
j,k) = δ > 0. Consider first the case that there exists j̄ ∈ J , k̄ ∈ {1, . . . , Nh

j − 1} such that
U1

j̄,k̄
− U2

j̄,k̄
= δ. Subtracting the equations satisfied by U1 and U2, we get

−νj(D2
h(U1 − U2))j̄,k̄ + g(xj̄,k̄, [DhU1]j,k)− g(xj̄,k̄, [DhU2]j,k) + ρ(U1 − U2)j̄,k̄ = 0.

Since (j̄, k̄) is a maximum point for U1 − U2, by the monotonicity of g, we get

ρδ = ρ(U1 − U2)j̄,k̄ ≤ 0

and therefore a contradiction. If there exists i ∈ I such that U1
i − U2

i = δ, then subtracting the transition
conditions satisfied by U1 and U2, we get

0 =
∑

j∈Inc+i

(
νj(D+(U1 − U2))j,0 −

hj

2
(ρ(U1 − U2)j,0)

−
∑

j∈Inc−i

(νj(D+(U1 − U2))j,Nh
j −1 −

hj

2
ρ(U1 − U2)j,Nh

j

)
≤ −δρ

2

∑
j∈Inci

hj

and therefore also in this case a contradiction. We conclude that U1 ≤ U2 and we prove in a similar way that
U2 ≤ U1. �

In the next lemma, we get an a priori bound for the gradient of the solution to the discrete
Hamilton−Jacobi−Bellman equation by assuming that the function is bounded. It is important for the analysis
of the convergence of the scheme that all the bounds are uniform in h.
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Lemma 3.3. Let Ṽ : Gh → R be a continuous grid function and assume that g satisfies (G1)−(G4). Let Uh be
a solution of the problem⎧⎪⎪⎨

⎪⎪⎩
−νj(D2

hU)j,k + g(xj,k, [DhU ]j,k) = Ṽj,k, k = 1, . . . , Nh
j − 1, j ∈ J

Sh(U, Ṽ )i = 0 i ∈ I

U continuous at vi, i ∈ I,

(3.8)

and assume that
‖Uh‖∞ ≤ C0 (3.9)

with C0 independent of h. Then

‖DhUh‖∞ := max
j∈J

max
k=0,...,Nh

j −1
|(D+Uh)j,k| ≤ C

where C depends on C0, ‖Ṽ ‖∞, but not on h.

Proof. We first prove that D+Uh is bounded at the vertices. Assume by contradiction that for some i ∈ I

max

{
max

j∈Inc+i

|(D+Uh)j,0|, max
j∈Inc−i

|(D+Uh)j,Nh
j −1|

}
→ +∞ for |h| → 0.

Because of the transition condition in (3.8), it is not restrictive to assume that, up to a subsequence,

max

{
max

j∈Inc+i

{(D+Uh)j,0}, max
j∈Inc−i

{−(D+Uh)j,Nh
j −1}

}
→ +∞ for |h| → 0.

Hence we assume that there exists j ∈ Inc+
i such that D+Uh

j,0 → +∞ for hj → 0 (we proceed in a similar way
if there exists j ∈ Inc−i such that −D+Uh

j,Nh
j −1
→ +∞).

Let h0 be such that for hj < h0

D+Uh
j,0 ≥

1
α

(C + ‖Ṽ ‖∞) +
4C0

lj

where C as in (G4), C0 as in (3.9). Since (D2
hUh)j,1 = (D+Uh

j,1 −D+Uh
j,0)/h we have

νj

hj
D+Uh

j,1 =
νj

hj
D+Uh

j,0 + g(xj,1, [DhUh]j,1)− Ṽj,k ≥
νj

hj
D+Uh

j,0 +α|D+Uh
j,0|γ −C−‖Ṽ ‖∞ ≥

νj

hj
D+Uh

j,0 (3.10)

and therefore D+Uh
j,1 ≥ D+Uh

j,0. Iterating the previous inequality, we get

D+Uh
j,k+1 ≥ D+Uh

j,k for k = 0, . . . , Nh
j − 1. (3.11)

For L ≤ Nh
j − 1, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Uh
j,1 = Uh

j,0 + hjD
+Uh

j,0,

Uh
j,2 = Uh

j,1 + hjD
+Uh

j,1 = Uh
j,0 + hj(D+Uh

j,0 + D+Uh
j,1),

...
Uh

j,L = Uh
j,0 + hj

∑L−1
k=0 D+Uh

j,k.
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If Lhj > lj/2, by (3.11) we get

Uh
j,L ≥ Uh

j,0 + LhjD
+Uh

j,0 ≥ Uh
j,0 + Lhj

4C0

lj
> C0

and therefore a contradiction to (3.9).
We show that D+Uh is bounded also inside Γ . Assume by contradiction that there exists j ∈ J , kh ∈

{1, . . . , Nh
j − 2} such that, up to a subsequence,

|D+Uh
j,kh
| → +∞ for h→ 0. (3.12)

By compactness, xj,kh
→ x0 ∈ ej for h → 0. We set y0 = π−1

j (x0) ∈ [0, lj ] and we first consider the case
y0 ∈ (0, lj). If D+Uh

j,kh
→ +∞ for hj → 0, let h0 be such that for hj ≤ h0

D+Uh
j,kh
≥ 1

α
(C + ‖Ṽ ‖∞) +

4C0

lj − y0
·

Arguing as in (3.10), we have

D+Uh
j,kh+l ≥ D+Uh

j,kh+l−1 for l = 1, . . . , Nh
j − kh.

For Lhj > (lj − y0)/2 we get

D+Uh
j,kh+L = Uh

j,kh
+ hj

L−1∑
l=0

D+Uh
j,kh+l ≥ −C0 + Lh

4C0

lj − y0
> C0

and therefore a contradiction to (3.9).
We now consider the case y0 ∈ (0, lj) and D+Uh

j,kh
→ −∞ for h→ 0. Let h0 be such that for hj ≤ h0

D+Uh
j,kh
≤ − 1

α
(C + ‖Ṽ ‖∞)− 4C0

y0
·

We have

νj

hj
D+Uh

j,kh
=

νj

hj
D+Uh

j,kh−1 + g(xj,1, [DhUh]j,kh
)− Ṽ h

j,kh
≥

νj

hj
D+Uh

j,kh−1 + α|D+Uh
j,kh
|γ − C − ‖Ṽ ‖∞ ≥

νj

hj
D+Uh

j,kh−1

and iterating
D+Uh

j,kh−l ≥ D+Uh
j,kh−l−1 for l = 0, . . . , kh − 1. (3.13)

For L ≤ kh − 1, we have ⎧⎪⎨
⎪⎩

Uh
j,kh−1 = Uh

j,kh
− hD+Uh

j,kh−1,
...
Uh

j,kh−L = Uh
j,kh
− h

∑L
l=1 D+Uh

j,kh−l.

Hence if Lhj > y0/2, by (3.13) we get

Uh
j,kh−L ≥ Uh

j,kh
− hj

L∑
l=1

D+Uh
j,kh−l ≥ Uh

j,kh
− LhjD

+Uh
j,kh
≥ −C0 + Lhj

4C0

y0
> C0

and therefore a contradiction to (3.9).
In case y0 = π−1

j (x0) is equal either to 0 or to lj and |D+Uh
j,kh
| → +∞, it is easy to adapt the previous

arguments to obtain again a contradiction to (3.9). �
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Lemma 3.4. Let Uρ be the solution of (3.6), then

‖D+Uρ‖∞ ≤ C2 (3.14)

for a constant C2 independent of ρ and h.

Proof. Fix an arbitrary node xj̄,k̄ ∈ Γ and set W ρ = Uρ − Uρ

j̄,k̄
. Adapting to the case of the networks the

argument in ([4], Prop. 2), it is possible to show that W ρ is bounded, uniformly in ρ. Since W ρ is a solution
of (3.8) with Ṽ = V − ρUρ and by (3.7) Ṽ is bounded, uniformly in ρ and h, we can apply Lemma 3.3 to get a
bound on ‖DW ρ‖∞ and therefore on ‖DUρ‖ uniform in ρ and h. �

Lemma 3.5. Let V : Gh → R be a continuous grid function and assume that g satisfies (G1)−(G4). Then there
exists a unique couple (U, Λ), where U : Gh → R and Λ ∈ R, solution of the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−νj(D2
hU)j,k + g(xj,k, [DhU ]j,k) + Λ = Vj,k, k = 1, . . . , Nh

j − 1, j ∈ J

Sh(U, V − Λ)i = 0, i ∈ I

U continuous at vi, i ∈ I

(U, 1)2 = 0.

(3.15)

Moreover
|Λ| ≤ C1, ‖DhU‖∞ ≤ C2 (3.16)

for some constants C1, C2 independent of h.

Proof. We prove existence by passing to the limit in the ergodic approximation (3.6). By (3.7)

‖ρUρ‖∞ ≤ C1

for any ρ > 0 where C1 is independent of ρ. By (3.7) and (3.14), up to a subsequence, Uρ − (Uρ, 1)2 converges
to a function U : Gh → R such that (U, 1)2 = 0 and ρUρ

j,k converges to some Λ ∈ R (independent of (j, k)).
Moreover the couple (U, Λ) satisfies (3.15) and the bounds in (3.16).

The uniqueness of the couple (U, Λ) can be proved by an argument similar to the one for the uniqueness
of (3.6). �

Remark 3.6. Note that the dependence of the bounds in (3.16) on the function Vj,k is only by means of ‖V ‖∞.
This is crucial for the proof of the next theorem.

Theorem 3.7. If g satisfies (G1)−(G4), V satisfies (V1), then the problem (3.1) and (3.5) has at least a
solution (U, M, Λ). Moreover

|Λ| ≤ C1, ‖U‖∞ + ‖DhU‖∞ ≤ C2 (3.17)

for some constants C1, C2 independent of h.

Proof. We define a map Φ which associates to M ∈ Kh the solution (U, Λ) of the problem (3.15) with Vj,k =
(Vh[M ])j,k. By Lemma 3.5, the map Φ is well defined.

We show that Φ is continuous. Let M s ∈ Kh be such that M s → M ∈ Kh as s → ∞, hence by (V1),
Vh[M s]→ Vh[M ] as s→∞. Let (Us, Λs) be the sequence of solutions of (3.15) with V = Vh[M s]. By (3.16) the
sequences Λs and ‖Us‖∞ are bounded and therefore, up to a subsequence, converge to Λ ∈ R and, respectively,
to a grid function U . It is immediate that (U, Λ) is a solution of (3.15) with V = Vh[M ]. By the uniqueness of
the solution to (3.15), it follows that all the sequence (Λs, Us) converges to (Λ, U) and therefore the continuity
of the map Φ and the estimate (3.17).
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We define a map Ψ which associates to M ∈ Kh the solution M̄ of linear problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μM̄j,k − νj(D2
hM̄)j,k − Bh(U, M̄)j,k = μMj,k j ∈ J, k = 1, . . . , Nh

j − 1

μM̄i −
∑

j∈Inc+i

2
hj

[
νj(D+M̄)j,0 + M̄j,1

∂g
∂q2

(xj,1, [DhU ]j,1)
]
+

∑
j∈Inc−i

2
hj

[νj(D+M̄)j,Nh
j −1 − M̄j,Nh

j −1
∂g
∂q1

(xj,Nh
j −1, [DhU ]j,Nh

j −1)] = μMi i ∈ I

where μ > 0 and (U, Λ) = Φ(M). We rewrite the previous problem as

μM̄ +AM̄ = μM (3.18)

where A is Nh × Nh matrix. By the monotonicity and the regularity of g, for μ sufficiently large the matrix
μI +A is a non singular M -matrix and is therefore invertible. It follows that for any M ∈ Kh, (3.18) admits a
solution M̄ and by M -matrix property M̄ ≥ 0 since M ≥ 0. We prove that (M̄, 1)2 = 1. First observe that if
W, Z : Gh → R, then

∑
j∈J

Nh
j −1∑

k=1

νj(D2
hW )j,kZj,k = −

∑
j∈J

Nh
j −2∑

k=1

νj(D+W )j,k(D+Z)j,k

−
∑
i∈I

∑
j∈Inc+i

νj

hj
Zj,1(D+W )j,0 +

∑
i∈I

∑
j∈Inc−i

νj

hj
Zj,Nh

j−1
(D+W )j,Nh

j −1 (3.19)

and

∑
j∈J

Nh
j −1∑

k=1

Bh(U, W )j,kZj,k = −
∑
j∈J

Nh
j −1∑

k=1

Wj,k [DhZ]j,k · ∇qg(xj,k, [DhU ]j,k)

−
∑
i∈I

( ∑
j∈Inc+i

1
hj

[
Wj,1Zj,0

∂g

∂q2
(xj,1, [DhU ]j,1)

]

−
∑

j∈Inc−i

1
hj

[
Wj,Nh

j −1Zj,Nh
j

∂g

∂q1
(xj,Nh

j −1, [DhU ]j,Nh
j −1)

])
. (3.20)

If W = M̄ , Z ≡ 1, by (3.19) and (3.20) we get

∑
j∈J

Nh
j −1∑

k=1

(AM̄)j,k =
∑
i∈I

∑
j∈Inc+i

1
hj

[
νj(D+M̄)j,0 + M̄j,1

∂g

∂q2
(xj,1, [DhU ]j,1)

]

−
∑
i∈I

∑
j∈Inc−i

1
hj

[
νj(D+M̄)j,Nh

j −1 − M̄j,Nh
j −1

∂g

∂q1
(xj,Nh

j −1, [DhU ]j,Nh
j −1)

]
.

Hence by the definition of A at the vertices we have

∑
j∈J

Nh
j −1∑

k=1

(AM̄)j,k =
μ

2

∑
i∈I

⎛
⎝ ∑

j∈Inc+
i

(M̄ −M)j,0 +
∑

j∈Inc−i

(M̄ −M)j,Nh
j

⎞
⎠ .

Therefore ∑
j∈J

Nh
j −1∑

k=1

hj [μM̄j,k + (AM̄)j,k] = μ
∑
j∈J

Nh
j −1∑

k=1

hjMj,k

which implies (M̄, 1)2 = (M, 1)2 = 1 and therefore M̄ ∈ Kh.
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Hence Ψ maps Kh into Kh. From the boundedness and continuity of Φ and the regularity of g, Ψ is con-
tinuous. By the Brouwer’s fixed point theorem it follows that Ψ admits a fixed point M which is a solution
of (3.1)–(3.5). �

3.2. Uniqueness

We first prove a fundamental identity which plays a crucial role in uniqueness and convergence of the scheme
(compare with [3], (3.20)).

Lemma 3.8. Let A, B : Gh → R be two grid functions, (U, M, Λ) a solution of (3.1)–(3.5) and (Ū , M̄ , Λ̄) a
solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−νj(D2
hŪ)j,k + g(xj,k, [DhŪ ]j,k) + Λ̄ =

(
Vh[M̄ ]

)
j,k

+ Aj,k, k = 1, . . . , Nh
j − 1, j ∈ J

νj(D2
hM̄)j,k + Bh(Ū , M̄)j,k = Bj,k, k = 1, . . . , Nh

j − 1, j ∈ J

Sh(Ū , Vh[M̄ ]− Λ)i =
∑

j∈Inc+
i

hj

2 Aj,0 +
∑

j∈Inc−
i

hj

2 Aj,Nh
j
, i ∈ I

T h(M̄, Ū)i =
∑

j∈Inc+
i

hj

2 Bj,0 +
∑

j∈Inc−
i

hj

2 Bj,Nh
j
, i ∈ I

Ūcontinuous at vi, i ∈ I

M̄ ∈ Kh, (Ū , 1)2 = 0.

(3.21)

Then

Rh(M, U, Ū) +Rh(M̄, Ū , U) + (Vh[M ]− Vh[M̄ ], M − M̄)2 = (A, M − M̄)2 + (B, U − Ū)2 (3.22)

where

Rh(M, U, Ū) =
∑
j∈J

Nh
j −1∑

k=1

hjMj,k

[
g(xj,k, [DhŪ ]j,k)− g(xj,k, [DhU ]j,k)− [Dh(Ū − U)]k,j · ∇qg(xj,k, [DhU ]j,k)

]
.

Proof. Let (U, M, Λ) and (Ū , M̄ , Λ̄) be as in the statement. Subtracting the equations for U and Ū , multiplying
the resulting equation by hj(M − M̄)j,k and summing over j ∈ J , k = 1, . . . , Nh

j − 1, we get

∑
j∈J

Nh
j −1∑

k=1

hj(M − M̄)j,k

[
− νjD

2
h(U − Ū)j,k + g(xj,k, [DhU ]j,k)− g(xj,k, [DhŪ ]j,k)+

(Λ− Λ̄)− (Vh[M ]− Vh[M̄ ])j,k

]
=
∑
j∈J

Nh
j −1∑

k=1

hj(M − M̄)j,kAj,k. (3.23)

Subtracting the equations for M and M̄ , multiplying the resulting equation by hj(U − Ū)j,k and summing over
j ∈ J , k = 1, . . . , Nh

j − 1, we get

∑
j∈J

Nh
j −1∑

k=1

hj(U − Ū)j,k

[
νjD

2
h(M − M̄)j,k + Bh(U, M)j,k − Bh(Ū , M̄)j,k

]
=
∑
j∈J

Nh
j −1∑

k=1

hj(U − Ū)j,kBj,k. (3.24)
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We have the identity

−
∑
j∈J

Nh
j −1∑

k=1

νj(U − Ū)j,kD2
h(M − M̄)j,k =

∑
j∈J

Nh
j −1∑

k=1

−νj(M − M̄)j,kD2
h(U − Ū)j,k

+
∑

j∈Inc+i

νj

hj

[
(M − M̄)j,0(D+(U − Ū))j,0 − (U − Ū)j,0(D+(M − M̄))j,0

]

+
∑

j∈Inc−i

νj

hj

[
(M − M̄)j,Nh

j
(D+(U − Ū))j,Nh

j−1
− (U − Ū)j,Nh

j
(D+(M − M̄))j,Nh

j−1

]
(3.25)

and, respectively,

∑
j∈J

Nh
j −1∑

k=1

Bh(U, M)j,k(U − Ū)j,k = −
∑
j∈J

⎡
⎣Nh

j −2∑
k=2

Mj,k [Dh(U − Ū)]j,k · ∇qg(xj,k, [DhU ]j,k)

−Mj,1
∂g

∂q2
(xj,1, [DhU ]j,1)(Ū − U)j,0 + Mj,Nh

j −1

∂g

∂q1
(xj,Nh

j −1, [DhU ]j,Nh
j −1)(Ū − U)j,Nh

j

⎤
⎦ . (3.26)

In a similar way a corresponding equation for
∑

j∈J

∑Nh
j −1

k=1 Bh(Ū , M̄)j,k(U − Ū)j,k is also obtained.
We now discuss the boundary terms in (3.25) and (3.26). By the transition conditions for U and Ū and the

continuity of M at the vertices we have

−
∑

j∈Inc+i

νj

hj
(M − M̄)j,0(D+(U − Ū))j,0 +

∑
j∈Inc−i

νj

hj
(M − M̄)j,Nh

j
(D+(U − Ū))j,Nh

j−1

=
∑

j∈Inc+i

1
2
(M − M̄)j,0[(Vh[M ]− Vh[M̄ ])j,0 − (Λ − Λ̄)−Aj,0]

+
∑

j∈Inc−i

1
2
(M − M̄)j,Nh

j
[(Vh[M ]− Vh[M̄ ])j,Nh

j
− (Λ− Λ̄)−Aj,Nh

j
]. (3.27)

By transition conditions for M and M̄ we get∑
j∈Inc+i

νj

hj
(U − Ū)j,0(D+(M − M̄))j,0 −

∑
j∈Inc−i

νj

hj
(U − Ū)j,Nh

j
(D+(M − M̄))j,Nh

j −1

=−
∑

j∈Inc+i

(U − Ū)j,0

hj

[
Mj,1

∂g

∂q2
(xj,1, [DhU ]j,1)− M̄j,1

∂g

∂q2
(xj,1, [DhŪ ]j,1)

]

+
∑

j∈Inc−i

(U − Ū)j,Nh
j

hj

[
Mj,Nh

j −1

∂g

∂q1
(xj,Nh

j −1, [DhU ]j,Nh
j −1)

− M̄j,Nh
j −1

∂g

∂q1
(xj,Nh

j −1, [DhŪ ]j,Nh
j −1)

]
+

∑
j∈Inc+i

1
2
Bj,0(U − Ū)j,0

+
∑

j∈Inc−i

1
2
Bj,Nh

j
(U − Ū)j,Nh

j
. (3.28)
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Replacing (3.25)–(3.28) in (3.24) and adding the resulting equation to (3.23) we finally get (recall that (M, 1)2 =
(M̄, 1)2 = 1)

∑
j∈J

Nh
j −1∑

k=1

hj

[
Mj,k

(
g(xj,k, [DhŪ ]j,k)− g(xj,k, [DhU ]j,k)
−[Dh(Ū − U)]k,j · ∇qg(xj,k, [DhU ]j,k)

)
+ M̄j,k

(
g(xj,k, [DhU ]j,k)− g(xj,k, [DhŪ ]j,k)
−[Dh(U − Ū)]k,j · ∇qg(xj,k, [DhŪ ]j,k

)]

+ (Vh[M ]− Vh[M̄ ], M − M̄)2 = (A, M − M̄)2 + (B, U − Ū)2,

which amounts to (3.22). �

Theorem 3.9. If g satisfies (G1)−(G5) and the operator Vh satisfies (V2) (namely, it is monotone), then the
problem (3.1)−(3.5) has at most one solution.

Proof. Let (U, M, Λ) and (Ū , M̄ , Λ̄) be two solutions of (3.1)–(3.5). By (3.22) with A ≡ B ≡ 0 we get

Rh(M, U, Ū) +Rh(M̄, Ū , U) + (Vh[M ]− Vh[M̄ ], M − M̄)2 = 0.

By the convexity of g and the monotonicity of V , we see that all the terms in the left hand side of the previous
equality are positive and therefore must vanish. The strong monotonicity of V implies that M = M̄ . Hence
(U, Λ), (Ū , Λ̄) solve (3.15) with Vj,k = Vh[M ]j,k = Vh[M̄ ]j,k and by Lemma 3.5 we get U = Ū and Λ = Λ̄. �

3.3. Convergence

In this section we analyze the convergence of the scheme (3.1)−(3.5) in the reference case

H(x, p) = |p|β + f(x) (3.29)

where β ≥ 2 and f : Γ → R is a continuous function. By [8], we know that in this case there exists a unique
solution (u, m, λ) to (1.1) with u ∈ C2,α(Γ ), m ∈ C2(Γ ), m > 0, and λ ∈ R.

We consider a numerical Hamiltonian of the form

g(x, p) = G(p−1 , p+
2 ) + f(x) (3.30)

where G(p1, p2) = (p2
1 + p2

2)
β/2 and p±s denote the positive and negative part of ps, s = 1, 2. We observe that g

satisfies assumptions (G1)−(G5). We need an additional assumption:

(V4) For any m ∈ K := {μ ∈ C0,α(Γ ) :
∫

Γ μdx = 1}, M ∈ Kh, denoted by Ih(M) the continuous piecewise
linear reconstruction of M ∈ Kh on Γ , then

‖V [m]− Vh[M ]‖∞ ≤ ω(‖m− Ih(M)‖∞)

where ω is a continuous, increasing function such that limt→0+ ω(t) = 0.

In the following we denote by o(1) a generic grid function whose maximum norm tends to 0 as |h| → 0. Given
a solution (u, m, λ) of (1.1), we define a grid function uh by

uh
j,k :=

1
hj

∫
|y−yj,k|≤hj/2

uj(y)dy, if j ∈ J, k = 1, . . . , Nh
j − 1,

uh
i :=

∑
j∈Inc+i

2
hj

∫
0≤y−yj,0≤hj/2

uj(y)dy +
∑

j∈Inc−i

2
hj

∫
0≤y

j,Nh
j
−y≤hj/2

uj(y)dy, if i ∈ I,

(note that (uh, 1)2 = 0). We define in a similar way the grid function mh ∈ Kh and we also set λh := λ. Observe
that by (V4)

lim
h→0
‖V [m]− Vh[mh]‖∞ = 0. (3.31)
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Hence by (3.31) and the consistency assumption (G2), (uh, mh, λh) is a solution of⎧⎪⎪⎨
⎪⎪⎩
−νj(D2

huh)j,k + g(xj,k, [Dhuh]j,k) + λh =
(
Vh[mh]

)
j,k

+ Ah
j,k, k = 1, . . . , Nh

j − 1, j ∈ J

νj(D2
hmh)j,k + Bh(uh, mh)j,k = Bh

j,k, k = 1, . . . , Nh
j − 1, j ∈ J

mh ∈ Kh, (uh, 1)2 = 0

(3.32)

with the transition conditions⎧⎪⎨
⎪⎩
Sh(uh, Vh[mh]− λh)i =

∑
j∈Inc+i

hj

2 Ah
j,0 +

∑
j∈Inc−i

hj

2 Ah
j,Nh

j
, i ∈ I

T h(mh, uh)i =
∑

j∈Inc+i

hj

2 Bh
j,0 +

∑
j∈Inc−i

hj

2 Bh
j,Nh

j
, i ∈ I

uh continuous at vi, i ∈ I

(3.33)

where Ah, Bh are two grid functions such that

lim
h→0
‖Ah‖∞ = 0, lim

h→0
‖Bh‖∞ = 0. (3.34)

We need some preliminary lemmas.

Lemma 3.10. Let β ≥ 2,

(i) For all q, q̃ ∈ R
2,

g(x, q̃)− g(x, q)−∇qg(x, q) · (q̃ − q) ≥ 1
β − 1

max(|p|β−2, |p̃|β−2)|p− p̃|2 (3.35)

where p = (q−1 , q+
2 ), p̃ = (q̃−1 , q̃+

2 ).
(ii) There exists a constant C such that for all q, q̃, r ∈ R

2 and η > 0

|(∇qg(x, q̃)−∇qg(x, q)) · r| ≤ max(|p|β−2, |p̃|β−2)
(

C

η
|p− p̃|2 + η|r|2

)
, (3.36)

where p = (q−1 , q+
2 ), p̃ = (q̃−1 , q̃+

2 ).

For the proof of the previous lemma, we refer to ([3], Lem. 3.2).

Lemma 3.11. Let (Uh, Mh, Λh) be a solution of (3.1)–(3.5) and (uh, mh, λh) a solution of (3.32)–(3.33) with
mh ≥ δ > 0 for h sufficiently small. Then

lim
h→0

∑
j∈J

Nh
j −1∑

k=1

hj

∣∣[D+U ]j,k − [D+uh]j,k
∣∣β = 0. (3.37)

Proof. By the identity (3.22) with (U, M, Λ) = (Uh, Mh, Λh) and (Ū , M̄ , Λ̄) = (uh, mh, λh) we get

Rh(Mh, Uh, uh)+Rh(mh, uh, Uh)+(Vh[Mh]−Vh[mh], Mh−mh)2+(Ah, Mh−mh)2+(Bh, Uh−uh)2 = 0.

By (3.17) and the regularity of u we get limh→0 |(Bh, Uh−uh)2| = 0. By mh, Mh ∈ Kh and the Cauchy–Schwarz
inequality also get limh→0 |(Ah, Mh −mh)2| = 0. Hence by (3.35) we obtain

∑
j∈J

∑Nh
j

k=1 hj mh
j,k max

{
|P h

j,k|β−2, |ph
j,k|β−2

}
|P h

j,k − ph
j,k|2 = o(1),∑

j∈J

∑Nh
j

k=1 hj Mh
j,k max

{
|P h

j,k|β−2, |ph
j,k|β−2

}
|P h

j,k − ph
j,k|2 = o(1),

(3.38)

where P h
j,k = ((D+Uh)−j,k, (D+Uh)+j,k−1) and ph

j,k = ((D+uh)−j,k, (D+uh)+j,k−1). Since mh is strictly positive, by
the first equation in (3.38) we get (3.37). �
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Theorem 3.12. Let (u, m, λ) be the unique solution of (1.1) and (Uh, Mh, Λh) the sequence of the solutions
of the scheme (3.1)−(3.5). Then

lim
|h|→0

‖Uh − u‖∞ + ‖Mh −m‖∞ + |Λh − λ| = 0. (3.39)

Proof. We set Eh = Mh−mh. Subtracting the equations satisfied by Mh and mh and multiplying the resulting
equations for hjE

h
j,k, we get

∑
j∈J

Nh
j −1∑

k=1

[
−νj(D2

hEh)j,k + Bh(Uh, Mh)j,k − Bh(Uh, mh)j,k

]
hjE

h
j,k =

−
∑
j∈J

Nh
j −1∑

k=1

[
Bh(uh, mh)j,k − Bh(Uh, mh)j,k + Bh

j,k

]
hjE

h
j,k. (3.40)

By the transition conditions for Mh and mh (recall that Mh and, mh are continuous at the vertices)

∑
i∈I

⎡
⎣ ∑

j∈Inc+i

Eh
j,0

[
νj(D+Eh)j,0 + Eh

j,1

∂g

∂q2
(xj,1, DhUh)j,1

]

−
∑

j∈Inc−i

Eh
j,Nh

j

[
νj(D+Eh)j,Nh

j −1 + Eh
j,Nh

j −1

∂g

∂q1
(xj,Nh

j −1, [DhUh]j,Nh
j −1)

]⎤⎦

=
∑
i∈I

⎡
⎣ ∑

j∈Inc+i

Eh
j,0

[
mh

j,1

(
∂g

∂q2
(xj,1, [Dhuh]j,1)−

∂g

∂q2
(xj,1, [DhUh]j,1)

)
+

hj

2
Bh

j,0

⎤
⎦

−
∑

j∈Inc−i

Eh
j,Nh

j

[
mh

j,Nh
j −1

(
∂g

∂q1
(xj,Nh

j −1, [Dhuh]j,Nh
j −1)−

∂g

∂q1
(xj,Nh

j −1, [DhUh]j,Nh
j −1)

)
+

hj

2
Bh

j,Nh
j

]]
.

(3.41)

Arguing as in (3.19) and (3.20), we have

∑
j∈J

Nh
j −1∑

k=1

νj(D2
hEh)j,kEh

j,k = −
∑
j∈J

Nh
j −2∑

k=1

νj |(D+Eh)j,k|2 −
∑
i∈I

[ ∑
j∈Inc+i

νj |(D+Eh)j,0|2

+
∑

j∈Inc−i

νj |(D+Eh)j,Nh
j −1|2

]
+
∑
i∈I

[
−

∑
j∈Inc+i

νj

hj
Eh

j,1(D
+Eh)j,0 +

∑
j∈Inc−i

νj

hj
Eh

j,Nh
j −1(D

+Eh)j,Nh
j −1

]
.

Moreover

∑
j∈J

Nh
j −1∑

k=1

[
Bh(Uh, Mh)j,k − Bh(Uh, mh)j,k

]
Eh

j,k = −
∑
j∈J

Nh
j −1∑

k=1

Eh
j,k [DhEh]j,k · ∇qg(xj,k, [DhUh]j,k)

−
∑
i∈I

⎡
⎣ ∑

j∈Inc+i

1
hj

Eh
j,0E

h
j,1

∂g

∂q2
(xj,1, [DhUh]j,1)−

∑
j∈Inc−i

1
hj

Eh
j,Nh

j
Eh

j,Nh
j −1

∂g

∂q1
(xj,Nh

j −1, [DhUh]j,Nh
j −1)

⎤
⎦ .
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and

∑
j∈J

Nh
j −1∑

k=1

[
Bh(Uh, mh)j,k − Bh(uh, mh)j,k

]
Eh

j,k

= −
∑
j∈J

Nh
j −1∑

k=1

mh
j,k [DhEh]j,k · (∇qg(xj,k, [Dhuh]j,k)−∇qg(xj,k, [DhUh]j,k))

−
∑
i∈I

[ ∑
j∈Inc+i

1
hj

Eh
j,0m

h
j,1

(
∂g

∂q2
(xj,1, [Dhuh]j,1)−

∂g

∂q2
(xj,1, [DhUh]j,1)

)

−
∑

j∈Inc−i

1
hj

Eh
j,Nh

j
mh

j,Nh
j −1

(
∂g

∂q1
(xj,Nh

j −1, [Dhuh]j,Nh
j −1)−

∂g

∂q1
(xj,Nh

j −1, [DhUh]j,Nh
j −1)

)]
.

Set

(DhEh, DhEh)2 =
∑
j∈J

Nh
j −2∑

k=1

|(D+Eh)j,k|2 +
∑
i∈I

[ ∑
j∈Inc+i

|(D+Eh)j,0|2 +
∑

j∈Inc−i

|(D+Eh)j,Nh
j −1|2

]
.

Replacing the previous equalities in (3.40), using (3.41) and recalling the estimate (3.16), we get

(DhEh, DhEh)2 ≤ −C

[∑
j∈J

Nh
j −1∑

k=1

hjE
h
j,kAh

j,k + hjm
h
j,k [DhEh]j,k ·

(
∇qg(xj,k, [Dhuh]j,k)

−∇qg(xj,k, [DhUh]j,k)
)

+
∑
i∈I

( ∑
j∈Inc+i

hjE
h
j,0B

h
j,0 +

∑
j∈Inc−i

hjE
h
j,Nh

j
Bh

j,Nh
j

)]
(3.42)

with C independent of h. By (3.34), we have

∑
j∈J

hjE
h
j,kAh

j,k +
∑
i∈I

[ ∑
j∈Inc+i

hjE
h
j,0B

h
j,0 +

∑
j∈Inc−i

hjE
h
j,Nh

j
Bh

j,Nh
j

]
≤ o(1)(Eh, Eh)2. (3.43)

Set P h = ((D+Uh
j,k)−, (D+Uh

j,k−1)
+), ph = ((D+uh

j,k)−, (D+uh
j,k−1)

+). By (3.17), (3.36) for any η > 0

∣∣mh
j,k [DhEh]j,k · (∇qg(xj,k, [Dhuh]j,k)−∇qg(xj,k, [DhUh]j,k))

∣∣
≤ mh

j,k max(|P h
j,k|β−2, |ph

j,k|β−2)
(

C

η
|P h

j,k − ph
j,k|2 + η|DhEh

j,k|2
)

≤ mh
j,k

(
C

η
|[DhUh]j,k − [Dhuh]j,k|β + η|DhEh

j,k|2
)

. (3.44)

Plugging the estimates (3.37), (3.43), (3.44) in (3.42), we finally get

(Eh, Eh)2 + (DhEh, DhEh)2 = o(1) for |h| → 0.

Hence we get the convergence of Mh to m in H1(Γ ) and uniform. By the convergence of Mh to m and (V4),
we get limh→0 ‖Vh[Mh]−Vh[mh]‖∞ = 0. Hence Uh and uh are solution of (3.15) with λ = Λh, Vj,k = Vh[Mh]j,k
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and respectively λ = λh, Vj,k = Vh[Mh]j,k + o(1). By a comparison principle for (3.15), we get |Λh− λh| ≤ o(1)
and therefore

lim
|h|→0

|λ− Λh| = 0. (3.45)

Let ūh be the continuous piecewise linear reconstruction of Uh on Γ . By (3.17), ūh → ū uniformly as |h| → 0,
up to a subsequence. By (3.37) and (3.45), ū is a weak solution to (1.1). Therefore by the uniqueness of the
solution to (1.1), we get the convergence of Uh to u in H1(Γ ) and uniform. �

4. Numerical implementation and experiments

This section is devoted to the implementation and test of a numerical solver for the stationary MFG sys-
tem (3.1)−(3.5). In [4], the stationary MFG system on the torus is solved via the so called forward-forward long
time approximation: for a given approximation step h, the approximate solution (Uh, Mh, Λh) is obtained as the
limit of (Un

h , Mn
h , Un

h /nΔt) for n → ∞, where (Un
h , Mn

h ) is computed via discretization of the corresponding
evolutive MFG system, implicit or explicit in time, up to time T = nΔt.

Here we propose a new approach which allows to compute the solution of the stationary MFG system directly,
avoiding long time or small delta approximations. We collect all the unknowns (U, M, Λ) in a single vector X of
length 2Nh + 1 (with Nh given by (2.2)) and we recast the 2Nh + 2 equations of the stationary MFG system
as functions of X . Hence we get a nonlinear map F : R

2Nh+1 → R
2Nh+2 defined by

F(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−νj(D2
hU)j,k + g(xj,k, [DhU ]j,k) + Λ− (Vh[M ])j,k k = 1, . . . , Nh

j − 1, j ∈ J

νj(D2
hM)j,k + Bh(U, M)j,k k = 1, . . . , Nh

j − 1, j ∈ J

Sh(U, Vh[M ]− Λ)i i ∈ I

T h(M, U)i i ∈ I

(M, 1)2 − 1
(U, 1)2

and we look for X	 ∈ R
2Nh+1 such that

F(X	) = 0 ∈ R
2Nh+2. (4.1)

By Theorems 3.7 and 3.9 there exists a unique solution to (4.1), but the system is formally overdetermined,
having 2Nh + 2 equations in 2Nh + 1 unknowns (this terminology applies to linear systems, nevertheless is
commonly adopted also in the nonlinear case with a slight abuse of notation). Indeed, the solution is meant in
the following nonlinear-least-squares sense:

X	 = argmin
X

1
2
‖F(X)‖22 .

To solve the above optimization problem, we employ the Gauss–Newton method, that we briefly recall here for
completeness. We first denote the residual function by

r(X) =
1
2
‖F(X)‖22 =

1
2
F(X)TF(X)

and we consider the standard Newton method for approximating a critical point of r:

Hr(Xk)δX = −∇r(Xk), Xk+1 = Xk + δX , k ≥ 0,
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where the gradient ∇r and the Hessian Hr are given by

∇r(X) = JF (X)TF(X), Hr(X) = JF(X)T JF(X) +
2Nh+2∑

i=1

∂2Fi

∂2X
(X)Fi(X),

with

(JF (X))i,j =
∂Fi

∂Xj
(X),

(
∂2Fi

∂2X
(X)

)
k,�

=
∂2Fi

∂Xk∂X�
(X) .

Since we expect the residuals Fi(Xk) to be small for Xk close enough to X	, it is reasonable to neglect the
second derivatives in Hr, using the approximation Hr(X) � JF(X)T JF (X). This yields the Gauss–Newton
method:

JF(Xk)T JF (Xk)δX = −JF (Xk)TF(Xk), Xk+1 = Xk + δX , k ≥ 0,

where the Jacobian JF is well defined assuming that the numerical Hamiltonian g is of class C2 in the gradient
variable and that the operator Vh is of class C1. Despite this method allows to employ only first order derivatives
of F , it is still not efficient from a numerical point of view. Indeed, once JF at Xk is computed, we also need to
assemble the right hand side JT

FF and the matrix JT
FJF , typically squaring the condition number of the system.

This can be avoided by simply realizing that the kth iteration of the Gauss–Newton method is just the normal
equation for the following linear-least-squares problem

min
δX

1
2
‖JF(Xk)δX + F(Xk)‖22, (4.2)

which is in turn easily and efficiently solved by means of the QR factorization of JF . Indeed, let m = 2Nh + 2,
n = 2Nh + 1 and suppose that JF (Xk) = QR, where Q is a m×m orthogonal matrix (i.e. Q−1 = QT ) and R

is a m× n matrix of the form R =
(

R1

0

)
, with R1 of size n× n and upper triangular. Writing Q = (Q1 Q2)

with Q1 of size m× n and Q2 of size m× (m− n), we get

‖JF(Xk)δX + F(Xk)‖22 = ‖QT
(
JF (Xk)δX + F(Xk)

)
‖22 = ‖QT QRδX + QTF(Xk)‖22

=
∥∥∥∥
(

R1δX

0

)
+
(

QT
1 F(Xk)

QT
2 F(Xk)

)∥∥∥∥
2

2

= ‖R1δX + QT
1 F(Xk)‖22 + ‖QT

2 F(Xk)‖22

which is finally minimized by getting rid of the first of the two latter terms, i.e. solving the square triangular
n× n linear system R1δX = −QT

1 F(Xk) via back substitution.
Summarizing, we propose the following simple algorithm for the stationary MFG system:

Given a guess X = (U0, M0, Λ0), a tolerance ε > 0 and a dumping parameter 0 < α ≤ 1,
repeat

• Assemble F(X) and JF (X).
• Solve the overdetermined linear system JF(X)δX = −F(X). in the least-squares sense (4.2), using the QR

factorization of JF(X).
• Update X ← X + αδX .

until ‖δX‖2 < ε

The algorithm is implemented in C-language and employs the library SuiteSparseQR [11], which is designed to
efficiently compute the QR factorization and the least-square solution to very large and sparse linear systems.
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(a () b)

Figure 2. A network with 2 vertices and 3 edges (a) is mapped in an equivalent network with
boundary vertices identified (b).

Some remarks are in order:

(1) We always initialize the method by setting U0 ≡ 0, Λ0 = 0 and M0 ≡ 1/L, where L =
∑

j∈J lj is the total
length of the network. In general there is no guarantee that the algorithm computes a minimum of (4.2)
with zero residual, i.e. a solution of the stationary MFG system. Nevertheless, in all the tests performed,
our algorithm seems to converge to a zero residual minimum independently on the initial guess.

(2) As for the standard Newton method, it is known that also the Gauss–Newton method may not converge if
the dumping parameter is set to α = 1. A fine tuning of α can be accomplished via some moderate time
consuming line search technique, but for our purposes we simply checked that the fixed value α = 0.9 is
sufficient in all the considered examples.

(3) We never impose the constraint M ≥ 0 in the computation. Surprisingly, our unconstrained optimization
algorithm converges to a solution of the MFG system with non negative mass. We extensively checked this
feature, also in the case of negative or changing sign initial guesses. Even if the mass can be negative in
some intermediate iterations of the Gauss–Newton method, we always end up with a non negative mass in
all the considered examples.

(4) Our technique can be successfully applied also in the homogenization of Hamilton−Jacobi equations, e.g.
for computing the effective Hamiltonian for some cell problems. Our preliminary tests using the nonlinear-
least-squares approach are very promising, both in terms of accuracy and computational costs.
The previous points, in particular the convergence of the method, are still under investigation and will be
addressed in a future work (see [6]).

We now set up the data for the numerical experiments. We consider a simple network in the plane with 2
vertices and 3 edges of unit length, as in Figure 2a. For computational purposes the network is mapped in a
topologically equivalent network, in which one vertex is located at the origin and the edges are delimited by
the 3rd roots of unity (vj = (cos(2πj/3), sin(2πj/3)), for j = 0, 1, 2), as in Figure 2b. Note that the boundary
vertices, i.e. the vertices with a single incident edge, are identified and correspond to a single vertex on the
network.

We assume that the numerical Hamiltonian has the form (3.30), with β = 2 and f(x) is such that, for
j = 0, 1, 2 and x ∈ ej ,

f(x) = fj(x) := sj (1 + cos (2π(t + 1/2))) , x = tvj , t ∈ [0, 1],
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min = 0.039 max = 0.778 min = 5×10−4 max = 1.017 min = 0.053 max = 1.328

)c()b()a(

Figure 3. The case Vh[m] = m2 and ν = 0.1, the cost f is active on (a) three edges, (b) two
edges, (c) one edge.

where sj ∈ {0, 1} is a switch parameter to activate/deactivate the corresponding cost on the edge ej . If not
differently specified, we discretize each edge by Nj = 250 nodes, so that the resulting nonlinear system has
dimension 1502 × 1501, and we choose a tolerance ε = 10−4 for the stopping criterion of the algorithm. We
finally assume a uniform diffusion on the whole network, i.e. νj ≡ ν for j = 0, 1, 2 and ν > 0.

Here we are mainly interested in the qualitative behavior of the computed solutions, and we postpone at the
end of the section some experimental analysis on the performance of the algorithm. Nevertheless, we remark
that in all the following tests, the proposed method converges in about 10 iterations and the computational
time is of the order of few seconds, even for larger grids.

All the tests were performed on a Lenovo Ultrabook X1 Carbon, using 1 CPU Intel Quad-Core i5-4300U
1.90 Ghz with 8 Gb Ram, running under the Linux Slackware 14.1 operating system.

Test 1. We consider a local operator of the form Vh[m] = m2, and we choose a diffusion coefficient ν = 0.1.
Figure 3 shows the results corresponding to the activation of the cost f on three, two or one edge, namely for
(s0, s1, s2) = (1, 1, 1), (s0, s1, s2) = (1, 1, 0) and (s0, s1, s2) = (1, 0, 0) respectively.

In the top panels we represent the mass M using a color-map in which the blue and the red correspond
respectively to the minimum and maximum values. Moreover, we represent the network as a fatten tube, whose



84 S. CACACE ET AL.

min = 0 max = 0.939 min = 0 max = 1.129 min = 0 max = 1.915

)c()b()a(

Figure 4. The case Vh[m] = m2 and ν = 10−4, the cost f is active on (a) three edges, (b) two
edges, (c) one edge.

cross sections have a size proportional to M at the corresponding points. In the bottom panels we represent
the network (in black) and both the mass M (in blue) and the corresponding value function U (in red). Since
V is increasing, it penalizes concentration of the mass. The cost f has, if sj �= 0, a maximum in the center of
the edge ej . Hence, if ν is not to small, the agents should be well distributed on the network with a maximum
of m around the minima of the value functions u, i.e. in the center of the edges where the cost is active. In fact
we observe this behavior in all the three examples.

Test 2. We are interested in the behavior of the solution as ν → 0, hence we choose the same parameters of the
previous test, but with ν = 10−4. In this respect, our method seems very robust and we can reach very small
values of ν even for quite coarse grids. Figure 4 shows the corresponding results. In this case we see that the
solution is not better than Lipschitz and the support of Du and m are disjoint, as in the Euclidean case (see [4],
Test 2).

Test 3. We set V [m] = 1 − 4
π arctan(m), we consider both ν = 0.1 and ν = 10−3 and the cost f active on

the whole network, i.e. (s0, s1, s2) = (1, 1, 1). Figure 5 shows the corresponding results. Since V is decreasing,
the agents want the share the same position and therefore tend to concentrate around the minima of the value
function. Note that for ν small, the regularizing effect of the diffusion is small and m is close to a sum of Dirac
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min = 0.003 max = 1.187 min = 0 max = 37.291

)b()a(

Figure 5. The case Vh[m] = 1− 4
π arctan(m) with (a) ν = 0.1 and (b) ν = 10−3, the cost f is

active on the whole network.

functions concentrated at the minima of u. In this case assumption (V2) is not satisfied and uniqueness of the
solution may fail.

Test 4. In this experiment, we show that the method can efficiently handle the computation on much more
complicated structures. To this end, we consider the periodic network shown in Figure 6a. It is a self-similar
set, in which the length of each edge scales with a factor 1/2 when moving to adjacent edges. Starting from
the longest edges, we stop at the second level of branching and we identify the extremal boundary vertices.
Moreover, we choose the local operator Vh[m] = m2, uniform diffusion coefficient ν = 0.1 and the cost f as
before, active on the whole network. In this example the players are distributed on all the edges with a scaling
factor which depends on the length of the edge.

Performance and convergence. Here we present some results showing the convergence and performance of
the proposed method, both in terms of accuracy and computational times. We consider the same setting of
Test 1, with the cost f active on all the three edges of the network, i.e. (s0, s1, s2) = (1, 1, 1). Moreover, we
choose the same number of discretization nodes for each edge, namely Nj = N for j = 0, 1, 2 and a variable N ,
so that the space step is h = 1/N on the whole network. Note that, in the present case, the total number
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min = 0 max = 0.103

(a)

)c()b(

Figure 6. Solution on a self-similar network, (a), (b) the mass M , (c) the value function U .

of degrees of freedom (dofs) of the problem is much more than N . Indeed, we have N nodes for each of the
three edges and for both U and M , that is dofs = 6N . Since the exact solution is unknown for this problem, we
assume as correct the solution computed for N = 2000, denoted by (Uex, M ex, Λex). Then we define the error as

Eh = ‖U − Uex‖1 + ‖M −M ex‖1 + |Λ− Λex|,

where the discrete 1-norm, for a generic vector W with 3N components, is computed as ‖W‖1 = h
∑3N

k=1 |Wk|
and the exact solution is projected on the corresponding grid via linear interpolation. Finally, we define the
experimental order of convergence as Eoc(h1, h2) = log(Eh1/Eh2)/ log(h1/h2) and we set ε = 10−8 for the
stopping criterion of the algorithm.

In Figure 7a we show, for N = 1000, the behavior of the computed Λ as a function of the number of iterations.
In this case Λex = −1.058687, whereas Λ = −1.058876 is obtained after 20 iterations with |Λ−Λex| = 0.000189.

Similarly, in Figure 7b we plot the error Eh for different space steps h, ranging from 10−2 to 10−3. This shows
an experimental convergence at least of order 1.

Finally, in Table 1 we report all the results, including the error |Λ−Λex| related only to the approximation of
the ergodic constant, the Eoc computed for successive space steps, the number of iterations and the corresponding
computational times. We clearly see that, even for quite coarse grids, we get a reasonable approximation of the
solution with a very low time consumption.
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Figure 7. Convergence, (a) Λ vs. number of iterations for N = 1000, (b) error Eh vs. space step h.

Table 1. Performance of the proposed method.

N Dofs Error Eh Error |Λ − Λex| Iterations Eoc Cpu time

100 600 0.01159 0.003737 7 – 0.13

200 1200 0.00544 0.001734 7 1.09 0.37

400 2400 0.00241 0.000762 17 1.17 4.09

800 4800 0.00091 0.000284 16 1.40 19.57

1000 6000 0.00059 0.000189 20 1.94 47.94
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[17] M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems
and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251.

[18] A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics. Math. Models Methods Appl.
Sci. 20 (2010) 567–588.

[19] J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260.

[20] V. Lescarret and E. Zuazua, Numerical approximation schemes for multi-dimensional wave equations in asymmetric spaces.
Math. Comput. 84 (2015) 119–152.

[21] D. Mercier and S. Nicaise, Existence results for general systems of differential equations on one-dimensional networks and
prewavelets approximation. Discrete Contin. Dyn. Syst. 4 (1998) 273–300.

[22] S. Nicaise, Elliptic operators on elementary ramified spaces. Integral Equations Operator Theory 11 (1988) 230–257.

[23] J.A. Sethian, Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechan-
ics, Computer Vision, and Materials Science. Cambridge Monograph on Appl. Comput. Math. Cambridge University Press,
Cambridge (1999).


	Introduction
	Notations and preliminary definitions
	A finite difference scheme for the stationary MFG system
	Existence
	Uniqueness
	Convergence

	Numerical implementation and experiments
	References

