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Abstract

We consider the biharmonic operator subject to homogeneous boundary condi-
tions of Neumann type on a planar dumbbell domain which consists of two disjoint
domains connected by a thin channel. We analyse the spectral behaviour of the
operator, characterizing the limit of the eigenvalues and of the eigenprojections as
the thickness of the channel goes to zero. In applications to linear elasticity, the
fourth order operator under consideration is related to the deformation of a free
elastic plate, a part of which shrinks to a segment. In contrast to what happens
with the classical second order case, it turns out that the limiting equation is here
distorted by a strange factor depending on a parameter which plays the role of the
Poisson coefficient of the represented plate.

1 Introduction

This paper is devoted to a spectral analysis of the biharmonic operator subject to Neumann
boundary conditions on a domain which undergoes a singular perturbation. The focus is
on planar dumbbell-shaped domains Q., with € > 0, described in Figure 1} Namely, given
two bounded smooth domains Qp, Qg in R? with Q; N Qg = 0 such that Q; O {(0,y) €
R?:-1<y<1},0Qr D {(1,y) € R?: -1 <y < 1},and (QrUQ)N([0,1] X [-1,1]) = 0,
we set

Q=Q,UQp, and Q. =QUR. UL,

for all € > 0 small enough. Here R, U L is a thin channel connecting Q; and Qg defined

by
Re = {(x,y) e R* : x € (0,1),0 < y < eg(x)}, (1.1)

Le = ({0} x (0,€9(0)) U ({1} x (0, €9(1)))),

where g € C?[0, 1] is a positive real-valued function. Note that Q. collapses to the limit
set Qo = QU ([0,1] X {0}) as e — 0.
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Figure 1: The dumbbell domain Q..

We consider the eigenvalue problem

ANu—tAu+u=Au, in Q,,

(1- 0)% +o0Au=0, on 09, (1.2)
; 0

T% — (1 -0) divyg, (D?u - n)aq. — (6Anu) =0, ondQ,,

where 7 > 0, 0 € (—1,1) are fixed parameters, and we analyse the behaviour of the
eigenvalues and of the corresponding eigenfunctions as e — 0. Here divygq, is the
tangential divergence operator, and (-)sq, is the projection on the tangent line to 0€..
The corresponding Poisson problem reads

Nu—-tAu+u=f, in Q,
(1- 0)% +o0Au =0, on 99, (1.3)
T% -(1-0) diVaﬁg(Dzu “n)oq, — % =0, ondQ,,

with datum f € L%(Q.).

Since dQ, has corner singularities at the junctions (0, 0), (0, €g(0)), (1,0), (1,€g(1))
and H* regularity does not hold around those points, we shall always understand problems
(1.2), (1.3), (as well as analogous problems) in a weak (variational) sense, in which case
only H? regularity is required.

Namely, the variational formulation of problem is the following: find u € H?(Q)
such that

f (1-0)D*u: D*p + cAulg + tVu - Vo + updx = f fodx, (1.4)
Qe Qe
for all ¢ € H%(Q,). The quadratic form associated with the left-hand side of - call it

Bq, (u, @) - is coercive for all 7 > 0 and o € (-1, 1), see e.g. [13], [14]. In particular, by
standard spectral theory this quadratic form allows to define a non-negative self-adjoint



operator T = (A? — 7A + I)y(y) in L*(Qc) which plays the role of the classical operator
A? — A + I subject to the boundary conditions above. More precisely, T is uniquely
defined by the relation

Bo (u,0) =< T?u, TV?¢ >12(0

for all u, ¢ € H?(Q.). In particular the domain of the square root TV of T is H*(Q,)
and a function u belongs to the domain of T if and only if u € H?(Q) and there exists
f € L2(Q¢) such that Bo_(u, ¢) =< f, ¢ >12(q,) forall g € H?(Q¢), in which case Tu = f.
We refer to [16, Chp. 4] for a general introduction to the variational approach to the
spectral analysis of partial differential operators on non-smooth domains.

The operator T is densely defined and its eigenvalues and eigenfunctions are exactly
those of problem . Moreover, since the embedding H?(Q¢) C L?(Q.) is compact,
(A? — A + I)N(s) has compact resolvent, hence the spectrum is discrete and consists
of a divergent increasing sequence of positive eigenvalues 1,(Q.), n € N, with finite
multiplicity (here each eigenvalue is repeated as many times as its multiplicity).

Problem arises in linear elasticity in connection with the Kirchhoff-Love model
for the study of vibrations and deformations of free plates, in which case o represents
the Poisson ratio of the material and 7 the lateral tension. In this sense, the dumbbell
domain Q. could represent a plate and R, a part of it which degenerates to the segment
[0, 1] x {0}.

We note that problem can be considered as a natural fourth order version of the
corresponding eigenvalue problem for the Neumann Laplacian —Ay, namely

1.5
gu ), on 09, (1.5)

n =

{—Au +u=2Au, inQ,,

the variational formulation of which reads

f Du-D<p+u<pdx:/1f ue dx, (1.6)
Q. Qe

where the test functions ¢ and the unknown u are considered in H!(Q,).

Although the terminology used in the literature to refer to boundary value problems
for fourth order operators is sometimes a bit misleading, we emphasise that the formula-
tion of problems (1.2), is rather classical, see e.g. [28, Example 2.15] where problem
with 7 = 0 is referred to as the Neumann problem for the biharmonic operator.
Moreover, we point out that a number of recent papers devoted to the analysis of
have confirmed that problem can be considered as the natural Neumann problem
for the biharmonic operator, see [7], [8]], [10], [111], [12]], [13], [14], [29]. We also refer
to [22] for an extensive discussion on boundary value problems for higher order elliptic
operators.

It is known that the eigenelements of the Neumann Laplacian on a typical dumbbell
domain as above have a singular behaviour, see [1]], [2]], [3]], (4], [5], [€], and the references
therein. For example, it is known that not all the eigenvalues of —Ay on Q. converge to
the eigenvalues of —Ay in Q; indeed, some of the eigenvalues of the dumbbell domain
are asymptotically close to the eigenvalues of a boundary value problem defined in the
channel R.. This allows the appearance in the limit of extra eigenvalues associated with
an ordinary differential equation in the segment (0, 1), which are generally different from
the eigenvalues of —Ay in Q. Such singular behaviour reflects a general characteristic
of boundary value problems with Neumann boundary conditions, the stability of which



requires rather strong assumptions on the admissible domain perturbations, see e.g., [4],
(8], [27]. We refer to [15} p. 420] for a classical counterexample.

The aim of the present paper is to clarify how Neumann boundary conditions affect
the spectral behaviour of the operator A? — A on dumbbell domains, by extending the
validity of some results known for the second order operator —Ay to the fourth-order
operator (A* — 7A)N(p).

First of all, we prove that the eigenvalues of problem can be asymptotically
decomposed into two families of eigenvalues as

(An(Qe)In>1 = (@K)k=1 U (0] )21, ase — 0, (1.7)

where (wk)k>1 are the eigenvalues of problem

Now — TAW + w = wi w, in Q,
(1- 0)6;7”; +0Aw =0, on 0Q, (1.8)
2% — (1~ o) divan(D*w - n)aq — 2422 =0, on 9Q,

and (0] );>1 are the eigenvalues of problem

ANv—tAv+v= 916 v, in R,
(1- 0)% + 0Av =0, on [,
P . ) 8(Av) (1.9)
5. — (1 —o)divr,(D*v - n)r, — =5~ =0, onlT,
v=0= g—;}’ on Le.

The decomposition is proved under the assumption that a certain condition on R,
called H-Condition, is satisfied. We provide in particular a simple condition on the profile
function g which guarantees the validity of the H-Condition.

Thus, in order to analyse the behaviour of 1,,(Q¢) as € — 0, it suffices to study 0; as
€ — 0. To do so, we need to pass to the limit in the variational formulation of problem
(1.9). Since the domain R, collapses to a segment as € — 0, we use thin domain techniques
in order to find the appropriate limiting problem. As in the case of the Laplace operator,
the limiting problem depends on the shape of the channel R, via the profile function g(x).
More precisely it can be written as follows

Lo (gh")" - L(gh') +h = Oh, in (0,1)
h(0) = h(1) =0, (1.10)
H(0) = H(1) = o.

This allows to prove convergence results for the eigenvalues and eigenfunctions of

problem (1.3). The precise statement can be found in Theorem [7] Roughly speaking,
Theorem 7| establishes the following alternative:

(A) either A,(Q¢) — wg, for some k > 1in which case the corresponding eigenfunctions
converge in Q to the eigenfunctions associated with wy.

(B) or 4,(Q¢) — 6;as € = 0 for some [/ € N in which case the corresponding eigen-
functions behave in R, like the eigenfunctions associated with ;.

Moreover, all eigenvalues wy and 6; are reached in the limit by the eigenvalues 1, (Q,).
We find it remarkable that for o # 0 the limiting equation in (1.10) is distorted by the
coefficient 1 — 6% # 1. This phenomenon shows that the dumbbell problem for our fourth
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order problem (1.2) with o # 0 is significantly different from the second order problem
(1.5) considered in the literature.
We also note that the Dirichlet problem for the operator A?u — 7Au + u, namely

Au—-7Au+u=2Au, inQ,,

u=0, on 0Q, (1.11)
% =0, on 0Q,

is stable in the sense that its eigenelements converge to those of the operator A2 ~7A+1 in
Q as € — 0. In other words, as for the Laplace operator, in the case of Dirichlet boundary
conditions, no eigenvalues from the channel R, appear in the limit as € — 0. In fact, it is
well known that Dirichlet eigenvalues on thin domains diverge to +oco as € — 0, because
of the Poincaré inequality.

In order to prove our results, we study the convergence of the resolvent operators
(A2 —tA+1 ) o.0) and this is done by using the notion of &-convergence, which is a
useful tool in the analysis of boundary value problems defined on variable domains, see
e.g. [5], 7, [8].

We point out that, although many papers in the literature have been devoted to the
spectral analysis of second order operators with either Neumann or Dirichlet boundary
conditions on dumbbell domains, see [2], [3], [23]], [24] and references therein, very little
seems to be known about these problems for higher order operators. We refer to [30]
for a recent analysis of the dumbbell problem in the case of elliptic systems subject to
Dirichlet boundary conditions.

Finally, we observe that it would be interesting to provide precise rates of convergence
for the eigenvalues 4,(€Q¢) and the corresponding eigenfunctions as € — 0 in the spirit of
the asymptotic analysis performed e.g., in [3], [18], [19], [20], [21], [23], [24] for second
order operators. However, in case of higher order operators, this seems a challenging
problem and is not addressed here.

The paper is organized as follows. In Section[2]we prove the asymptotic decomposition
of the eigenvalues 4,,(Q). This is achieved in several steps. In Theorem|[1|we provide
a suitable upper bound for the eigenvalue 1,(Q¢). Then, in Definition [2| we introduce
an assumption on the shape of the channel R, called H-Condition, which is needed to
prove a lower bound for 4,(Q,) as € — 0, see Theorem Finally, we collect the results
of the section in Theorem [3|to deduce a convergence result for the eigenvalues and the
eigenfunctions of problem under the assumption that the H-Condition holds. In
Section [3|we show that a wide class of regular dumbbell domains satisfy the H-Condition.
In Section [4 we study the convergence of the solutions of problem ase — 0, we
identify the limiting problem in (0, 1), and we prove the spectral convergence of problem
to problem (1.10). Finally, in Section[5|we combine the results of the previous sections
and prove Theorem

2 Decomposition of the eigenvalues

The main goal of this section is to prove the decomposition of the eigenvalues of problem
into the two families of eigenvalues coming from and (1.9). First of all we note
that, since Q., Q and R, are sufficiently regular, by standard spectral theory for differential
operators it follows that the operators associated with the quadratic forms appearing in the
weak formulation of problems (1.2), (1.8), have compact resolvents. Thus, the spectra
of such problems are discrete and consist of positive eigenvalues of finite multiplicity. The



eigenpairs of problems (1.2), (1.8), will be denoted by (A,(Q¢), ¢5)n>1> (@n, @) n>1

(65, € )n=1 respectively, where the three families of eigenfunctions ¢¢, ¢, y¢ are complete
orthonormal bases of the spaces L?(Q), L?(Q), L?(R.) respectively. Moreover we set
(An=1 = (@k)k=1 U (0] )i>1, where it is understood that the eigenvalues are arranged in
increasing order and repeated according to their multiplicity. In particular if wx = 6] for
some k, | € N, then such an eigenvalue is repeated in the sequence (Af),>; as many times
as the sum of the multiplicities of wi and 7. Let us note explicitly that the order in the
sequence (AS),>; depends on €. For each ¢ we define the function ¢¢ € H*(Q) & H*(R,)
in the following way:

Q .

c ¢y, 1n Q,
= 2.1
O {o, in R, @1)

if At = wg, for some k € N; otherwise

0, 1inQ,
$n = { . . (2.2)

Y/, InRe,

it A = 915, for some | € N. We observe that in the case A}, = w = 916 for some k,l € N,
with wy of multiplicity m; and 6] of multiplicity m; we agree to order the eigenvalues
(and the corresponding functions ¢},) by listing first the m; eigenvalues @y, then the
remaining m; eigenvalues 0;.

Note that (¢, ¢;)L2(Q€) = 6;j where §;; is the Kronecker symbol, that is §;; = 0 for
i # jand §;; = 1 for i = j. Note also that although ¢;, defined by are in H%(Q,) (due
to the Dirichlet boundary condition imposed in L), the function ¢}, defined by do
not lie in H%(Q,). To bypass this problem we define a sequence of functions in H?(Q,)
by setting

&n =

. {Ego;}, if A€ = oy,
o, if2S =65,

where E is a linear continuous extension operator mapping H?(Q) to H2(RY). Then it
is easy to verify that for fixed i, j, we have (&, §J.€)LZ(Q€) = §jj + o(1) as € — 0. Then for
fixed n and for € small enough, &5, ..., £ are linearly independent.

Now we prove an upper bound for the eigenvalues 1,(Q¢).

Theorem 1 (Upper bound). Let n > 1 be fixed. The eigenvalues A;, are uniformly bounded
in € and
M(Qe) < A5 +0(1), ase — 0. (2.3)

Proof. The fact that A{, remains bounded as € — 0 is an easy consequence of the inequality
Ay < wp < 0, (2.4)

which holds by definition of Y. In the sequel we write L to denote the orthogonality in
L% and [fi,..., fm] for the linear span of the functions fi, ..., fu.
By the variational characterization of the eigenvalues 1,(Q¢) we have

(1 - 0)|D*y | + o|AY| + 7|V + [Y)?

Qe
fQ G

€ H(Q), ¥ 20and ¢y L (pf,...,(pfl_l} . (2.5)

An(Q¢) = min



Since the functions &7, ..., &; are linearly independent, by a dimension argument there
exists £€ € [&], ..., & ] such that ||§€||Lz =1,and &° L ¢f,...,05_,.
We can write &€ = Y7, a;f, for some ai, . ..., € R depending on € such that
", a?=1+0(1) as € — 0. By using £€ as a test function in (2.5) we get

(@) < f (1= 0)IDPE 2 + G AEP + £ |VEP + [T

_Z (f (1= 0)ID*E* + ol AE|” + 7| VE|? +|§I) (2.6)
+Zalaj(f (1- o) (D : D*E) + OAEEAES + TVES - VEF +§§)
i#j

By definition of £ and the absolute continuity of the Lebesgue integral, we have

{wk +o(1), if kst A = wy,

1—0)|D?EEI + o|AEE)? + 7| VEE + |E€)% =
[ a- oo p e olngg 4 rivee 4 i) o 20t 1= 0

€

which implies that fQ (1- 0)|D2§i€|2 + 0'|A§f|2 + T|V§f|2 + Ifflz <AL +0(1).
Note that

a,a](f (1-0)(D*& : D*E) + o AEFAES + TVE - VE + EE | = 0(1).
1¢]

Hence, 1,(Q¢) < Y1, a?(A5 + 0(1)) + o(1) < A§ + o(1) which concludes the proof of
(2.3). o

Remark 1. Note that the shape of the channel R, does not play any role in establishing the
upper bound. The only fact needed is that the measure of R, tends to 0 ase — 0.

In the sequel we shall provide a lower bound for the eigenvalues 4, (). Before doing
so, let us introduce some notation.

Definition 1. Let o € (—1,1), 7 > 0. We denote by er (Re) the space obtained as the

closure in H*(R,) of C*(R.) functions which vanish in a neighbourhood of L.. Furthermore,
for any Lipschitz bounded open set U we define

1/2
i) = (1= OID FIa ) + TNAFIEy + IV FI gy + 1 F W] -

forall f € HX(U).

Note the functions u in Hf (Re) satisfy the conditions u = 0 and Vu = 0 on L, in the
sense of traces.

Proposition 1. Let n € N be such that the following two conditions are satisfied:

(i) Foralli=1,...,n,
A5 = 2i(Qe)| = 0 ase — 0, (2.7)

(ii) There exists § > 0 such that

2 < Anr(Q0) = 6 (2.8)

for any e > 0 small enough.



Let P, be the projector from L*(Q¢) onto the linear span [¢%, . . ., ¢S] defined by
Png = Z(g, )29 > (2.9)
i=1

forall g € L*(Qc), where ¢ is defined in (2.1), (2.2). Then
l0F — Pagp; I 2(0)@H2(R) — O (2.10)
ase = 0, foralli=1,...,n.

Proof. By and we can extract a subsequence from both the sequences (Af)c>0
and (1;(Q¢))e>o such that

A% 5 4, and A(Qq) — A

ask — oo, forall i = L...,n+ 1
By assumption we have A; = A; for all i = 1,.. ., n. Thus, by passing to the limit as e — 0

in (with n replaced by n + 1) and in (2.8), we get
An < Apst =8 < Aups = 8.

We rewrite A4, ..., A, without repetitions due to multiplicity in order to get a new
sequence
M<Ay< - <A =1, (2.11)

and set Isﬂ = ;1\,,+1 < Au+1. Thus, by assumption (2.8) we have that

A < Ags1. (2.12)
Foreachr =1,...,s, let/Tr = A, = --- = Aj,, for some i, < j, ir,j- € {1,...,n}, where

it is understood that j, — i, + 1 is the multiplicity of A,. Furthermore, we define the
eigenprojector Q, from L?(€,) onto the linear span [@f s (pjr] by

Jr
Qrg = > (9: 05 )220 05, (2.13)

i=i,
We now proceed to prove the following
Claim: ||&* — Qr§fk||Hz(Qek) —0ase > 0,foralli, <i<j,andr <s.

Let us prove it by inductionon 1 <r <s.
If r = 1, we define the function

J1
Xeo = & = QuE = £ = Y (8 0 e o)
I=1
Then y,, € H*(Q¢), (XEk"/’lek)Lz(Qek) = 0foralll = 1,...,j; and by the min-max

representation of 15(€Q,, ) we have that

[Xek]?{?r,r(gek) 2 AZ(QGk)”XEk”iZ(QEk) = IZ”XE;CHiZ(QSk) - 0(1) (214)



On the other hand, it is easy to prove by definition of y, that

f (1- o*)(Dz)(ek : ngb) + oA Y AY + TV xe - VU + xeo ) dx
Q

€k

“ 2@ [ ravdx o) (215
QEk

for all y € H*(Q¢,). This in particular implies that
[XEk]iIczr,f(Qek) = /11 (Qek) ”Xek ||iz(96k) + 0(1) (216)
and consequently, B
[Xék]?{g’r(gek) S Al”)(ek”iZ(Qek) + 0(1) (217)
Hence, inequalities (2.14), imply that

Rallxelizqq, ) = 0(1) < Aillxe o, ) + 0(1).

which implies that ||)(€k||Lz(QEk) = 0(1) (otherwise we would have Ay < A+ o(1),
against (2.11)). Finally, equation (2.16) implies that [y, ] 2, () = o(1), so that also

I xe 2 (o) = 0(1).
Let r > 1 and assume by induction hypothesis that

" - Qt§i€k||H2(Qek) -0 (2.18)

ask — oo, foralli; <i<j,andforallt =1,...,r — 1. We have to prove that (2.18) holds
alsofort =r. Leti, <i < j, andlet y,, = &% — Q,&*. Then

1

()(ek,qo;")LZ(QEk) —0 ask —o oo forallh=1,...,j . (2.19)

Indeed, if h € {i,...,J,} then by definition of y,, (x> <p;" )Lz(QEk) = 0. Otherwise, if
h < i, note that the function (p;" satisfies

fg; (1-0) (DZ(pZ" : Dzlﬁ) + oA AY + TV VY + ok dx

€k

:/lh(Qek)f o dx,
Qe

for all y € H%(Q,,), briefly Bqo,, ((p;", V) = Ah(Qek)(q);k, ¢)L2(Q€k) , for all y € H*(Qg,),
where By denotes the quadratic form associated with the operator A> — rA + I on an
open set U. Similarly, Bo,, (fiek, Y) = Af’“(§f", ¢)L2(Qek) +o(1) for all y € H*(Q,). Thus,

Ah(Qek)(q);", fie")LZ(Qek) = AR (&, q)Z")Lz(QEk) + 0(1) which implies
(Ah(Qe) = A7) (@ & 2, ) = 0(1) (2.20)
and since (A;(Q¢,) — A7) — (Ih - Il) # 0 by assumption, by we deduce that
((p;", §i€k)Lz(Q€k) =o(1) as e — 0, forall h = 1,..., j,, which implies (2.19).
As in the case r = 1 we may deduce that

[radie o) 2 Aratlle g, ) = 0(1): (2.21)

9



On the other hand, by definition of y., we have

[redie o) < Al eIz, ) + 0(1). (2.22)

By (2.21), (2.22) and (2.11) it must be II)(eklliz(Q y = 0(1) and by (2.22) we deduce that
€k
[Xek]?{z @) = o(1), hence || ye, ||H2(st) — 0, as k — oo. This concludes the proof of the
o, T\ %€

Claim.

Now define the projector O, from L2(€) into the linear span [0S, ... 0] by

n
Ong = Z(g, 01200 P
i=1
Then, as a consequence of the Claim we have that

IE* = 0né* i,y = 0 (2.23)

= 1,...,n. Indeed for all indexes i = 1,...,n there exists 1 <
r < s such that i, < i < j,; let assume for simplicity that r = 1. Then we have
E* - Qlff"HHz(Qek) — 0 as k — oo; and also

as k — oo, for all i

IE* = On 2o,y < IEF = Q1E Mo

n
+Z|( o o
l>j1
and the right-hand side tends to 0 as k — oo because ||q)l lz2(q., ) is uniformly bounded

in k and (ffl , qol )LZ(Qek) — 0 as k — oo (to see this it is sufﬁaent to argue as in the proof
of (2.20)). Moreozer, since || £ — ¢l~€k||H2(Q)®H2(R€k) —0ask > ocoforalli=1,...,n we
also have ||¢:* —Qngéf"IIHz(Q)@Hz(REk) — 0ask — oo, foralli =1,...,n. Thus (Qn yees

Onsk) is a basis in (L?(Q,)") for [ofF, . ... ¢x"]. Hence, ¢;* = 21:1 alel."Qngél" for some
coefficients a’* = (¢5*, ¢7%)12¢q, y +0(1) as k — oo. Then for alli = 1,...,n we have
li 1 1 ( ek)

97 = Pag* || 2 ()@m2(r Re,)

Z 0 )24 = Ond*] +0(1) ) Oudy*
I= I=1

and the right-hand side tends to 0 as k — 0. m|

H(Q)®H?(Re,)

Remark 2. In the previous proof one could prove that the matrix A = (alelfc .i=1....n is almost
orthogonal, in the sense that AA' = A'A =1+ o(1) ask — oo. To prove this it is sufficient

to show that the matrix A = (( AR s D1z @ ) s almost orthogonal Let | be fixed
and note that ¢7* = Y7 _ (6%, ot )12 (0. qom + (I[ Qm)g{)l , hence, by (2.23) we deduce that

n
= (¢" 4 z(0,,) = Z(Gblek’ Om)iz0.) (@ 8 iz, ) +0(1) (2.24)
m=1

as k — oo. Note that we can rewrite as AA* = T+ o(1), and in a similar way we also
get that A'A = 1+ o(1), concluding the proof.
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In the sequel we shall need the following lemma.

Lemma 1. Let1 < i < j < n. Assume that X € R is such that, possibly passing to a
subsequence, A;p(Qe) — Aase — 0 forallm € {i,...,j}. If ye € [¢5, ..., qoj], lxellzzca,) =
1 and yelo — y in H*(Q) then

f(l—a)(Dz)(:th//)+0A)(A¢+TV)(-V¢+)(gl/dx:;1\f xydx, (2.25)
Q Q

forally € H*(Q).

Proof. Since Xe € [of,..., qoje] gnd ll xellzzo,) = 1 there exist coefficients (al(e)){:i such
that y. = Z;:i ai(€)g; and Zf:i alz(ez\ = 1. Note that for all m € ii, ..., J}, possibly
passing to a subsequence, there exists @, € H*(Q) such that ¢¢,|o — @, in H*(Q). Since
Xle_ — y in H?(Q) by assumption, we get that y = Zé:i aL@ in Q for some coefficients
(al){:l.. Let € H?(Q) be fixed and consider an extension 1/ = Eyy € H>(RN). Then

f (1-o0) (Dz)(e : D2® + O'A)(EA{;+ TV)(EVIZ-I- )(eg;
Qe
J

= Z a;(€) UQ (1-0)(Df : D*Y) + o A@fAY + TV (VY + oY/ (2.26)
I=i €

J

_ ;a,(e)al(Qe) fQ e oy

Then it is possible to pass to the limit in both sides of by splitting the integrals over
Q. into an integral over R, (that tends to 0 as € — 0) and an integral over Q. Moreover,
the integrals over Q will converge to the corresponding integrals in as e — 0,
because of the weak convergence of y. in H*(Q) and the strong convergence of Ey to ¢/
in H2(Q). O

We proceed to prove the lower bound for 1,(Q¢). To do so, we need to add an extra
assumption on the shape of Q.. Hence, we introduce the following condition in the spirit
of what is known for the Neumann Laplacian (see e.g., [1]], [2]], [6]).

Definition 2 (H-Condition). We say that the family of dumbbell domains Q, € > 0,
satisfies the H-Condition if, given functions u. € H*(Q.) such that lluellfeq.) < R forall
€ > 0, there exist functions i, € Hi (Re) such that

(i) llue — dellrzr,) — 0 ase — 0,
(ii) [ae]?{?,,(R ) < [“Jf{g,(g )t o(1) ase — 0.

Recall that [-]gz _ is defined above in Deﬁmtlonl We will show in Sectlon I that a
wide class of channels R, satisfies the H-Condition.

Theorem 2 (Lower bound). Assume that the family of dumbbell domains Q., € > 0,
satisfies the H-Condition. Then for every n € N we have 1,(Q¢) > A5, —o0(1) ase — 0.

Proof. By Theorem (1| and its proof we know that both 1;(Q¢) and A are uniformly
bounded in €. Then, for each subsequence €, we can find a subsequence (which we still
call ¢¢), sequences of real numbers (4;);en, (Ii)ieN, and sequences of H*(Q) functions
(¢:)iens (@1)ien, such that the following conditions are satisfied:

11



(i) AF — A, foralli > 1

(i) 1:(Qe) — Ay, foralli > 1;
(iii) &*|o — ¢; strongly in H*(Q), for all i > 1;
(iv) ¢¥lo — @i weakly in H*(Q), for all i > 1;

Note that (iii) immediately follows by recalling that £*|q either it is zero or it coincides
with qol.Q. Then (iv) is deduced by the estimate ||ng.€k||H2(Q ) < ¢Ai(Q¢) and by the

boundedness of the sequence 4;(Q, ), k € N.

We plan to prove that A=A foralli > 1. We do it by induction. For i = 1 we clearly
have 1; = 11(Q) = 1 = A(Q¢,) for all k; hence, passing to the limit as k — oo in the
right-hand side of the former equality we get A; = 1. Then, we assume by induction
hypothesis that jt\l- = A;jforalli =1,...,nand we prove that j.\n_{_l = Apt+1. There are two
possibilities: either A, = 1,11 or A, < A,4;. In the first case we deduce by that

—~

Ao = Ap < Aper < Apit = A,

hence all the inequalities are equalities and in particular ;l\nﬂ = An+1. Consequently
we can assume without loss of generahty that A,, < A,4+1. In this case we must have
/1n+1 € [An, Ans1] because A, = )L and 1,(Q¢,) < )Ln+1( L) < /1; o(1) as k — oo. Let
r=max{A; : i <nA; <A;}. ThenA, < Ay =--- = /1,, < /1,,+1. In particular we can
apply Proposition [I] with n replaced by r in order to get

sk — Pr(PkaHZ(Q)eaHZ(Rek) -0 (2.27)
ask — oo, foralli =1,...,r. We now divide the proof in two steps.
Step 1: we prove that A, < Zn+1-
Let us assume by contradiction that A, = A,41; then A, = - -+ = A, = A,41. Define the
subspace Sby S = [¢*,..., ¢ ]. Hence, S is (n — r + 1)-dimensional. We then choose

Xe,. € S with the following properties:

O llxelzon,) = 1

D) xe L ¢r+1, ..., ¢k in LZ(QEk).
This choice is possible because [¢° s -¥] is (n — r)-dimensional. Moreover, we have
that
(Xews 7120 ) — 0 (2.28)
ask — oo, foralli =1,...,r. To see this, recall that y,, € S, hence
(Xer 97120 ) =0, Vi <r. (2.29)

By (2.27) and (2.29), we have
(ka’Pr(p;k)Lz(Qek) — 0, VJ <r

as k — oo. Thus,
,
D@ b)) (Xew ] 12 ) — 0, Vi<, (2330)
I=1

12



as k — oco. We can rewrite as A'b — 0 as k — oo, where A is the matrix defined in
Remarkand b € R’ is the vector defined by b; = ((xe.» ¢16k)L2(Qek))l foralll e {1,...,r}.

Hence, also AA'h — 0 as k — oo and by Remark [2(we deduce that AA'b = (JI + o(1))b =
b +0(1) = 0 as k — oo, since b is bounded in k. This implies that each component of b,
which is ()e,» #,")12(q,, ) tends to zero as k — oo, which is (2.28).

It is now clear that and property (II) of x, yield

()(ek,gbfk)Lz(Qek) — 0, foralli=1,...,n (2.31)

as k — oco. Since ||y llm20) < Cmaxrﬂsjs,m||go;"||H2(Q) < oo there exists a function
x € H%(Q) such that possibly passing to a subsequence

Xelo = x  in HX(Q), (2.32)

as k — oo. By (2.31) and (2.32) we deduce that (y, ¢;);2(q) = 0, foralli = 1,...,n. By
Lemma x is a n-th eigenfunction of (A2 — 7A + 1) N(o) in Q associated with /Tn which
is orthogonal to ¢y, . . ., ¢,, among which there are all the possible n-th eigenfunctions.
Since A, < A,41, the only way to avoid a contradiction is that y = 0 in Q, that is

|l Xelz2 ) = 0, I Xerllz(r., ) = 1 (2.33)
as k — co. We use now the H-Condition; let us choose a sequence of functions ¥, €
Hlik (Re,) such that || xe, = ¥, llz2(r.,) = 0 as k — co and

[Yek]ilg‘,‘r(REk) S [Xek]ilg‘,f(gék) + 0(1) (234)

as k — co. Then we can extend by zero ¥, _to get a function (that we still call ¥, ) in
Hz(Qek). Hence,

(e i iz0e) = e b2k, )
= (Xep = Xewr B;)i2(Re) + (e 87 )120c) = (Yew 8 12(0)

foralli=1,...,n By (2.31), (2.33), and the definition of )y, the right hand side of

tends to 0 as k — oo, for all i = 1,...,n. Thus, ¥, is asymptotically orthogonal to

1, ..., ¢ In particular, by the variational characterization of the eigenvalues A;* we

get that

(2.35)

[Yek]?{g—!r(R ) 2 /1;’:_1”Yek”L2(Rek) - 0(1) 2 An+1”7€k”Lz(Rek) - 0(1) (236)

€k
On the other hand, by (2.34) we deduce that
- 12 2
Xedwe k) = Dtednz o, ) +0(0)
= An”)(ekHEZ(QGk) +o(1) = Anllfek”izm%) +0(1).

This is a contradiction to (2.36) because A, < A,,11. Step 1 is complete.

Step 2: we prove that Inﬂ = Ant1.
Assume by contradiction that 1,11 < A,4+1. Let us note that as a consequence of Step 1
we can use Proposition 1| for the n-th eigenvalues in order to obtain

”‘Piek - Pn(Piek”Hz(Q)eaHz(Rek) — 0, (2.37)
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foralli =1,...,n Then we can use the same argument we used in Step 1 for y., to show
that

ok 2 — 0, (2.38)

as k — oo. To see this, just note that ¢ * | is orthogonal to ¢, ..., ¢;*, and by (2.37) we

deduce that (2% |, ¢ )Lz(Q y = 0,as k — oo, foralli =1,...,n Moreover,

(O ¢;]11)L2(Qek) — 0, (2.39)

as k — oo. Indeed, looking at the weak formulation of problem and denoting by By
denotes the quadratic problem associated with the operator A? — 7A + I on an open set
U, we deduce both

B ek((pn]fl—l’¢relﬁ—l = n+1(Q€k)(‘szk+1’¢n+1)L2 +O(1)

and
Ba,, (¢n+1’ ‘Pn+1) /1;]11 (¢;§r1’ (Pn+1)L2 ) +o(1),

and subtracting the above equahtles and passing to the 11m1t as k — oo we obtain

(;1\,,+1 — A1) img oo (@5 1, 025 D12, ) = 0, which implies (2.39). Then

nH,qﬁ )Lz Q. ) 4 0 (240)
ask — oo, foralli =1,...,n+ 1. Passing to the limit in k we have (¢,+1, ¢,~)Lz(Q) = 0 for
alli=1,...,n+ 1. However, as in Step 1 we would have [g0n+1] 2 @ = ,,+1||§5n+1||Lz(Q),

which contradicts the assumption Anﬂ < An+1 unless @piq =0, Wthh gives (2.38).
Now we use the H-Condition and (2.38) in order to find a function g%, € H? (R,) such
€k

that ”‘/’n+1”L2(Rek) =1+ o0(1) and

[_fH_l]HZ (R [(pn+1 HZ (Q 0(1) = A?’l+1(Q€k) + 0(1) S 1\7’l+1 + 0(1)7

as k — co. On the other hand, by the variational characterization of /lfl’jrl and by (2.38)),

(2.40) we deduce that [Ef’lil]?iﬁ,r(l?ek) > n+1”(/’n+1”L2 —0(1) > Ay41 —0(1) as k — oo,
hence 1,41 < j.\n+1, a contradiction. Thus it must be /1,1+1 = j.\n+1. |

We will say that x. € (0, 00) divides the spectrum of a family of nonnegative self-adjoint
operators A, € > 0, with compact resolvents in L?(Q,) if there exist §, M, N, ¢, > 0 such
that

[xe =0, xe + 8] N{AS}2, =0, Ve<e (2.41)
xe <M, Ye<eg (2.42)
N(xe) == #{A] : Af < xc} < N < o0, (2.43)

If x. divides the spectrum we define the projector Py, from L*(€.) onto the linear span
[45,. .., ¢1€\](x )] of the first N(x.) eigenfunctions by

N(xe)
Prg= > (9 ¢)r@)d

i=1

for all g € L?(Q,). Then, recalling Theorem and Theoremwe deduce the following.
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Theorem 3 ((Decomposition of the eigenvalues)). Let Qc, € > 0, be a family of dumbbell
domains satisfying the H-Condition. Then the following statements hold:

(i) lime_,0 [An(Qe) — A5| =0, foralln € N.

(ii) For any x. dividing the spectrum, lime_o |l¢; — Px ¢} lm2(Qem2r.) = 0, for all
re=1,...,N(x¢).

3 Proof of the H-Condition for regular dumbbells

The goal of this section is to prove that the H-Condition holds for regular dumbbell
domains. More precisely, we will consider channels R, such that the profile function g
has the following monotonicity property:

(MP): there exists § €]0, 1/2[ such that g is decreasing on [0, §) and increasing on (1 -9, 1].

If (MP) is satisfied then the set A, = {(x,y) € R? : x € (0,5) U (1 -5,1),0 <y < eg(x)}
is contained in the union of the two rectangles [0, 5] X [0, eg(0)] and [1 -4, 1] X [0, €eg(1)].
This fact will be used in the proof of the following theorem in order to control the H?
norm of the candidate function u, appearing in the H-Condition.

Theorem 4. The validity of condition (MP) implies the validity of the H-Condition.

Before writing the proof of this theorem we need to introduce some notation. First,
for the sake of clarity we will consider a “one-sided” dumbbell Q. = Q U R, where Q is a
smooth bounded domain in R? such that the segment {0} x [-1, 1] is contained in the
boundary of Q, Q N {x > 0} = 0 and R, is defined as in (1.1). We will assume that R,
satisfies the (MP) condition on 0 < x < § only. Let L. be the segment {0} X (0, €g(0)).

For any y € (0,1), we define a function y! € CU![—€?,1], such that y!(-e¥) =
(xlY (=€) = 0, y!(x) = 1for all 0 < x < 1 and such that the following bounds on the

derivatives
C2

e’

C1

||()(éy)/||L°°(—eY,0) < e ||(Xéy)"||L°°(—er,o) <

are satisfied for some positive real numbers cy, ;. A possible choice for y/! is

3 2
x+ e x+ e
—2( ) +3( ) , x € (-€,0),

ev ev

xe(x) =

1, x € (0,1),

which gives the (non-optimal) bounds ¢; = 3/2, ¢, = 6. For any y, f > 0 we define the
function f, g € C"!(0,1) by setting

f = frp) = {‘Y(—ﬁ) # (el r2en(5) - e xe .,

(3.1)
x, x € (€8,1).
Note that f is a C'!-diffeomorphism from (0, €#) onto (€', €”). Then,

14277 (1- %), xe(0,€),

feo = { 1, x € (€8,1),
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and

(x) = {_ZGY_Zﬁ’ x € (0, eﬁ),

0, X € (6/3, 1),
which implies that | f'(x) — 1| < 2e"7?, for all x € (0,1), and |f”(x)| < 2", for all
€ (0,1). Thus, if y > f§ then
fi(x)=140(1) ase—0. (3.2)
For any 6 € (0, 1), we define the following sets:

Kf ={(x,y) e Q: -’ <x<0,0<y<eg(0)},
I? = (=€, y) : 0 < y < eg(0)},
]692 {(x,7y) €R :0<x<e,
Qf ={(x,y) eER*:0<x < %, 0 <y <eg(0)}.
Finally, if y/3 < B < y/2, for every u. € H?(Q¢) we define the function u. € H%(R.)
by setting
Ue(x,y) = ue(f(x),y) ¥ (f (x)), (3.3)

for all (x,y) € R.. Function u, will be used to prove the validity of the H-Condition.
Before doing so, we need to prove the following proposition.

Proposition 2. Let Q. = Q U R, with R, satisfying the (MP) condition. Let u. € H%(Q.)
be such that ||ucllg2(q,) < R for all € > 0. Then, with the notation above and for 0 < 6 < 1
we have

luell 20y = O€®), 11 Vuelly0) = O(€°), ase — 0 (3.4)

Proof. We define the function u! € H?(J?) by setting
x
ul(x,y) = —3ue(—x,y) + 4ue (—E, y)

for all (x,y) € JY. The function u$ can be viewed as a higher order reflection of u, with
respect to the y-axis. Let us note that we can estimate the L? norm of u}, of its gradient
and of its derivatives of order 2, in the following way:

”ufc”LZ(]g) < C”ue”LZ(Kg), (3.5)
||Vu2||L2(]69) < CHVuE”LZ(Ke@)’ (3.6)
ID“ugllp2(joy < CIDuell 2 k0 (3.7)

for any multiindex « of length 2 and for some constant C independent of €. To obtain the
three inequalities above, we are using that the image of K¢ under the reflexion about the
y-axis contains J?. This is a consequence of (MP). Since the L? norms on the right-hand
sides of the inequalities above are taken on a subset of Q, we can improve the estimate of

and using Holder’s inequality and Sobolev embeddings to obtain

1/2
luell 2 oy < IK21 ey < (%) el g (3.8)
and in a similar way

1

1
IVetell 2oy < IKE1Z77 1 Vateli ooy < ()

N

1
"

luellr2(0) (3.9)
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for any 2 < p < co. Thus

0+1 1_1
”uiuLZ(]f) <Ce? ”ue”Hz(Q), and ”VU ||L2(]‘9 C(GGH)Z p”ue”Hz(Q)- (3.10)
We also get
||Dau2||L2(J§) < C”Ue”HZ(Q) . (3-11)

We define now the function

Ye = (ue — u2)|]£ € Hz(]ee)

Then /. = 0 = Vi) on L. Let us first estimate ||Vu,|| 12(J Slnce we have

1Vuell2, 0, = 21&

we can directly estimate the L?-norm of the partial derivatives. Since d,, e = 0 on L, for
all i = 1, 2 we apply a one-dimensional Poincaré inequality in the x-direction. We proceed
as follows. For each x, € (eg(€?), €g(0)) we denote by h (x,) the unique number such that
€g(he(x2)) = x, (that is, the inverse function of €g(+), which exists because of hypothesis
(MP)). For x; € (0, eg(e?)) we define h,(x;) = €. Observe that 0 < h.(x;) < €’ and that
]69 can be expressed as ]69 = {(x1,x2) : 0 < x3 < €g(0);0 < x; < he(x2)}. Hence, for
i = 1,2 we have

fo

Bue
ox;

2 2

(-, x2) (3.12)

ol
D —
L2Oh () M(he(x2))

(a%( xz))

9x, L2(0.he (x2))

where A;(p) = (%)2 p~ % is the first eigenvalue of the problem

= Av, in (0, p),
v(0) =0,
v'(p) = 0.

Since 0 < he(x) < €, we get the bound A; (he (x3)) > (L@) and integrating in
with respect to x; € (O €g(0)), we get

o], < )
12(J¢) T

axi
oo S Clluellpz(q,) < CR for all € > 0, where we have used (3.11).
L*(J¢)
Hence we rewrite inequality (3.13) in the following way:

” dYe
ox;

RIA
0x0x;

) (3.13)
12(J?)

0%y
0x0x;

Now note that

e?(CR + 0(1)) = O(e%) (3.14)

12(Jé) 71'

ase —» 0,fori =1,2.

Finally, by the inequalities (3.10), (3.14) we deduce that

”VUEHLZ(]E?) < ||V¢e||L2(_]g) + ||Vu2||L2(]E9) (3.15)
1_1 .
< 0(e) + C(e”)* 7 lluellirey < O,
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where we have used that (6 + 1)(1/2 — 1/p) > 0 for large enough p.

It remains to prove that ||uc|| ;. o) = O(€?%) as € — 0. We can repeat the argument for
uc instead of Oy, u., with the difference that now we can improve the decay of ||/l o)
by using the one-dimensional Poincaré inequality twice. More precisely we have that

62¢6

2\% 59

£2(J2)

from which we deduce ”¢6”L2(]§’) = 0(629) as € — 0. Hence,

0+1
luell 2oy < Iellzgoy + Nl 2y < O(€%) + Ce 7 llucll() = O(€*)  (3.16)
as € — 0, concluding the proof. O

We can now give a proof of Theorem

Proof of Theorem[4 Let u. € H?(Q,) be such that luellpzo,) < R for any € > 0. We
prove that the H-Condition holds if we choose u. as in (3.3) with y < 1/3. Note that

U = U, on R, \ ]f . Let us first estimate ||u.|| By a change of variable and by

2ty
we deduce that

€ €g(x)
@l = [ [ (0. dyds
(]e) 0 0

& reg(f ()
:ff |(uexO) 2 y)PIf (1 (2)1 7" dydz

eg(f1(2))
< (1+0(1)) f f T ) e y) Pydz

<1+ 0(1))”ue”

(3.17)

2(zYy’

where Z!' = {(x,y) € Q. : —¢" < x < €/,0 < y < eg(f~(x))}. Note that since the
function g is non increasing, then Z! c K/ U ]f . Hence,

72, 5, < (1 + 0D (el gy + Nl ). (3.18)

Note that the last summand in the right-hand side of (3.18) behaves as O(e*#) as € — 0
because of Proposition |2} Also by with 0 replaced by y, we get
ret
el egery < ce'7 lluell

Thus,

[Zell?, 5 < (1+0(1)(0(e”) +0(e"*) = 0(*)

as € = 0. We then have by Proposition 2| that

LZ(]ﬁ

_ _ _ _ 2
llue = Uellrzry = llue = Uell 2 gy < Nuell 2 ) + Nttell 2 5y = O(€™)

as € — 0. This concludes the proof of (i) in the H-Condition.
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In order to prove (ii) from Deﬁnltlon I we first need to compute ||Vu|| and

|| D? uGIIL2 Py We have

2(Jf)

Hue( Jy) = [(0u6 Y) x),y) + (e (X)) (f(x), 9) | £ (x)

du,. ~
9y (x,y) = (

) (f(x), ).
Hence,
IVl o oy < I e (V6 CF O a8,y + 1Y O ep,)
< e N (el o gor oy + ealle aellpegery) (3.19)
< (1+o(1 ))(HVUGHLZ(KY + ”Vue”Lz ]/3) + Cle_yllue”LZ(KEY))

where we have used the definition of y! and the change of variables (f(x),y) + (x,y).
By Propositionwe know that ||Vue||L2 Uy = O(eﬁ) as € — 0. Moreover, by (3.8),

with 6 replaced by y, we deduce that

y+i
luellery = O ), (I Vaellpeggry = O(e™),

for any p < oo, where we have set

1 1
=[=-= 1).
Yp (2 p)(}’ +1)
Finally, we deduce by (3.19) that

IVl 8 < (1 +0(1)(O(€™) + O(eP) + €7 O(e?)) = O(eP) (3.20)

2gfy =

because y, —y > p, for sufficiently large p (note that f < (1 —y)/2 for y < 1/3).

We now estimate the L? norm of D?#,. In order to simplify our notation we write
F(x,y) = (f(x),y), xX = x, @le = @, uc = u and we use the subindex notation for the
partial derivatives, that is, u, = % and so on. First, note that

oy = [(uxx)( + 2uc ) + u)(") o F] A1+ [(ux)( + u)(’) OF] -
Uy = [(uxy)( +uy)(') OF] - f, (3.21)
Uyy = (“yy)() oF
and we may write
e = [t O F] - If'1P + Ry, lay = [ty © F]- f' + Ry, iy = uyyy o F.
where
Ry = [(Zux)(’ + u)(”) o F] 1f1P + [(uxx + u)(’) o F] - f7
Ry =uyy oF - f.

We now show that IRl U = o(1), ||R2||Lz(]ﬂ) = 0(1) as € — 0. For this, we will
prove that each single term in Ry and R; is 0(1) as € — 0. Recall that f’(x) = 1+ 0(1) and
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f"(x) = 0(1), ¥’ = O(e™¥) and y” = O(e™%) for x € (0, €”). By a change of variables, by
the Sobolev Embedding Theorem and the definition of y it is easy to deduce that
l(ex’) o Fll o o, < (1+ 0(D) e lzger) < CREW ™ = O(eP)
” — 3y
I(ux") o Fll 2 s, < ca(1 +0()llue™ llz r, < CRe >
(g x') © Fll o ey < ea(1+0(D)lle ™ uyllpgry < CRe™ = O(eP).

By (3.20) we also have
e +ux’) o Fll, o, < (14 0DVl ) = O(EP). (5.22)
Hence the L? norms of Ry, R, vanish as € — 0. In particular,

1-3
D% (1+ 0(IDuell 2,3, + Ole 7 ) + O(P),

gty = L2(KY

as € — 0. In a similar way we can also prove that

| Aucll (1+0(1))[|Auc|l

=t B
L2 KYU]‘B +O(€ 2 )+O(€ )a

12l =

as € — 0. Hence,

(1-0)|ID? wa +0||Aue|| ﬁ)+T|lvu6” o)
=(1 —6)||D2u€||L2( o + || Au||? S +o(1). (3.23)
By adding to both handsides of (3.23) (1-0)||D%% €||2 LR alIAﬂelliz(R b and the lower
order term T||Vue||22( R , and keeping in account that u, = u. on R \ ]eﬁ we deduce
that ‘
(1- O')||D2ue||L2(R + O'”Aae”iz + Tllvue”LZ(R
2 2

<(1- O-)HDzueHiz + O'”Aue”LZ(Qe) + T”V“e”iZ(QE) +0o(1), (3.24)

(Qe)

as € — 0, concluding the proof of (ii) in the H-Condition. Note that in (3.24), we have
used the monotonicity of the quadratic form with respect to inclusion of sets. Such
property is straightforward for o € [0, 1). In the case o € (-1, 0) it follows by observing
that

(1—0)[ + 2ul +u ]+0[U;2cx+2“xx“yy+”§y]

> ul + u;y +o(ul, + ugy) =(1+o0)(ul, + ujy) > 0,

for all u € H*(Q,). O

4 Asymptotic analysis on the thin domain

The purpose of this section is to study the convergence of the eigenvalue problem (1.9) as
€ — 0. Since the thin domain R; is shrinking to the segment (0, 1) as € — 0, we plan to
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identify the limiting problem in (0, 1) and to prove that the resolvent operator of problem
converges as € — 0 to the resolvent operator of the limiting problem in a suitable
sense which guarantees the spectral convergence.

More precisely, we shall prove that the the limiting eigenvalue problem in [0, 1] is

1_T"Z(gh”)” - é(gh’)’ +h=0h, in(0,1),
h(0) = h(1) =0, (4.1)
K (0) =h' (1) =0.

Note that the weak formulation of is

1 1 1 1
(1-c?%) f Wy gdx + © f Wy gdx + f hjgdx = 0 f hyrgdx,
0 0 0 0

for all € H2(0, 1), where h is to be found in the Sobolev space HZ(0, 1). In the sequel,
we shall denote by L;(O, 1) the Hilbert space L?((0, 1); g(x)dx).

4.1 Finding the limiting problem

In order to use thin domain techniques in the spirit of [17], we need to fix a reference
domain R; and pull-back the eigenvalue problem defined on R, onto R; by means of a
suitable diffeomorphism.

Let R; be the rescaled domain obtained by setting € = 1 in the definition of R, (see
(L.1)). For any fixed € > 0, let ®. be the map from R; to R, defined by ®.(x',y’) =
(x',ey’) = (x,y) for all (x’,y’) € R;. We consider the composition operator T, from
L%(R.; e 'dxdy) to L*(R,) defined by

Teu(x'.y") =u o Qc(x'.y) = u(x',evf),

for all u € L?(R,), (x’,y’) € R;. We also endow the spaces H%(R;) and H?(R.) with the
norms defined by

(?zqo 02¢ | (92(/)
2
HQDHHE,U,T(R) f ((1 B 0)[ Ox? €2 axay‘ T oy?
e 1 0% 6(,0 1|09 )
—+ =— —|=— dxd 4.2
66x2+62(9y2 ox +68y‘ *lol” jdxdy, (42)
o2 _f (1-o) | ¢ |1 |9%
Pz - ro) R. Ox? axay Oy?
0% 0% dpl*  |0e[ )
— + — — — dxdy. (4.3
+o ax2+ay el ay‘ +|ol° |dxdy. (4.3)

It is not difficult to see that if ¢ € H?(R.) then
2 12
||Te(p||Hg,a,r(Rl) =€ H(pHH(Zr,T(Re)'

We consider the following Poisson problem with datum f; € L?(R,):

N*ve — TAVe + Ve = fe, in R,
(1 U)(9 % + oAve =0, onT,,
0v, _ (1 _ )d (D X ) _ J(Ave) =0 T (44)
T(?n 0)dlvpqa, Ve " Ne)oq, on. on lg,
v=0= g—:z, on L.
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Note that the energy space associated with Problem is exactly Hize (Re). By setting
Ve = ve(X', €y'), fe = f(x’, ey’) and pulling-back problem to R; by means of &, we

get the following equivalent problem in R; in the unknown 0, (we use again the variables
(x,y) instead of (x",y") to simplify the notation):

A N C s s e
(- o) (G + ety + A8 + oG5 + 25 ) =0 nm
T(%ﬁf Ny + éaai;e ) - (1= 0)div,  (D¢0e - i)ry, = Ve(AcDe) - =0, only,
6e=0:%"x+i%z;eﬁy’ onLj.

Here 7 = (fiy, fiy) = (ny, € 'ny) and the operators A, V. are the standard differential
operators associated with (dx, € 'dy). Moreover,
. oF 10K
divr, F = Tx + — - ﬁy - n.V.Fn,
and (F)r,, = F — (F, n) n for any vector field F = (Fy, F,).
Assume now that the data f;, € > 0 are such that (f¢)e>0 is an equibounded family in
L*(Ry), i.e

|fe|?dxdy’ < ¢, orequivalently f |fe|?dxdy < ce, (4.6)
Ry Re

for all € > 0, where c is a positive constant not depending on e.
We plan to pass to the limit in (4.5) as € — 0 by arguing as follows. If 0. € H fl (Ry) is
the solution to problem (4.5), then we have the following integral equality

0*0e 0%¢ N 2 %0 0 N 1 8% 09
R, 0x? 0x? = €2 0x0y dx0y €* Oy? Oy?

0% 1 0%\ (0% 1 0%
—t=— || +5—|d
+O.j};1 ( ox2 & 0y? )((93(2 T ayz) x

00 09 1 00 0 f~ ~
__¢&c_t dx ed = ed 4.7
+Tj1;1(9x8x+626y8y +Rlv<px le(px( )

(1-0)

forall ¢ € HLZ1 (R1). By choosing ¢ = ¢, we deduce the following apriori estimate:

a >f *oc[* 2|0%c | 1]0%c[ f Fi 15[
. 2 1
R,| Ox? €?|dxdy 64 y? x+o rlOx2 € ay? X
9o |* 1|00 .
”f | |G|t (B P < |fe|2dx+ [Ge|?dx  (4.8)
R,| Ox €| dy R 2 2 Jr,

for all € > 0. This implies that ||Ue||H2 (&) < Cforall e > 0, in particular [|0¢||2(r,) <

C(o, 1) for all € > 0; hence, there ex1sts v € H?(R,) such that, up to a subsequence
0e — v, weakly in H%(R;), strongly in H!(R;). Moreover from (4.8) we deduce that

0% 00

Ye < Ce, ‘ Je < Ce, (4.9)
0x0Y || 12(r,) Y [l12(ry)
azﬁ; < Cé?, (4.10)
Y* [l 2(ry)
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for all € > 0, hence there exists u € L?(R;) such that, up to a subsequence

1 0%0,
€2 0y?

) (4.11)

as € — 0. By (4.9) we deduce that the limit function v is constant in y. Indeed, if we
choose any function ¢ € C.°(R;), then

9 o e
fv—¢:limfﬁe—¢=—lim 0%y~ o,
R, 0y eo0Jp Oy e=0 Jg, Oy

hence = 0 and then v(x, y) = v(x) for almost all (x,y) € R;. This suggests to choose

test functlons i depending only on x in the weak formulation (4.7). Possibly passing to a
subsequence, there exists f € L?(R,) such that

fe - f in L*(R,), as € — 0.

Let € H3(0,1). Then / € H*(Ry) (here it is understood that the function is extended to
the whole of R; by setting U (x,y) = ¢(x) for all (x,y) € R;) and clearly / = 0 on L;. Use
i as a test function in (4.7), pass to the limit as € — 0 and consider (4.11) to get

! a%a%p 02¢ 00y B
fo (@a oMW T T T ax T B” x) dx = fM(f JWg(x)dx  (4.12)

for all § € Hg (0, 1). Here, the averaging operator M is defined from L*(R;) to L} (0, 1) by

g(x)
Mh(x)zi) fo h(x.y)dy.

g9(x
forall h € LZ(R ) and for almost all x € (0, 1).
From (4.12) we deduce that
1 144 144 o .
;(U 9)" + g( (w)g)” g(v 9 +v=M(f),  in(01),

where the equality is understood in the sense of distributions.
Coming back to (4.7) we may also choose test functions ¢(x,y) = €2{(x,y), where
(e Hfl (Ry). Using (4.9), (4.10) and letting ¢ — 0 we deduce

92 2, 92 2
0% f(@vﬁ{ 6§)

1-—

(1-0) 8y +0 o 532 32 +u oy 0

which can be rewritten as

d*v 82§
forall { € Hfl (R1). In particular this holds for all { € C.°(R;), hence there exists the
second order derivative
d* d*v
o (u + 0@) =0. (4.14)

Hence, u(x,y) + O'g =i ( ) + 2(x)y for almost all (x,y) € R; and for some functions

1,2 € L*(R;), and then (4.13) can be written as

2

() + (o) 9 = 0 (@15)
R y
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Integrating twice by parts in y in equation (4.15) we deduce that

_ Y2 (x){nydS + f (Y1 (x) + ygbz(x))?nyds =0 (4.16)
R, OR, y

forall{ € H Lzl (Ry). We are going to choose now particular functions { in (4.16). Consider
first b = %minxe[o,l] g(x) > 0 so that the rectangle (0,1) X (0,b) C Ry and consider a
function = n(y) with n € C*(0,b) such that n(y) = 1 + ay for 0 < y < b/4, where
a € R is a parameter, and (y) = 0 for y € (%b, b). If we define {(x,y) = 0(x)n(y) for
(x,y) € (0,1) X (0,b) where 0 € C.°(0, 1) and we extend this function ¢ by 0 to all of R,
then we can use { in in order to obtain

« f 0 — fo a)0()dx = 0

forall « € R and all & € C;°(0,1). But this easily implies that {; = y» = 0. Thus, we
obtain

0%v(x)
u(x’ y) - U(X) =—-0 axz
for almost all (x,y) € Ry, i.e., el—z% — —0% in L?(R;). Hence v solves the following

limit problem
l;%z(gv”)” - g(gv’)’ +v=M(f), in(0,1)
2(0) = v(1) =, 17
o/(0) = /(1) =0,

and then by regularity theory we deduce that v € H*(0, 1).

4.2 Spectral convergence

We aim at proving the spectral convergence of the eigenvalues and eigenfunctions of
problem to the corresponding eigenvalues and eigenfunctions of the one dimensional
problem (1.10). To do so we shall prove the compact convergence of the associated
resolvent operators combined with the computations carried out in the previous section.
Note that the domain R, varies with €, hence the corresponding Hilbert spaces vary as
well. To bypass this problem we will use the notion of &-convergence of the resolvent
operators in L?. We recall the basic definitions and results.

Let He, € > 0, be a family of Hilbert spaces. We assume the existence of a family of linear
operators &, € L(Hy, H,), € > 0, such that

lEeuolly, — lluollg,, ase — 0, (4.18)
for all uy € H,.
Definition 3. Let H, and &, be as above.

(i) Letu. € He, € > 0. We say that uc E-converges tou as € — 0 if |lue — Ecullg, — 0

) E
ase — 0. We write u, — u.

(ii) LetB. € L(H.),e > 0. We say that B. E&E-converges to a linear operator By € L(Hp)

) E E _ EE
if Beue — Bou whenever u, — u € Hy. We write B. — By.
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(iii) Let B, € L(H.), € > 0. We say that B, compactly converges to By € L(Hy) (and we

c
write Be — By) if the following two conditions are satisfied:

(a) B, 2, By ase — 0;
(b) for any family u. € H, € > 0, such that ||luclly, = 1 for alle € (0,1), there

. _ E _
exists a subsequence B¢ ue, of Beue and i € ‘Hy such that Be u,, — 4 as
k — oo,

For any € > 0, let A be a (densely defined) closed, nonnegative differential operator
on H, with domain Z(A.) € H,. We assume for simplicity that 0 does not belong to the
spectrum of A, and that

(H1): A has compact resolvent B, := A" for any € € [0, 1),

and
c
(H2): B — By, as € — 0.

Given an eigenvalue A of Ay we consider the generalized eigenspace S(A, Ag) := Q(A, Ag)Ho,

where
1

0U.A) = o [ Ay

27i

and § > 0 is such that the disk {£ € C : |¢ — A| < 8} does not contain any eigenvalue
except for A. In a similar way, if (H1),(H2) hold, then we can define S(A, A¢) := Q(A, Ac) H,
where

27i

1
LA = — I- A" dé.
00,40 = o [ Ay

This definition makes sense because for € small enough (¢ — A;) is invertible for all &
such that |£ — A| = 6, see [4] Lemma 4.9]. Then the following theorem holds.

Theorem 5. Let A, Ay be operators as above satisfying conditions (H1), (H2). Then the
operators A, are spectrally convergent to Ay ase€ — 0, i.e., the following statements hold:

(i) If Ao is an eigenvalue of Ay, then there exists a sequence of eigenvalues A¢ of A. such
that Ac — Ay as € — 0. Conversely, if Ac is an eigenvalue of A¢ for all e > 0, and
Ae = Ao, then Ay is an eigenvalue of A,.

(ii) There exists €y > 0 such that the dimension of the generalized eigenspace S(Ay, A¢)
equals the dimension of S(Ag, Ay), for any eigenvalue Ay of Ay, for any € € [0, €).

(iii) If po € S(Ao, Ag) then for any € > 0 there exists ¢ € S(Ag, Ae) such that ¢, i> ®o
ase — 0.

(iv) If pe € S(Ao, Ae) satisfies ||@ellyy, = 1 for alle > 0, then ¢, € > 0, has an &-
convergent subsequence whose limit is in S(Ao, Ao).

Proof. See [5, Theorem 4.10]. O

We now apply Theorem 5|to problem (1.9). To do so, we consider the following Hilbert

spaces
H, = LZ(RE;E_ldxdy), and H, = L;(O, 1),
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and we denote by & the extension operator from L% (0, 1) to L*(R.; €~'dxdy), defined by

(Eev)(x,y) = v(x), (4.19)

for all v € L;(O, 1), for almost all (x,y) € Re. Clearly [|Ecuoll(r e-1dxay) = ||“0||L§(o,1),
hence &, trivially satisfies property (4.18).

We consider the operators A, = (A2 — 7A + Dr.. Ay = (A2 = A + I)p on H, and
H, respectively, associated with the eigenvalue problems and (1.10), respectively.
Namely, (A* — 7A + I);, is the operator A% — 7A + I on R, subject to Dirichlet boundary
conditions on L, and Neumann boundary conditions on dR; \ L, as described in (1.9).
Similarly, (A% — A +1)p is the operator A —7A+1 on (0, 1) subject to Dirichlet boundary
conditions as described in (1.10).

Then we can prove the following

Theorem 6. The operators (A? — A + 1)1, spectrally converge to
(A2 — A +1I)p ase€ — 0, in the sense ofTheorem@

Proof. In view of TheoremJ] it is sufficient to prove the following two facts:

(1) if f. € L%(Re; € 'dxdy) is such that 6_1/2||f€||L2(R6) = 1 for any € > 0, and v, is the
corresponding solutions of Problem (4.4), then there exists a subsequence ¢ — 0
ask - coand 0 € L;(O, 1) such that v, E-converge to 0 as k — co.

(2) if fo € L*(Re; € 'dxdy) and f; N f as € — 0, then the corresponding solutions v,
of Problem &E-converge to the solution of Problem with datum f.

Note that (1) follows immediately from the computations in Section Indeed, if
fe € L*(Re; € 'dxdy) is as in (1), up to a subsequence, f, — f in L?(R;), which implies
that o — vy € H2(0,1) in H%(R,), where vy is the solution of Problem (4.17). This implies
that [lve — Svollz2(r.e-1dxay) — 0, hence (1) is proved.

In order to show (2) we take a sequence of functions f; € L?(R¢; e 'dxdy) and f € L;(O, 1)
such that e_l/zllfe — &Ecfllizr) — 0as e — 0. After a change of variable, this is

equivalent to ||f€ =& fl1zr,) — 0as e — 0. Arguing as in Section one show that the
Ve =V E L;(O, 1) in H%(R;) and that v solves problem (4.17). Hence ||0 — Evllzry) — 0
as € — 0, or equivalently, [[ve — Eevll12(r ;e-1dxay) — 0 as € — 0, proving (2).

O

5 Conclusion

Recall that the eigenpairs of problems (1.2), are denoted by (1,(Qe), ¢S), (Wn, @5 )ns1
respectively, where the two families of eigenfunctions ¢¢, ¢! are complete orthonormal
bases of the spaces L2(Q.), L*(Q), respectively. Denote now by (h,, 0,),>1 the eigenpairs
of problem where the eigenfunctions h,, define an orthonormal basis of the space
L;(O, 1). In the spirit of the definition of A¢ given in Section 2, we set now (A2),>; =
(wr)k>1 Y (6)1>1, where it is understood that the eigenvalues are arranged in increasing
order and repeated according to their multiplicity. For each 1% we define the function
#° € H*(Q) ® H%(R,) in the following way:

#0 = (p,?, in Q
" lo, inRe,
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if A% = wy, for some k € N; otherwise

¢0 _ 0, in Q,
4 e 128, inR.

if At = 0, for some | € N (here we agree to order the eigenvalues and the eigenfunctions
following the same rule used in the definition of A5, and ¢}, in Section 2).

Finally, if x > 0 divides the spectrum A,(Q¢) for all € > 0 sufficiently small (see the
end of Section 2) and N (x) is the number of eigenvalues with 1,(Q¢) < x (counting their
multiplicity), we define the projector P from L*(Q) onto the linear span [¢J, . . ., ¢10V(x)]
by setting

N(x)
Plu= " (")) 8!
i=1
for all u € L*(Q.). (Note that choosing x independent of € is possible by the limiting
behaviour of the eigenvalues.) Then, using Theorems 3|and [| we deduce the following.

Theorem 7. Let Q., € > 0, be a family of dumbbell domains satisfying the H-Condition.
Then the following statements hold:

(i) lime_o [A,(Qe) = A% =0, foralln € N,

(ii) For any x dividing the spectrum, lim._ |l¢§ — P2¢Sllm2()er2r) = 0, for alln =
1,...,N(x).

Proof. The convergence of the eigenvalues follows directly by Theorems[3|and[6] Indeed,
by Theorem [3| we know that [1,(Q¢) — A5| = 0 as e — 0. If AS = wy for some k € N,
for all sufficiently small €, then we are done; otherwise, if A, = 916 for some [l € N,
definitely in €, by Theorem@we deduce that 916 — 0 as € — 0, hence [1,(Q¢) — 6] <
[An(Qe) = 071 + 167 — 0] — 0ase — 0.
Consider now the convergence of the eigenfunctions. By Theorems |5 [6]it follows that
for any € > 0 there exists an orthonormal sequence of generalized eigenfunctions §; in
L*(R., e 'dxdy) associated with the eigenvalues 0; of problem such that for every
jJeN

167 = Eehjll 2R e-1dxay) — 05 (5.1)
as € — 0. Recall that a generalized eigenfunction is an element of a generalized eigenspace,
see Section We set y; = eV 25; and we note that y; is a sequence of generalized

eigenfunctions of Problem (1.9) which is orthonormal in L?(R,), as required in Theorem
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Thus by Theorem [3] (ii), we deduce that

N(x)
05— > (95 €28 k) g€ Ech
i=1

L%(Re)
N(x)
< llos = D @5 vOrwort
= L2(R,)
N(x) N(x)
[ D @y mors = D (0 € P E ) 2p e P Eh:
i=1 i=1 I2(R.) (5.2)
N(x)
<o(1) + || D (05, € 2 Eh) oy (v — €7/ Echs)
= L2(Rc)
N(x)
|1 D @ vf = e P8 r Y
= L¥(Rc)
N(x) N(x)

<o(1) +C Y llyf — €2 Echillixr,) = 01) + C D 1I8F = Echill 2(r.e-taxay)-
i=1 i=1
Since the right-hand side of the last inequality in (5.2) goes to zero as € — 0 by (5.1), we
conclude that lim,_,¢ ||@&—P2¢¢ || 12(r.) = 0. Finally, the fact that lim,_,o llpS—P20% || HA(Q) =
0 follows directly from Theorem O
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