
ELSEVIER Theoretical Computer Science 192 (1998) 31-54

Theorekai
Computer Science

Bubbles in modularity

Massimo Marchiori *

Department of Pure and Applied Mathematics, University of Padova, Via Belzoni 7,
35131 Padova. Italy

Abstract

We provide a global technique, called neatening, for the study of modularity of left-linear
term rewriting systems. Objects called bubbles are identified as the responsibles of most of the
problems occurring in modularity, and the concept of well-behaved (from the modularity point
of view) reduction, called neat reduction, is introduced. Neatening consists of two steps: the
first is proving a property is modular when only neat reductions are considered; the second is
to ‘neaten’ a generic reduction so to obtain a neat one, thus showing that restricting to neat
reductions is not limitative. This general technique is used to provide a unique, uniform method
able to elegantly prove all the existing results on the modularity of every basic property of left-
linear term rewriting systems, and also to provide new results on the modularity of termination.

Keywords: Term rewriting system; Left-linearity; Modularity; Verification

1. Introduction

Modularity is a field of computer science that has been receiving more and more
interest along these years. Besides an interesting topic from a theoretical point of
view, it is also of great practical importance: in program analysis, it allows to study a
possibly big and complex program by decomposing it into smaller subparts; in program
develonment. it allows to build a safe complex system by relying on smaller safe r-------1
submodules.

As far as the paradigm of term rewriting systems (TRSs) is concerned, the notion
of modularity it that of disjoint union (i.e. the union of two TRSs having disjoint sig-
natures): a property is said modular provided two TRSs enjoy it iff their disjoint union
does. This notion is somehow the basis from which to start for considering more and
more complex combinations of TRSs (like composable or hierarchical, see e.g. [15]).

In this paper we present a new technique, called neatening, as a global method
to study modularity of left-linear TRSs. Neatening is able to cope with all the basic

* E-mail: max@,math.unipd.it.

0304-3975/98/$19.00 @ 1998 -Elsevier Science B.V. All rights reserved
PII SO304-3975(97)00144-g

32 M. Marchioril Theoretical Computer Science I92 (1998) 31-54

--_-_A:__ -1‘ 1-n I:-__- -h-ncl_ _I_-_-rl_. --__.:-_ -11 Al__ -__..lL_ I--_--- properues 01 I~IL-unear rnas, e~egarmy provmg au mt: rtzmts muwn SO f% Oil their

modularity.
First, we focus on the intimate reasons that make modularity difficult to study: the

major responsible is identified in the notion of bubble. A bubble, like the name suggests,
is an object that has a potential unstability, since it could sooner or later ‘explode’
(collapse) with bad consequences on the global structure of the term. Therefore, we
introduce the concept of neat reduction, where the ‘explosions’ of the bubbles are not
dangerous (from a modularity viewpoint).

Then, to prove a property is modular, the method of neatening is introduced. Neat-
ening, abstractly, consists of a two-step process.

First, prove that the property is modularly neat, that is to say it is modular when
only neat reductions are considered.

Second, ‘neaten’ a generic reduction by translating it into a neat one, thus showing
that restricting to neat reductions is not a limitation.

Neatening is an adequate global method for the study of modularity of TRSs under
the left-linearity assumption: via this technique we obtain a meta-theorem from which
all the known results on modularity, for every basic property of left-linear TRSs, are
elegantly derived. Furthermore, it also provides a new sufficient criterion for the mod-
ularity of termination, and a new result on the structure of the counterexamples to the
modularity of termination, for left-linear TRSs, that generalizes all the previous similar
results.

The ncaner ic nrmnimd 1~ fnllnwa Tn Cc=rtinn 7 cnrn~ otonrlm-A nrelimincanr nntinno l..V pyV’ 10 “‘fiY...Y”U uv .“.l”.“U, LII “VVLl”ll &) Y”lllV YIUllULUU p”““““u’J ‘I”~I”IIII
are introduced. In Section 3 the concept of bubble is presented, and in Section 4 that of
neat reduction. Section 5 gives an abstract presentation of neatening, while Section 6
introduces the specific ‘neatening translation’ (m) that will be used in the practical
application of neatening. In Section 7 we present the main theorem, and apply it to all
the basic properties of TRSs. Section 8 compares this technique with the original ‘pile
and delete’ transformation introduced in [7]. Finally, Section 9 ends with some brief
conclusive remarks.

2. Preliminaries

We assume knowledge of the basic notions regarding TRSs: the notation used is
essentially the one in [4, 141. Here we will just summarize some of the basic concepts
that will be needed in the article.

For every property 9, 19 denotes its complementary property (viz. a TRS enjoys
79 iff it does not enjoy 9).

We indicate with Y(C, V) the set of terms built from a signature C and a (fixed)
set of variables V.

A term rewriting system (TRS) B? consists of a signature Cg and a set of rewrite
rules (sometimes called simply rules). A rewrite rule is an object of the form I + r,
where I and Y are terms from Y(Zg, Y), such that 1 is not a variable and all the
variables of Y appear also in 1. I and r are called, respectively, the left-hand side and

M. Marchioril Theoretical Computer Science 192 (1998) 31-54 33

the right-hand side of the rule. A rewrite rule is called left-linear if in the left-hand
side every variable does not occur more than once (e.g. f(g(X, g(Y, Z)) + g(X,X)). It
is called collapsing if the right-hand side is a variable (e.g. f(X) --+X). It is called
duplicating if there is a variable which occurs more times in the right-hand side than in
the left-hand side (e.g. f(X) + g(X,X)). It is called erasing if there is a variable in the
left-hand side which is not present in the right-hand side (e.g. g(X, Y) + f(X)). Also,
we say a rule is non-collapsing (resp. non-duplicating, non-erasing) if it is not col-
lapsing (resp. duplicating, erasing). Analogously, a term rewriting system is left-linear,
non-collapsing, non-duplicating, non-erasing if each of its rewrite rules is, respectively,
left-linear, non-collapsing, non-duplicating, non-erasing.

A context is a term built up using, besides function symbols and variables, the new
special constants ??r,o2,03, . . (said the holes). Contexts are as usual indicated with
square brackets, e.g. C[at,o2] denotes a context with one occurrence of the hole 31
and one occurrence of the hole 02. Given a context C[or,. . ,o,] and terms tl,. , t,,,
C[tl, “. , t,] stands for the term obtained from C[Q, . . . , ??,] by replacing every occur-
rence of cl; with t, (1 <i<n).

A term rewriting system 92 determines a rewrite relation +a on y(C,g, ?“), defined
this way. Given two terms t and t’, t +R t ’ if t = C[Zcr] and t’ = C[ra], for some
context C, substitution (r, and rewrite rule I -+ r in 92. If to +9 tl +d t2 . . +& tn
(n > 0), then we say that to reduces to t,, in 9; correspondingly, we call a reduction
the sequence to, tl, . . , t,,, together with the information on what rewrite rule li ---f Y,
has been used to reduce ti to ti+l (O<i <n), and where it has been applied in tl (i.e.
what subterm of ti the rule rewrites). Finally, +,g denotes the transitive and reflexive
closure of +a. When 92 is clear from the context, we will simply write C, -+, and
* in place of &, +.g, and ++J.

Given a reduction p : s -+ s1 ---f s2 + . . ., the first term s is said the start term. Con-
catenation of two reductions p and p’ will be indicated with p. p’. We say a reduction
[is contained in a reduction p (notation i C: p) if p = { p’, for some p’. A term t
belongs to p (notation t E p) if s 7 t, [C: p.

Taken two reductions p and p’, we say that p’ is co$nal for p (notation p ++ p’) if
vsEp3s’Ep’.s++s’.

When two term rewriting systems d and 39 have disjoint signatures, we denote with
.d @ 24 their disjoint union, that is to say the TRS having as signature the union of the
signatures C,d and C,g, and as rewrite rules both the rewrite rules of d and those of .W.
A property 3p of term rewriting systems is then said to be modular if for every couple
of TRSs JZ+? and 93 with disjoint signatures, d E 9, B E 9 H d $93 E .P. Throughout
the paper we will indicate by d and 93 the two TRSs to operate on. When not
otherwise specified, all symbols and notions not having a TRS label are to be intended
operating on the disjoint union L&’ @ &I. For better readability, we will talk of function
symbols belonging to & and 98 like white and black functions. Variables and holes,
instead, have both the colours, and are thus also called transparent symbols. We also
say a term/context is white (resp. black, transparent) if it is composed only by white
(resp. black, transparent) symbols.

34 M. Marchioril Theoretical Computer Science 192 (1998) 31-54

The root symbol of a term t is f provided t = f (tl , . . . , t,), and t itself otherwise.
Let t =C[tl , . . . , t,] and C not transparent; we write t = C[t,, . . . , tn] if C[Q,. . . ,n,]

is a white context and each of the ti has a black and not transparent root, or vice versa
(swapping the white and black attributes). The topmost homogeneous part (briefly top)
of a term Cftl,..., t,,]l is the context C[oi,. ..,o,].

Definition 1. The rank of a term t (rank(t)) is 1 if t is black or white, and maxy=i {rank
(ti)} + 1 if t=C[tl,...,&] (TZ>O).

The foiiowing weii known iemma wiii be impiicitiy used in the sequei:

Lemma 2 (Toyama [20]). s-t d rank(s)>rank(t)

Proof. Clear. ??

Definition 3. The multiset S(t) of the special subterms of a term t is

(i)

S(t) =
i

{t} if t is black or white, and not transparent

0 if t is transparent

P/r \ I I (41 (ii) S(t)=lJ~=iAJ~liJ V l&J if t=C[ti)...) in] (ii>O).
The elements of S(t) different from t are called the proper special subterms of t.

Note that this definition is slightly different from the usual ones in the literature (for
example in [14]), since here variables are not considered special subterms.

Given a term s, we indicate by]]s]] the multiset of the ranks of the special subterms
of s. Multisets of this kind are compared according to the usual multiset ordering (see

e.g. [61X
If t = c([q , . . . , t,], the ti are called the principal special subterms of t. Furthermore,

a reduction step of a term t is called outer if the rewrite rule is not applied in the
principal special subterms of t.

Given a term i, and taken two speciai subterms of it, ti and t2, we say that tl is
above t2 (or, equivalently, that t2 is below tl), if t2 is a proper special subterm of tl.

3. Bubbles

When studying the modular behaviour of some property, the main difficulty one has
to face is that the behaviour of the reductions in the disjoint union d $?3 can be quite
complicated w.r.t. the reductions in the components d and 9?.

The disjointness requirement on d and ?Zi should ensure that symbols of one colour
cannot interact with symbols of another colour. This is in a ‘static’ sense true, as we
will see in Proposition 6.

The problem, however, is that this static ‘modular structure’ given by the subdivision
into (tops of) special subterms is not fixed and immutable, but changes dynamically

34 M. Marchioril Theoretical Computer Science 192 (1998) 31-54

The root symbol of a term t is f provided t = f(ti , . . . ,t,), and t itself otherwise.
Let t=C[ti , . . . , t,] and C not transparent; we write t = C[ti,. . . , tn] if C[Q,. . . ,n,]

is a white context and each of the ti has a black and not transparent root, or vice versa
(swapping the white and black attributes). The topmost homogeneous part (briefly top)
of a term Cftl,..., t,,]l is the context C[oi,. ..,o,].

Definition 1. The rank of a term t (rank(t)) is 1 if t is black or white, and rnaxy=i {rank
(ti)} + 1 if t=C[tl,...,&] (TZ>O).

The following well known lemma will be implicitly used in the sequel:

Lemma 2 (Toyama [20]). s++ t + rank(s)>rank(t)

Proof. Clear. ??

Definition 3. The multiset S(t) of the special subterms of a term t is

(i)

S(t) =
i

{t} if t is black or white, and not transparent

0 if t is transparent

(ii) S(t) = lJblS(ti) U {t} if t = C[tl,. . . , tn] (n >O).
The elements of S(t) different from t are called the proper special subterms of t.

Note that this definition is slightly different from the usual ones in the literature (for
example in [14]), since here variables are not considered special subterms.

Given a term s, we indicate by]]s]] the multiset of the ranks of the special subterms
of s. Multisets of this kind are compared according to the usual multiset ordering (see

e.g. [61X
If t = c([q , . . . , t,], the ti are called the principal special subterms of t. Furthermore,

a reduction step of a term t is called outer if the rewrite rule is not applied in the
principal special subterms of t.

Given a term t, and taken two special subterms of it, tl and t2, we say that tl is
above t2 (or, equivalently, that t2 is below tl), if t2 is a proper special subterm of tl.

3. Bubbles

When studying the modular behaviour of some property, the main difficulty one has
to face is that the behaviour of the reductions in the disjoint union d $?3 can be quite
complicated w.r.t. the reductions in the components d and 9?.

The disjointness requirement on d and ?Zi should ensure that symbols of one colour
cannot interact with symbols of another colour. This is in a ‘static’ sense true, as we
will see in Proposition 6.

The problem, however, is that this static ‘modular structure’ given by the subdivision
into (tops of) special subterms is not fixed and immutable, but changes dynamically

36 M. Marchioril Theoretical Computer Science 192 (1998) 31-54

that does not satisfy this property is also known in some literature as being non-
deterministically collapsing, cf. [3,16]). ’

4. Neat reductions

To be able to describe the special subterms of a given term throughout a reduction,
it is natural to develop a concept of (modular) marking. A first, naive approach of
modular marking for a term is to take an assignment from the multiset of its special
subterms to a (fixed) set of markers. Then reductions steps, as usual, should preserve
the markers. However, this simple definition presents a problem, since for one case
there is ambiguity: when a collapsing rule makes a proper top-bubble vanish (that is,
when there is a non-trivial bubble at the top of a proper special subterm that collapses).
In this case, we have the following situation:

and we have a conflict between m2 and m5.
This situation is dealt with by defining a modular marking for a term to be an

assignment from the multiset of its special subterms to sets of markers, and taking,
in the ambiguous case just described, the union of the marker sets of the two special
subterms involved.

Thus, the previous example would give (singletons like {ml} are written simply ml):

’ Actually, the above definitions all concern the existence or not of a bubble of degree 2 (to be fussy, of
a term reducing to two different variables), but, as just noticed, by Proposition 5 this is equivalent to talking
about a non-deterministic bubble.

M. Marchioril Theoretical Computer Science 192 (1998) 31-54 37

When this situation occurs, we say that the special subterm rn5 has been absorbed by
m2, and the special subterm m4 has had a modular collapsing (briefly m-collapsing).

When dealing with reductions t ++ t’ we will always assume, in order to distinguish
all the special subterms, that the initial modular marking of t is injective and maps
special subterms to singletons.

We call a reduction neat if it has no m-collapsings.
Inside a reduction a notion of descendant for every special subterm can be defined:

in a reduction a special subterm is a descendant (resp. pure descendant) of another
if the set of markers of the former contains (resp. is equal to) the set of markers of
the latter. Note, en passant, that due to the presence of duplicating rules, there may
be more than one descendant, or even none (due to erasing rules). Observe also that,
since in a reduction without m-collapsings all the descendants are pure, the first special
subterm to m-collapse in a generic reduction is a pure descendant. Hence it readily
holds the following:

Fact 1. A reduction has m-collapsings if a pure descendant m-collapses.

Since special subterms are in bijective correspondence with their tops, we will be
often sloppy and talk about the descendants of a top, meaning the descendants of the
corresponding special subterm.

5. Neatening

As previously hinted, it is just the presence of m-collapsings that complicates a
lot the behaviour of a reduction in a disjoint union of TRSs, making possible the
interaction of initially distinct tops. When these interactions are not possible (i.e. when
reductions are neat), different tops remain different, and so one can separately reason
every top as an independent term (cf. Proposition 6), making the modularity analysis
much easier.

Historically, a first attempt to cope only with neat reductions was to syntactically
limit the rewrite rules to ensure no bubbles (but for the trivial ones of course) were
present: if every rule is non-collapsing (viz. the right-hand side is not a transparent
term), then readily no non-trivial bubble can exist, and so every reduction is automat-
ically neat.

Indeed, every known property of interest is modular when (left-linear and) non-
collapsing TRSs are considered. Anyway, the restriction to non-collapsing TRSs is too
heavy to be of great importance: it is the presence of collapsing rules that makes TRSs
(and their combinations) so flexible.

So, avoiding the existence of (non-trivial) bubbles is effective for modularity but too
restrictive. As a matter of fact, as seen, the real problem is not the presence of bubbles
as such; but the presence of m-collapsings in reductions. So: the good ‘bottom’ notion
of modularity is just that of modularity neatness: a property 9” is said to be modularly
neat if it is modular when only neat reductions are considered.

38 M. Marchioril Theoretical Computer Science 192 (1998) 31-54

Q.l__ ______, _______l_ _I? ‘l____ l_____ ___~_-:--~ I.. -___.- - ___A_:- __-_-_-. /m 1_
I‘lt: gGIIcIa1 app’““LxI “I “ilI~-““II~Y IIcattxIIrIg LO prove a wrkwi prvperty 2- is

modular is to
(i) show that B is modularly neat,

(ii) show that if 9 is modularly neat then 9 is modular.
In the paper we use, equivalently, a reductio ad absurdum technique. We try to

show that if 9 is not modular, then it is not such even when only neat reductions are
employed, hence contradicting point (i).

After having sketched a ‘bare-bones’ version of neatening, we proceed on refining
its definition.

Consider a modularity problem: to prove 9 is modular, one has to prove that for
every couple of TRSs d and g, d E .Y 3 %Y * d @ B E 9’. This means that, in gen-
eral, two implications have to be considered. However, for all the properties of interest
one of the two implications (+) is trivial. So we get rid of it by directly considering
only dense properties (this definition stems from [9], see also [l 1,121): a property 9 is
said to be dense if whenever d B B E 9 then both d and 33 belong to 9 . Therefore,
what neatening has to prove is that ~4 E 9 3 g + d @ ~3 E P. 2

A counterexample (to the modularity of 9) is a pair of TRSs d and B such that
d E 9 3 ~?3, & @ ~?8 $9. A provable counterexample (to the modularity of 9’) is a
counterexample (L&‘, g) to the modularity of P together with a proof that & @ g @ 9.
Readily,

3 a provable counterexample to the modularity of 9

G
3 a counterexample to the modularity of 9

u
9 is not modular

Moreover, for all the dense properties the reverse implication also holds:

3 a counterexample to the modularity of P

fi

9 is not modular

Hence, in the sequel, we will tacitly assume that a property is not modular iff there is a
provable counterexample to its modularity. Also, when talking about counterexamples
we will often omit the appendix ‘to the modularity of 9” (the property will be clear
from the context).

We have seen that point (i) of ‘bare-bones neatening’ roughly corresponds to mod-
ularity under the non-collapsing assumption. In general, proving this is not a problem
since this restriction is quite heavy: the problem lies in (ii).

‘In fact, this latter implication is also often referred to as ‘modularity of 8’ (for a discussion, see e.g.
w, 111).

M. Marchioril Theoretical Computer Science 192 (1998) 31-54 39

By the above implications, what we lack is only the implication:

3 a provable counterexample to the modularity of 9

4 (*)
3 a neat provable counterexample to the modularity of 9

If we had this, we could reason as follows:

9 is not modular

4
3 a counterexampie to the modularity of 9

3 a provable counterexample to the modularity of 9

u (*j
3 a neat provable counterexample to the modularity of 9

3 a neat counterexample to the modularity of 9’

9 is not modularly neat

thus obtaining the contradiction to point (i).
‘The idea of neatening is to prove the missing impiication (+j using a ‘neatening

translation’ that transforms every generic reduction into a neat reduction. This way, it
can be applied to the proof of the provable counterexample, yielding a neat provable
counterexample.

Hence, the technique of (abstract) neatening is:
Suppose a dense property 9 is such that

(i) it is modularly neat;
(ii) if there is a counterexample, then it can be extended to a provable counterexam-

ple that is transformed via a ‘neatening translation’ into another neat provable
counterexample.

Then 9’ is modular.
Observe that we have slightly stressed point (ii), since it would have sufficed to say

that there is a provable counterexample that is transformed via a ‘neatening translation’
into another neat provable counterexample.

6. Pile and paint

In this section we provide the formal definition of a ‘neatening translation’ that
makes the neatening method work.

Visually, the intuition is that a (non-trivial) bubble, as seen, is a term that cannot
properly have a fixed colour, since it can reduce to a transparent object: this way
it assumes the colour of the objects it stays near. So, when a proper top-bubble is
present, we have the unpleasant situation that two tops of one colour are separated by

40 M. Marchioril Theoretical Computer Science I92 (1998) 31-54

a potentially transparent object (the bubble) that has for the moment a different colour:
a situation which is highly unstable.

The solution is to get rid of this bubble by attaching it to every top of its same
colour which is above it (pile operation), and then change the bubble’s colour (paint
operation), so that the unstable situation disappears. Note that it is not dangerous to
attach the bubble to other terms, as we do with the pile operation: presence of bubbles
is in general unavoidable (recall the discussion on non-collapsing TRSs); what is dan-
gerous is only the unstable situation described above (that can lead to m-collapsings),
and when a bubble is inside a non-bubble top of the same colour, even if it becomes
transparent, the overall colour of the top does not change.

The following simple proposition (that will be often considered understood) is nev-
ertheless fundamental, explaining why left-linearity is so important:

Proposition 6. If a TRS is left-linear, then rewrite rules that have the possibility to
act out on a special subterm t are exactly those that have the possibility to act on
its top.

Proof. Let t = CutI,. . . , tn]: since tl,. . . , t,, have a root belonging to the other TRS (with
respect to C), they are matched by variables from any rewrite rule applicable to C,
and for the left-linearity assumption these variables are independent of each other. 0

Roughly speaking, the proposition says that when left-linearity is present, rewrite
rules that are applied to the top of a special subterm do not ‘look below’, i.e. they
do not care at all about the special subterms that are below. This means that we can
modify all these special subterms, without preventing the application of such rewrite
rules (that act, so to say, ‘locally’).

Assumption. From now on, every TRS, unless otherwise specijied, is understood to
be left-linear.

Definition 7 (Pile and Paint). The Pile and Paint transformation of a term s (notation
n(s)) is obtained as follows.

Select the leftmost (in writing order) proper special subterm of s that has rank
minimal amongst the ones with a bubble as top: say t = B((tl, . . . , tkDD. Without loss
of generality, we suppose it is top white. If no such t is present, we leave the term
unchanged (i.e. X(S) = s). Otherwise, we define n(s) as the term obtained from s after
the following two operations.

Pile: We ‘pile’ the bubble B(jol, t2,. . . , tk() just below the tops of all the above white
special subterms. That is, if a top black special subterm of s is of the form r[rl, . . . , rm]l,
with rj above t, we pass from r[rl, . . . , rm] to

r[[rI,..., rj_t,Barj,t2,...,tk[),rj+l,...,r,JI

The operation is shown in Fig. 1.

M. Marchioril Theoretical Computer Science 192 (1998) 31-54 41

Fig. 1. The Pile operation

Fig. 2. The Paint operation

Paint: We change the colour of the bubble B, replacing it with another black bubble

401 ,. . . ,Q[) of the same degree. So, t passes from Bat,,. . .,tk[) to bat,,. , tk). The
operation is shown in Fig. 2.

Remark 8. The transformation 7~ chooses at the beginning the leftmost proper special
subterm of s that has rank minimal amongst the ones with a bubble as top (roughly
speaking, it selects the leftmost and uppermost proper top-bubble). The requirement of
being the leftmost, however, is completely arbitrary for our purposes, since it can be
dropped. However, we use it so as not to heaven the transformation using an additional
parameter indicating which top-bubble has been selected.

Analogously, in the pile operation we inserted Yj in the first slot of B: this is not
necessary, since every slot could be used, but for commodity we fix one (the first).
Hence, in the sequel, when saying that B collapses without specifying to what, we will
mean to its first slot 01.

42 M. Marchioril Theoretical Computer Science 192 (1998) 31-54

Original reduction:

Mimicked reduction:

Fig. 3. Mimicking of the m-collapsing of the selected bubble.

When can rc be applied? The only problematic step is the paint one, where we change
rh, n,l,T.... ,.P n l...l.hla ..m.lnAmrr ;+ ..,;A. nmr\+l..w Frr\m 4.0 athz... I-DC hn.r;..m thn on-n LUG cl”,“Lu “I a “U”“,~ IqJlaklllt; 1c WlUl cz~I”CII~~ ll”lll Lllcz “I11~1 I I\LJ ua”ul~ cuti J(uUL.

degree. Hence, a sufficient condition for the applicability of rr is:

Fact 2. TC can be applied if the two TRSs have bubbles of the same degrees.

Equivalently, by Proposition 5, the above fact can be restated as: the two TRSs
must be either both CON” or both TCON-.

We now show how from L’(s) we can still mimic the old reduction. The intuition is
that the bubbles that we piled can be needed if during the original reduction, via other
bubbles’ collapsings, the selected bubble was absorbed. The ‘painted’ bubble, instead, is
needed when the original selected bubble collapsed: we make this new bubble collapse
to the same ‘slot’. Also, when all these bubbles (piled and painted) are not needed
any more, they can be deleted by simply making them collapse.

Definition 9 (Mimicking m). Given a reduction p of s, we define the corresponding
mimicking reduction m(p).

The start term is 71(p).
Then, we simply use the rules of p with the following modifications:
?? If the rule was applied to a pure descendant of 2:

- If the rule made a pure descendant of t m-collapse to (a descendant of) ti, then
consider the corresponding term t’:

(i) Collapse t’ into ti
(ii) Act with the corresponding reduction of p on (that descendant of) ti.

The situation is shown in Fig. 3.

M. Marchioril Theoretical Computer Science 192 (1998) 31-54 43

Original reduction:

Mimicked reduction:

Fig. 4. Mimicking of the absorbtion of the selected bubble

- Otherwise, skip that rule.
?? If the rule was not applied to a pure descendant of t, the rule is applied, and

moreover:
- If the rule made a pure descendant of t be absorbed, then consider the corre-

sponding term t’:
(i) Collapse t’ (this recreates a fresh copy of t, see Fig. 4).

(ii) Act with the corresponding reduction of p on (that descendant of) t on this
newly created copy of t.
The situation is illustrated in Fig. 4.

- If a rule made a black special subterm m-collapse, collapse the bubble piled
immediately above it (if it is not erased); see Fig. 5.

- If a rule made a white special subterm m-collapse, collapse the bubble piled
immediately below it (if it is not erased); see Fig. 6.

Lemma 10. Zf in p eventually there are no pure descendants of the selected bubble
B, then m(p) is co&al for p.

Proof. The assumption says that we have s ;s’, p’ C: p, and in s’ there are no pure

descendants of the bubble B.
It is easy to see that p’++m(p’). Indeed, the only differences between the original

reduction and its mimicked counterpart are the extra presence in the mimicking of the
piled bubbles, and a bubble of different colour in place of B. When we reach a term
having no pure descendants of B, it is immediate from the definition of mimicking that

44 M. Marchioril Theoretical Computer Science I92 (1998) 31-54

Original reduction:

Mimicked reduction:

Fig. 5. Mimicking of the m-collapsing of a top black special subterm.

Original reduction: / I

Mimicked reduction:

5_
,

Fig. 6. Mimicking of the m-collapsing of a top white special subterm.

M. Marchiorii Theoretical Computer Science 192 (1998) 31-54 45

the sole difference now present is the piled bubbles. So, it suffices to collapse all of
them to get back the original term.

Now we can prove that p-m(p): take ti up (S ++ ti, i & p). We choose a p’ C p
i

sufficiently big such that [2 p’ and reducing s by p’ yields no pure descendants of the
selected bubble B. We have seen that p’+m(p’). Moreover, m(p’) C m(p) (this stems
from the general fact that 51 C 52 +rn(5i)Grn(t2)), and so (CC p-+m(p’)Cm(p))
we get i-wm(p), and hence just p-m(p) by the arbitrariness of [(C p). 0

6.1. Multiple pile and paint

The transformation rc (together with m) makes the structure of a term (of a reduction)
stabler in the sense that it gets rid of a bubble. It is therefore natural to try to repeat this
simplification process as far as possible. The following lemma shows that the iteration
of this process is indeed terminating:

Lemma 11. u n(s) #s, ljn(s)I(< jIs(j.

Proof. Immediate, since the paint operation drops a special subterm, whereas the pile
operation possibly adds only special subterms of strictly inferior rank. 0

We can so repeat the application of rc until we obtain a term having no proper
top-bubble: this happens in a finite number of steps because of the above lemma.

We indicate with L’(s) the output of this process.
Readily, the applicability conditions for ‘II (Fact 2) still hold for 17.
Note that the measure 11 . 11 shows also that the termination process of n is a basic

‘syntactical’ property, not depending on ‘semantical’ arguments (the bubble).
Ii’ enjoys the following property:

Lemma 12. Every reduction ofZZ(s) is neat.

Proof. II(s) has, by definition, no top-bubble. Thus, no pure descendant can m-
collapse, and this implies by Fact 1 that its every reduction is neat. ??

We call m(p) the mimicking reduction associated with II, obtained from p by
repeatedly applicating m until the start term is n(s) (where s is the start term of p):
this is the ‘neatening reduction’ that we will use.

Incidentally, observe that 93 is even more powerful than required by neatening, since
by Lemma 12 not only it gives neat reductions, but even reductions without proper
top-bubbles.

YX inherits from m the following result:

Lemma 13. Zf in p eventually there are no pure descendants of all the proper tops,
then ‘9X(p) is cojinalfor p.

46 M. Marchioril Theoretical Computer Science 192 (1998) 31-54

Proof. Immediate from Lemma 10, once the transitivity of the cofinality relation is
noticed. 0

7. Modularity

The moment has arrived to apply the machinery we have developed, stating the
main theorem (recall that all the TRSs are assumed to be left-linear). First we need a
definition:

Definition 14. A property 9’ is called pseudo-deterministic (respectively pseudo-non-
deterministic) if 3TVT’. T’ E 9 + T $ T’ E 9 A CON’ (respectively E Y A 1 CON’).

Pseudo-determinism is in tight relationship with consistency w.r.t. reduction:

Lemma 15. A dense property 9 is pseudo-deterministic 189 implies CON+.

Proof. The if direction is always satisfied, since taking T as the empty TRS we have
T’ E 9 + T @ T’ = T E 8. For the only if direction, observe that Y and CON’ being
dense, then also Yr\ CON’ is such, and so from the pseudo-determinism of 9 we
get T’ E 9 + T’ E 9 A CON’, which implies 9 + CON’. 0

Theorem 16 (Main). Suppose that a dense property 9 is either pseudo-deterministic
or pseudo-non-deterministic, and

(i) 97’ is modularly neat.
(ii) If there is a counterexample, then it cam be extended to a provable counterex-

ample that is translated by !lX into another provable counterexample
Then 9 is modular.

Proof. Suppose 9i’ is pseudo-deterministic. If 9 is not modular, there is a counterex-
ample and so by point (ii) there is also a provable counterexample obtained translated
via !UI (mZ can be applied by Fact 2 and Lemma 15): but this provable counterexample
mmst be neat hv T.emma 12 hence cnntradictinp nnint fi\ _~ - ___--__- __) --_--__ ___‘__________D =_____ _,.

On the other hand, suppose Y is pseudo-non-deterministic. If 9 is not modular, there
is a counterexample (to the modularity of 9’), viz., ~2 E 9 3 @, & @ @ +.! 9. Being 9
pseudo-non-deterministic, there is a TRS T such that d @ T E 9 A 1 CON’ 3 ~3 ~3 T.
Also, by the density of 9 it follows that G! @ 39 $Z Y + (& @ T) @ (L@ $ T) $8. Hence,
& @ T and G? @ T give again a counterexample.

By point (ii), we can extend it to a provable counterexample, that is translated by
!I3 into another provable counterexample (note %Q can be applied since ~2 @ T and
63 $ T are both 1 CON’, and so using Fact 2).

But this new provable counterexample is neat by Lemma 12, hence contradicting
point (i). 0

We now apply this general theorem to several properties. For the sake of clarity, we
repeat in all the results the assumption of left-linearity understood so far.

M. Marchioril Theoretical Computer Science 192 (1998) 31-54 41

7.1. Termination

A TRS is terminating if all its reductions are finite. Termination is, in general, not
a modular property (see e.g. [191). Via Theorem 16 we will prove the state-of-the-
art results on its modularity for left-linear TRSs, and also provide two new results
(actually, we will even manage to prove the best possible results, as we will see later).

Lemma 17. Termination is modularly neat for left-linear TRSs.

Proof. Suppose a term s has an infinite reduction. Then at least one of its special
subterms has an infinite number of rewrite rules applied to it (s descendants). Take
one with minimal rank, say t. If the infinite reduction is neat, an infinite number of
rewrite rules applies also to the top of t, thus obtaining an infinite reduction of a term
with only one colour. 0

Note that the above result also holds in the non-left-linear case, using the same
proof with slight modifications (in place of the top of t, say C[oi, . . . ,nn], the con-
text C[oi, . ,011 must be used, for the possible presence of non-left-linear rewrite
rules). Since a non-collapsing TRS is also modularly neat, this generalizes the result
of Rusinowitch [17] stating the modularity of termination for non-collapsing TRSs.

Corollary 18. Termination is modular for left-linear and pseudo-deterministic TRSs
and for left-linear and pseudo-non-deterministic TRSs.

Proof. The above lemma shows point (i) of Theorem 16. For point (ii), take an infinite
reduction with the minimum rank of the start term. This reduction must have an infinite
number of rewrite rules applied on the top of the start term (since all the proper special
subterms are terminating by hypothesis). But m does not modify these rules, and hence
the obtained reduction is still infinite. ??

This result entails the main results of [8, 181:

Corollary 19. Termination is modular for left-linear and consistent w.r.t. reduction
TRSs.

Proof. By the above Corollary 18 and Lemma 15. 0

Now we consider the other ‘dual’ result that Corollary 18 offers.
Call OR the TRS {or(X, Y) -X, or(X, Y) + Y}; a TRS T is said termination pre-

serving under non-deterministically collapses (briefly q&-terminating) if T $ OR is
terminating. Gramlich in [3] proved that %$-termination is modular for finitely branch-
ing TRSs. Later, Ohlebusch (cf. [16]) extended this result to arbitrary TRSs dropping
the finitely branching condition. We can entail Gramlich’s and Ohlebusch’s result in
the left-linear case:

Corollary 20. %?J-termination is modular for left-linear TRSs.

48 M. Marchioril Theoretical Computer Science I92 (1998) 31-54

Proof. It follows from Corollary 18 once it is observed that %$-termination is pseudo-
non-deterministic and implies termination. 0

Another criterion for the modularity of termination was proven by Middeldorp in
[13]: he showed that whenever one of two terminating TRSs is both non-collapsing
and non-duplicating, then their disjoint union is terminating. Using the two above
corollaries, we can not only entail this result in the left-linear case, but also even
properly generalize it with the following new result:

Corollary 21. Suppose two left-linear TRSs are terminating. Then if one of them is
both CON* and @&-terminating, their disjoint union is terminating.

Proof. Every TRS is either CON’ or 7 CON’. So, take two terminating TRSs, with
one of the two CON’ and %&-terminating: if the other is CON’, their disjoint union is
terminating by Corollary 19, otherwise if it is 1 CON’ then it is also %&terminating,
and so their disjoint union is terminating by Corollary 20. ??

Corollary 22. Suppose two left-linear TRSs are terminating. Then tf one of them is
both non-collapsing and non-duplicating, their disjoint union is terminating.

Proof. By the above corollary, since non-collapsing + CON’, and a TRS which is
both terminating and non-duplicating is %$-terminating (as it is easy to show, see e.g.
[3, 12, 111). 0

We now turn our attention to the structure of counterexamples to the modularity of
termination. So far, two main results are known. Ohlebusch in [161 (again, extend-
ing a result of Gramlich in [3] for finitely branching TRSs), showed that in every
counterexample one of the TRSs is not w&-terminating and the other is collapsing.
Schmidt-Schau8, Marchiori and Panitz showed in [18] that, in the left-linear case, in
every counterexample one of the TRSs is CON’ and the other is -CON’. Both of
these results reouire a non-trivial nroof. Here. we show how we can ea_si!v obtain nnt _. _~___ .__.___ r-__-. , _ L___ _.- , ------- ----
only the previous two results (in the left-linear case of course), but even a single result
that properly generalizes both of them.

First, we prove the result of [IS]:

Corollary 23. In every counterexample to the modularity of termination for left-
linear TRSs, one of the TRS is CON- and the other is 7 CON-.

Proof. Since every TRS is either CON’ or lCON’, only three cases are possible:
(1) both are CON’, (2) both are 7 CON’, (3) like in the statement of this corollary.
But (1) is not possible by Corollary 19, whereas (2) is not possible by Corollary 20
I since everv tem_inat& & 7 ___ . \------ - ‘--, mN’ TRS is &ivia!!y ~&~_~~~~~qz$. ??

Next we show a somewhat dual result:

M. Marchioril Theoretical Computer Science 192 (I 998) 31-54 49

Corollary 24. In every counterexample to the modularity of termination for left-
linear TRSs, one of the TRSs is %$-terminating and the other is 7 %?g-terminating.

Proof. Completely analogous to the proof of the above corollary. ??

We can now prove the following result that generalizes all the previous ones:

Corollary 25. In every counterexample to the modularity of termination for left-
linear TRSs, one of the TRSs is -, CON+ and the other is 1 %&terminating.

Proof. From Corollaries 23 and 24, in every counterexample only two cases are possi-
ble: (1) one of the TRSs is ‘#g-terminatingA CON’ and the other is 7 wg-terminating
A-CON-, or (2) one of the TRSs is %‘g-terminatingAlCON’ and the other is
1 %g-terminatingACON' . But the first case is ruled out by Corollary 21. On the
other hand, by the fact that for terminating TRSs 1 CON’ =+ %?g-termination, it fol-
lows right away that case (2) is just the statement of this corollary, since for terminating
TRSs %&tetminationA~ CON’ ti 7 CON’ and 7 gg-terminationACON’ @ 1 g8-
termination. 0

As previously claimed, this result properly generalizes (besides Corollary 24) the
result of [181 (Corollary 23) and the result of (Gramlich and) Ohlebusch [3, 161 in the
left-linear case:

Corollary 26. In every counterexample to the modularity of termination for left-
linear TRSs, one of the TRSs is 7 V&-terminating and the other is collapsing.

Proof. Trivial by the above corollary, since 1CON” + collapsing. 0

To comment on the results on the modularity of termination that we have obtained,
we said at the beginning that we were going to prove the state-of-the-art results for
left-linear modular termination; in fact, via the theory of vaccines (cf. [9, 12, 111) it has
been proved much more: the above main results (Corollaries 18 and 25) are the best we
can obtain for left-linear TRSs (see the above references for precise statements of this
claim). Hence, neatening allows to prove the strongest possible results for left-linear
TRSs.

7.2. Uniqueness of normal forms W.Y. t. reduction

A TRS is said to have the unique normal forms w.r.t. reduction, UN’ for short, if
every term has at most one normal form (recall that a term t is in normal form for a
TRS if there is no other term t’ such that t ---f t’, i.e., t cannot be reduced). The UN’
property is not modular in general (cf. [14]); whether it is modular or not for left-
linear TRSs was the last open problem in the modularity of the basic properties of TRSs
(cf. [2]); this problem was finally shown to have a positive solution in [7] (see also
the discussion in Section 8). We now show how also this result can be obtained.

50 M. Marchioril Theoretical Computer Science 192 (1998) 31-54

Lemma 27. UN- is modulurly neat for left-linear TRSs.

Proof. By rank induction: using neat reductions, every term can be reduced to nor-
mal form by separately reducing its top (being of rank 1, it has an unique normal
form), and its principal special subterms (they have unique normal forms by rank
induction). Cl

Corollary 28. UN* is modular for left-linear TRSs.

Proof. The above lemma shows Point 1 of Theorem 16. For Point 2: take a coun-
terexample to the modularity of UN’, i.e. a term s reducing to two distinct normal
forms ni (via pi) and n2 (via ~2). Since nt and n2 are normal forms, no bubble can be
present, and hence by Lemma 13 pt-+!IJQi) and pz+%lQ~). But, again, ni and n2
being normal forms implies that Illl(pt) reduces n(s) to nt and ‘9X(pz) reduces n(s)
to n2, hence giving a counterexample (which is neat by Lemma 12). Cl

7.3. Consistency w. r. t. reduction

Although not modular in general [7, lo], CON’ is modular for left-linear TRSs, as
shown for the first time in [7] (see also [10,181). We now prove this result.

Lemma 29. CON+ is moduiariy neat jhr iejhiinear TRSs.

Proof. If a term reduces to a variable via a neat reduction, then its top does also. 0

Corollary 30. CON” is moduIar for left-linear TRSs.

Proof. The above lemma shows point (i) of Theorem 16. For point (ii), take a coun-
terexample to the modularity of CON’, viz., a term s reducing to two distinct variables
X (via pt) and Y (via ~2). No bubbles are readily present in X and Y, and hence
by Lemma 13, pt-nluz(pt) and pz+1)32@2). But X and Y being variables implies that
!JJQt) reduces n(s) to X and %R(p2) reduces n(s) to Y, thus giving a counterexample
(neat by Lemma i2 j. 0

The importance of this result, besides theoretical, also lies in the fact that it allows
to use the result on the modularity of termination obtained in Corollary 18 for more
than two TRSs, since the disjoint union of two left-linear, terminating and either both
CON’ or both 1 CON’ TRSs is still left-linear, terminating and either CON’ or
1 CON-.

7.4. Confluence

As well known, a TRS is confluent if for every term t reducing to two terms tl
and tz; there is a term s such that both t! and tz reduce to s. Toyama in his famous
paper [20] (see also [5]) proved that confluence is a modular property: we can entail
this result in the left-linear case.

M. Marchioril Theoretical Computer Science 192 (1998) 31-54 51

Lemma 31. Chfiuence is modularly neat for left-linear TRSs.

Proof. By rank induction. Suppose a term s = C[l,, . . . ,t,] reduces to tl (via ~1) and
to t2 (via ~2). The rewrite steps of pi (and of ~2) that act outer on a descendant
of s can be applied to its top as well (Proposition 6), and every pure descendant of s
in p1 has its top joinable with the top of every pure descendant of s in ~2. On the
other hand, the descendants of the special subterms tl,. , t, in p1 are joinable to the
corresponding descendants in p2 by the induction hypothesis: hence, every term in 11,
is joinable with every term in ~2. U

Corollary 32. Co@uence is modular jbr lgft-lineur TRSs

Proof. The above lemma shows point (i) of Theorem 16. For point (ii), suppose
a term s reduces to tl (via ~1) and to t2 (via pz), and that tl and t2 are not joinable.
Without loss of generality, we can suppose tl and t2 have no proper top-bubbles: if it is
not the case, finitely extend every reduction by repeatedly selecting a proper top-bubble
of maximal rank and m-collapsing it. By Lemma 13, pt * 59JI(pt) and p2 + !JlI(p~),
and so II(s) reduces via the neat (cf. Lemma 12) reductions 9JQl) and ‘9JI(1)2) to
two terms that are still not joinable, and hence a fortiori not joinable using neat
reductions. iz

7.5. Weak normalization

A ‘TRS is said weakly normalizing if every term has at least one normal form. Weak
normalization (WN) was at the same time proven to be modular by several authors
(see [14] for some references): we can entail this result in the left-linear case.

Lemma 33. Weak normalization is modularly neat ,for left-linear TRSs.

Proof. By rank induction. Considering a term s, its top reduces to a normal form
(being of an unique colour); by Proposition 6 we can apply these rules to s as well
(note this reduction is neat). The obtained term has its top in normal form, and so we
can reduce to normal form its proper special subterms (by the induction hypothesis),
obtaining a normal form. 0

Corollary 34. Weak normalization is modular for left-linear TRSs.

Proof. We first prove that weak normalization is pseudo-non-deterministic. Consider
the TRS OR = {or(X, Y) +X,or(X, Y) + Y}. Take a TRS T’ which is WN: T’ G OR E
WN A -CON-. Indeed, T’ @ OR E XON’ is trivial; on the other hand, T’ CD OR E
WN: taken a term s, we can normalize it w.r.t. OR, so obtaining a term in T’ that is
normalizable bv hvnothesis. ~, __,r_-___‘___

We can so apply Theorem 16: the above Lemma 33 shows point (i); for point (ii),
take a term s not having a normal form: if a top-bubble is present in it, repeatedly

52 M. Marchioril Theoretical Computer Science 192 (1998) 31-54

collapse it (no matter to what ‘slot’), till one obtains a term J.’ still having no normal
forms. Thus, Zi’(s’) = s’ has not normal forms, and so a fortiori has not a normal form
reachable by neat reductions. 0

7.6. Completeness

Completeness, as well known, is the conjunction of confluence and termination.
Despite not being modular in general, it was proven to be modular for left-linear TRSs
by Toyama, Klop and Barendregt in their ingenious paper [21] (see also [22]); the
-..,,c ,.c “..“L ,. ..,,..le I.,..,,..-.. :, r..,+l.,... :.&,:,.,&. “..A -,.& ,.,,:1.. JZ,,“&.A9 /-x.., er., lx”” “1 >llLII a IexUc) II”wevGI) 1s laL.llEjl 11111IcaLe anu ll”L r;as,ry ULgGsLcM [Urlng LUG
same authors). This result can instead be obtained as a simple corollary:

Corollary 35. Completeness is modular for left-linear TRSs.

Proof. Since completeness equals to termination and uniqueness of normal forms w.r.t.
reduction, the result follows from Corollaries 19 and 28. 0

Note that a direct proof of the above result via Theorem 16 is also easy to obtain.

7.7. Semi-completeness

Semi-completeness is the property obtained by the conjunction of confluence and
weak normalization. It is immediate to prove its modularity for left-linear TRSs:

Corollary 36. Semi-completeness is modular for left-linear TRSs.

Proof. From Corollaries 32 and 34. 0

Again, note that it is easy to obtain a direct proof of the above result via Theorem 16.

7.8. The other properties

So far, we mentioned all the main properties of TRSs, but for these last four: local
confluence (WCR), consistency (CON), uniqueness of normal forms (UN) and the
normal form property (NF) (for their definition, see e.g. [I, 41). It is not difficult to
see that even these remaining properties can be proven to be modular for left-linear
TRSs using Theorem 16. The only point worth mentioning is that all these properties
are pseudo-deterministic but for local confluence, which can be proven to be pseudo-
non-deterministic using the TRS {f (X, Y) -X, f (X, Y) --f g(X, Y), g(X, Y) -+ f (X, Y),
g(X Y) + Y}.

8. Paint vs. delete

The reader may have noticed a kind of duality inside Theorem 16, since the property
is required to be either pseudo-deterministic or pseudo-non-deterministic.

M. Marchioril Theoretical Computer Science 192 /1998) 31-54 53

As we have seen, requiring pseudo-determinism essentially equals to requiring con-
sistency w.r.t. reduction (Lemma 15). So in this case every bubble is by definition
of degree one. But, as noticed in Section 3, every TRS has trivial bubbles of degree
one, namely the transparent contexts. Hence, when in the Paint operation we change
colour to the bubble, we can do it by always using a trivial bubble (viz.. a hole).
This corresponds. in practice, to delete the selected top-bubble. This is just what was
done in the ‘pile and delete’ technique that was introduced in [7] for the study of the
modularity of UN’ (and later used in [S] and with some modifications in [18]), of
which this transformation is a refinement and a generalization.

So, when coping only with pseudo-deterministic properties we can use the method
presented in this paper slightly simplified using the ‘delete’ operation in place of the
more general paint one, and dropping the concepts of pseudo-determinism and pseudo-
non-determinism (by Lemma 15 we can modify Theorem 16 by directly requiring that
the property 9 implies CON’). This allows to treat the great majority of the con-
sidered properties. What we lose is: treatment of the properties that essentially require
pseudo-non-determinism (%&-termination, weak normalization and local confluence), the
criterion for the modularity of termination given by Corollary 21, and all the results
on the structure of counterexamples (Corollaries 23.--26).

9. Conclusions

We have introduced a uniform technique which is able to successfully deal with the
modularity of all the basic properties of TRSs in the left-linear case, and also to provide
some new results on the modularity of termination. Moreover, the technique is intu-
itively appealing, since it relies on visual arg-ments, making the involved reasonments
more intuitive and easier to grasp.

This can be seen as a first step towards the ambitious task of providing a global
technique to cope with modularity (i.e., dropping the left-linearity requirement). In our
opinion, such a technique can be developed on the basis of the ideas underlying the
method. Indeed, note that left-linearity is only explicitly required in the construction
of the specific ‘neatening translation’ 93, not by abstract neatening. So, a promising
line of research would be trying to develop a suitable neatening translation such that
abstract neatening can work even in the presence of non-left-linear rewrite rules.

References

[l] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, in: J. van Leeuwen (Ed.), Handbook of Theoretical
Computer Science, vol. B, Ch. 6, Elsevier, Amsterdam, 1990, pp. 243-320.

[2] N. Dershowitz, J.-P. Jouannaud, J.W. Klop, Open problems in rewriting, in: R.V. Book (Ed.), Proc.
4th Internat. Conf. on Rewriting Techniques and Applications, Lecture Notes in Computer Science.
vol. 488, Springer, Berlin, 1991, pp. 445-456.

[3] B. Gramlich, Generalized sufficient conditions for modular termination of rewriting, Appl. Algebra Eng.
Comm. Comput. 5 (1994) 131-158.

54 M. Marchioril Theoretical Computer Science 192 (1998) 31-54

rn r.., TJ. ___ ., .*
141 J. w. niop, Term rewriting systems, in: 5. Alnramsky, D.M. Gabloay, 1 .s.c. Mainaum (Eds. j, Handloook

of Logic in Computer Science, vol. 2, Ch. 1, Clarendon Press, Oxford, 1992, pp. l-l 16.
[5] J.W. Klop, A. Middeldorp, Y. Toyama, R. de Vrijer, Modularity of confluence: a simplified proof,

Inform. Process. Lett. 49 (2) (1994) 101-109.
[6] Z. Manna, R. Waldinger, The Logical Basis for Computer Programming, vol. 1: Deductive Reasoning,

Addison-Welsey, Reading, MA, 1985.
[7] M. Marchiori, Modularity of UN’ for left-linear term rewriting systems, Draft, March 1993. Extended

and revised version, Tech. Report CSR9433, CWI, Amsterdam.
[S] M. Marchiori, Modularity of completeness revisited, in: J. Hsiang (Ed.), Proc. 6th Intemat. Conf. on

Rewriting Techniques and Applications, Lecture Notes in Computer Science, vol. 914, Springer, Berlin,
1995, pp. 2-10.

[9] M. Marchiori, The theory of vaccines, Tech. Report 27, Department of Pure and Applied Mathematics,
University of Padova, 1995.

[lo] M. Marchiori, On the modularity of normal forms in rewriting, J. Symbolic Comput. 22 (2) (1996)
143-154.

[ll] M. Marchiori, Local analysis and localizations, Ph.D. Thesis, Department of Pure and Applied
Mathematics, University of Padova, 1997 (in Italian).

[12] M. Marchiori, The theory of vaccines, in: Proc. 24th Intemat. Coll. on Automata, Languages,
and Programming (ICALP), Lecture Notes in Computer Science, vol. 1256, Springer, Berlin, 1997,
pp. 660670.

[13] A. Middeldorp, A sufficient condition for the termination of the direct sum of term rewriting systems,
in: Proc. 4th IEEE Symp. on Logic in Computer Science, 1989, pp. 396-401.

[14] A. Middeldorp, Modular properties of term rewriting systems, Ph.D. Thesis, Vrije Universiteit,
Amsterdam, 1990.

[15] E. Ohlebusch, Modular properties of composable term rewriting systems, Ph.D. Thesis, Universitat
Bielefeld, 33501 Bielefeld, FRG, 1994; Appeared as Tech. Report 94-01.

[16] E. Ohlebusch, On the modularity of termination of term rewriting systems, Theoret. Comput. Sci.
136 (2) (1994) 333-360.

[17] M. Rusinowitch, On termination of the direct sum of term rewriting systems, Inform. Process. Lett. 26
(1987) 65-70.

[18] M. Schmidt-SchauB, M. Marchiori, S.E. Panitz, Modular termination of r-consistent and left-linear term
rewriting systems, Theoret. Comput. Sci. 149 (2) (1995) 361-374.

[19] Y. Toyama, Counterexamples to termination for the direct sum of term rewriting systems, Inform.
Process. Lett. 25 (1987) 141-143.

[20] Y. Toyama, On the Church-Rosser property for the direct sum of term rewriting systems, J. ACM
1 (34) (1987) 128-143.

[21] Y. Toyama, J.W. Klop, H.P. Barendregt, Termination for the direct sum of left-linear term rewriting
systems, in: N. Dershowitz (Ed.), Proc. 3rd Intemat. Conf. on Rewriting Techniques and Applications,
Lecture Notes in Computer Science, vol. 355, Chapel-Hill, 1989, pp. 477-491; Springer, Berlin, 1989.
Extended version: Report CS-R8923, CWI, Amsterdam.

[22] Y. Toyama, J.W. Klop, H.P. Barendregt, Termination for direct sums of left-linear complete term
rewrninrr svstems I _A_CM 42 (6) (19951 1375%1304. D -,"------' -' \--I \--'"I --'"

