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Abstract 

We provide a global technique, called neatening, for the study of modularity of left-linear 
term rewriting systems. Objects called bubbles are identified as the responsibles of most of the 
problems occurring in modularity, and the concept of well-behaved (from the modularity point 
of view) reduction, called neat reduction, is introduced. Neatening consists of two steps: the 
first is proving a property is modular when only neat reductions are considered; the second is 
to ‘neaten’ a generic reduction so to obtain a neat one, thus showing that restricting to neat 
reductions is not limitative. This general technique is used to provide a unique, uniform method 
able to elegantly prove all the existing results on the modularity of every basic property of left- 
linear term rewriting systems, and also to provide new results on the modularity of termination. 
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1. Introduction 

Modularity is a field of computer science that has been receiving more and more 
interest along these years. Besides an interesting topic from a theoretical point of 
view, it is also of great practical importance: in program analysis, it allows to study a 
possibly big and complex program by decomposing it into smaller subparts; in program 
develonment. it allows to build a safe complex system by relying on smaller safe r-------1 
submodules. 

As far as the paradigm of term rewriting systems (TRSs) is concerned, the notion 
of modularity it that of disjoint union (i.e. the union of two TRSs having disjoint sig- 
natures): a property is said modular provided two TRSs enjoy it iff their disjoint union 
does. This notion is somehow the basis from which to start for considering more and 
more complex combinations of TRSs (like composable or hierarchical, see e.g. [15]). 

In this paper we present a new technique, called neatening, as a global method 
to study modularity of left-linear TRSs. Neatening is able to cope with all the basic 
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modularity. 
First, we focus on the intimate reasons that make modularity difficult to study: the 

major responsible is identified in the notion of bubble. A bubble, like the name suggests, 
is an object that has a potential unstability, since it could sooner or later ‘explode’ 
(collapse) with bad consequences on the global structure of the term. Therefore, we 
introduce the concept of neat reduction, where the ‘explosions’ of the bubbles are not 
dangerous (from a modularity viewpoint). 

Then, to prove a property is modular, the method of neatening is introduced. Neat- 
ening, abstractly, consists of a two-step process. 

First, prove that the property is modularly neat, that is to say it is modular when 
only neat reductions are considered. 

Second, ‘neaten’ a generic reduction by translating it into a neat one, thus showing 
that restricting to neat reductions is not a limitation. 

Neatening is an adequate global method for the study of modularity of TRSs under 
the left-linearity assumption: via this technique we obtain a meta-theorem from which 
all the known results on modularity, for every basic property of left-linear TRSs, are 
elegantly derived. Furthermore, it also provides a new sufficient criterion for the mod- 
ularity of termination, and a new result on the structure of the counterexamples to the 
modularity of termination, for left-linear TRSs, that generalizes all the previous similar 
results. 
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are introduced. In Section 3 the concept of bubble is presented, and in Section 4 that of 
neat reduction. Section 5 gives an abstract presentation of neatening, while Section 6 
introduces the specific ‘neatening translation’ (m) that will be used in the practical 
application of neatening. In Section 7 we present the main theorem, and apply it to all 
the basic properties of TRSs. Section 8 compares this technique with the original ‘pile 
and delete’ transformation introduced in [7]. Finally, Section 9 ends with some brief 
conclusive remarks. 

2. Preliminaries 

We assume knowledge of the basic notions regarding TRSs: the notation used is 
essentially the one in [4, 141. Here we will just summarize some of the basic concepts 
that will be needed in the article. 

For every property 9, 19 denotes its complementary property (viz. a TRS enjoys 
79 iff it does not enjoy 9). 

We indicate with Y(C, V) the set of terms built from a signature C and a (fixed) 
set of variables V. 

A term rewriting system (TRS) B? consists of a signature Cg and a set of rewrite 
rules (sometimes called simply rules). A rewrite rule is an object of the form I + r, 
where I and Y are terms from Y(Zg, Y), such that 1 is not a variable and all the 
variables of Y appear also in 1. I and r are called, respectively, the left-hand side and 
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the right-hand side of the rule. A rewrite rule is called left-linear if in the left-hand 
side every variable does not occur more than once (e.g. f(g(X, g( Y, Z)) + g(X,X)). It 
is called collapsing if the right-hand side is a variable (e.g. f(X) --+X). It is called 
duplicating if there is a variable which occurs more times in the right-hand side than in 
the left-hand side (e.g. f(X) + g(X,X)). It is called erasing if there is a variable in the 
left-hand side which is not present in the right-hand side (e.g. g(X, Y) + f(X)). Also, 
we say a rule is non-collapsing (resp. non-duplicating, non-erasing) if it is not col- 
lapsing (resp. duplicating, erasing). Analogously, a term rewriting system is left-linear, 
non-collapsing, non-duplicating, non-erasing if each of its rewrite rules is, respectively, 
left-linear, non-collapsing, non-duplicating, non-erasing. 

A context is a term built up using, besides function symbols and variables, the new 
special constants ??r,o2,03, . . (said the holes). Contexts are as usual indicated with 
square brackets, e.g. C[at,o2] denotes a context with one occurrence of the hole 31 
and one occurrence of the hole 02. Given a context C[or,. . ,o,] and terms tl,. , t,,, 
C[tl, “. , t,] stands for the term obtained from C[Q, . . . , ??,] by replacing every occur- 
rence of cl; with t, (1 <i<n). 

A term rewriting system 92 determines a rewrite relation +a on y(C,g, ?“), defined 
this way. Given two terms t and t’, t +R t ’ if t = C[Zcr] and t’ = C[ra], for some 
context C, substitution (r, and rewrite rule I -+ r in 92. If to +9 tl +d t2 . . +& tn 
(n > 0), then we say that to reduces to t,, in 9; correspondingly, we call a reduction 
the sequence to, tl, . . , t,,, together with the information on what rewrite rule li ---f Y, 
has been used to reduce ti to ti+l (O<i <n), and where it has been applied in tl (i.e. 
what subterm of ti the rule rewrites). Finally, +,g denotes the transitive and reflexive 
closure of +a. When 92 is clear from the context, we will simply write C, -+, and 
* in place of &, +.g, and ++J. 

Given a reduction p : s -+ s1 ---f s2 + . . ., the first term s is said the start term. Con- 
catenation of two reductions p and p’ will be indicated with p. p’. We say a reduction 
[ is contained in a reduction p (notation i C: p) if p = { p’, for some p’. A term t 
belongs to p (notation t E p) if s 7 t, [ C: p. 

Taken two reductions p and p’, we say that p’ is co$nal for p (notation p ++ p’) if 
vsEp3s’Ep’.s++s’. 

When two term rewriting systems d and 39 have disjoint signatures, we denote with 
.d @ 24 their disjoint union, that is to say the TRS having as signature the union of the 
signatures C,d and C,g, and as rewrite rules both the rewrite rules of d and those of .W. 
A property 3p of term rewriting systems is then said to be modular if for every couple 
of TRSs JZ+? and 93 with disjoint signatures, d E 9, B E 9 H d $93 E .P. Throughout 
the paper we will indicate by d and 93 the two TRSs to operate on. When not 
otherwise specified, all symbols and notions not having a TRS label are to be intended 
operating on the disjoint union L&’ @ &I. For better readability, we will talk of function 
symbols belonging to & and 98 like white and black functions. Variables and holes, 
instead, have both the colours, and are thus also called transparent symbols. We also 
say a term/context is white (resp. black, transparent) if it is composed only by white 
(resp. black, transparent) symbols. 
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The root symbol of a term t is f provided t = f (tl , . . . , t,), and t itself otherwise. 
Let t =C[tl , . . . , t,] and C not transparent; we write t = C[t,, . . . , tn] if C[Q,. . . ,n,] 

is a white context and each of the ti has a black and not transparent root, or vice versa 
(swapping the white and black attributes). The topmost homogeneous part (briefly top) 
of a term Cftl,..., t,,]l is the context C[oi,. ..,o,]. 

Definition 1. The rank of a term t (rank(t)) is 1 if t is black or white, and maxy=i {rank 
(ti)} + 1 if t=C[tl,...,&] (TZ>O). 

The foiiowing weii known iemma wiii be impiicitiy used in the sequei: 

Lemma 2 (Toyama [20]). s-t d rank(s)>rank(t) 

Proof. Clear. ??

Definition 3. The multiset S(t) of the special subterms of a term t is 

(i) 

S(t) = 
i 

{t} if t is black or white, and not transparent 

0 if t is transparent 

P/r \ I I (41 (ii) S(t)=lJ~=iAJ~liJ V l&J if t=C[ti )...) in] (ii>O). 
The elements of S(t) different from t are called the proper special subterms of t. 

Note that this definition is slightly different from the usual ones in the literature (for 
example in [14]), since here variables are not considered special subterms. 

Given a term s, we indicate by ]]s]] the multiset of the ranks of the special subterms 
of s. Multisets of this kind are compared according to the usual multiset ordering (see 

e.g. [61X 
If t = c([q , . . . , t,], the ti are called the principal special subterms of t. Furthermore, 

a reduction step of a term t is called outer if the rewrite rule is not applied in the 
principal special subterms of t. 

Given a term i, and taken two speciai subterms of it, ti and t2, we say that tl is 
above t2 (or, equivalently, that t2 is below tl), if t2 is a proper special subterm of tl. 

3. Bubbles 

When studying the modular behaviour of some property, the main difficulty one has 
to face is that the behaviour of the reductions in the disjoint union d $ ?3 can be quite 
complicated w.r.t. the reductions in the components d and 9?. 

The disjointness requirement on d and ?Zi should ensure that symbols of one colour 
cannot interact with symbols of another colour. This is in a ‘static’ sense true, as we 
will see in Proposition 6. 

The problem, however, is that this static ‘modular structure’ given by the subdivision 
into (tops of) special subterms is not fixed and immutable, but changes dynamically 
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that does not satisfy this property is also known in some literature as being non- 
deterministically collapsing, cf. [3,16]). ’ 

4. Neat reductions 

To be able to describe the special subterms of a given term throughout a reduction, 
it is natural to develop a concept of (modular) marking. A first, naive approach of 
modular marking for a term is to take an assignment from the multiset of its special 
subterms to a (fixed) set of markers. Then reductions steps, as usual, should preserve 
the markers. However, this simple definition presents a problem, since for one case 
there is ambiguity: when a collapsing rule makes a proper top-bubble vanish (that is, 
when there is a non-trivial bubble at the top of a proper special subterm that collapses). 
In this case, we have the following situation: 

and we have a conflict between m2 and m5. 
This situation is dealt with by defining a modular marking for a term to be an 

assignment from the multiset of its special subterms to sets of markers, and taking, 
in the ambiguous case just described, the union of the marker sets of the two special 
subterms involved. 

Thus, the previous example would give (singletons like {ml} are written simply ml ): 

’ Actually, the above definitions all concern the existence or not of a bubble of degree 2 (to be fussy, of 
a term reducing to two different variables), but, as just noticed, by Proposition 5 this is equivalent to talking 
about a non-deterministic bubble. 
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When this situation occurs, we say that the special subterm rn5 has been absorbed by 
m2, and the special subterm m4 has had a modular collapsing (briefly m-collapsing). 

When dealing with reductions t ++ t’ we will always assume, in order to distinguish 
all the special subterms, that the initial modular marking of t is injective and maps 
special subterms to singletons. 

We call a reduction neat if it has no m-collapsings. 
Inside a reduction a notion of descendant for every special subterm can be defined: 

in a reduction a special subterm is a descendant (resp. pure descendant) of another 
if the set of markers of the former contains (resp. is equal to) the set of markers of 
the latter. Note, en passant, that due to the presence of duplicating rules, there may 
be more than one descendant, or even none (due to erasing rules). Observe also that, 
since in a reduction without m-collapsings all the descendants are pure, the first special 
subterm to m-collapse in a generic reduction is a pure descendant. Hence it readily 
holds the following: 

Fact 1. A reduction has m-collapsings if a pure descendant m-collapses. 

Since special subterms are in bijective correspondence with their tops, we will be 
often sloppy and talk about the descendants of a top, meaning the descendants of the 
corresponding special subterm. 

5. Neatening 

As previously hinted, it is just the presence of m-collapsings that complicates a 
lot the behaviour of a reduction in a disjoint union of TRSs, making possible the 
interaction of initially distinct tops. When these interactions are not possible (i.e. when 
reductions are neat), different tops remain different, and so one can separately reason 
every top as an independent term (cf. Proposition 6), making the modularity analysis 
much easier. 

Historically, a first attempt to cope only with neat reductions was to syntactically 
limit the rewrite rules to ensure no bubbles (but for the trivial ones of course) were 
present: if every rule is non-collapsing (viz. the right-hand side is not a transparent 
term), then readily no non-trivial bubble can exist, and so every reduction is automat- 
ically neat. 

Indeed, every known property of interest is modular when (left-linear and) non- 
collapsing TRSs are considered. Anyway, the restriction to non-collapsing TRSs is too 
heavy to be of great importance: it is the presence of collapsing rules that makes TRSs 
(and their combinations) so flexible. 

So, avoiding the existence of (non-trivial) bubbles is effective for modularity but too 
restrictive. As a matter of fact, as seen, the real problem is not the presence of bubbles 
as such; but the presence of m-collapsings in reductions. So: the good ‘bottom’ notion 
of modularity is just that of modularity neatness: a property 9” is said to be modularly 
neat if it is modular when only neat reductions are considered. 
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modular is to 
(i) show that B is modularly neat, 

(ii) show that if 9 is modularly neat then 9 is modular. 
In the paper we use, equivalently, a reductio ad absurdum technique. We try to 

show that if 9 is not modular, then it is not such even when only neat reductions are 
employed, hence contradicting point (i). 

After having sketched a ‘bare-bones’ version of neatening, we proceed on refining 
its definition. 

Consider a modularity problem: to prove 9 is modular, one has to prove that for 
every couple of TRSs d and g, d E .Y 3 %Y * d @ B E 9’. This means that, in gen- 
eral, two implications have to be considered. However, for all the properties of interest 
one of the two implications (+) is trivial. So we get rid of it by directly considering 
only dense properties (this definition stems from [9], see also [l 1,121): a property 9 is 
said to be dense if whenever d B B E 9 then both d and 33 belong to 9 . Therefore, 
what neatening has to prove is that ~4 E 9 3 g + d @ ~3 E P. 2 

A counterexample (to the modularity of 9) is a pair of TRSs d and B such that 
d E 9 3 ~?3, & @ ~?8 $9. A provable counterexample (to the modularity of 9’) is a 
counterexample (L&‘, g) to the modularity of P together with a proof that & @ g @ 9. 
Readily, 

3 a provable counterexample to the modularity of 9 

G 
3 a counterexample to the modularity of 9 

u 
9 is not modular 

Moreover, for all the dense properties the reverse implication also holds: 

3 a counterexample to the modularity of P 

fi 

9 is not modular 

Hence, in the sequel, we will tacitly assume that a property is not modular iff there is a 
provable counterexample to its modularity. Also, when talking about counterexamples 
we will often omit the appendix ‘to the modularity of 9” (the property will be clear 
from the context). 

We have seen that point (i) of ‘bare-bones neatening’ roughly corresponds to mod- 
ularity under the non-collapsing assumption. In general, proving this is not a problem 
since this restriction is quite heavy: the problem lies in (ii). 

‘In fact, this latter implication is also often referred to as ‘modularity of 8’ (for a discussion, see e.g. 
w, 111). 
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By the above implications, what we lack is only the implication: 

3 a provable counterexample to the modularity of 9 

4 (*) 
3 a neat provable counterexample to the modularity of 9 

If we had this, we could reason as follows: 

9 is not modular 

4 
3 a counterexampie to the modularity of 9 

3 a provable counterexample to the modularity of 9 

u (*j 
3 a neat provable counterexample to the modularity of 9 

3 a neat counterexample to the modularity of 9’ 

9 is not modularly neat 

thus obtaining the contradiction to point (i). 
‘The idea of neatening is to prove the missing impiication (+j using a ‘neatening 

translation’ that transforms every generic reduction into a neat reduction. This way, it 
can be applied to the proof of the provable counterexample, yielding a neat provable 
counterexample. 

Hence, the technique of (abstract) neatening is: 
Suppose a dense property 9 is such that 

(i) it is modularly neat; 
(ii) if there is a counterexample, then it can be extended to a provable counterexam- 

ple that is transformed via a ‘neatening translation’ into another neat provable 
counterexample. 

Then 9’ is modular. 
Observe that we have slightly stressed point (ii), since it would have sufficed to say 

that there is a provable counterexample that is transformed via a ‘neatening translation’ 
into another neat provable counterexample. 

6. Pile and paint 

In this section we provide the formal definition of a ‘neatening translation’ that 
makes the neatening method work. 

Visually, the intuition is that a (non-trivial) bubble, as seen, is a term that cannot 
properly have a fixed colour, since it can reduce to a transparent object: this way 
it assumes the colour of the objects it stays near. So, when a proper top-bubble is 
present, we have the unpleasant situation that two tops of one colour are separated by 
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a potentially transparent object (the bubble) that has for the moment a different colour: 
a situation which is highly unstable. 

The solution is to get rid of this bubble by attaching it to every top of its same 
colour which is above it (pile operation), and then change the bubble’s colour (paint 
operation), so that the unstable situation disappears. Note that it is not dangerous to 
attach the bubble to other terms, as we do with the pile operation: presence of bubbles 
is in general unavoidable (recall the discussion on non-collapsing TRSs); what is dan- 
gerous is only the unstable situation described above (that can lead to m-collapsings), 
and when a bubble is inside a non-bubble top of the same colour, even if it becomes 
transparent, the overall colour of the top does not change. 

The following simple proposition (that will be often considered understood) is nev- 
ertheless fundamental, explaining why left-linearity is so important: 

Proposition 6. If a TRS is left-linear, then rewrite rules that have the possibility to 
act out on a special subterm t are exactly those that have the possibility to act on 
its top. 

Proof. Let t = CutI,. . . , tn]: since tl,. . . , t,, have a root belonging to the other TRS (with 
respect to C), they are matched by variables from any rewrite rule applicable to C, 
and for the left-linearity assumption these variables are independent of each other. 0 

Roughly speaking, the proposition says that when left-linearity is present, rewrite 
rules that are applied to the top of a special subterm do not ‘look below’, i.e. they 
do not care at all about the special subterms that are below. This means that we can 
modify all these special subterms, without preventing the application of such rewrite 
rules (that act, so to say, ‘locally’). 

Assumption. From now on, every TRS, unless otherwise specijied, is understood to 
be left-linear. 

Definition 7 (Pile and Paint). The Pile and Paint transformation of a term s (notation 
n(s)) is obtained as follows. 

Select the leftmost (in writing order) proper special subterm of s that has rank 
minimal amongst the ones with a bubble as top: say t = B((tl, . . . , tkDD. Without loss 
of generality, we suppose it is top white. If no such t is present, we leave the term 
unchanged (i.e. X(S) = s). Otherwise, we define n(s) as the term obtained from s after 
the following two operations. 

Pile: We ‘pile’ the bubble B(jol, t2,. . . , tk() just below the tops of all the above white 
special subterms. That is, if a top black special subterm of s is of the form r[rl, . . . , rm]l, 
with rj above t, we pass from r[rl, . . . , rm] to 

r[[rI,..., rj_t,Barj,t2,...,tk[),rj+l,...,r,JI 

The operation is shown in Fig. 1. 
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Fig. 1. The Pile operation 

Fig. 2. The Paint operation 

Paint: We change the colour of the bubble B, replacing it with another black bubble 

401 ,. . . ,Q[) of the same degree. So, t passes from Bat,,. . .,tk[) to bat,,. , tk). The 
operation is shown in Fig. 2. 

Remark 8. The transformation 7~ chooses at the beginning the leftmost proper special 
subterm of s that has rank minimal amongst the ones with a bubble as top (roughly 
speaking, it selects the leftmost and uppermost proper top-bubble). The requirement of 
being the leftmost, however, is completely arbitrary for our purposes, since it can be 
dropped. However, we use it so as not to heaven the transformation using an additional 
parameter indicating which top-bubble has been selected. 

Analogously, in the pile operation we inserted Yj in the first slot of B: this is not 
necessary, since every slot could be used, but for commodity we fix one (the first). 
Hence, in the sequel, when saying that B collapses without specifying to what, we will 
mean to its first slot 01. 
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Original reduction: 

Mimicked reduction: 

Fig. 3. Mimicking of the m-collapsing of the selected bubble. 

When can rc be applied? The only problematic step is the paint one, where we change 
rh, n,l,T.... ,.P n l...l.hla ..m.lnAmrr ;+ ..,;A. nmr\+l..w Frr\m 4.0 athz... I-DC hn.r;..m thn on-n LUG cl”,“Lu “I a “U”“,~ IqJlaklllt; 1c WlUl cz~I”CII~~ ll”lll Lllcz “I11~1 I I\LJ ua”ul~ cuti J(uUL. 

degree. Hence, a sufficient condition for the applicability of rr is: 

Fact 2. TC can be applied if the two TRSs have bubbles of the same degrees. 

Equivalently, by Proposition 5, the above fact can be restated as: the two TRSs 
must be either both CON” or both TCON-. 

We now show how from L’(s) we can still mimic the old reduction. The intuition is 
that the bubbles that we piled can be needed if during the original reduction, via other 
bubbles’ collapsings, the selected bubble was absorbed. The ‘painted’ bubble, instead, is 
needed when the original selected bubble collapsed: we make this new bubble collapse 
to the same ‘slot’. Also, when all these bubbles (piled and painted) are not needed 
any more, they can be deleted by simply making them collapse. 

Definition 9 (Mimicking m). Given a reduction p of s, we define the corresponding 
mimicking reduction m(p). 

The start term is 71(p). 
Then, we simply use the rules of p with the following modifications: 
?? If the rule was applied to a pure descendant of 2: 

- If the rule made a pure descendant of t m-collapse to (a descendant of) ti, then 
consider the corresponding term t’: 

(i) Collapse t’ into ti 
(ii) Act with the corresponding reduction of p on (that descendant of) ti. 

The situation is shown in Fig. 3. 
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Original reduction: 

Mimicked reduction: 

Fig. 4. Mimicking of the absorbtion of the selected bubble 

- Otherwise, skip that rule. 
?? If the rule was not applied to a pure descendant of t, the rule is applied, and 

moreover: 
- If the rule made a pure descendant of t be absorbed, then consider the corre- 

sponding term t’: 
(i) Collapse t’ (this recreates a fresh copy of t, see Fig. 4). 

(ii) Act with the corresponding reduction of p on (that descendant of) t on this 
newly created copy of t. 
The situation is illustrated in Fig. 4. 

- If a rule made a black special subterm m-collapse, collapse the bubble piled 
immediately above it (if it is not erased); see Fig. 5. 

- If a rule made a white special subterm m-collapse, collapse the bubble piled 
immediately below it (if it is not erased); see Fig. 6. 

Lemma 10. Zf in p eventually there are no pure descendants of the selected bubble 
B, then m(p) is co&al for p. 

Proof. The assumption says that we have s ;s’, p’ C: p, and in s’ there are no pure 

descendants of the bubble B. 
It is easy to see that p’++m(p’). Indeed, the only differences between the original 

reduction and its mimicked counterpart are the extra presence in the mimicking of the 
piled bubbles, and a bubble of different colour in place of B. When we reach a term 
having no pure descendants of B, it is immediate from the definition of mimicking that 
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Original reduction: 

Mimicked reduction: 

Fig. 5. Mimicking of the m-collapsing of a top black special subterm. 

Original reduction: / I 

Mimicked reduction: 

5_ 
, 

Fig. 6. Mimicking of the m-collapsing of a top white special subterm. 
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the sole difference now present is the piled bubbles. So, it suffices to collapse all of 
them to get back the original term. 

Now we can prove that p-m(p): take ti up (S ++ ti, i & p). We choose a p’ C p 
i 

sufficiently big such that [ 2 p’ and reducing s by p’ yields no pure descendants of the 
selected bubble B. We have seen that p’+m(p’). Moreover, m(p’) C m(p) (this stems 
from the general fact that 51 C 52 +rn(5i)Grn(t2)), and so (CC p-+m(p’)Cm(p)) 
we get i-wm(p), and hence just p-m(p) by the arbitrariness of [(C p). 0 

6.1. Multiple pile and paint 

The transformation rc (together with m) makes the structure of a term (of a reduction) 
stabler in the sense that it gets rid of a bubble. It is therefore natural to try to repeat this 
simplification process as far as possible. The following lemma shows that the iteration 
of this process is indeed terminating: 

Lemma 11. u n(s) #s, ljn(s)I( < jIs(j. 

Proof. Immediate, since the paint operation drops a special subterm, whereas the pile 
operation possibly adds only special subterms of strictly inferior rank. 0 

We can so repeat the application of rc until we obtain a term having no proper 
top-bubble: this happens in a finite number of steps because of the above lemma. 

We indicate with L’(s) the output of this process. 
Readily, the applicability conditions for ‘II (Fact 2) still hold for 17. 
Note that the measure 11 . 11 shows also that the termination process of n is a basic 

‘syntactical’ property, not depending on ‘semantical’ arguments (the bubble). 
Ii’ enjoys the following property: 

Lemma 12. Every reduction ofZZ(s) is neat. 

Proof. II(s) has, by definition, no top-bubble. Thus, no pure descendant can m- 
collapse, and this implies by Fact 1 that its every reduction is neat. ??

We call m(p) the mimicking reduction associated with II, obtained from p by 
repeatedly applicating m until the start term is n(s) (where s is the start term of p): 
this is the ‘neatening reduction’ that we will use. 

Incidentally, observe that 93 is even more powerful than required by neatening, since 
by Lemma 12 not only it gives neat reductions, but even reductions without proper 
top-bubbles. 

YX inherits from m the following result: 

Lemma 13. Zf in p eventually there are no pure descendants of all the proper tops, 
then ‘9X(p) is cojinalfor p. 
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Proof. Immediate from Lemma 10, once the transitivity of the cofinality relation is 
noticed. 0 

7. Modularity 

The moment has arrived to apply the machinery we have developed, stating the 
main theorem (recall that all the TRSs are assumed to be left-linear). First we need a 
definition: 

Definition 14. A property 9’ is called pseudo-deterministic (respectively pseudo-non- 
deterministic) if 3TVT’. T’ E 9 + T $ T’ E 9 A CON’ (respectively E Y A 1 CON’). 

Pseudo-determinism is in tight relationship with consistency w.r.t. reduction: 

Lemma 15. A dense property 9 is pseudo-deterministic 189 implies CON+. 

Proof. The if direction is always satisfied, since taking T as the empty TRS we have 
T’ E 9 + T @ T’ = T E 8. For the only if direction, observe that Y and CON’ being 
dense, then also Yr\ CON’ is such, and so from the pseudo-determinism of 9 we 
get T’ E 9 + T’ E 9 A CON’, which implies 9 + CON’. 0 

Theorem 16 (Main). Suppose that a dense property 9 is either pseudo-deterministic 
or pseudo-non-deterministic, and 

(i) 97’ is modularly neat. 
(ii) If there is a counterexample, then it cam be extended to a provable counterex- 

ample that is translated by !lX into another provable counterexample 
Then 9 is modular. 

Proof. Suppose 9i’ is pseudo-deterministic. If 9 is not modular, there is a counterex- 
ample and so by point (ii) there is also a provable counterexample obtained translated 
via !UI (mZ can be applied by Fact 2 and Lemma 15): but this provable counterexample 
mmst be neat hv T.emma 12 hence cnntradictinp nnint fi\ _~ - ___--__- __) --_--__ ___‘__________D =_____ \_,. 

On the other hand, suppose Y is pseudo-non-deterministic. If 9 is not modular, there 
is a counterexample (to the modularity of 9’), viz., ~2 E 9 3 @, & @ @ +.! 9. Being 9 
pseudo-non-deterministic, there is a TRS T such that d @ T E 9 A 1 CON’ 3 ~3 ~3 T. 
Also, by the density of 9 it follows that G! @ 39 $Z Y + (& @ T) @ (L@ $ T) $8. Hence, 
& @ T and G? @ T give again a counterexample. 

By point (ii), we can extend it to a provable counterexample, that is translated by 
!I3 into another provable counterexample (note %Q can be applied since ~2 @ T and 
63 $ T are both 1 CON’, and so using Fact 2). 

But this new provable counterexample is neat by Lemma 12, hence contradicting 
point (i). 0 

We now apply this general theorem to several properties. For the sake of clarity, we 
repeat in all the results the assumption of left-linearity understood so far. 
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7.1. Termination 

A TRS is terminating if all its reductions are finite. Termination is, in general, not 
a modular property (see e.g. [ 191). Via Theorem 16 we will prove the state-of-the- 
art results on its modularity for left-linear TRSs, and also provide two new results 
(actually, we will even manage to prove the best possible results, as we will see later). 

Lemma 17. Termination is modularly neat for left-linear TRSs. 

Proof. Suppose a term s has an infinite reduction. Then at least one of its special 
subterms has an infinite number of rewrite rules applied to it (s descendants). Take 
one with minimal rank, say t. If the infinite reduction is neat, an infinite number of 
rewrite rules applies also to the top of t, thus obtaining an infinite reduction of a term 
with only one colour. 0 

Note that the above result also holds in the non-left-linear case, using the same 
proof with slight modifications (in place of the top of t, say C[oi, . . . ,nn], the con- 
text C[oi, . ,011 must be used, for the possible presence of non-left-linear rewrite 
rules). Since a non-collapsing TRS is also modularly neat, this generalizes the result 
of Rusinowitch [17] stating the modularity of termination for non-collapsing TRSs. 

Corollary 18. Termination is modular for left-linear and pseudo-deterministic TRSs 
and for left-linear and pseudo-non-deterministic TRSs. 

Proof. The above lemma shows point (i) of Theorem 16. For point (ii), take an infinite 
reduction with the minimum rank of the start term. This reduction must have an infinite 
number of rewrite rules applied on the top of the start term (since all the proper special 
subterms are terminating by hypothesis). But m does not modify these rules, and hence 
the obtained reduction is still infinite. ??

This result entails the main results of [8, 181: 

Corollary 19. Termination is modular for left-linear and consistent w.r.t. reduction 
TRSs. 

Proof. By the above Corollary 18 and Lemma 15. 0 

Now we consider the other ‘dual’ result that Corollary 18 offers. 
Call OR the TRS {or(X, Y) -X, or(X, Y) + Y}; a TRS T is said termination pre- 

serving under non-deterministically collapses (briefly q&-terminating) if T $ OR is 
terminating. Gramlich in [3] proved that %$-termination is modular for finitely branch- 
ing TRSs. Later, Ohlebusch (cf. [16]) extended this result to arbitrary TRSs dropping 
the finitely branching condition. We can entail Gramlich’s and Ohlebusch’s result in 
the left-linear case: 

Corollary 20. %?J-termination is modular for left-linear TRSs. 



48 M. Marchioril Theoretical Computer Science I92 (1998) 31-54 

Proof. It follows from Corollary 18 once it is observed that %$-termination is pseudo- 
non-deterministic and implies termination. 0 

Another criterion for the modularity of termination was proven by Middeldorp in 
[13]: he showed that whenever one of two terminating TRSs is both non-collapsing 
and non-duplicating, then their disjoint union is terminating. Using the two above 
corollaries, we can not only entail this result in the left-linear case, but also even 
properly generalize it with the following new result: 

Corollary 21. Suppose two left-linear TRSs are terminating. Then if one of them is 
both CON* and @&-terminating, their disjoint union is terminating. 

Proof. Every TRS is either CON’ or 7 CON’. So, take two terminating TRSs, with 
one of the two CON’ and %&-terminating: if the other is CON’, their disjoint union is 
terminating by Corollary 19, otherwise if it is 1 CON’ then it is also %&terminating, 
and so their disjoint union is terminating by Corollary 20. ??

Corollary 22. Suppose two left-linear TRSs are terminating. Then tf one of them is 
both non-collapsing and non-duplicating, their disjoint union is terminating. 

Proof. By the above corollary, since non-collapsing + CON’, and a TRS which is 
both terminating and non-duplicating is %$-terminating (as it is easy to show, see e.g. 
[3, 12, 111). 0 

We now turn our attention to the structure of counterexamples to the modularity of 
termination. So far, two main results are known. Ohlebusch in [ 161 (again, extend- 
ing a result of Gramlich in [3] for finitely branching TRSs), showed that in every 
counterexample one of the TRSs is not w&-terminating and the other is collapsing. 
Schmidt-Schau8, Marchiori and Panitz showed in [18] that, in the left-linear case, in 
every counterexample one of the TRSs is CON’ and the other is -CON’. Both of 
these results reouire a non-trivial nroof. Here. we show how we can ea_si!v obtain nnt _. _~___ .__.___ r-__-. , _ L___ _.- , ------- ---- 
only the previous two results (in the left-linear case of course), but even a single result 
that properly generalizes both of them. 

First, we prove the result of [IS]: 

Corollary 23. In every counterexample to the modularity of termination for left- 
linear TRSs, one of the TRS is CON- and the other is 7 CON-. 

Proof. Since every TRS is either CON’ or lCON’, only three cases are possible: 
(1) both are CON’, (2) both are 7 CON’, (3) like in the statement of this corollary. 
But (1) is not possible by Corollary 19, whereas (2) is not possible by Corollary 20 
I since everv tem_inat& & 7 ___ . \------ - ‘--, mN’ TRS is &ivia!!y ~&~_~~~~~qz$. ??

Next we show a somewhat dual result: 
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Corollary 24. In every counterexample to the modularity of termination for left- 
linear TRSs, one of the TRSs is %$-terminating and the other is 7 %?g-terminating. 

Proof. Completely analogous to the proof of the above corollary. ??

We can now prove the following result that generalizes all the previous ones: 

Corollary 25. In every counterexample to the modularity of termination for left- 
linear TRSs, one of the TRSs is -, CON+ and the other is 1 %&terminating. 

Proof. From Corollaries 23 and 24, in every counterexample only two cases are possi- 
ble: (1) one of the TRSs is ‘#g-terminatingA CON’ and the other is 7 wg-terminating 
A-CON-, or (2) one of the TRSs is %‘g-terminatingAlCON’ and the other is 
1 %g-terminatingACON' . But the first case is ruled out by Corollary 21. On the 
other hand, by the fact that for terminating TRSs 1 CON’ =+ %?g-termination, it fol- 
lows right away that case (2) is just the statement of this corollary, since for terminating 
TRSs %&tetminationA~ CON’ ti 7 CON’ and 7 gg-terminationACON’ @ 1 g8- 
termination. 0 

As previously claimed, this result properly generalizes (besides Corollary 24) the 
result of [ 181 (Corollary 23) and the result of (Gramlich and) Ohlebusch [3, 161 in the 
left-linear case: 

Corollary 26. In every counterexample to the modularity of termination for left- 
linear TRSs, one of the TRSs is 7 V&-terminating and the other is collapsing. 

Proof. Trivial by the above corollary, since 1CON” + collapsing. 0 

To comment on the results on the modularity of termination that we have obtained, 
we said at the beginning that we were going to prove the state-of-the-art results for 
left-linear modular termination; in fact, via the theory of vaccines (cf. [9, 12, 111) it has 
been proved much more: the above main results (Corollaries 18 and 25) are the best we 
can obtain for left-linear TRSs (see the above references for precise statements of this 
claim). Hence, neatening allows to prove the strongest possible results for left-linear 
TRSs. 

7.2. Uniqueness of normal forms W.Y. t. reduction 

A TRS is said to have the unique normal forms w.r.t. reduction, UN’ for short, if 
every term has at most one normal form (recall that a term t is in normal form for a 
TRS if there is no other term t’ such that t ---f t’, i.e., t cannot be reduced). The UN’ 
property is not modular in general (cf. [14]); whether it is modular or not for left- 
linear TRSs was the last open problem in the modularity of the basic properties of TRSs 
(cf. [2]); this problem was finally shown to have a positive solution in [7] (see also 
the discussion in Section 8). We now show how also this result can be obtained. 
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Lemma 27. UN- is modulurly neat for left-linear TRSs. 

Proof. By rank induction: using neat reductions, every term can be reduced to nor- 
mal form by separately reducing its top (being of rank 1, it has an unique normal 
form), and its principal special subterms (they have unique normal forms by rank 
induction). Cl 

Corollary 28. UN* is modular for left-linear TRSs. 

Proof. The above lemma shows Point 1 of Theorem 16. For Point 2: take a coun- 
terexample to the modularity of UN’, i.e. a term s reducing to two distinct normal 
forms ni (via pi) and n2 (via ~2). Since nt and n2 are normal forms, no bubble can be 
present, and hence by Lemma 13 pt-+!IJQi) and pz+%lQ~). But, again, ni and n2 
being normal forms implies that Illl(pt ) reduces n(s) to nt and ‘9X(pz) reduces n(s) 
to n2, hence giving a counterexample (which is neat by Lemma 12). Cl 

7.3. Consistency w. r. t. reduction 

Although not modular in general [7, lo], CON’ is modular for left-linear TRSs, as 
shown for the first time in [7] (see also [ 10,181). We now prove this result. 

Lemma 29. CON+ is moduiariy neat jhr iejhiinear TRSs. 

Proof. If a term reduces to a variable via a neat reduction, then its top does also. 0 

Corollary 30. CON” is moduIar for left-linear TRSs. 

Proof. The above lemma shows point (i) of Theorem 16. For point (ii), take a coun- 
terexample to the modularity of CON’, viz., a term s reducing to two distinct variables 
X (via pt) and Y (via ~2). No bubbles are readily present in X and Y, and hence 
by Lemma 13, pt-nluz(pt ) and pz+1)32@2). But X and Y being variables implies that 
!JJQt) reduces n(s) to X and %R(p2) reduces n(s) to Y, thus giving a counterexample 
(neat by Lemma i2 j. 0 

The importance of this result, besides theoretical, also lies in the fact that it allows 
to use the result on the modularity of termination obtained in Corollary 18 for more 
than two TRSs, since the disjoint union of two left-linear, terminating and either both 
CON’ or both 1 CON’ TRSs is still left-linear, terminating and either CON’ or 
1 CON-. 

7.4. Confluence 

As well known, a TRS is confluent if for every term t reducing to two terms tl 
and tz; there is a term s such that both t! and tz reduce to s. Toyama in his famous 
paper [20] (see also [5]) proved that confluence is a modular property: we can entail 
this result in the left-linear case. 
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Lemma 31. Chfiuence is modularly neat for left-linear TRSs. 

Proof. By rank induction. Suppose a term s = C[l,, . . . ,t,] reduces to tl (via ~1) and 
to t2 (via ~2). The rewrite steps of pi (and of ~2) that act outer on a descendant 
of s can be applied to its top as well (Proposition 6), and every pure descendant of s 
in p1 has its top joinable with the top of every pure descendant of s in ~2. On the 
other hand, the descendants of the special subterms tl,. , t, in p1 are joinable to the 
corresponding descendants in p2 by the induction hypothesis: hence, every term in 11, 
is joinable with every term in ~2. U 

Corollary 32. Co@uence is modular jbr lgft-lineur TRSs 

Proof. The above lemma shows point (i) of Theorem 16. For point (ii), suppose 
a term s reduces to tl (via ~1) and to t2 (via pz), and that tl and t2 are not joinable. 
Without loss of generality, we can suppose tl and t2 have no proper top-bubbles: if it is 
not the case, finitely extend every reduction by repeatedly selecting a proper top-bubble 
of maximal rank and m-collapsing it. By Lemma 13, pt * 59JI(pt ) and p2 + !JlI(p~ ), 
and so II(s) reduces via the neat (cf. Lemma 12) reductions 9JQl) and ‘9JI(1)2) to 
two terms that are still not joinable, and hence a fortiori not joinable using neat 
reductions. iz 

7.5. Weak normalization 

A ‘TRS is said weakly normalizing if every term has at least one normal form. Weak 
normalization (WN) was at the same time proven to be modular by several authors 
(see [14] for some references): we can entail this result in the left-linear case. 

Lemma 33. Weak normalization is modularly neat ,for left-linear TRSs. 

Proof. By rank induction. Considering a term s, its top reduces to a normal form 
(being of an unique colour); by Proposition 6 we can apply these rules to s as well 
(note this reduction is neat). The obtained term has its top in normal form, and so we 
can reduce to normal form its proper special subterms (by the induction hypothesis), 
obtaining a normal form. 0 

Corollary 34. Weak normalization is modular for left-linear TRSs. 

Proof. We first prove that weak normalization is pseudo-non-deterministic. Consider 
the TRS OR = {or(X, Y) +X,or(X, Y) + Y}. Take a TRS T’ which is WN: T’ G OR E 
WN A -CON-. Indeed, T’ @ OR E XON’ is trivial; on the other hand, T’ CD OR E 
WN: taken a term s, we can normalize it w.r.t. OR, so obtaining a term in T’ that is 
normalizable bv hvnothesis. ~, __,r_-___‘___ 

We can so apply Theorem 16: the above Lemma 33 shows point (i); for point (ii), 
take a term s not having a normal form: if a top-bubble is present in it, repeatedly 
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collapse it (no matter to what ‘slot’), till one obtains a term J.’ still having no normal 
forms. Thus, Zi’(s’) = s’ has not normal forms, and so a fortiori has not a normal form 
reachable by neat reductions. 0 

7.6. Completeness 

Completeness, as well known, is the conjunction of confluence and termination. 
Despite not being modular in general, it was proven to be modular for left-linear TRSs 
by Toyama, Klop and Barendregt in their ingenious paper [21] (see also [22]); the 
-..,,c ,.c “..“L ,. ..,,..le I.,..,,..-.. :, r..,+l.,... :.&,:,.,&. “..A -,.& ,.,,:1.. JZ,,“&.A9 /-x.., er., lx”” “1 >llLII a IexUc) II”wevGI) 1s laL.llEjl 11111IcaLe anu ll”L r;as,ry ULgGsLcM [Urlng LUG 
same authors). This result can instead be obtained as a simple corollary: 

Corollary 35. Completeness is modular for left-linear TRSs. 

Proof. Since completeness equals to termination and uniqueness of normal forms w.r.t. 
reduction, the result follows from Corollaries 19 and 28. 0 

Note that a direct proof of the above result via Theorem 16 is also easy to obtain. 

7.7. Semi-completeness 

Semi-completeness is the property obtained by the conjunction of confluence and 
weak normalization. It is immediate to prove its modularity for left-linear TRSs: 

Corollary 36. Semi-completeness is modular for left-linear TRSs. 

Proof. From Corollaries 32 and 34. 0 

Again, note that it is easy to obtain a direct proof of the above result via Theorem 16. 

7.8. The other properties 

So far, we mentioned all the main properties of TRSs, but for these last four: local 
confluence (WCR), consistency (CON), uniqueness of normal forms (UN) and the 
normal form property (NF) (for their definition, see e.g. [I, 41). It is not difficult to 
see that even these remaining properties can be proven to be modular for left-linear 
TRSs using Theorem 16. The only point worth mentioning is that all these properties 
are pseudo-deterministic but for local confluence, which can be proven to be pseudo- 
non-deterministic using the TRS {f (X, Y) -X, f (X, Y) --f g(X, Y), g(X, Y) -+ f (X, Y), 
g(X Y) + Y}. 

8. Paint vs. delete 

The reader may have noticed a kind of duality inside Theorem 16, since the property 
is required to be either pseudo-deterministic or pseudo-non-deterministic. 
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As we have seen, requiring pseudo-determinism essentially equals to requiring con- 
sistency w.r.t. reduction (Lemma 15). So in this case every bubble is by definition 
of degree one. But, as noticed in Section 3, every TRS has trivial bubbles of degree 
one, namely the transparent contexts. Hence, when in the Paint operation we change 
colour to the bubble, we can do it by always using a trivial bubble (viz.. a hole). 
This corresponds. in practice, to delete the selected top-bubble. This is just what was 
done in the ‘pile and delete’ technique that was introduced in [7] for the study of the 
modularity of UN’ (and later used in [S] and with some modifications in [ 18]), of 
which this transformation is a refinement and a generalization. 

So, when coping only with pseudo-deterministic properties we can use the method 
presented in this paper slightly simplified using the ‘delete’ operation in place of the 
more general paint one, and dropping the concepts of pseudo-determinism and pseudo- 
non-determinism (by Lemma 15 we can modify Theorem 16 by directly requiring that 
the property 9 implies CON’). This allows to treat the great majority of the con- 
sidered properties. What we lose is: treatment of the properties that essentially require 
pseudo-non-determinism (%&-termination, weak normalization and local confluence), the 
criterion for the modularity of termination given by Corollary 21, and all the results 
on the structure of counterexamples (Corollaries 23.--26). 

9. Conclusions 

We have introduced a uniform technique which is able to successfully deal with the 
modularity of all the basic properties of TRSs in the left-linear case, and also to provide 
some new results on the modularity of termination. Moreover, the technique is intu- 
itively appealing, since it relies on visual arg-ments, making the involved reasonments 
more intuitive and easier to grasp. 

This can be seen as a first step towards the ambitious task of providing a global 
technique to cope with modularity (i.e., dropping the left-linearity requirement). In our 
opinion, such a technique can be developed on the basis of the ideas underlying the 
method. Indeed, note that left-linearity is only explicitly required in the construction 
of the specific ‘neatening translation’ 93, not by abstract neatening. So, a promising 
line of research would be trying to develop a suitable neatening translation such that 
abstract neatening can work even in the presence of non-left-linear rewrite rules. 
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