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A REFINED BEILINSON–BLOCH CONJECTURE

FOR MOTIVES OF MODULAR FORMS

MATTEO LONGO AND STEFANO VIGNI

Abstract. We propose a refined version of the Beilinson–Bloch conjecture for
the motive associated with a modular form of even weight. This conjecture
relates the dimension of the image of the relevant p-adic Abel–Jacobi map
to certain combinations of Heegner cycles on Kuga–Sato varieties. We prove
theorems in the direction of the conjecture and, in doing so, obtain higher
weight analogues of results for elliptic curves due to Darmon.

1. Introduction

Let N ≥ 3 be an integer, let k ≥ 4 be an even integer and let f ∈ Snew
k (Γ0(N))

be a normalized newform of weight k and level Γ0(N), whose q-expansion will be
denoted by

f(q) =
∑
n≥1

anq
n.

Let p � N be a prime number and let p | p be a prime ideal of the ring of integers
OF of the totally real field F generated by the Fourier coefficients an of f . Finally,
let K be a number field. To these data we may attach a p-adic Abel–Jacobi map

AJK : CHk/2
(
Ẽk−2
N /K

)
0
⊗ Fp −→ H1

f (K,Vp)

where Fp is the completion of F at p, Ẽk−2
N is the Kuga–Sato variety of level

N and weight k, Vp is a twist of the p-adic representation associated with f and
H1

f (K,Vp) is its Bloch–Kato Selmer group over K (here the subscript “f” stands for

“finite” and should not be confused with the modular form f). The Beilinson–Bloch
conjectures ([1], [11]) connect the values of the L-functions of algebraic varieties over
number fields to global arithmetic properties of these varieties (see, e.g., [52] for an
introduction). In particular, they state that the Fp-dimension of the image Xp(K)
of AJK is equal to the order of vanishing of the complex L-function L(f ⊗ K, s)
of f over K at its center of symmetry s = k/2. Moreover, if ρ̃p denotes this
dimension, then the leading term of the derivative of order ρ̃p of L(f ⊗ K, s) at
s = k/2 is predicted up to multiplication by elements of Q×. When K is an
imaginary quadratic field of discriminant coprime to Np or K = Q, important
results towards this conjecture (at least in low rank situations) have been obtained
by combining Nekovář’s generalization of Kolyvagin’s theory to Chow groups of
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Kuga–Sato varieties ([39]) with Zhang’s formula of Gross–Zagier type for higher
weight modular forms ([55]). More recently, the Beilinson–Bloch conjectures have
been subsumed within the Tamagawa number conjecture of Bloch and Kato ([12]),
which predicts (by using Fontaine’s theory of p-adic representations) the value of
the non-zero rational factor that was not made explicit in the original conjectures.

The goal of the present article is to investigate refined – or equivariant – ana-
logues of these conjectures in which, roughly speaking, L-functions are replaced by
Heegner cycles.

To better explain our work, let us recall that refined versions of the Birch and
Swinnerton-Dyer conjecture (BSD conjecture, for short) for a rational elliptic curve
E were first proposed by Mazur and Tate in [37]. In that article, the role of L-
functions was played by certain combinations of modular symbols with coefficients
in the group algebra Q[Gal(Q(ζM )/Q)], called “theta elements” and denoted by
θE,M ; here M ≥ 1 is an integer and ζM is a primitive M -th root of unity. The
Mazur–Tate refined conjecture of BSD type states that θE,M belongs to a power
r of the augmentation ideal I of Q[Gal(Q(ζM )/Q)] that can be predicted in terms
of the rank of the Mordell–Weil group E(Q) and the number of primes of split
multiplicative reduction for E dividing M . This conjecture describes also the lead-
ing value of θE,M , which is defined as the image of θE,M in the quotient Ir/Ir+1.
We point out that the rank-part of the conjecture has been recently proved, under
some relatively mild assumptions, by Ota in [47]. Extensions and analogues of this
conjecture for Artin L-functions and for L-functions of more general motives have
also been formulated, and partial results have been proved (see, e.g., [14], [15], [21],
[23], [49] and the references therein).

Moving from [37] and the observation that modular symbols and Heegner points
enjoy similar formal properties, Darmon proposed in [18] refined versions à la
Mazur–Tate of the BSD conjecture, where modular symbols are replaced by Heeg-
ner points. Later on, Bertolini and Darmon began a systematic study of p-adic
analogues of the BSD conjecture in which the relevant p-adic L-functions are de-
fined in terms of distributions of Heegner (and Gross–Heegner) points on Shimura
curves attached either to definite or to indefinite quaternion algebras (see [4], [5],
[6], [7], [8]).

Our aim in this paper is to formulate and study refined versions of the Beilinson–
Bloch conjecture for the motive associated with the modular form f ; in this context,
the role of the Heegner points appearing in [18] is played by higher-dimensional
Heegner cycles in the sense of Nekovář ([39]). We hope that our work, offering an
equivariant refinement of the above-mentioned conjectures in which the complex
L-function of a modular form is replaced by an algebraically defined one, can be
viewed as complementary to the results of Burns and of Burns–Flach on Stark’s
conjectures and Tamagawa numbers of motives (see, e.g., [14], [15]).

In order to state our main results more precisely, we need some notation. Let
K be an imaginary quadratic field of discriminant coprime to Np in which all the
primes dividing N split, let T be a square-free product of primes that are inert in K
and do not divide Np and let KT be the ring class field of K of conductor T . Write
Op for the completion of OF at p. As recalled in §2.1 and §2.3, there is a natural
way to introduce an Op-lattice Ap inside Vp, and to all these data we may attach a
Heegner cycle yT,p ∈ Λp(KT ) ⊂ H1

cont(KT , Ap) where Λp(KT ) is the image of the
Op-integral version of the Abel–Jacobi map AJKT

and H1
cont denotes continuous
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cohomology (see §2.4 and §3.1). Set GT := Gal(KT /K1) and ΓT := Gal(KT /K),
consider the theta element

θT,p :=
∑

σ∈GT

σ(yT,p)⊗ σ ∈ Λp(KT )⊗Op
Op[GT ]

and let θ∗T,p be the image of θT,p via the involution sending σ ∈ GT to σ−1. Taking
suitable trace-like operators to K we obtain elements ζT,p and ζ∗T,p that may be

naturally viewed as belonging to Λp(KS)⊗Op
Op[ΓS ] whenever T |S.

Now let S be a square-free product of primes that are inert in K and do not
divide Np, then define the arithmetic L-function attached to S and p as

LS,p :=

(∑
T |S

aT ζT,p

)
⊗
(∑

T |S
a∗T ζ

∗
T,p

)
∈ Λp(KS)

⊗2 ⊗Op
Op[ΓS ],

where aT and a∗T are explicit elements of Op[ΓS ] that are defined in (61) below in
terms of the Möbius function and the quadratic character of K.

The finite-dimensional Fp-vector space Xp(K) splits under the action of the
non-trivial element of Gal(K/Q) as a direct sum

Xp(K) = Xp(K)+ ⊕Xp(K)−

of its eigenspaces. Set ρ±p := dimFp

(
Xp(K)±

)
and

ρp :=

⎧⎨⎩max{ρ+p , ρ−p } − 1 if ρ+p �= ρ−p ,

ρ+p otherwise.

As a consequence of the Beilinson–Bloch conjecture, the function p 	→ ρp is expected
to be constant and, since the order of vanishing of L(f ⊗K, s) at s = k/2 is odd,
the case ρ+p = ρ−p should never occur. Let IΓS

be the augmentation ideal of Op[ΓS ]
(to simplify our notation, we suppress dependence on p). Finally, write J(S) for
the cokernel of the map

H1
f (K,Ap/pAp) −→

⊕
�|S

H1
f (Kλ, Ap/pAp)

where Kλ is the completion of K at the unique prime λ above �. Our results apply
to all prime numbers p outside a finite set Σ that we introduce in §3.5; in fact, one
crucial feature that we require of the prime p is that the Galois representation Vp

be irreducible with non-solvable image.

Theorem 1.1. Let p be a prime number such that p �∈ Σ, let S be a product of
primes that are inert in K and do not divide Np, and let p be a prime ideal of OF

above p.

(1) LS,p ∈ Λp(KS)
⊗2 ⊗Op

I
2ρp

ΓS
.

(2) Suppose that p | �+1 for all prime numbers � |S. If |ρ+p − ρ−p | = 1, then the

image L̃(p)
S,p of LS,p in(

Λp(KS)
⊗2/pΛp(KS)

⊗2
)
⊗Op

(
I
2ρp

ΓS
/I

2ρp+1
ΓS

)
belongs to the natural image of(

Λp(K)⊗2/pΛp(K)⊗2
)
⊗Op

(
I
2ρp

ΓS
/I

2ρp+1
ΓS

)
.
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(3) Let Xp(K,Ap ⊗ Qp/Zp) be the p-part of the Shafarevich–Tate group of
Ap⊗Qp/Zp over K and assume that p | �+1 for all prime numbers � |S. If
|ρ+p − ρ−p | = 1 and p divides

∣∣Xp(K,Ap ⊗Qp/Zp)
∣∣ · |J(S)|, then L̃(p)

S,p = 0.

Theorem 1.1, which corresponds to Corollary 4.16 in the main body of the text,
provides a higher weight analogue of a theorem of Darmon for elliptic curves over
Q ([18]), and at the same time may be viewed as a partial result towards a refined
Beilinson–Bloch conjecture for modular forms. This perspective is approached in a
series of conjectures (Conjectures 4.3, 4.10 and 5.1) that study the order of vanishing
and the leading coefficient of LS,p. In particular, in Conjecture 5.1 we relate LS,p to
a theory of regulators of Mazur–Tate type that we call Nekovář regulators. These
regulators can be explicitly defined using Nekovář’s theory of p-adic height pairings
([40], [43, Ch. 11]) and represent a generalization to our setting of those introduced
by Mazur and Tate in [36] and [37]. We plan to further investigate the theory of
generalized regulators in future work.

In a related, albeit different, circle of ideas, Mazur and Rubin proved in [35] a
refined class number formula for real quadratic fields (proposed by Darmon in [19])
that, in a very special case, is an analogue of Gross’s conjecture ([23]) involving first
derivatives of L-functions at s = 0. The techniques of Mazur and Rubin, which are
based on their theory of Kolyvagin systems ([34]), do not seem to lend themselves
to being extended directly to the context of [18] or to our Heegner cycle setting,
and thus do not appear to suggest a proof of the conjectures formulated in [18]
or in the present paper. Broadly speaking, the obstruction to such an extension
is accounted for by the difference between the Euler systems used in [18] and the
Kolyvagin systems of [34] and [35] arising from (or modeled on) circular units. It
would be very interesting to understand how to modify the Mazur–Rubin approach
to obtain a proof of the conjectures in [18] and in this paper.

Theorem 1.1 is a consequence of analogous results for the elements ζS,p (Theo-
rem 4.15). It is worth pointing out that all these results are based on a congruence
property enjoyed by Heegner cycles (Theorem 3.34); namely, generalized Kolyva-
gin derivatives (called Darmon–Kolyvagin derivatives here and studied in §3.4) of
Heegner cycles are zero modulo pm if their order is less than the Op/p

mOp-rank of
H1

f (K,Ap/p
mAp). As a by-product of Theorem 3.34, if � is a prime not dividing N ,

inert in K and such that p | �+ 1, then in Theorem 4.18 we give a bound (in terms
of p and the dimension of H1

f (K,Ap/pAp) over Op/pOp) on the Op/pOp-dimension

of the Galois module generated by Heegner cycles inside Λp(K�)/pΛp(K�).
We conclude by remarking that W. Zhang has recently obtained in [56] a converse

to Kolyvagin’s theorem on the rank of rational elliptic curves, thus providing a
purely Galois-theoretic criterion (involving Selmer groups) for a Heegner point to
be non-torsion. In a future project, building on the techniques developed in the
present paper, we will investigate generalizations of Zhang’s results to forms of
higher weight and similar criteria for Heegner cycles of codimension greater than 1.

Notation and conventions. Unless specified otherwise, unadorned tensor products
⊗ are taken over Z.

The cardinality of a (finite) set X is denoted either by #X or by |X|.
If K is a field, then set GK := Gal(K̄/K), where K̄ is a fixed algebraic closure

of K. For any continuous GK-module M let Hi(K,M) denote the i-th cohomology
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group of GK with coefficients in M . If K/F is a field extension, then

resK/F : Hi(F,M) −→ Hi(K,M), coresK/F : Hi(K,M) −→ Hi(F,M)

denote the restriction and corestriction maps in cohomology, respectively. Recall
that for K/F finite and Galois there is an equality

(1) resK/F ◦ coresK/F = NK/F

where NK/F :=
∑

σ∈Gal(K/F ) σ is the Galois norm (or trace) operator acting on

Hi(K,M).
Fix algebraic closures Q̄ of Q and Q̄� of Q� for any prime number �, and then fix

field embeddings Q̄ ↪→ Q̄� for every �. Let Qnr
� be the maximal unramified extension

of Q� inside Q̄� and write F� for the arithmetic Frobenius in Gal(Qnr
� /Q�). With an

abuse of notation, when dealing with a GQ-module that is unramified at � we shall
often adopt the same symbol to denote a lift of F� to GQ�

(and its image in GQ).
Finally, if L/E is a Galois extension of number fields, λ is a prime of E that is

unramified in L andff λ′ is a prime of L above λ, then Frobλ′/λ ∈ Gal(L/E) denotes
the Frobenius substitution at λ′; the conjugacy class of Frobλ′/λ in Gal(L/E) will
be denoted by Frobλ (notation not reflecting dependence on L).

2. Beilinson–Bloch conjecture for modular forms

As in the introduction, f ∈ Sk(Γ0(N)) is a normalized newform of (even) weight
k and level Γ0(N). Let F (respectively, Of ) denote the totally real field (respec-
tively, the commutative ring) generated over Q (respectively, over Z) by the Fourier
coefficients of f , and write OF for the ring of integers of F . It follows that Of is
an order of F ; let cf = [OF : Of ] be the conductor of Of . Finally, let p be a prime
number such that p � 2N(k − 2)!φ(N)cf , where φ is Euler’s function.

Remark 2.1. For the arguments developed in this section, a more natural choice
of p would simply require that p � 2Ncf and p > k − 1, as explained in [41, §6.5].
However, in this case the notation becomes more complicated, and some neatly
stated results, for instance [39, Proposition 2.1], require substantial modifications
to make them consistent. In order to emphasize the new aspects of our paper
without indulging in unenlightening technicalities, we therefore decided to work
under the simplifying assumption above.

2.1. Galois representations. Denote by YN the affine modular curve over Q of
level Γ(N) and let j : YN ↪→ XN be its proper smooth compactification.

For any integer n ≥ 1 define the sheaves

Fn := Symk−2
(
R1π∗(Z/p

nZ)
)
(k/2− 1), F := lim←−

n

Fn

(both Fn and F depend on p, but we suppress this dependence to simplify the
notation).

Let B := Γ0(N)/Γ(N), consider the projector ΠB := (#B)−1
∑

b∈B b ∈ Zp[B]
and define

Jp := ΠBH
1
ét(XN ⊗ Q̄, j∗F)(k/2).

Denote by T the Hecke algebra generated over Z by the standard Hecke operators
T� for primes � � N . Let θf : T → OF be the morphism of algebras associated
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7306 MATTEO LONGO AND STEFANO VIGNI

with f . The Hecke algebra T acts on Jp, as explained in [39, pp. 101–102]. Set
If := ker(θf ) and define

Ap :=
{
x ∈ Jp | If · x = 0

}
.

Then Ap, which should be regarded as a higher weight analogue of the Tate module
of an abelian variety, is equipped with a continuous Of -linear action of the absolute
Galois group GQ := Gal(Q̄/Q) and is (isomorphic to) the k/2-twist of the represen-
tation attached to f by Deligne ([20]). More precisely, Ap is a free OF ⊗Zp-module
of rank 2 such that for every prime � � Np the arithmetic Frobenius F� at � acting
on Ap satisfies

(2) det
(
1−XF� |Ap

)
= 1− a�

�
k
2−1

X + �X2.

Here we are implicitly using the canonical identification Of⊗Zp = OF⊗Zp, which is
a consequence of the fact that, by assumption, p � cf . As pointed out in [39, p. 102],
there is a map Jp → Ap that is both T-equivariant and GQ-equivariant.

2.2. Kuga–Sato varieties. In this subsection we briefly recall basic definitions
and facts about Kuga–Sato varieties, along the lines of [20], [39, §2], [53, §1] (see
also [9, Appendix A] by Conrad for a generalization to the relative situation).

Let π : EN → YN be the universal elliptic curve and π̄ : ĒN → XN the universal
generalized elliptic curve, which is proper but not smooth. Define

π̄k−2 : Ēk−2
N −→ XN

to be the fiber product of k−2 copies of ĒN over XN . If k ≥ 4, then Ēk−2
N is singular

and we call its canonical desingularization Ẽk−2
N constructed by Deligne ([20]) the

Kuga–Sato variety of level N and weight k. Then dim
(
Ẽk−2
N

)
= k− 1, and there is

a map π̃k−2 : Ẽk−2
N → XN .

The level N structure on ĒN induces a homomorphism (Z/NZ)2×XN ↪→ EN of
group schemes over XN , where EN is the Néron model of ĒN over XN . Therefore
(Z/NZ)2 acts by translations on ĒN . Moreover, Z/2Z acts as multiplication by −1
in the fibers, and this gives an action of (Z/NZ)2 � (Z/2Z) on ĒN . Finally, the

symmetric group Sk−2 on k− 2 letters acts on Ēk−2
N by permutation of the factors,

and this gives an action of

Γk−2 :=
(
(Z/NZ)2 � (Z/2Z)

)k−2
� Sk−2

on Ēk−2
N by automorphisms on the fibers of π̄k−2, which extends canonically to an

action of Γk−2 on Ẽk−2
N .

Now define the homomorphism ε : Γk−2 → {±1} to be trivial on (Z/NZ)2(k−2),
the product map on (Z/2Z)k−2 and the sign character on Sk−2. Finally, let

Πε ∈ Z[1/2N(k − 2)!][Γk−2]

be the projector associated with ε.
Then, by [39, Proposition 2.1] (see also [53, Theorem 1.2.1] and [41, II, Propo-

sition 2.4] for the analogous result with coefficients in Qp), we have

H1
ét(XN ⊗ Q̄, j∗Fn)(1) = ΠεH

k−1
ét

(
Ẽk−2
N ⊗ Q̄,Z/pnZ

)
(k/2).

Moreover, thanks to [39, Lemma 2.2], we know that H1
ét(XN , j∗F) is torsion-free

and that there is a canonical isomorphism

H1
ét(XN , j∗F/pmj∗F) � H1

ét(XN , j∗F)/pmH1
ét(XN , j∗F)
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for every integer m ≥ 1. Combining these facts we obtain a map

(3) Hk−1
ét

(
Ẽk−2
N ⊗ Q̄,Zp(k/2)

)
−→ Jp −→ Ap

that factors through ΠεH
k−1
ét

(
Ẽk−2
N ⊗ Q̄,Z/pnZ

)
(k/2).

2.3. Abel–Jacobi maps. Fix a field L of characteristic 0, denote by L̄ an algebraic
closure of L and let

(4) Φp,L : CHk/2
(
Ẽk−2
N /L

)
0
−→ H1

cont

(
L,Hk−1

ét

(
Ẽk−2
N ⊗ L̄,Zp(k/2)

))
be the p-adic Abel–Jacobi map (see [25, §9]). Here CHk/2

(
Ẽk−2
N /L

)
0
is the group

of homologically trivial cycles of codimension k/2 on Ẽk−2
N defined over L modulo

rational equivalence, and H1
cont denotes continuous cohomology. Equivalently,

(5) CHk/2
(
Ẽk−2
N /L

)
0
= ker

(
CHk/2

(
Ẽk−2
N /L

)
−→ Hk

ét

(
Ẽk−2
N ⊗ L̄,Zp(k/2)

))
,

where CHk/2
(
Ẽk−2
N /L

)
is the group of cycles of codimension k/2 on Ẽk−2

N defined
over L modulo rational equivalence. Indeed, using the Lefschetz principle and
comparison isomorphisms between étale and singular cohomology over C, it can be
proved that the right hand side of (5) does not depend on p (see, e.g., [42, §1.3] for
details).

Composing (3) and (4) and extending Zp-linearly, if L is a number field, then
we get a map

(6) AJf,p,L : CHk/2
(
Ẽk−2
N /L

)
0
⊗ Zp −→ H1

cont(L,Ap).

Now we localize (or, rather, complete) the representation Ap at a prime ideal
p of OF dividing p. More precisely, if p is such a prime, then denote by Op the
completion of OF at p and set Ap := Ap ⊗OF⊗Zp

Op, which is a free Op-module
of rank 2 equipped with a GQ-action. It follows that Ap =

∏
p | p Ap, the product

being taken over all prime ideals of OF above p. Fix once and for all a prime ideal
p as above. Composing the map AJf,p,L introduced in (6) with the one induced by
the canonical projection Ap � Ap, we get an Op-linear map

(7) AJf,p,L : CHk/2
(
Ẽk−2
N /L

)
0
⊗Op −→ H1

cont(L,Ap).

If L is a Galois extension of L′, then AJf,p,L is Gal(L/L′)-equivariant with respect
to the natural Galois actions on domain and codomain ([39, Proposition 4.2]). For
simplicity, from here on we write AJL for AJf,p,L, understanding that we are fixing
a prime p of F above p.

Finally, let us introduce another map that will be used in §3.1. Since the Abel–
Jacobi map commutes with automorphisms of the underlying variety, the map
AJf,p,L in (6) factors through

Πε

(
CHk/2

(
Ẽk−2
N /L

)
0
⊗ Zp

)
= Πε

(
CHk/2

(
Ẽk−2
N /L

)
⊗ Zp

)
;

here the equality follows from [39, Proposition 2.1]; see also [39, p. 105]. Thus (7)
yields a map

(8) Ψf,p,L : ΠBΠε

(
CHk/2

(
Ẽk−2
N /L

)
⊗Op

)
−→ H1

cont(L,Ap).

This map is T-equivariant and if L is Galois over Q, then it is Gal(L/Q)-equivariant
as well (use [39, Proposition 4.2] and apply the projection Ap � Ap, which is both
T- and Gal(L/Q)-equivariant).
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2.4. Selmer groups. Let E be a number field and denote by GE := Gal(Ē/E)
its absolute Galois group. Let V be a p-adic representation of GE (i.e., a finite-
dimensional Qp-vector space V equipped with a continuous action ofGE) unramified
outside a finite set Ξ of places of E containing all the archimedean primes and the
primes above p. If v is a prime of E above p, then, as in [12, §§3 and 5], define

H1
f (Ev,V) := ker

(
H1

cont(Ev,V) −→ H1
cont

(
Ev,V ⊗Qp

Bcris

))
,

where Bcris is Fontaine’s crystalline ring of periods (see, e.g., [12, §1], and do not
confuse the subscript “f” in H1

f with our fixed modular form f !). If v is a prime

of E not dividing p, then write Iv := Gal(Ēv/E
ur
v ) for the inertia subgroup of

Gal(Ēv/Ev), where Eur
v denotes the maximal unramified extension of Ev. The

unramified cohomology of V at v is defined as

H1
ur(Ev,V) := H1

cont

(
Gal(Eur

v /Ev),VIv
)
� ker

(
H1

cont(Ev,V) −→ H1
cont(Iv,V)

)
,

the isomorphism coming from the inflation-restriction exact sequence (i.e., the exact
sequence of low degree terms in the relevant Hochschild–Serre spectral sequence).
Finally, for such a prime v of E set

H1
f (Ev,V) := H1

ur(Ev,V).

Definition 2.2. The Bloch–Kato Selmer group H1
f (E,V) is the Qp-subspace of

H1
cont(E,V) consisting of those classes whose localizations lie in H1

f (Ev,V) for all
primes v of E.

Let GE,Ξ denote the Galois group over E of the maximal extension of E unram-
ified outside Ξ. Then V is a representation of GE,Ξ and H1

f (E,V) is a subspace of

the finite-dimensional Qp-vector space H1
cont(GE,Ξ,V); hence H1

f (E,V) has finite
dimension over Qp.

Now we specialize the previous discussion to the case where

(9) V = Hk−1
ét

(
Ẽk−2
N ⊗ Ē,Qp(k/2)

)
.

It is well known that V is unramified outside the primes of E dividing Np; in light
of this, from here on we take

(10) Ξ :=
{
v place of E

∣∣ v |Np or v |∞
}
.

Remark 2.3. With V as in (9), the Selmer group H1
f (E,V) of Definition 2.2 is equal

to the one originally defined in [12] and later studied, e.g., by Besser in [10]. In
particular, it is smaller than the group considered by Nekovář in [39]; this is due to
the fact that no local conditions at the places of E dividing N are imposed in [39]
(cf. [39, p. 118]).

Let

(11) Φp,E ⊗Qp : CHk/2
(
Ẽk−2
N /E

)
0
⊗Qp −→ H1

cont

(
E,Hk−1

ét

(
Ẽk−2
N ⊗ Ē,Qp(k/2)

))
be the map induced by the Abel–Jacobi map in (4).

Theorem 2.4 (Nizio�l, Nekovář, Saito). There is an inclusion

(12) im(Φp,E ⊗Qp) ⊂ H1
f

(
E,Hk−1

ét

(
Ẽk−2
N ⊗ Ē,Qp(k/2)

))
.

In particular, im(Φp,E ⊗Qp) is a finite-dimensional vector space over Qp.
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Proof. Let v be a prime of E and, for simplicity, set

Vv := Hk−1
ét

(
Ẽk−2
N ⊗ Ēv,Qp(k/2)

)
.

We need to show that there is an inclusion

im(Φp,Ev
⊗Qp) ⊂ H1

f (Ev,Vv),

where the map Φp,Ev
⊗Qp is defined as in (11) with E replaced by Ev. If v � p, then

the weight-monodromy conjecture ([51, p. 428]) is known to hold for compactified
Kuga–Sato varieties over Ev ([50], [51]), and so H1

cont(Ev,Vv) = 0 by [42, Proposi-

tion 2.5]. On the other hand, if v | p, then Ẽk−2
N has good reduction at v (recall that

Ẽk−2
N has good reduction outside N and p � N), hence im(Φp,Ev

⊗Qp) ⊂ H1
f (Ev,Vv)

by [46, Theorem 3.2]. Finally, the last assertion follows from the finite dimension-
ality over Qp of the right hand side of (12). �

Remark 2.5. The result used above was proved in [46] under a projectivity assump-
tion on the relevant algebraic varieties, but this stronger condition can be dispensed
with, as explained in [42, Theorem 3.1].

We will now consider Selmer groups of Ap and of quotients of it, and use Theorem
2.4 to describe them. For simplicity, assume that the prime number p does not
ramify in F . Define the Fp-vector space Vp := Ap ⊗Op

Fp. For every integer m ≥ 1
define Wp := Ap ⊗Qp/Zp, so that Wp[p

m] = Ap/p
mAp. For any place v of E there

are maps

ϕv : H1(Ev, Ap) −→ H1(Ev, Vp), πv : H1(Ev, Ap) −→ H1(Ev,Wp[p
m])

induced by the canonical arrows Ap ↪→ Vp and Ap � Wp[p
m]. Set

H1
f (Ev, Ap) := ϕ−1

v

(
H1

f (Ev, Vp)
)
, H1

f (Ev,Wp[p
m]) := πv

(
H1

f (Ev, Ap)
)
.

In the following definition M denotes either Ap or Wp[p
m].

Definition 2.6. The Bloch–Kato Selmer group H1
f (E,M) of M over E is the sub-

group of H1
cont(E,M) consisting of the classes whose localizations lie in H1

f (Ev,M)
for all v.

If Ξ is as in (10), then Ap is a GE,Ξ-module and H1
f (E,Wp[p

m]) is a subgroup

of the finite group H1(GE,Ξ,Wp[p
m]); hence H1

f (E,Wp[p
m]) is a finite Op/p

mOp-
module.

As in (9), set V := Hk−1
ét

(
Ẽk−2
N ⊗ Ē,Qp(k/2)

)
. To clarify the various relations

between Abel–Jacobi maps and Selmer groups, observe that there is a commutative
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diagram

(13) CHk/2
(
Ẽk−2
N /E

)
0
⊗ Qp

��

Φp,E ⊗Qp
�� H1

f (E,V)

λ

��

CHk/2
(
Ẽk−2
N /E

)
0
⊗ Fp

AJE ⊗Fp
�� H1

cont(E, Vp) H1
f (E, Vp)� ���

CHk/2
(
Ẽk−2
N /E

)
0
⊗Op

AJE ��

��

����

H1
cont(E,Ap)

ϕ

��

�

��

H1
f (E,Ap)� ���

ϕ

��

�

����

CHk/2
(
Ẽk−2
N /E

)
0
⊗ (Op/pmOp)

AJE,m
�� H1

cont(E,Wp[pm]) H1
f (E,Wp[pm])� ���

where

• the map λ comes from the map V → Vp that is obtained by tensoring both
sides of (3) by Qp over Zp, noting that Ap ⊗Zp

Qp =
∏

q|p Vq and then

composing with the projection onto Vp;
• the maps ϕ and
 are induced by Ap ↪→ Vp and Ap � Wp[p

m], respectively;
• the unlabeled vertical arrows are induced by the natural maps Qp ↪→ Fp,
Op ↪→ Fp and Op � Op/p

mOp;
• the maps AJE ⊗ Fp and AJE,m are induced by multiplication by elements
of Fp and of Op/p

mOp, respectively.

Corollary 2.7. There are inclusions

(1) im(AJE ⊗ Fp) ⊂ H1
f (E, Vp);

(2) im(AJE) ⊂ H1
f (E,Ap);

(3) im(AJE,m) ⊂ H1
f (E,Wp[p

m]).

In particular, the Fp-vector space im(AJE ⊗ Fp) has finite dimension.

Proof. All the inclusions follow easily from the definitions and the commutativity of
diagram (13). To check the last assertion, note that H1

f (E, Vp) is finite-dimensional

over Fp because Vp is unramifed outside the finite set Ξ introduced in (10). �

For any number field E define

(14) Λp(E) := im(AJE) ⊂ H1
f (E,Ap)

and

Xp(E) := ϕ
(
Λp(E)

)
⊗Op

Fp ⊂ H1
f (E, Vp).

If E is Galois over Q, then Λp(E) and Xp(E) are equipped with Gal(E/Q)-actions.

Proposition 2.8. There is an isomorphism

Λp(E)/pmΛp(E) � im(AJE,m)

of finite Op/p
mOp-modules.

Proof. Taking continuous cohomology of the short exact sequence of Galois modules

0 −→ Ap

pm

−−→ Ap −→ Ap/p
mAp −→ 0,
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where the second arrow is the multiplication-by-pm map and the third arrow is
the canonical projection, and using the identification Wp[p

m] = Ap/p
mAp, yield an

injection
i : H1

cont(E,Ap)⊗Op
(Op/p

mOp) ↪−→ H1(E,Wp[p
m])

of Op/p
mOp-modules. If j : H1

f (E,Wp[p
m]) ↪→ H1(E,Wp[p

m]) denotes the natural

inclusion, then part (3) of Corollary 2.7 implies that AJE,m factors through j, and
therefore the diagram

CHk/2
(
Ẽk−2
N /E

)
0
⊗(Op/p

mOp)
Ψ ��

AJE,m

��

H1
cont(E,Ap)⊗Op

(Op/p
mOp)� �

i

��

H1
f (E,Wp[p

m]) �
� j

�� H1(E,Wp[p
m]),

where Ψ is theOp/p
mOp-linear extension of AJE , commutes. Thus im(i◦Ψ) is equal

to im(j ◦ AJE,m), and the injectivity of i and j shows that im(Ψ) � im(AJE,m).
On the other hand, im(Ψ) = Λp(E)/pmΛp(E), and we are done. �

In particular, Proposition 2.8 implies that there is an injection

(15) Λp(E)/pmΛp(E) ↪−→ H1
f (E,Wp[p

m])

of finite Op/p
mOp-modules; this map is Galois-equivariant if E is Galois over Q.

Remark 2.9. By an abuse of notation, we will often adopt the same symbol to
denote an element of Λp(E)/pmΛp(E) and its image in H1

f (E,Wp[p
m]) via (15).

2.5. Beilinson–Bloch conjecture. Now we recall the Beilinson–Bloch conjecture
in this setting. Let E be a number field and let L(f⊗E, s) be the complex L-function
of f over E.

Conjecture 2.10 (Beilinson–Bloch, [1], [11]). dimFp

(
Xp(E)

)
= ords= k

2
L(f⊗E, s).

For details, see [25, pp. 158–168]. For generalizations to L-functions of motives,
see [12]. The main result of [39], combined with the Gross–Zagier type formula for
higher weight modular forms due to Zhang ([55]), gives the following result in the
direction of the Beilinson–Bloch conjecture.

Theorem 2.11 (Nekovář, Zhang). Let K be an imaginary quadratic field in which
all the prime numbers dividing N split and assume that the Abel–Jacobi map AJK
is injective. If ords= k

2
L(f ⊗K, s) = 1, then dimFp

(
Xp(K)

)
= 1.

See [55, §5.3] for other results on the Beilinson–Bloch conjecture, especially when
the base field is Q.

3. Divisibility properties of Heegner cycles

After reviewing the basic properties of Heegner cycles and the formalism of
Darmon–Kolyvagin derivatives, we construct Kolyvagin classes attached to Heegner
cycles and study their properties. The main result of this section (Theorem 3.34)
is a congruence relation satisfied by these cohomology classes.

Fix throughout this paper an imaginary quadratic field K of discriminant D
in which all the primes dividing N split (in other words, K satisfies the so-called
“Heegner hypothesis” relative to N). Denote by OK the ring of integers of K and
by hK its class number. For the sake of simplicity, assume also that O×

K = {±1},
i.e., that K �= Q(

√
−1) and K �= Q(

√
−3). Finally, fix an embedding K ↪→ C.
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7312 MATTEO LONGO AND STEFANO VIGNI

3.1. Heegner cycles. We review construction and basic properties of Heegner
cycles on Kuga–Sato varieties. In doing this, we follow [39] and [41] closely (for
Heegner-type cycles on more general varieties that are fibered over modular curves,
see [9, §2]).

Fix an ideal N ⊂ OK such that OK/N � Z/NZ, which exists thanks to the
Heegner hypothesis satisfied by K. For any integer T ≥ 1 prime to NDp let
OT := Z + TOK be the order of K of conductor T . Let X0(N) be the compact
modular curve of level Γ0(N); the isogeny C/OT → C/(OT∩N )−1 defines a Heegner
point xT ∈ X0(N) that, by the theory of complex multiplication, is rational over
the ring class field KT of K of conductor T (in particular, K1 is the Hilbert class
field of K).

Write κ : XN → X0(N) for the map induced by the inclusion Γ(N) ⊂ Γ0(N)
and choose x̃T ∈ κ−1(xT ). The elliptic curve ET corresponding to x̃T has complex

multiplication by OT . Fix the unique square root ξT =
√
−DT 2 of the discriminant

of OT with positive imaginary part under the chosen embedding of K into C. For
any a ∈ OT let ΓT,a ⊂ ET × ET denote the graph of a and let ix̃T

: π̃−1
k−2(x̃T ) =

Ek−2
T ↪→ Ẽk−2

N be the canonical inclusion. Then

(16) ΠBΠε(ix̃T
)∗

(
Γ
(k−2)/2
T,ξT

)
∈ ΠBΠε

(
CHk/2(Ẽk−2

N /KT )⊗ Zp

)
,

and we define the Heegner cycle

yT,p ∈ H1
cont(KT , Ap)

to be the image of the cycle in (16) via the map Ψf,p,KT
introduced in (8). This

class is independent of the choice of x̃T ([39, p. 107]) and, by [41, Ch. II, §3.6],
does not change if ΓT,ξT is replaced by ΓT,ξT � [(ET × {0}) ∪ ({0} × ET )] in (16),
which is the choice made in [39, §5]. Finally, note that

yT,p ∈ Λp(KT )

because the Abel–Jacobi map AJKT
factors through Ψf,p,KT

.
Define

(17) S :=
{
� prime number | � is inert in K and � � Np

}
.

For each � ∈ S the extension K�/K1 is cyclic of order � + 1 and unramified at
primes different from �. Also, if � �= �′ are in S, then K� and K�′ are linearly
disjoint over K1. Fix a product T =

∏s
i=1 �i of distinct primes �i ∈ S, then put

GT := Gal(KT /K1) and ΓT := Gal(KT /K). The field KT is the composite of
the fields K�i , which are linearly disjoint over K1, and so there is a decomposition
GT =

∏s
i=1 G�i . In particular, if T ′ |T , then there is a canonical inclusion GT ′ ⊂

GT , using which we identify the elements of GT ′ with their images in GT . Finally,
set Γ1 := Gal(K1/K), so that Γ1 � Pic(OK) and |Γ1| = hK .

Let us recall two basic properties of Heegner cycles, which extend those of Heeg-
ner points and are due to Nekovář ([39]). Before stating them, we fix some notation
that will be used in the rest of the paper.

Choose a complex conjugation c ∈ GQ and use the same symbol to denote the
images of c in quotients of GQ; in other words, c is a lift to GQ of the generator of
Gal(K/Q). We shall also write Frob∞ for the conjugacy class of c in Gal(E/Q),
relying on the context to make clear which number field E we are considering.
Finally, recall that coresKT�/KT

denotes the corestriction map from H1(KT�, Ap)

to H1(KT , Ap) and let ε be the sign of the functional equation of L(f, s).
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Proposition 3.1. Let T be a square-free product of primes in S.
(1) If � ∈ S, � � T , then coresKT�/KT

(yT�,p) = (a�/�
k/2−1) · yT,p.

(2) There exists σ ∈ ΓT such that c(yT,p) = −ε · σ(yT,p).

Proof. Upon applying the projection Ap � Ap, part (1) is [39, Proposition 6.1,
(1)], while part (2) is [39, Proposition 6.2]. (Note the misprint in loc. cit., since
the Hecke action is twisted by k/2− 1.) �
Remark 3.2. The relations stated in Proposition 3.1, together with the Key Formula
appearing in [39, §9] (which will be used in the proof of Proposition 3.20 below),
describe an Euler system for modular forms of weight k > 2. Euler systems for
higher weight modular forms can also be constructed by using Howard’s work [24]
on the variation of Heegner points in Hida families, later extended to the case of
indefinite Shimura curves in [22] and [32], by specialization to weight k. The relation
between the two systems has been investigated by Castella in [16], and we expect
that a similar approach could be adopted in the case of indefinite Shimura curves
as well. We finally remark that, in yet another direction, it would be interesting
to generalize to higher weight the Euler systems of Heegner points introduced by
means of congruences between modular forms in [8] and developed in [26], [27], [28],
[29], [30], [45]. In connection with this, see recent work by Chida and Hsieh ([17]).

3.2. ±-eigenspaces. Recall that if M is an abelian group endowed with an action
of an involution τ and 2 is invertible in End(M), then there is a decomposition
M = M+ ⊕M− where M± is the subgroup of M on which τ acts as ±1.

Let p be a prime number as in the introduction and let p be a prime ideal of OF

above p. Since Gal(K/Q) acts on Xp(K), the formalism above applies and there is
a decomposition

Xp(K) = Xp(K)+ ⊕Xp(K)−.

Define ρ±p := dimFp

(
Xp(K)±

)
and

(18) ρp :=

⎧⎨⎩max
{
ρ+p , ρ

−
p

}
− 1 if ρ+p �= ρ−p ,

ρ+p otherwise.

Two remarks on these definitions, both related to the Beilinson–Bloch conjecture,
are now in order.

Remark 3.3. (1) Conjecture 2.10 predicts, among other things, that the Fp-
dimension of Xp(E) does not depend on p, and therefore ρ+p + ρ−p is conjecturally
independent of p. Moreover, let f ⊗ εK be the twist of f by the quadratic Dirichlet
character εK attached to the extension K/Q. It can be shown (see [33, §6.1] for
details; in [33] a p-ordinarity assumption is made, but this condition plays no role
in the results about Selmer groups that we are interested in) that

Xp(K)+ � Xp(Q) = im(Ψf,p,Q)⊗Op
Fp, Xp(K)− � im(Ψf⊗εK ,p,Q)⊗Op

Fp.

Therefore Conjecture 2.10 (for f and E = Q or f ⊗ εK and E = Q) implies that
ρ+p and ρ−p do not depend on p.

(2) As before, let L(f ⊗K, s) denote the L-function of f over K, so that

(19) L(f ⊗K, s) = L(f, s) · L(f ⊗ εK , s).

Since the orders of vanishing of L(f, s) and L(f ⊗ εK , s) at s = k/2 have opposite
parities (cf., e.g., [13, p. 543]), it follows from (19) that L(f ⊗ K, s) vanishes to
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odd order at s = k/2. Therefore Conjecture 2.10 predicts that the Fp-dimension
ρ+p + ρ−p of Xp(K) should be odd. Hence we expect the second possibility in (18)
not to occur.

3.3. Rank inequalities. As a consequence of the structure theorem for finitely
generated modules over principal ideal domains, a finite Op/p

mOp-module M can
be decomposed as

(20) M � (Op/p
mOp)

rp,m(M) ⊕ M̃

where the exponent of M̃ divides pm strictly and the integer rp,m(M) does not
depend on such a decomposition (see Lemma 3.4 below).

Let Fp := Op/pOp be the residue field of Op. In the sequel we will make use of
the following auxiliary result.

Lemma 3.4. Let M,M ′,M ′′ be finite Op/p
mOp-modules.

(1) If there is an injective homomorphism M ↪→ M ′, then rp,m(M) ≤ rp,m(M ′).
(2) If there is a surjective homomorphism M � M ′, then rp,m(M) ≥ rp,m(M ′).
(3) If there is an exact sequence of Op/p

mOp-modules

0 −→ M ′ −→ M −→ M ′′,

then

rp,m(M) ≤ rp,m(M ′) + dimFp
(M ′′ ⊗Op/pmOp

Fp).

Proof. An injectionM ↪→ M ′ ofOp/p
mOp-modules induces an injection pm−1M ↪→

pm−1M ′ of Fp-vector spaces, hence

rp,m(M) = dimFp
(pm−1M) ≤ dimFp

(pm−1M ′) = rp,m(M ′),

which shows part (1). On the other hand, a surjection M � M ′ of Op/p
mOp-

modules induces a surjection pm−1M � pm−1M ′ of Fp-vector spaces, and part (2)
follows similarly. Finally, part (3) can be proved as [18, Lemma 5.1]. �

As before, let K be our imaginary quadratic field where all the prime factors of
N split. With notation as in (20), set

r̃p,m := rp,m
(
H1

f (K,Wp[p
m])

)
.

Moreover, recall the integers ρ±p introduced in §3.2 and define

(21) ρ̃p := ρ+p + ρ−p = dimFp

(
Xp(K)

)
.

A direct computation proves the following.

Lemma 3.5. 2ρp ≥ ρ̃p − 1, with equality holding if and only if |ρ+p − ρ−p | = 1.

Observe that there is an obvious inequality

(22) ρ̃p ≤ rp,m
(
Λp(K)/pmΛp(K)

)
.

Proposition 3.6. ρ̃p ≤ r̃p,m.

Proof. It follows from Proposition 2.8 and Lemma 3.4 that
(23)

rp,m
(
Λp(K)/pmΛp(K)

)
= rp,m

(
im(AJK,m)

)
≤ rp,m

(
H1

f (K,Wp[p
m])

)
= r̃p,m.

Combining (22) and (23) gives the desired inequality. �
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Since p is odd, there is a splitting

H1
f (K,Wp[p

m]) = H1
f (K,Wp[p

m])+ ⊕H1
f (K,Wp[p

m])−

under the action of complex conjugation c ∈ Gal(K/Q). Set

r̃±p,m := rp,m
(
H1

f (K,Wp[p
m])±

)
and define

rp,m :=

⎧⎨⎩max
{
r̃+p,m, r̃−p,m

}
− 1 if r̃+p,m �= r̃−p,m,

r̃+p,m otherwise.

Recall the integer ρp defined in (18).

Proposition 3.7. ρp ≤ rp,m.

Proof. Combine the Gal(K/Q)-equivariance of the Abel–Jacobi map with Propo-
sition 3.6. �

3.4. Darmon–Kolyvagin derivatives. In this subsection we consider the general
formalism of Darmon–Kolyvagin derivatives in the case of ring class fields of square-
free conductor.

Fix a square-free product S =
∏t

i=1 �i of primes �i in Spm . For a prime � |S let
σ� be a generator of G�. For any integer k such that 0 ≤ k ≤ � = #G� − 1 define
the derivative operator

Dk
� :=

�∑
i=k

(
i

k

)
σi
� ∈ Z[G�] ⊂ Op[G�].

If κ = (k1, . . . , kt) ∈ Zt with 0 ≤ ki ≤ �i, then the Darmon–Kolyvagin κ-derivative
is

Dκ := Dk1

�1
· · ·Dkt

�t
∈ Z[GS ] ⊂ Op[GS ].

The order, the support and the conductor of Dκ are defined as

ord(Dκ) :=

t∑
i=1

ki, supp(Dκ) := S, cond(Dκ) :=
∏
ki>0

�i,

respectively, and we set

η(κ) := min
{
ordp(ni) | ki > 0

}
.

Finally, given κ = (k1, . . . , ks) and κ′ = (k′1, . . . , k
′
s) we say that Dκ′ is less than

Dκ if k′i ≤ ki for all i, and we write κ′ ≤ κ in this case. Moreover, we say that Dκ′

is strictly less than Dκ, written κ′ < κ, if κ′ ≤ κ and κ′ �= κ.
Now we collect some basic facts about these derivatives. Most of them will not

be used until Section 4, but we prefer to gather them here for the sake of clarity.
The proofs are straightforward computations and will be omitted; see [18, §3.1 and
§4.1] for details.
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3.4.1. Taylor’s formula. The resolvent element associated with an element m of an
Op[GS ]-module M is defined as

θm :=
∑
σ∈GS

σ(m)⊗ σ ∈ M ⊗Op
Op[GS ].

Then

θm =
∑
κ

Dκ(m)⊗ (σ1 − 1)k1 . . . (σt − 1)kt ,

where the sum is taken over all t-tuples of integers κ = (k1, . . . , kt), with the
convention that only those κ with 0 ≤ ki ≤ �i for all i appear in the sum above.

3.4.2. Divisibility criterion. Let IGS
be the augmentation ideal of Op[GS] and let

r ≤ p be an integer. If Dκ(m) ≡ 0 (mod pη(κ)) for all κ with ord(κ) < r, then θm
belongs to the natural image of M ⊗Op

IrGS
.

3.4.3. Action of complex conjugation. The action of c ∈ Gal(K/Q) by conjugation
on ΓS = Gal(KS/K) sends σ to σ−1. This induces an action of c on Op[GS ] by
linearity, and the formula

cDκ c
−1 = (−1)ord(Dκ)Dκ +

∑
κ′<κ

ακ′Dκ′

holds for suitable integers ακ′ .

3.4.4. Some formulas. For any prime � |S and any integer k with 0 ≤ k ≤ � we
have

(σ� − 1)Dk
� =

(
�+ 1

k

)
− σ�D

k−1
� .

In particular, since pm | �+ 1, for all 0 < k < p we have

(24) (σ� − 1)Dk
� ≡ −σ�D

k−1
� (mod pm).

3.4.5. Special bases. An element ξ ∈ Z[G�], for a prime � |S, can be written as a Z-
linear combination of the derivatives Dk

� for k = 0, . . . , �. Since this is not justified

in [18], we give a short proof. Write ξ =
∑�

i=0 aiσ
i
�. By rearranging the sums,

one can check that a linear combination
∑�

k=0 αkD
k
� of derivatives can be written

as
∑�

i=0

(∑i
k=0 αk

(
i
k

))
σi
�. Therefore we have to prove that we can find coefficients

αk ∈ Z such that
∑i

k=0 αk

(
i
k

)
= ai for all i = 0, . . . , �. The generic equation in this

system is

α0 + iα1 +

(
i

2

)
α2 + · · ·+

(
i

i− 1

)
αi−1 + αi = ai,

and the desired solution can be found recursively.

3.5. The set of exceptional primes. The main result of this section, Theorem
3.34, applies to all primes p outside a finite set Σ that we describe below.

Let Σ be the set of prime numbers p satisfying at least one of the following
conditions:

• p | 6ND(k − 2)!φ(N)cf and p ramifies in F ;
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• the image of the p-adic representation

ρf,p : GQ −→ GL2(OF ⊗ Zp)

attached to f by Deligne ([20]) does not contain the set{
g ∈ GL2(OF ⊗ Zp) | det(g) ∈ (Z×

p )
k−1

}
.

Lemma 3.8. The set Σ is finite.

Proof. The only non-trivial fact to check is that there are only finitely many prime
numbers satisfying the last condition, and this follows from [48, Theorem 3.1]. �

For a prime number p �∈ Σ and an integer m ≥ 1 define

(25) Spm :=
{
� prime number | � is inert in K, � � N and pm | �+ 1

}
.

Notice that Spm ⊂ S with S defined in (17). As a piece of notation, when we write
that a (non-zero) prime ideal of Z belongs to a set Θ of prime numbers we mean
that the positive generator of this ideal belongs to Θ. Let μpm denote the pm-th

roots of unity in Q̄. By [18, Lemma 3.14], a prime � belongs to Spm precisely when

Frob� = Frob∞ in Gal(K(μpm)/Q); hence Spm is infinite by Čebotarev’s density
theorem. Furthermore, there is an inclusion μpm ⊂ Kλ for every prime λ of K such
that λ ∩ Z ∈ Spm .

With Σ as above, fix from now to the end of this section a prime number p �∈ Σ
and a quadruplet (pm, S,Dκ, �) consisting of

• a prime ideal p of OF above p;
• an integer m ≥ 1;
• a square-free product S =

∏
i �i of primes �i in the set Spm introduced in

(25);
• a derivative Dκ with supp(Dκ) = S;
• an auxiliary prime � ∈ Spm .

3.6. Kolyvagin classes attached to Heegner cycles. In this subsection we
introduce classes d(�) ∈ H1(K,Wp[p

m]) depending on the data S, pm, Dκ and �.
Recall that Vp = Ap ⊗Op

Fp and let

ϑp : GQ −→ Aut(Ap), ϑ′
p : GQ −→ Aut(Vp)

be the Galois representations attached to Ap and Vp, respectively. If γ : Aut(Ap) ↪→
Aut(Vp) denotes the natural injection defined by extending Fp-linearly an automor-
phism of Ap, then ϑ′

p = γ ◦ ϑp, which induces an inclusion im(ϑp) ⊂ im(ϑ′
p).

For every integer m ≥ 1 the group GQ acts on Wp[p
m] via its action on Ap, and

reducing ϑp modulo pm gives a representation

ϑ̄p,m : GQ −→ Aut(Wp[p
m]).

In particular, ϑ̄p := ϑ̄p,1 is a residual representation of GQ over the finite field Fp.
For any subfield L of Q̄ and for M ∈

{
Ap, Vp,Wp[p

m]
}
we write M(L) as short-

hand forH0
cont(L,M); similar conventions apply when L is a completion of a number

field.

Lemma 3.9. If p �∈ Σ, then ϑ′
p and ϑ̄p are irreducible and have non-solvable images.
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Proof. By [10, Proposition 6.3, (1)], the representation ϑ̄p is irreducible, and this
implies the irreducibility of ϑ′

p ([31, Proposition 2.5]). Finally, by [10, Lemma 6.2],
the image of ϑp in Aut(Ap) � GL2(Op) contains a subgroup that is conjugate to
GL2(Zp). But the groups GL2(Zp) and GL2(Fp) are not solvable because p > 3;
hence the images of ϑp and of ϑ̄p are not solvable. Since im(ϑp) ⊂ im(ϑ′

p), the
claim follows. �

Lemma 3.10. If p �∈ Σ and the extension E/Q is solvable, then

(1) Vp(E) = 0;
(2) Wp[p

n](E) = 0 for all n ≥ 1.

Proof. Let us prove part (1). Since p �∈ Σ, Lemma 3.9 ensures that ϑ′
p is irreducible

with non-solvable image. The submodule Vp(E) of Vp isGQ-stable; hence if Vp(E) �=
0, then Vp(E) = Vp by the irreducibility of ϑ′

p. Thus ϑ
′
p factors through Gal(E/Q),

which is solvable by assumption. It follows that im(ϑ′
p) is solvable, which is a

contradiction. Finally, in order to prove part (2) it is of course enough to prove
the claim for n = 1, and this can be done mutatis mutandis in the same way, using
again Lemma 3.9. �

Write Lm := K(Wp[p
m]) for the composite of K and the subfield of Q̄ fixed by

ker(ϑ̄p,m). With notation as in §3.1, define a set S̃pm of prime numbers as

S̃pm :=
{
� prime number

∣∣ � � NDp and Frob� = Frob∞ in Gal(Lm/Q)
}
.

Again by Čebotarev’s density theorem, S̃pm is infinite.

Lemma 3.11. A prime � not dividing D belongs to S̃pm if and only if � belongs to
Spm and pm divides a� in OF .

Proof. Equating the minimal polynomials of F� (see (2)) and of c acting on Wp[p
m],

one finds the divisibility relations pm | a� and pm | �+1 in OF . Since p is unramified
in F , the second relation gives an inclusion (�+1) ⊂ (pm) of principal ideals of OF .
This immediately implies that pm | �+ 1 in Z, which concludes the proof. �

With notation as before, let � ∈ S̃pm and put T := S�. Define

P̃ (�) := DκD
1
� (yT,p) ∈ Λp(KT ),

then denote by

P (�) ∈ Λp(KT )/p
m Λp(KT )

the image of P̃ (�) under the canonical projection.
With the exception of §3.8, from here till the end of §3.9 we will work under the

following technical assumption on (pm, S,Dκ, �).

Assumption 3.12. For all Dκ′ strictly less than DκD
1
� we have Dκ′(yT,p) = 0.

With this condition in force, we can prove

Lemma 3.13. The class P (�) is fixed by the action of GT .

Proof. Let σ = σ�i or σ = σ�. Congruence (24) shows that

(σ − 1)P̃ (�) ≡ −σDκ′(yT,p) (mod pm)

for some Dκ′ strictly less than DκD
1
� , which concludes the proof. �
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Recall from (15) that there is an injective, Galois-equivariant map of Op/p
mOp-

modules

Λp(KT )/p
m Λp(KT ) ↪−→ H1

f (KT ,Wp[p
m]) ⊂ H1(KT ,Wp[p

m]).

By Lemma 3.13, the image of P (�) via this map belongs to H1
f (KT ,Wp[p

m])GT ,

hence to H1(KT ,Wp[p
m])GT . Since KT /Q, being generalized dihedral, is solvable,

part (2) of Lemma 3.10 and the inflation-restriction exact sequence give an isomor-
phism

resKT /K1
: H1(K1,Wp[p

m])
�−→ H1(KT ,Wp[p

m])GT .

Let N = NK1/K :=
∑

σ∈Γ1
σ ∈ Z[Γ1] denote the norm operator from K1 to K.

The abelian group H1(K1,Wp[p
m]) is naturally a Γ1-module, so N induces a map

N : H1(K1,Wp[p
m]) −→ H1(K1,Wp[p

m])Γ1 .

Since p � hK , inflation-restriction shows that there is an isomorphism

resK1/K : H1(K,Wp[p
m])

�−→ H1(K1,Wp[p
m])Γ1 .

Consider the diagram

H1(K1,Wp[p
m])

N

��

H1(KT ,Wp[p
m])GT

res−1
KT /K1��

β

��
�
�
�

H1(K1,Wp[p
m])Γ1

res−1
K1/K

�� H1(K,Wp[p
m])

where the broken arrow β is defined so as to make the resulting square commute.
Thus we can attach to P (�) ∈ H1(KT ,Wp[p

m])GT a Kolyvagin class

d(�) := β
(
P (�)

)
∈ H1(K,Wp[p

m])

such that

(26) resKT /K

(
d(�)

)
= NT

(
P (�)

)
where NT ∈ Z[ΓT ] is an arbitrary lift of N via the canonical projection ΓT � Γ1 (if
N′

T is another such lift, thenNT (P (�)) = N′
T (P (�)) by Lemma 3.13). Furthermore,

since resKT /K is an isomorphism, d(�) is the only class in H1(K,Wp[p
m]) satisfying

(26).

3.7. Action of complex conjugation on Kolyvagin classes. Recall that ε is
the sign of the functional equation of L(f, s) and set εκ := (−1)ord(Dκ)ε.

Proposition 3.14. The class d(�) belongs to the εκ-eigenspace of H1(K,Wp[p
m])

under the action of c.

Proof. By §3.4.3 and Assumption 3.12, there is an equality

c
(
P̃ (�)

)
= (−1)ord(DκD

1
�)DκD

1
�c(yT,p).

Since the ring Z[ΓT ] is commutative, part (2) of Proposition 3.1 then shows that

c
(
P (�)

)
= −ε(−1)ord(DκD

1
�)σ

(
P (�)

)
for a suitable σ ∈ ΓT . Applying any lift NT =

∑hK

i=1 σi ∈ Z[ΓT ] of N on both sides
gives

(27) NT

(
c(P (�))

)
= −ε(−1)ord(DκD

1
�)NT

(
σ(P (�))

)
.
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Now
∑hK

i=1 σic = c
∑hK

i=1 σ
−1
i . Moreover, since N′

T :=
∑hK

i=1 σ
−1
i and N′′

T :=∑hK

i=1 σiσ are two lifts of N, equality (26) implies that

(28) N′
T

(
P (�)

)
= resKT /K

(
d(�)

)
= N′′

T

(
P (�)

)
.

By definition of εκ, combining (27) and (28) gives

c · resKT /K

(
d(�)

)
= εκresKT /K

(
d(�)

)
,

and the conclusion follows from the Gal(K/Q)-equivariance of the isomorphism
resKT /K . �

3.8. Tate duality. In this subsection we do not suppose that Assumption 3.12
holds. Let λ denote the unique prime of K above �. By [39, Proposition 3.1, (2)],
there is a GQ-equivariant skew-symmetric pairing

[· , ·] : Ap ×Ap −→ Zp(1)

such that the induced pairing

[· , ·]m : Wp[p
m]×Wp[p

m] −→ μpm

is non-degenerate. With notation as before, combining cup product in cohomology
with the map Wp[p

m]⊗Wp[p
m] → μpm induced by [· , ·]m gives rise to a pairing

〈· , ·〉λ : H1(Kλ,Wp[p
m])×H1(Kλ,Wp[p

m]) −→ H2(Kλ,μpm) = Z/pmZ,

with the equality on the right coming from the invariant map of local class field
theory. By a result of Tate, this pairing is non-degenerate (cf. [38, Ch. I, Corollary
2.3]).

Since Ap is unramified at λ, the group H1
f (Kλ,Wp[p

m]) = H1
ur(Kλ,Wp[p

m]) is its

own annihilator in H1(Kλ,Wp[p
m]) under Tate’s pairing 〈· , ·〉λ ([10, Lemma 4.4]).

The singular part of the cohomology is then defined via the short exact sequence

0 −→ H1
f (Kλ,Wp[p

m]) −→ H1(Kλ,Wp[p
m]) −→ H1

sin(Kλ,Wp[p
m]) −→ 0,

and 〈· , ·〉λ induces a Gal(K/Q)-equivariant perfect pairing

(29) 〈· , ·〉λ : H1
f (Kλ,Wp[p

m])×H1
sin(Kλ,Wp[p

m]) −→ Z/pmZ.

It follows that there are natural identifications

(30) H1
sin(Kλ,Wp[p

m]) = H1(Kur
λ ,Wp[p

m]) = Hom cont

(
Gal(K̄λ/K

ur
λ ),Wp[p

m]
)

where Kur
λ is the maximal unramified extension of Kλ. Let K

t
λ denote the maximal

tamely ramified extension of Kλ. The wild inertia group Gal(K̄λ/K
t
λ) is a pro-�-

group and � �= p; hence equalities (30) yield a further identification

(31) H1
sin(Kλ,Wp[p

m]) = Hom cont

(
Gal(Kt

λ/K
ur
λ ),Wp[p

m]
)
.

Fix a (topological) generator τ of Gal(Kt
λ/K

ur
λ ), so that τ and a lift to Gal(Kt

λ/Kλ)
of the Frobenius Fλ ∈ Gal(Kur

λ /Kλ) generate Gal(Kt
λ/Kλ) topologically. In light

of (31), evaluating homomorphisms at τ gives an isomorphism

αλ : H1
sin(Kλ,Wp[p

m])
�−→ Wp[p

m].

On the other hand, by [10, Lemma 6.8], if � ∈ S̃pm , then evaluation at Frobλ gives
a Gal(K/Q)-equivariant isomorphism

βλ : H1
f (Kλ,Wp[p

m])
�−→ Wp[p

m].
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It follows that for every � ∈ S̃pm there is an isomorphism

(32) νλ := α−1
λ ◦ βλ : H1

f (Kλ,Wp[p
m])

�−→ H1
sin(Kλ,Wp[p

m])

of Op/p
mOp-modules.

As a piece of notation, for a Z/pmZ-module M write

M∗ := Hom(M,Z/pmZ)

for the Pontryagin dual of M . Note that if M is endowed with a Z/pmZ-linear
action of an involution τ , then M∗ inherits a Z/pmZ-linear action of τ by setting

(τ · f)(m) := f(τ ·m)

for all f ∈ M∗ and all m ∈ M . Letting the superscripts ± denote the ±-eigenspaces
under the actions of τ , there are canonical isomorphisms

(33) (M∗)±
�−→ (M±)

∗

of Z/pmZ-modules.
With this notation in force, the pairing in (29) is equivalent to an isomorphism

(34) H1
sin(Kλ,Wp[p

m])
�−→ H1

f (Kλ,Wp[p
m])

∗
.

By composing isomorphism (34) with the dual of the natural (localization) map

H1
f (K,Wp[p

m]) −→ H1
f (Kλ,Wp[p

m]),

we obtain a map

φλ : H1
sin(Kλ,Wp[p

m]) −→ H1
f (K,Wp[p

m])
∗
.

Analogously, for every Z/pmZ-submodule S ⊂ H1
f (K,Wp[p

m]) we obtain by re-

striction a map H1
sin(Kλ,Wp[p

m]) → S ∗, which will be denoted by the same sym-
bol. Observe that φλ is Gal(K/Q)-equivariant.

Remark 3.15. In light of the perfect pairing (29), when dealing with Tate’s
duality we shall often use the same symbol to denote d(�)λ and its image in
H1

sin(Kλ,Wp[p
m]).

3.9. Local behaviour of Kolyvagin classes. By class field theory, λ splits com-
pletely in KS/K; choose a prime λS of KS above λ. Furthermore, λS is totally
ramified in KT /KS ; write λT for the unique prime of KT above it.

As before, if v is a place of K, then write Kv for the completion of K at v. There
is a localization (restriction) map

resv : H1(K,Wp[p
m]) −→ H1(Kv,Wp[p

m]),

and if s ∈ H1(K,Wp[p
m]), then we write sv for resv(s).

Proposition 3.16. If v is an archimedean place of K, then d(�)v = 0.

Proof. The quadratic field K is imaginary, hence Kv = C. The proposition follows
because C is algebraically closed and so H1(C,Wp[p

m]) = 0. �

Now set S′ := cond(Dκ).

Proposition 3.17. If v is a finite place of K not dividing S′�, then

d(�)v ∈ H1
f (Kv,Wp[p

m]).
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Proof. By construction, P (�) belongs to H1
f (KS′�,Wp[p

m]). If v � p is a prime of

K and v′ is a prime of KS′� above it, then P (�) belongs to H1
un(KS′�,v′ ,Wp[p

m]).
By definition, the restriction of d(�) is P (�). In particular, the restriction of d(�)v
under the map

H1(Kv,Wp[p
m]) −→ H1(KS′�,v′ ,Wp[p

m])

lies in H1
un(KS′�,v′ ,Wp[p

m]). By inflation-restriction, the kernel of the map above
is

H1
(
KS′�,v′/Kv,Wp[p

m](KS′�,v′)
)
,

and the extension KS′�,v′/Kv is unramified; therefore d(�)v is unramified too. On
the other hand, if v | p, then the claim follows from the de Rham conjecture for open
varieties (now a theorem of Faltings), as explained in [39, Lemma 11.1, (2)]. �

Now we begin the study of d(�)λ (recall that λ is the unique prime of K above

the prime number � ∈ S̃pm). For this, we need some preliminaries.

Lemma 3.18. If � ∈ S̃pm , then there are isomorphisms of Op-modules

H1
sin(Kλ,Wp[p

m])± � Op/p
mOp, H1

f (Kλ,Wp[p
m])± � Op/p

mOp.

Proof. This is [10, Lemma 6.9, (2)]. (Notice that the first three conditions listed on

[10, p. 36] are equivalent to the condition � ∈ S̃pm by [10, Remark 3.1] and that the
fourth condition on [10, p. 36] plays no role in the proof of [10, Lemma 6.9]). �

Lemma 3.19. If � ∈ S̃pm , then the expressions
(
a� ± (� + 1)Frobλ

)/
pm define

endomorphisms of H1
sin(Kλ,Wp[p

m]). Furthermore, if
(
a� ± (� + 1)

)/
pm are both

p-adic units, then the maps above are invertible.

Proof. Since � ∈ S̃pm , there is an equality Frob� = Frob∞ of conjugacy classes in
Gal(K/Q), so Frobλ acts on H1

sin(Kλ,Wp[p
m])± as multiplication by ±1. Then

Lemma 3.11 shows that
(
a� ± (� + 1)Frobλ

)/
pm are indeed well-defined endo-

morphisms of the Op/p
mOp-module H1

sin(Kλ,Wp[p
m]), and the last claim is obvi-

ous. �

In the proof of the next result we use the isomorphism νλ defined in (32) (keep
Remarks 2.9 and 3.15 in mind for our notational conventions).

Proposition 3.20. Suppose that � ∈ S̃pm and that
(
a� ± (� + 1)

)/
pm are both

p-adic units. Then d(�)λ �= 0 in H1
sin(Kλ,Wp[p

m]) if and only if Dκ(yS,p)λ �= 0 in
H1

f (Kλ,Wp[p
m]).

Proof. Applying the Key Formula in [39, §9] with y a 1-cocycle that represents
Dκ(yS�,p), and using Proposition 3.14 plus the relations � + 1 ≡ a� ≡ 0 (mod pm)
to simplify the right hand side, we get

(−1)k/2−1εκa� − (�+ 1)

pm
d(�)λ,sin ≡ a� − (�+ 1)Frobλ

pm

(
νλ

(
Dκ(yS,p)λ

))
(mod pm).

(Note the difference of sign with respect to loc. cit.; the correction can be found in

[44, Proposition 5.16].) But (−1)k/2−1εκa�−(�+1)
pm ∈ (Op/p

mOp)
× by assumption, and

the proposition follows because a�−(�+1)Frobλ

pm is invertible on H1
sin(Kλ,Wp[p

m]) by

Lemma 3.19. �
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Recall that the data (pm, S,Dκ, �) satisfy Assumption 3.12. As before, Lm is the
field K(Wp[p

m]) and S′ is the conductor of Dκ. Define

(35) H1
f,S′(K,Wp[p

m]) := ker
(
H1

f (K,Wp[p
m]) −→

⊕
v |S′

H1
f (Kv,Wp[p

m])
)
.

Proposition 3.21. The class d(�)λ lies in the kernel of

φλ : H1
sin(Kλ,Wp[p

m])εκ −→
(
H1

f,S′(K,Wp[p
m])

∗)εκ
for all m ≥ 1.

Proof. To begin with, d(�)λ ∈ H1
sin(Kλ,Wp[p

m])εκ by Proposition 3.14. Pick an
element s ∈ H1

f,S′(K,Wp[p
m]), so that sλ ∈ H1

f (Kλ,Wp[p
m]); we need to show that

(36) 〈sλ, d(�)λ〉λ = 0.

By [10, Proposition 2.2, (2)], one has

(37)
∑
v

〈sv, d(�)v〉v = 0,

where the sum is taken over all (finite) places of K. Now observe that if v � S′�,
then 〈sv, d(�)v〉v = 0 by Proposition 3.17. On the other hand, if v |S′, then sv = 0
because s ∈ H1

f,S′(K,Wp[p
m]). Therefore (36) is an immediate consequence of

(37). �

3.10. Applications of Čebotarev’s density theorem. Recall that Lm is the
composite ofK and the field Q̄ker(ϑ̄p,m) fixed by ker(ϑ̄p,m). Similarly, define LS,m :=

KS(Wp[p
m]) to be the composite of KS and Q̄ker(ϑ̄p,m).

We need some cohomological lemmas.

Lemma 3.22. For all i ≥ 0 there is an isomorphism

Hi
(
Gal(Lm/K),Wp[p

m]
)
� Hi

(
Gal(LS,m/KS),Wp[p

m]
)
.

Proof. The fieldsK and Q(Wp[p
m]) are linearly disjoint over Q, and the same is true

of KS and Q(Wp[p
m]). This holds because Q(Wp[p

m]) ∩K and Q(Wp[p
m]) ∩ KS

are extensions of Q that are everywhere unramified, which is a consequence of
the fact that Q(Wp[p

m])/Q is unramified outside Np while KS/Q is unramified
outside SD and (pN, SD) = 1. It follows that the restriction maps induce canonical
isomorphisms

Gal(Lm/K) � Gal(Q(Wp[p
m])/Q), Gal(LS,m/KS) � Gal(Q(Wp[p

m])/Q).

Therefore both groups appearing in the statement of the lemma are isomorphic to

Hi
(
Gal(Q(Wp[p

m])/Q),Wp[p
m]

)
,

and this concludes the proof. �

Lemma 3.23. For all i ≥ 0, Hi
(
Gal(Lm/K),Wp[p

m]
)
= 0.

Proof. This is [10, Proposition 6.3, (2)]. �

Lemma 3.24. The restriction map

H1(K,Wp[p
m]) −→ H1(KS ,Wp[p

m])

is injective.
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Proof. By the inflation-restriction exact sequence, the kernel of this map is

H1
(
Gal(KS/K),Wp[p

m](KS)
)
,

which is trivial because Wp[p
m](KS) = 0 by part (2) of Lemma 3.10. �

Lemma 3.25. The restriction map

H1(KS,Wp[p
m]) −→ H1(LS,m,Wp[p

m])

is injective.

Proof. The kernel of this map is H1
(
Gal(LS,m/KS),Wp[p

m]
)
, which is trivial by a

combination of Lemmas 3.22 and 3.23. �

Lemma 3.26. The restriction map

H1(K,Wp[p
m]) −→ H1(LS,m,Wp[p

m])

is injective.

Proof. Combine Lemmas 3.24 and 3.25. �

Keep the notation of (20). Now we can prove the following.

Proposition 3.27. Suppose that

• Dκ(yS,p) is not trivial in H1(KS ,Wp[p
m]);

• rp,m
(
H1

f,S′(K,Wp[p
m])εκ

)
≥ 1.

Then there exist infinitely many prime numbers � such that

(1) � � pNDS and Frob� = Frob∞ in Gal(LS,m/Q);
(2) �+ 1± a� �≡ 0 (mod pm+1);
(3) the image of Dκ(yS,p) in H1

f (Kλ,Wp[p
m]) is not zero, where λ is the unique

prime of K above �;
(4) the map of Op/p

mOp-modules

H1
f,S′(K,Wp[p

m])εκ −→ H1
f (Kλ,Wp[p

m])εκ

is surjective.

Proof. By assumption, Dκ(yS,p) �= 0 in H1(KS ,Wp[p
m]); hence Lemma 3.25 im-

plies that the same is true of its image in H1(LS,m,Wp[p
m]), denoted by the

same symbol. Since p is odd, H1(LS,m,Wp[p
m]) splits as the direct sum of its

±-eigenspaces for the action of c ∈ Gal(K/Q), so there is δ ∈ {±} such that the
projection of Dκ(yS,p) to the δ-eigenspace of H1(LS,m,Wp[p

m]) is non-zero. Let us
fix such a sign δ and write d for the corresponding projection of Dκ(yS,p).

Let s ∈ H1
f,S′(K,Wp[p

m])εκ be an element of exact order pm, which exists by

assumption. By Lemma 3.26, the image of s in H1(LS,m,Wp[p
m]) has order pm as

well. Since the relevant Galois action is trivial and Wp[p
m] is abelian, there is a

canonical identification

H1(LS,m,Wp[p
m]) = Hom

(
Gal(Lab

S,m/LS,m),Wp[p
m]

)
,

where Lab
S,m is the maximal abelian extension of LS,m. Denote by ψ and ϕ the

homomorphisms corresponding to d and to the image of s in H1(LS,m,Wp[p
m]),

respectively.
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Denote by L̃S,m the smallest extension of LS,m that is cut out by ψ and ϕ and
is Galois over Q. There is an isomorphism

Gal(L̃S,m/KS) � Gal(L̃S,m/LS,m)�Gal(LS,m/KS).

Complex conjugation c acts on Gal(L̃S,m/LS,m) by inner automorphisms, and we

denote by Gal(L̃S,m/LS,m)+ the subgroup of Gal(L̃S,m/LS,m) that is fixed by c.
Set

Φ := H1
(
Gal(L̃S,m/LS,m),Wp[p

m]
)
= Hom

(
Gal(L̃S,m/LS,m),Wp[p

m]
)
.

By definition of L̃S,m, the maps ψ and ϕ factor through Gal(L̃S,m/LS,m) and so
determine maps ψ̄ and ϕ̄ in Φ. The group Gal(LS,m/KS) acts canonically on Φ, and
ψ̄ and ϕ̄ are fixed by this action as they are restrictions of classes inH1(KS ,Wp[p

m])
and H1(K,Wp[p

m]), respectively. There is also an action of c on Φ and, since s
belongs to H1(K,Wp[p

m])εκ , the map ϕ̄ belongs to Φεκ , while ψ̄ belongs to Φδ by
construction.

Now we claim that both ψ̄ and pm−1ϕ̄ are non-zero on Gal(L̃S,m/LS,m)+. To

show this, let � denote either ψ̄ or pm−1ϕ̄. If � = 0 on Gal(L̃S,m/LS,m)+, then

� maps Gal(L̃S,m/LS,m) to one of the eigenspaces Wp[p
m]±. This is true because

� factors through the p-primary part of Gal(L̃S,m/LS,m), which splits as the sum
of the two eigenspaces for the action of c, and � belongs to an eigenspace of Φ.
Since � is non-zero and fixed by Gal(LS,m/KS), it follows that im(�) is a non-zero,
proper submodule of Wp[p

m] that is stable under the action of Gal(LS,m/KS) �
Gal(Q(Wp[p

m])/Q). Multiplying im(�) by a suitable power of p, we obtain a non-
zero, proper submodule of Wp[p] that is stable under Gal(Q(Wp[p

m])/Q), and this
contradicts the irreducibility of ϑ̄p (Lemma 3.9). We conclude that both pm−1ϕ̄

and ψ̄ are necessarily non-zero on Gal(L̃S,m/LS,m)+.

It follows that we can find g ∈ Gal(L̃S,m/LS,m)+ such that ψ̄(g) �= 0 and ϕ̄(g)

has exact order pm. Let � be a prime number unramified in L̃S,m/Q such that

(38) � � NDSp, Frob� = Frob∞ g.

Here Frob∞ g denotes the conjugacy class of cg in Gal(L̃S,m/Q). By Čebotarev’s
density theorem, the set of primes satisfying (38) is infinite.

Clearly, (1) is satisfied by any � as in (38). In particular, � is inert in K, and
we denote by λ the unique prime of K above �, which splits completely in LS,m

([10, Lemma 6.7]). Choose a prime λ̃S,m of L̃S,m above λ such that Frobλ̃S,m/� = cg

and let λS,m be the prime of LS.m below λ̃S,m; the completion LλS,m
of LS,m at

λS,m is then equal to Kλ.
Now we show that every prime � satisfying (38) satisfies also (3) and (4) in the

statement of the proposition. If � = ψ̄ or � = pm−1ϕ̄, then, since gc = g, one has

(39) �
(
Frobλ̃S,m/λS,m

)
= �

(
Frob2

λ̃S,m/�

)
= �(gcg) = �(g2) �= 0.

Therefore the restriction of � to Gal
(
L̃λ̃S,m

/LλS,m

)
is non-zero and hence, since

LλS,m
= Kλ, taking � = ψ̄ gives (3). As for (4), note that, by Lemma 3.18, it

suffices to find an element of H1
f,S′(K,Wp[p

m])εκ whose image in H1
f (Kλ,Wp[p

m])εκ

has exact order pm. But it follows from (39) with � = pm−1ϕ̄ that the order of the
image of s in H1

f (Kλ,Wp[p
m])εκ is pm, and we are done.

Licensed to Universita degli Studi di Padova. Prepared on Fri Nov  3 04:50:40 EDT 2017 for download from IP 147.162.114.37.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



7326 MATTEO LONGO AND STEFANO VIGNI

Finally, we show that one can choose infinitely many primes � as in (38) such
that (2) is true. Fix a prime �′ satisfying (38) but not (2), so that �′ + 1 ≡ εa�′

(mod pm+1) for a suitable ε ∈ {±1}. It is known that tr(F�′ |Ap) = a�′/�
′k/2−1 and

det(F�′ |Ap) = �′. Take any α ∈ Z×
p such that α ≡ 1 (mod pm) and setM :=

(
α 0
0 α

)
.

By [10, Lemma 6.2], the matrix M lies in the image of the representation ϑp of GQ

on Ap; hence there is σα ∈ GQ having M as its image. Then

tr(F�′σα |Ap) = αa�′
/
�′k/2−1, det(F�′σα |Ap) = α2�′.

Let � be a prime number such that � � NDSp and Frob� = Frob�′ σα|L̃S,m+1

in Gal(L̃S,m+1/Q), where we denote by Frob�′ σα|L̃S,m+1
the conjugacy class of

f · σα|L̃S,m+1
for any choice of f ∈ Frob�′ . Again, Čebotarev’s density theorem

guarantees that there exist infinitely many such �. Then

a�
/
�k/2−1 ≡ αa�′

/
�′k/2−1 (mod pm+1), � ≡ α2�′ (mod pm+1),

and one deduces that there exists an α as above such that �+1±a� �≡ 0 (mod pm+1).

This shows that � satisfies (2). But the image of Frob� in Gal(L̃S,m/Q) is equal to
that of Frob�′ , and so � satisfies (38) too. �

3.11. Divisibility properties of Heegner cycles. The arguments in this sub-
section follow those in [18, §5.1]. As before, � belongs to Spm and λ is the unique
prime of K above �. Moreover, recall the shorthand Fp = Op/pOp and for any
Op/p

mOp-module M set

rp(M) := dimFp

(
M ⊗Op/pmOp

Fp

)
.

To use uniform notation, also put rp := rp,1.

Lemma 3.28. rp
(
H1

f (Kλ,Wp[p
m])±

)
≤ 1.

Proof. To ease notation, in this proof we use the symbol ⊗ to denote tensorization
over Op/p

mOp. With this convention in mind, note that for any Op/p
mOp-module

M equipped with an action of Gal(K/Q) there are injections

(40) M± ⊗ Fp ↪−→ (M ⊗ Fp)
±.

If Ẑ is the profinite completion of Z, then Gal(Kur
λ /Kλ) � Ẑ; hence well-known

results in group cohomology (see, e.g., [54, Ch. XIII, Proposition 1]) show that
there is a short exact sequence

(41) 0 −→ (Frobλ −1)Wp[p
m] −→ Wp[p

m] −→ H1
f (Kλ,Wp[p

m]) −→ 0.

Tensoring (41) with Fp produces an exact sequence

(42) (Frobλ −1)Wp[p
m]⊗ Fp

ι−→ Wp[p
m]⊗ Fp −→ H1

f (Kλ,Wp[p
m])⊗ Fp −→ 0.

By [10, Proposition 6.3, (4)], Wp[p
m]± is free of rank 1 over Op/p

mOp, and then
(40) with M = Wp[p

m] gives

(43) dimFp

(
(Wp[p

m]⊗ Fp)
±) = 1.

If im(ι) = 0, then (42) induces isomorphisms

(44)
(
Wp[p

m]⊗ Fp

)± �
(
H1

f (Kλ,Wp[p
m])⊗ Fp

)±
,

and the inequalities rp
(
H1

f (Kλ,Wp[p
m])±

)
≤ 1 follow by combining (43), (44) and

(40) with M = H1
f (Kλ,Wp[p

m]). Finally, Wp[p
m] ⊗ Fp has dimension 2 over Fp,
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so if im(ι) �= 0, then (42) implies that rp
(
H1

f (Kλ,Wp[p
m])

)
≤ 1 and, a fortiori,

rp
(
H1

f (Kλ,Wp[p
m])±

)
≤ 1. �

Remark 3.29. If � ∈ S̃pm , then Lemma 3.18 shows that equality holds in Lemma
3.28.

To simplify our notation, for every integer S′ > 1 define

(45) A(S′) :=
⊕
λ|S′

H1
f (Kλ,Wp[p

m]).

Of course, the module A(S′) depends on m, but no confusion is likely to arise.

Lemma 3.30. If � ∈ S̃pm , then

rp,m
(
H1

f,S′(K,Wp[p
m])±

)
≤ rp,m

(
H1

f,S′�(K,Wp[p
m])±

)
+ rp

(
A(S′�)±

)
− rp

(
A(S′)±

)
.

Proof. There is an exact sequence

0 −→ H1
f,S′�(K,Wp[p

m])± −→ H1
f,S′(K,Wp[p

m])± −→ H1
f (Kλ,Wp[p

m])±

where λ is the prime of K above �. Combining part (3) of Lemma 3.4 and the
obvious inequality

rp,m
(
H1

f (Kλ,Wp[p
m])±

)
≤ rp

(
H1

f (Kλ,Wp[p
m])±

)
we find

rp,m
(
H1

f,S′(K,Wp[p
m])±

)
≤ rp,m

(
H1

f,S′�(K,Wp[p
m])±

)
+ rp

(
H1

f (Kλ,Wp[p
m])±

)
.

Applying Lemma 3.28 to the inequality above yields

(46) rp,m
(
H1

f,S′(K,Wp[p
m])±

)
≤ rp,m

(
H1

f,S′�(K,Wp[p
m])±

)
+ 1.

Now � belongs to S̃pm , so by Lemma 3.18 one has

rp
(
H1

f (Kλ,Wp[p
m])±

)
= 1,

and we deduce that

rp
(
A(S′�)±

)
= rp

(
A(S′)±

)
+ 1.

Hence inequality (46) becomes

rp,m
(
H1

f,S′(K,Wp[p
m])±

)
≤ rp,m

(
H1

f,S′�(K,Wp[p
m])±

)
+ rp

(
A(S′�)±

)
− rp

(
A(S′)±

)
,

as was to be shown. �

Proposition 3.31. Let Dκ be a derivative of support S and conductor S′. If either

(1) m = 1 and ord(Dκ) < rp
(
H1

f,S′(K,Wp[p])
εκ
)
+ rp

(
A(S′)εκ

)
or

(2) m ≥ 1 and ord(Dκ) < rp,m
(
H1

f (K,Wp[p
m])εκ

)
,

then Dκ(yS,p) ≡ 0 (mod pm).
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Proof. Define the weight of Dκ to be

wt(Dκ) := ord(Dκ)−#
{
� prime number

∣∣ � |S and � ∈ S̃pm

}
.

To prove the proposition we proceed by induction on wt(Dκ).
First of all, observe that if wt(Dκ) < 0, then the result is true. Indeed, in this

case Dκ contains at least one factor of the form D0
� for some prime � ∈ S̃pm . By

part (1) of Proposition 3.1 and the relation (1) between restriction, corestriction
and Galois trace, we have

D0
� (yT�,p) = resKT�/KT

(yT,p) · (a�/�k/2−1) ≡ 0 (mod pm),

where the congruence holds because � ∈ S̃pm (here resKT�/KT
denotes the restriction

map in cohomology from H1(KT , Ap) to H1(KT�, Ap)). Then the result follows
(without assuming any condition on the order of Dκ).

Now set k := wt(Dκ) and assume by induction that the theorem is true for all
derivatives Dκ′ such that wt(Dκ′) < k. We argue by contradiction, supposing that

(47) Dκ(yS,p) �≡ 0 (mod pm).

We first show that the inequality in the statement of the proposition plus (47)
implies that

(48) rp,m
(
H1

f,S′(K,Wp[p
m])εκ

)
≥ 1.

In fact, if this were not the case, then there would be an inequality

(49) ord(Dκ) < rp
(
A(S′)

)
.

In case (1), this inequality is obvious, while in case (2) our assumption implies that

ord(Dκ) < rp,m
(
H1

f (K,Wp[p
m])εκ

)
≤ rp,m

(
H1

f,S′(K,Wp[p
m])εκ

)
+ rp

(
A(S′)εκ

)
≤ rp

(
A(S′)

)
.

By Lemma 3.28, the right hand side of (49) is less than or equal to the number
of primes dividing S′. But each of these primes contributes at least 1 unity in the
sum defining ord(Dκ), so the inequality above does not occur and we conclude that
(48) holds.

Equations (47) and (48) show that the assumptions in Proposition 3.27 are ful-
filled, and therefore, with the usual notation, one can find a prime number � such
that

• � � pNDS and Frob� = Frob∞ in Gal(LS,m/Q);
• pm+1 � (�+ 1)± a�;
• the image of Dκ(yS,p) in H1

f (Kλ,Wp[p
m]) is not zero;

• the map of Op/p
mOp-modules

(50) H1
f,S′(K,Wp[p

m])εκ −→ H1
f (Kλ,Wp[p

m])εκ

is surjective.

Dualizing the map in (50) and using (33) and (34), we see that the map

(51) φλ : H1
sin(Kλ,Wp[p

m])εκ −→
(
H1

f,S′(K,Wp[p
m])∗

)εκ
is injective.
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Now we want to show that the derivative DκD
1
� satisfies Assumption 3.12. Fix

Dκ′ strictly less than DκD
1
� . Then

ord(Dκ′) < ord(DκD
1
� ) = ord(Dκ) + 1,

hence

(52) ord(Dκ′) ≤ ord(Dκ).

Since the support of Dκ′ is divisible by an extra prime � ∈ S̃pm , we see that

(53) wt(Dκ′) < wt(Dκ).

In case (2), since ord(Dκ) < rp,m
(
H1

f (K,Wp[p
m])εκ

)
by assumption, this is enough

to check that Dκ′ satisfies the inductive hypothesis, hence Dκ′(yS�,p) ≡ 0 (mod
pm). Suppose we are in case (1). By Lemma 3.30, one has

rp
(
H1

f,S′(K,Wp[p])
εκ
)
≤ rp

(
H1

f,S′�(K,Wp[p])
εκ
)
+ rp

(
A(S′�)εκ

)
− rp

(
A(S′)εκ

)
.

Combining this inequality with the one in the statement of the proposition, we find
that

ord(Dκ) < rp
(
H1

f,S′�(K,Wp[p])
εκ
)
+ rp

(
A(S′�)εκ

)
,

and therefore, applying (52), we get

(54) ord(Dκ′) < rp
(
H1

f,S′�(K,Wp[p])
εκ
)
+ rp

(
A(S′�)εκ

)
.

Equations (54) and (53) show that Dκ′ satisfies the inductive hypothesis when
cond(Dκ′) = S′�, and we conclude that Dκ′(yS�,p) ≡ 0 (mod p) in this case. Now
suppose that cond(Dκ′) = S′′ with S′′ |S′� and let Q := S′�/S′′. Then every prime
t dividing Q gives a derivative of the form D0

t in Dκ′ . If there exists a prime t

dividing Q with t ∈ S̃p, then Dκ′(yS�,p) ≡ 0 (mod p) (to check this, use the norm
relation and the divisibility p | at). If no such prime t appears, then p � at for all t |Q,
which implies that rp

(
H1

f (Kλ,Wp[p
m])±

)
= 0 at λ | t. Therefore A(S′′) = A(S′�).

On the other hand, one clearly has

rp
(
H1

f,S′�(K,Wp[p])
εκ
)
≤ rp

(
H1

f,S′′(K,Wp[p])
εκ
)
,

and we conclude using (54) that

(55) ord(Dκ′) < rp
(
H1

f,S′′(K,Wp[p])
εκ
)
+ rp

(
A(S′′)εκ

)
.

Equations (53) and (55) show that the inductive hypothesis holds, and so we may
again conclude that Dκ′(yS�,p) ≡ 0 (mod p). This shows that Assumption 3.12 is
satisfied in our setting.

Since Assumption 3.12 holds, we may apply the construction of §3.6 and obtain a
class d(�) ∈ H1(K,Wp[p

m]). The image of Dκ(yS,p) in H1
f (Kλ,Wp[p

m]) being non-

zero, it follows from Proposition 3.20 (which we can apply because pm+1 � �+1±a�)
that the image of d(�)λ in H1

sin(Kλ,Wp[p
m]) is non-zero as well. Therefore, since

d(�) belongs to the εκ-eigenspace for c thanks to Proposition 3.14, Proposition 3.21
ensures that the map

φλ : H1
sin(Kλ,Wp[p

m])εκ −→
(
H1

f,S′(K,Wp[p
m])∗

)εκ
is not injective. But this contradicts (51), and the proposition is proved. �

Now we keep notation and assumptions as in Proposition 3.31 and prove two
corollaries.
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Corollary 3.32. If ord(Dκ) < p and either

(1) m = 1 and ord(Dκ) < rp
(
H1

f,S′(K,Wp[p])
−εκ

)
+ rp

(
A(S′)−εκ

)
− 1

or

(2) m ≥ 1 and ord(Dκ) < rp,m
(
H1

f (K,Wp[p
m])−εκ

)
− 1,

then Dκ(yS,p) ≡ 0 (mod pm).

Proof. Suppose Dκ(yS,p) �≡ 0 (mod pm) and pick a prime � such that Frob� =
Frob∞ in Gal(LS,m/Q) and the image of Dκ(yS,p) in H1

f (Kλ,Wp[p
m]) is not zero

(that such a choice is possible can be checked along the same lines as in the proof
of Proposition 3.27, and the arguments are actually simpler).

Now we show that

(56) DκD
1
�(yS�,p) is not zero in H1(K,Wp[p

m]).

If there is a derivative Dκ′ strictly less than DκD
1
� such that Dκ′(yS�,p) is not

zero in H1(K,Wp[p
m]), using formula (24) recursively one easily shows that (56)

holds (use here the fact that ord(Dκ) < p). On the contrary, if for all derivatives
Dκ′ strictly less than DκD

1
� we have Dκ′(yS�,p) = 0 in H1(K,Wp[p

m]) then one
can construct the class d(�) which, by Proposition 3.20, is not locally trivial at λ.
Hence, a fortiori, d(�) is not globally trivial, and therefore also P (�) = DκD

1
� (yS�,p)

is not trivial.
In case (1), since

(57) ord(DκD
1
� ) = ord(Dκ) + 1,

we obtain that

ord(DκD
1
� ) < rp

(
H1

f,S′(K,Wp[p])
−εκ

)
+ rp

(
A(S′)−εκ

)
.

By Lemma 3.30, the right hand side of the inequality above is less than or equal to

rp
(
H1

f,S′�(K,Wp[p])
−εκ

)
+ rp

(
A(S′�)−εκ

)
,

so we obtain the inequality

ord(DκD
1
� ) < rp

(
H1

f,S′�(K,Wp[p])
−εκ

)
+ rp

(
A(S′�)−εκ

)
.

In case (2), again using (57), we get the inequality

ord(DκD
1
� ) < rp,m

(
H1

f (K,Wp[p
m])−εκ

)
.

By (57), we have (−1)ord(DκD
1
�) = −εκ. Therefore in both cases we can apply

Proposition 3.31, which shows that DκD
1
� (yS�,p) ≡ 0 (mod p). In light of (56),

this is a contradiction. �
Corollary 3.33. If either

(1) ord(Dκ) < rp,m
(
H1

f (K,Wp[p
m])εκ

)
or

(2) ord(Dκ) < rp,m
(
H1

f (K,Wp[p
m])−εκ

)
− 1 and ord(Dκ) < p,

then Dκ(yS,p) ≡ 0 (mod pm).

Proof. Use Proposition 3.31 if (1) holds and Corollary 3.32 if (2) holds. �
We are now in a position to state and prove the main result of this section.

Theorem 3.34. Let S be a square-free product of primes in Spm . If ord(Dκ) <
min{rp,m, p}, then Dκ(yS,p) ≡ 0 (mod pm).
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Proof. Since ord(Dκ) < rp,m and

rp,m = rp,m
(
H1

f (K,Wp[p
m])εκ

)
+ rp,m

(
H1

f (K,Wp[p
m])−εκ

)
,

at least one of the conditions in Corollary 3.33 is satisfied (in (2) we also need the
condition ord(Dκ) < p, which is not needed for (1)), and we are done. �

4. Theta elements and refined Beilinson–Bloch conjecture

In this section we prove our main result on the order of vanishing of certain
combinations of Heegner cycles.

4.1. Theta elements and arithmetic L-functions. For any square-free product
T of prime numbers belonging to the set S defined in (17) consider the resolvent
element

θT,p :=
∑

σ∈GT

σ(yT,p)⊗ σ ∈ Λp(KT )⊗Op
Op[GT ].

Our main result relates these elements to the dimension of Xp(K) over Fp.
We also need to introduce suitable variants and combinations of the elements

above. To begin with, we trace them down to K as follows. As in §3.6, fix any lift
NT ∈ Z[ΓT ] of the norm N =

∑
σ∈Γ1

σ; in other words, for every σ ∈ Γ1 choose

σ′ ∈ ΓT such that σ′|K1
= σ. Define

(58) ζT,p := NT (θT,p) =
∑

σ∈GT

σNT (yT,p)⊗ σ ∈ Λp(KT )⊗Op
Op[GT ].

Note that these elements depend on the choice of NT , but for simplicity we shall
drop this dependence from the notation.

Let x 	→ x∗ denote the involution of Op[GT ] induced by the map σ 	→ σ−1 on
GT and denote by ζ∗T,p the element obtained by applying to ζT,p the map induced
by this involution.

Fix a square-free product S of primes belonging to S. As before, fix a lift NS

of N to Z[ΓS ]. By projection, this gives lifts NT for all T |S that may be used to
define ζT,p and ζ∗T,p as in (58). Since the extension KS/Q is generalized dihedral

and hence solvable, part (1) of Lemma 3.10 ensures that Ap(KS) = 0, so for every
T |S the inflation-restriction exact sequence yields an injection Λp(KT ) ↪→ Λp(KS).
On the other hand, the natural inclusion GT ⊂ GS (see §3.1) induces an injection
Op[GT ] ↪→ Op[GS ] of (free) Op-modules, and therefore we obtain an injection

(59) Λp(KT )⊗Op
Op[GT ] ↪−→ Λp(KS)⊗Op

Op[GS]

of Op-modules. Furthermore, the canonical inclusion GS ⊂ ΓS induces an injection

(60) Λp(KS)⊗Op
Op[GS ] ↪−→ Λp(KS)⊗Op

Op[ΓS ]

of Op-modules. The composition of (59) and (60) allows us to view ζT,p and ζ∗T,p

as elements of Λp(KS) ⊗Op
Op[ΓS ], which from here on we shall do without any

further warning.
For S fixed as above and every T |S set

(61) aT := μ(T )
∑

σ∈Gal(KS/KT )

σ, a∗T := χK(T )aT
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where μ is the Möbius function and χK is the quadratic character attached to K.
Define the arithmetic L-function attached to S and p as

(62) LS,p :=

(∑
T |S

aT ζT,p

)
⊗
(∑

T |S
a∗T ζ

∗
T,p

)
∈ Λp(KS)

⊗2 ⊗Op
Op[ΓS ].

Here we are using the canonical identification

Λp(KS)
⊗2 ⊗Op

Op[ΓS ] =
(
Λp(KS)⊗Op

Op[ΓS ]
)
⊗Op[ΓS ]

(
Λp(KS)⊗Op

Op[ΓS ]
)
,

the superscript “⊗2” denoting tensorization over Op. Note that if T |S and

μS,T : Λp(KS)
⊗2 ⊗Op

Op[ΓS ] −→ Λp(KS)
⊗2 ⊗Op

Op[ΓT ]

is the map induced by the canonical projection ΓS � ΓT , then

(63) μS,T (LS,p) = LT,p ·
∏

�|(S/T )

(1 + �− a�/�
k/2−1) · (1 + �+ a�/�

k/2−1).

Remark 4.1. One could define an element LS,p as in (62) by replacing the coefficients
aT and a∗T with any choice of bT and b′T in Op[ΓS ], obtaining compatibility relations
similar to (63). Our preference is motivated by the existence of a regulator of
Mazur–Tate type, called Nekovář regulator and denoted by RNek(S) in Section 5,
that enjoys properties analogous to those of the regulator defined in [36] and [37]
and used in [18]. The regulator RNek(S) is predicted to appear in the expression
of the leading coefficient of LS,p for this specific choice of aT and a∗T . However, it
is reasonable to expect alternative choices of coefficients bT and b′T to be related to
other types of regulators having formal properties different from those of Mazur–
Tate regulators. Finally, observe that the results for LS,p proved in this paper still
hold for any choice of bT and b′T ; see Remarks 4.8 and 4.17 below.

4.2. Results on the order of vanishing. Recall that IGS
and IΓS

are the aug-
mentation ideals of Op[GS ] and Op[ΓS ], respectively. The powers of IGS

define a
decreasing filtration

(64) Op[GS ] = I0GS
⊃ I1GS

⊃ I2GS
⊃ · · · ⊃ InGs

⊃ · · ·
on Op[GS]. On the other hand, since the Op-module Λp(KS) is not in general
torsion-free, we cannot expect tensorization of the sequence (64) by Λp(KS) over
Op to yield a filtration on Λp(KS) ⊗Op

Op[GS ]. In light of this, when we write
that an element θ of Λp(KS) ⊗Op

Op[GS ] belongs to Λp(KS) ⊗Op
IrGS

we really
mean that θ belongs to the natural image of the Op-module Λp(KS)⊗Op

IrGS
inside

Λp(KS)⊗Op
Op[GS ].

Definition 4.2. Let r ∈ N.

(1) An element θ ∈ Λp(KS)⊗Op
Op[GS ] is said to vanish to order at least r if

θ ∈ Λp(KS)⊗Op
IrGS

.
(2) An element θ ∈ Λp(KS)⊗Op

Op[GS ] is said to vanish to order (exactly) r if

θ ∈ Λp(KS)⊗Op
IrGS

but θ /∈ Λp(KS)⊗Op
Ir+1
GS

.

Analogous definitions and conventions apply to Op[ΓS ] and IΓS
and, below, with

Λp(KS)
⊗2 in place of Λp(KS).

The first conjecture we formulate is

Conjecture 4.3 (“Weak vanishing”). The element LS,p vanishes to order at least
ρ̃p − 1 and vanishes to order exactly ρ̃p − 1 if and only if |ρ+p − ρ−p | = 1.
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A similar statement in the context of p-adic analogues of the Birch–Swinnerton-
Dyer conjecture for elliptic curves can be found in [4, Conjecture 4.2].

Remark 4.4. We explicitly observe that Conjecture 4.3 involves ρ̃p − 1, and not
ρ̃p, because, as in [18], the element LS,p should mirror the behaviour of the first
derivative L′(f ⊗K, s) at s = k/2 (in fact, to be somewhat more in line with the
notation adopted in [18] we should write L′

S,p in place of LS,p).

Corollary 4.7, which is a consequence of the next result, will provide a proof of
part of Conjecture 4.3.

Theorem 4.5. If ρp ≤ p, then θS,p ∈ Λp(KS)⊗Op
I
ρp

GS
.

Proof. Let Dκ be a derivative with ord(Dκ) < ρp, supp(Dκ) = S and cond(Dκ) |S.
Set S′ := cond(Dκ) and write Dκ = Dκ′ · Dκ′′ where the derivative Dκ′ satisfies
supp(Dκ′) = cond(Dκ′) = S′ and the derivative Dκ′′ has order 0 and support in
S/S′ (so Dκ′′ is nothing other than the norm operator from GS to GS′). Part (1)
of Proposition 3.1 combined with the relation (1) between Galois trace, restriction
and corestriction maps shows that

(65) Dκ(yS,p) = resKS′/KS

(
Dκ′(yS′,p)

)
·

∏
�|(S/S′)

a�/�
k/2−1

where resKS′/KS
is the restriction from H1(KS′ , Ap) to H1(KS , Ap). Let m = η(κ)

denote the smallest power of p dividing the orders of the groups G� with � |S. By
definition, all primes dividing S belong to Spm . Since ρp ≤ rp,m by Lemma 3.7,
we have ord(Dκ) < rp,m. Therefore the assumptions of Theorem 3.34 are satisfied,
and then

(66) Dκ′(yS′,p) ≡ 0 (mod pm).

Combining (65) and (66), we see that if ord(Dκ) < ρp, then pm |Dκ(yS,p). The
result follows from the divisibility criterion in §3.4.2, which we can apply thanks to
the condition ρp ≤ p. �

Corollary 4.6. ζS,p, ζ
∗
S,p ∈ Λp(KS)⊗Op

I
ρp

GS
.

Proof. The element ζS,p is the image of θS,p via the endomorphism of Λp(KS)⊗I
ρp

GS

defined by x⊗ i 	→
(
NS(x)

)
⊗ i. Since the Abel–Jacobi map commutes with Galois

actions, it follows from Theorem 4.5 that ζS,p belongs to Λp(KS)⊗ I
ρp

GS
. Applying

the main involution, one obtains that ζ∗S,p belongs to Λp(KS)⊗ I
ρp

GS
as well. �

Corollary 4.7. LS,p ∈ Λp(KS)
⊗2 ⊗Op

I
2ρp

ΓS
.

Proof. Since LS,p is a linear combination with coefficients in Op[ΓS ] of the elements
ζT,p and ζ∗T,p for T |S, the result is a consequence of Corollary 4.6 applied to these
elements. �

In light of Lemma 3.5, Corollary 4.7 implies the first part of Conjecture 4.3 and
is, in fact, equivalent to it when |ρ+p −ρ−p | = 1. On the other hand, if |ρ+p −ρ−p | > 1,
then 2ρp > ρ̃p − 1, and Corollary 4.7 shows more than what is predicted by the
first part of Conjecture 4.3. In other words, if |ρ+p − ρ−p | > 1, then there is extra
vanishing of LS,p.
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Remark 4.8. More generally, the result of Corollary 4.7 is valid (with the same
proof) for any linear combination with coefficients in Op[ΓS ] of the elements ζT,p

and ζ∗T,p with T |S. See Remark 4.1 for a detailed discussion of our specific choice
of coefficients for LS,p.

4.3. Results on the leading terms. We study, in some particular cases, the
reductions modulo p of the leading terms of ζS,p and LS,p. Here S is a square-free
product of primes in Sp and ρp < p.

We first consider the leading coefficient (or leading term) θ̃S,p of θS,p, which is

defined to be the image of θS,p in Λp(KS)⊗Op

(
I
ρp

GS
/I

ρp+1
GS

)
. Analogous definitions

can be given for ζS,p and LS,p.

Remark 4.9. A more accurate choice would be to call θ̃S,p the ρp-th coefficient of
θS,p, as Theorem 4.5 only shows that θS,p vanishes to order at least ρp. However,
we find this slight abuse to be convenient and the resulting terminology to be
more suggestive of the global underlying philosophy, and we are confident that this
convention will cause no confusion.

Together with Conjecture 5.1, the following conjecture takes care of the leading

coefficient of LS,p, which is the image L̃S,p of LS,p in Λ(KS)
⊗2 ⊗

(
I
ρ̃p−1
ΓS

/I
ρ̃p

ΓS

)
; the

reader is reminded to keep Conjecture 4.3 in mind.

Conjecture 4.10 (“Rationality of the leading coefficient”). The element L̃S,p be-
longs to the image of the natural map

(67) Λ(K)⊗2 ⊗
(
I
ρ̃p−1
ΓS

/I
ρ̃p

ΓS

)
−→ Λ(KS)

⊗2 ⊗
(
I
ρ̃p−1
ΓS

/I
ρ̃p

ΓS

)
.

When |ρ+p −ρ−p | = 1 and all the prime factors of S belong to Sp, a weaker, mod p
version of Conjecture 4.10 will be proved in part (2) of Corollary 4.16.

By Theorem 4.5, there is a congruence

(68) θ̃S,p ≡
∑
κ

Dκ(yS,p)⊗ (σ1 − 1)k1 . . . (σt − 1)ks (mod p)

where the sum is over all the κ with ord(κ) = ρp. Denote by

D(p)
κ (yS,p) ∈ Λp(KS)/pΛp(KS)

the reduction modulo p of Dκ(yS,p) for ord(κ) = ρp.

Lemma 4.11. D
(p)
κ (yS,p) ∈

(
Λp(KS)/pΛp(KS)

)GS .

Proof. Combine Theorem 4.5 and formula (24), for which the condition ρp < p is
needed. �

Recall that NS ∈ Z[ΓS] is a lift of the norm operator in Z[Γ1].

Lemma 4.12. D
(p)
κ

(
NS(yS,p)

)
∈
(
Λp(KS)/pΛp(KS)

)ΓS .

Proof. Immediate from Lemma 4.11. �

By (15), for all m ≥ 1 there is an injection Λp(K)/pmΛp(K) ↪→ H1
f (K,Wp[p

m]).

Define the pm-part Xpm(K,Wp) of the Shafarevich–Tate group of Wp over K as
the cokernel of this map, so that there is a short exact sequence

(69) 0 −→ Λp(K)/pmΛp(K) −→ H1
f (K,Wp[p

m]) −→ Xpm(K,Wp) −→ 0.
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Since H1
f (K,Wp[p

m]) is finite, the abelian group Xpm(K,Wp) is finite as well. By

passing to the direct limit over m in (69), we obtain the p∞-part Xp∞(K,Wp) of
the Shafarevich–Tate group of Wp over K, which sits in the short exact sequence

0 −→ Λp(K)⊗Qp/Zp −→ H1
f (K,Wp) −→ Xp∞(K,Wp) −→ 0.

Proposition 4.13. Suppose that |ρ+p − ρ−p | = 1 and let Dκ have order ρp and
support S. If Dκ(yS,p) �≡ 0 (mod p), then

(1) Xp(K,Wp) = 0;
(2) with A(S) defined as in (45), the natural map

H1
f (K,Wp[p]) −→ A(S)

is surjective.

Proof. We first observe that, by definition, one has

(70) 2ρp = dimFp

(
Xp(K)

)
− 1.

Proposition 3.31 shows that

(71) ρp ≥ rp
(
H1

f,S(K,Wp[p
m])εκ

)
+ rp

(
A(S)εκ

)
≥ rp

(
H1

f (K,Wp[p
m])εκ

)
,

while Corollary 3.32 implies that

(72) ρp ≥ rp
(
H1

f,S(K,Wp[p
m])−εκ

)
+rp

(
A(S)−εκ

)
−1 ≥ rp

(
H1

f (K,Wp[p
m])−εκ

)
−1

(for the last inequalities in the chains above, see the proof of Lemma 3.30). Since

(73) rp
(
H1

f (K,Wp[p
m])±

)
≥ rp

((
Λp(K)/pΛp(K)

)±) ≥ ρ±p ,

we obtain the inequalities ρp ≥ ρεκp and ρp ≥ ρ−εκ
p − 1. Therefore we have the

inequality

(74) 2ρp ≥ dimFp

(
Xp(K)

)
− 1.

Comparing (70) and (74), we conclude that all the inequalities above are, in fact,
equalities; in particular, the first inequality in (73) is an equality, from which (1) fol-
lows immediately by definition of Xp(f/K). Furthermore, the second inequalities
in (71) and (72) are equalities, and then

rp
(
H1

f (K,Wp[p
m])

)
= rp

(
H1

f,S(K,Wp[p
m])

)
+ rp

(
A(S)

)
.

Comparing this equality with the definition of H1
f,S(K,Wp[p

m]) in (35) proves (2).
�

Proposition 4.14. If |ρ+p − ρ−p | = 1 and ord(κ) = ρp, then D
(p)
κ

(
NS(yS,p)

)
lies in

the image of Λp(K)/pΛp(K).

Proof. By (15), there is an injective map

(75) Λp(KS)/pΛp(KS) ↪−→ H1
f (KS ,Wp[p]) ⊂ H1(KS ,Wp[p]).

Recall that restriction gives an isomorphism H1(K,Wp[p]) � H1(KS ,Wp[p])
ΓS and

that D
(p)
κ (NSyS,p) belongs to (Λp(KS)/pΛp(KS))

ΓS by Lemma 4.12. In light of
these facts and the ΓS-equivariance of the injection (75), write d for the image of

D
(p)
κ (NSyS,p) in H1(K,Wp[p]).
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We first show that d ∈ H1
f (K,Wp[p]). By an argument similar to those in

Propositions 3.16 and 3.17, one can check that the restriction of d at all places
v � S is finite. There is a map

(76)
⊕
v|S

H1
sin(Kv,Wp[p]) −→ H1

f (K,Wp[p])
∗

taking x = (xv)v|S to the linear function

s 	−→
∑
v∈S

〈x, resv(s)〉v

on H1
f (K,Wp[p]) (recall that all the primes dividing S are inert in K). Since d is

a global class, Tate duality ensures that the image of d in
⊕

v|S H1
sin(Kv,Wp[p])

belongs to the kernel of (76). With A(S) as in (45), part (2) of Proposition 4.13
shows that the map

H1
f (K,Wp[p]) −→ A(S)

is surjective and hence, dually, that the map in (76) is injective (here we are im-
plicitly using isomorphism (34)). It follows that d is locally finite everywhere and
belongs to H1

f (K,Wp[p]).

Since Xp(K,Wp) = 0 by part (1) of Proposition 4.13, we conclude that d comes
from a class in Λp(K)/pΛp(K). But there is a commutative diagram

Λp(K)/pΛp(K)

��

� �� H1
f (K,Wp[p])

��

� � �� H1(K,Wp[p])

�
��(

Λp(KS)/pΛp(KS)
)ΓS � � �� H1

f (KS,Wp[p])
ΓS � � �� H1(KS,Wp[p])

ΓS

in which all the horizontal arrows are injective, and the proposition follows. �

The information collected above on D
(p)
κ

(
NS(yS,p)

)
when ord(κ) = ρp yields a

result on the reduction modulo p of the leading term ζ̃S,p of ζS,p. More precisely,

define ζ̃S,p as the image of ζS,p in Λp(KS)⊗Op

(
I
ρp

ΓS
/I

ρp+1
ΓS

)
and consider its mod p

reduction

ζ̃
(p)
S,p ∈

(
Λp(KS)/pΛp(KS)

)
⊗Op

(
I
ρp

ΓS
/I

ρp+1
ΓS

)
.

Finally, let J(S) denote the cokernel of the map H1
f (K,Wp[p]) → A(S); see (45)

with S′ = S and m = 1 for the definition of A(S).

Theorem 4.15. Fix a square-free product S of primes in Sp.

(1) ζ̃
(p)
S,p ∈

(
Λp(KS)/pΛp(KS)

)ΓS ⊗Op

(
I
ρp

GS
/I

ρp+1
S,p

)
.

(2) If |ρ+p − ρ−p | = 1, then ζ̃
(p)
S,p belongs to the image of the map(

Λp(K)/pΛp(K)
)
⊗Op

(
I
ρp

GS
/I

ρp+1
GS

)
−→

(
Λp(KS)/pΛp(KS)

)ΓS ⊗Op

(
I
ρp

GS
/I

ρp+1
GS

)
.

(3) If |ρ+p − ρ−p | = 1 and p divides |Xp(K,Wp)| · |J(S)|, then ζ̃
(p)
S,p = 0.

Proof. Part (1) follows from (68) and Lemma 4.12, while part (2) follows from (68)

and Proposition 4.14. As for part (3), if ζ̃
(p)
S,p �= 0 then a fortiori D

(p)
κ (NSyS,p) �≡ 0

for all κ with ord(κ) = ρp, and so Proposition 4.13 gives the triviality of both
Xp(K,Wp) and J(S). �
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Corollary 4.16. Fix a square-free product S of primes in Sp.

(1) The image L̃(p)
S,p of LS,p in(
Λp(KS)

⊗2/pΛp(KS)
⊗2

)
⊗Op

(
I
2ρp

ΓS
/I

2ρp+1
ΓS

)
belongs to the image of(

Λp(KS)
⊗2/pΛp(KS)

⊗2
)ΓS ⊗Op

(
I
2ρp

ΓS
/I

2ρp+1
ΓS

)
.

(2) If |ρ+p − ρ−p | = 1, then L̃(p)
S,p belongs to the image of(

Λp(K)⊗2/pΛp(K)⊗2
)
⊗Op

(
I
2ρp

ΓS
/I

2ρp+1
ΓS

)
.

(3) If |ρ+p − ρ−p | = 1 and p divides |Xp(K,Wp)| · |J(S)|, then L̃(p)
S,p = 0.

Proof. The term LS,p is an Op[ΓS ]-linear combination of the elements ζT,p and ζ∗T,p

for T |S, and the result is obtained by applying Theorem 4.15 to each of them. �

Remark 4.17. In parallel with Remark 4.8, we observe that the results of Corollary
4.16 hold more generally for any Op[ΓS ]-linear combination of the elements ζT,p

and ζ∗T,p for T |S.

4.4. Galois module structure of Heegner cycles. Fix a prime number � ∈ Sp.
Define H(K�) to be the Op[G�]-module generated by y�,p inside Λp(K�) and denote
by Hp(K�) the Fp-subspace H(K�)/pH(K�) of Λp(K�)/pΛp(K�). Finally, recall
from §3.11 that rp = rp,1.

Theorem 4.18. dimFp

(
Hp(K�)

)
≤ �+ 1− rp.

Proof. By §3.4.5, an Op-basis of H(K�) is given by
{
Di

�(y�,p) | i = 0, . . . , �
}
. The-

orem 3.34 shows then that Dk
� (y�,p) ≡ 0 (mod p) if k < rp, and hence at most

�+1− rp elements of the Op-basis of H(K�) under consideration are non-zero. �

5. Regulators and leading coefficients

In this final section we propose a construction of regulators that are defined in
terms of Nekovář’s p-adic height pairings and generalize those introduced by Mazur
and Tate in [36] and [37] and used in Darmon’s work [18].

5.1. Nekovář’s regulator. Let K be an imaginary quadratic field of discriminant
coprime to Np and let S > 1 be a square-free product of primes that are inert in
K. Then define

(77) Λp,S(K) := ker

(
Λp(K) −→

⊕
λ|S

H1
f (Kλ, Ap)

)
where the map is induced by (14) via localizations. Finally, recall the maps μS,T

introduced in §4.1, which are defined for integers T |S. We expect that Nekovář’s
theory of p-adic height pairings ([43, Ch. 11]; see also [40]) will yield a bilinear
pairing

(78) 〈· , ·〉Nek
S : Λp(K)× Λp,S(K) −→ IΓS

/I2ΓS

satisfying the compatibility condition

(79) μS,T ◦ 〈· , ·〉Nek
S = 〈· , ·〉Nek

T
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for all T |S and the equivariance

(80)
〈
c(x), c(y)

〉Nek

S
= c · 〈x, y〉Nek

S = −〈x, y〉Nek
S

for all x ∈ Λp(K), y ∈ Λp,S(K) under the action of c ∈ Gal(K/Q). Details on the
explicit definition of pairing (78) will be provided in a future project; for now, we
content ourselves with assuming its existence and the validity of properties (79)
and (80).

As in [18], we use this pairing to construct a regulator term. Let � be a prime
divisor of S and, as before, let λ be the unique prime of K above �; then write Fλ for
the arithmetic Frobenius in Gal(Qnr

� /Kλ). Recall from §2.4 that Vp = Ap ⊗Op
Fp.

We have

det(F� ± 1 |Vp) = �+ 1∓ a�

�
k
2−1

,

which are non-zero thanks to the Weil bounds, hence

det(Fλ − 1 |Vp) = det(F� + 1 |Vp) · det(F� − 1 |Vp)

= (�+ 1)2 − a2�
�k−2

�= 0.

Then [12, Theorem 4.1, (i)] implies that H1
f (Kλ, Ap) is finite, so the codomain of

the map in (77) is finite and the ranks of Λp,S(K) and Λp(K) over Op are equal.
As in (21), this common rank will be denoted by ρ̃p. Fix finite index subgroups
A ⊂ Λp(K) and B ⊂ Λp,S(K) that are Op-free and choose Op-bases {P1, . . . , Pρ̃p

}
and {Q1, . . . , Qρ̃p

} of A and B, respectively. Form the matrix

R(A,B) :=
(
〈Pi, Qj〉Nek

S

)
i,j=1,...,ρ̃p

with entries in IΓS
/I2ΓS

and let Ri,j(A,B) be the (i, j)-minor of R(A,B). Consider
the element

Reg(A,B) :=

ρ̃p∑
i,j=1

(−1)i+j(Pi ⊗Qj)⊗ det
(
Ri,j(A,B)

)
∈ Λp(K)⊗2 ⊗

(
I
ρ̃p−1
ΓS

/I
ρ̃p

ΓS

)
,

set j := [Λp(K) : A] · [Λp,S(K) : B] and suppose that the multiplication-by-j map is

invertible on Λp(K)⊗2 ⊗
(
I
ρ̃p−1
ΓS

/I
ρ̃p

ΓS

)
. Then define the Nekovář regulator RNek(S)

as

RNek(S) := Reg(A,B)/([Λp(K) : A] · [Λp,S(K) : B]).

This is independent of the choice of A and B. In fact, one can impose conditions on
S that ensure the existence of suitable A and B as above for which j is invertible
(see [18, p. 127], [37, p. 735]); for simplicity, here we shall just assume that this is
the case.

5.2. A refined conjecture for the leading coefficient. Let B(S) denote the
cokernel of the map in (77) so that there is an exact sequence

0 −→ Λp,S(K) −→ Λp(K) −→
⊕
λ|S

H1
f (Kλ, Ap) −→ B(S) −→ 0.
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The analogue of part 3 of [18, Conjecture 2.3] in the present context is

Conjecture 5.1 (“Refined formula for the leading coefficient”). Assume that
Xp∞(K,Wp) is finite. The equality

(81) L̃S,p =
∣∣Xp∞(K,Wp)

∣∣ · |B(S)| · RNek(S)

holds in Λ(KS)
⊗2 ⊗

(
I
ρ̃p−1
ΓS

/I
ρ̃p

ΓS

)
. Here RNek(S) denotes also the image of the

regulator RNek(S) via the map in (67).

Remark 5.2. Since the definition of 〈· , ·〉Nek
S has not been given, the recipe of Con-

jecture 5.1 is still somewhat unsatisfactory. One may interpret it as predicting the
existence of a suitable regulator RNek(S) that can be explicitly described in terms
of a height pairing à la Nekovář such that equality (81) holds.

Thanks to the compatibility condition (79), one can show that

μS,T

(
|B(T )| · RNek(T )

)
= |B(S)| · RNek(S)

×
∏

�|(S/T )

(1 + �− a�/�
k/2−1) · (1 + �+ a�/�

k/2−1)

whenever T |S. Comparing with (63), one sees that Conjectures 4.3, 4.10 and 5.1
are all compatible with the map μS,T when T |S. Actually, as in [18], it is this
compatibility relation that suggests the definition of LS,p given above. However,
different regulators might be attached to different choices of the coefficients bT and
b′T , as discussed in Remark 4.1. The choice of correct regulators and L-elements is
an open problem, although we believe that, in light of (63) and the properties of
Nekovář’s regulator, our definition of LS,p is in some sense the “standard” one.

Let us finally observe that, by Lemma 3.5, if |ρ+p −ρ−p | > 1, then 2ρp ≥ ρ̃p; hence

the leading coefficient L̃S,p, as defined in §4.3, vanishes. In order to obtain some-

thing non-trivial, in this situation the leading coefficient L̃S,p should be defined

instead as the image of LS,p in the quotient Λ(KS)
⊗2 ⊗

(
I
2ρp

ΓS
/I

2ρp+1
ΓS

)
. Unfortu-

nately, when |ρ+p − ρ−p | > 1 we cannot offer any prediction about the exact value

of L̃S,p, but we expect that the study of L̃S,p might be approached, at least in
some special cases, via a suitable theory of generalized Mazur–Tate regulators as
developed in [2] and [3].
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It is a pleasure to thank Jan Nekovář for enlightening conversations on some of
the topics of this paper. The authors would also like to thank Masataka Chida for
helpful comments on Abel–Jacobi maps and Kazuto Ota for pointing out a flaw in
the proof of a previous version of Proposition 3.31 and for suggesting how to fix it.
Finally, the authors would like to thank the anonymous referee for carefully reading
the paper and for useful remarks.

References
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310 (2006), viii+559. MR2333680
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values of L-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 1–35.
MR944989

[53] A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, 419–430, DOI
10.1007/BF01231194. MR1047142

[54] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New
York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR554237

[55] Shouwu Zhang, Heights of Heegner cycles and derivatives of L-series, Invent. Math. 130
(1997), no. 1, 99–152, DOI 10.1007/s002220050179. MR1471887

[56] Wei Zhang, Selmer groups and the indivisibility of Heegner points, Camb. J. Math. 2 (2014),
no. 2, 191–253, DOI 10.4310/CJM.2014.v2.n2.a2. MR3295917
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