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Abstract: We consider the problem of minimizing the cost h(x(T )) at the endpoint of a
trajectory x subject to the finite dimensional dynamics

ẋ ∈ −NC(x) + f(x, u), x(0) = x0,

where NC denotes the normal cone to the convex set C. Such differential inclusion is termed,
after Moreau, sweeping process. We label it as a “nonclassical” control problem with state
constraints, because the right hand side is discontinuous with respect to the state, and the
constraint x(t) ∈ C for all t is implicitly contained in the dynamics.
We prove necessary optimality conditions in the form of Pontryagin Maximum Principle by
requiring, essentially, that C is independent of time. If the reference trajectory is in the interior
of C, necessary conditions coincide with the usual ones. In the general case, the adjoint vector
is a BV function and a signed vector measure appears in the adjoint equation.
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1. INTRODUCTION

The sweeping process was introduced by Moreau in the
Seventies as a model for dry friction and plasticity (see
Moreau (1974)) and later studied by several authors. In
its perturbed version, it features the differential inclusion

ẋ(t) ∈ −NC(t)(x(t)) + f(x(t)), t ∈ [0, T ] (1)

coupled with the initial condition

x(0) = x0 ∈ C(0). (2)

Here C(t) is a closed moving set, with normal cone
NC(t)(x) at x ∈ C(t). The space variable, in this paper,
belongs to Rn. If C(t) is convex, or mildly non-convex
(in a sense that will not be made precise here), and is
Lipschitz as a set-valued map depending on t, and the
perturbation f is Lipschitz as well, then it is well known
that the Cauchy problem (1), (2) admits one and only
one Lipschitz solution (see, e.g., Thibault (2003)). Observe
that the state constraint x(t) ∈ C(t) for all t ∈ [0, T ] is
built in the dynamics, being NC(t)(x) empty if x 6∈ C(t):
should a solution x(·) exist, then automatically x(t) ∈ C(t)
for all t. If a control parameter u appears within f , then
one is lead to study problems of the type

ẋ(t) ∈ −NC(t)(x(t)) + f(x(t), u(t)), u(t) ∈ U (3)

subject to (2), aiming, for example, at

minimizing h(x(T )), (4)
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the final cost h being smooth. There is a clear difference
with classical control problems with state constraints (see,
e.g., Vinter (2000)), where the constraint does not appear
explicitly in the dynamics: in this case the right hand side
of the dynamics is not Lipschitz with respect to the state
variable, but indeed has only closed graph. This fact is a
source of major difficulties in deriving necessary optimality
conditions for (3), (4).

In recent years (see, e.g., Bagagiolo (2002), Gudovich
et al. (2011), Brokate et al. (2013), Colombo et al. (2016),
Colombo et al. (2016), Arroud et al. (2016), and Cao
et al. (2017), and references therein) some papers dealing
with control problems involving the sweeping process were
published, the control appearing in the perturbation f
and/or in the moving set C. Several necessary conditions
were established, under different kinds of assumptions, or
a Hamilton-Jacobi characterization of value function was
proved. The present paper is devoted to prove a result
inspired by Arroud et al. (2016) and Brokate et al. (2013).
More precisely, we prove necessary conditions of Pontrya-
gin maximum principle type for (4) subject to (3) and (2),
the control appearing only within f , in the case where C(·)
is constant, smooth and convex (see Theorems 2 and 3).
The case where C satisfies milder convexity assumptions
and is not necessarily constant was treated in Arroud et al.
(2016) with an extra assumption, while Brokate et al.
(2013) contains results for a particular control problem
involving a fixed smooth and uniformly convex set C.
More preccisely, differently from Colombo et al. (2016)
and Cao et al. (2017), where discrete approximations are
used, in both Brokate et al. (2013) and Arroud et al.
(2016) the authors use a penalization technique. The clas-
sical Moreau-Yosida regularization allows in Arroud et al.



(2016) to relax the uniform convexity assumption, at the
price of requiring a strong outward pointing condition on f
in order to treat the discontinuity of second derivatives of
the squared distance function at the boundary of C(t).
In Brokate et al. (2013), the authors adopt a suitable
smoothing of the distance, which on one hand needs C(t)
constant and uniformly convex and 0 ∈ C, while on the
other avoids imposing further compatibility assumptions
between f and C. In this paper we adapt to our situa-
tion the method developed in Brokate et al. (2013) and
remove the assumption of strict convexity on C. The main
technical part is Section 4.

2. PRELIMINARIES AND ASSUMPTIONS

Notation. We define the distance from a set C ⊂ Rn as
d(x) = inf{‖y−x‖ : y ∈ C} and signed distance from C as
dS(x) = d(x) if x 6∈ C and dS(x) = − inf{‖y−x‖ : y 6∈ C}
if c ∈ C. The normal cone to a convex set C is defined
as NC(x) = ∅ if x 6∈ C and NC(x) = {v ∈ Rn : 〈v, y −
x〉 ≤ 0 ∀y ∈ C} if x ∈ C.

Assumptions on the set C. Let

C = {x ∈ Rn : g(x) ≤ 0},

where g : Rn → R is of class C2 with gradient ∇g 6= 0
on the boundary ∂C of C, and with the Hessian matrix
∇2g(x) positive semidefinite for all x ∈ Rn. Assume
furthermore that g(·) is coercive, so that C is compact
(and convex) and that g(0) < 0, so that 0 ∈ C and C
has nonempty interior. Observe that under our assumption
the signed distance dS(x) from C is of class C2 in a
neighborhood of ∂C.

Assumptions on the dynamics and the cost. The
control set U ⊂ Rn is compact and f is continuous and
bounded, say by a constant β, and is of class C1 with
respect to x, with ‖∇xf(x, u)‖ ≤ L for all x, u. The cost
h is smooth.

Let now ψ(x) be a C2 smoothing of dS in the interior of C
(which is < 0 in intC and is such that ∇ψ(x) is the unit
external normal to C at x for every x ∈ ∂C). Set also

Ψ(x) =
1

3
ψ3(x) 1(0,+∞)(ψ(x)).

Observe that Ψ(·) is of class C2 and convex in the whole
of Rn and that both ∇Ψ(·) and ∇2Ψ(·) vanish on C.
Moreover one has, for each x ∈ [R]n,

∇Ψ(x) = d2(x)∇d(x), (5)

∇2Ψ(x) = 2d(x)∇d(x)⊗∇d(x) + d2(x)∇2d(x), (6)

because in C, and in particular at the points where ∇d(x)
does not exist (namely, in ∂C), both sides of the above
expressions vanish, and outside C they coincide.

3. THE REGULARIZED PROBLEM

Consider the regularized dynamics

ẋ(t) =
−1

ε
∇Ψ(x(t)) + f(x(t), u(t)), x(0) = x0, (7)

where ε > 0 and u(t) ∈ U for all t. For each given
u, this Cauchy problem admits a unique solution xε for

each ε > 0 on a maximal interval of existence. It is not
difficult to prove that this interval is [0, T ] (see the proof
of Proposition 1).

For every ε > 0 and every global minimizer x∗, u∗ of
(4) subject to (3) and (2), we consider the approximate
problem Pε(u∗)

minimize h(x(T )) +
1

2

T∫
0

‖u(t)− u∗(t)‖2 dt, (8)

over controls u, where x is a solution of (7). By standard
results, Pε(u∗) admits a global minimizer uε, with the
corresponding solution xε. Necessary conditions of the
original problem will be obtained by passing to the limit
along conditions for Pε(u∗).

3.1 A priori estimates for the regularized problem

Proposition 1. Let εn → 0 and let (un, xn) be a solution of
the problem Pεn . Then, up to a subsequence, un converges
strongly in L2(0, T ) to u∗ and xn converges weakly in
W 1,2(0, T ) to x∗.

Proof. Since 0 ∈ C and so ∇Ψ(0) = 0, by the convexity
of Ψ we obtain that 〈∇Ψ(x), x〉 ≥ 0 for all x ∈ Rn. Thus

‖xn(t)‖ − ‖x0‖ =

=

t∫
0

〈 xn(s)

‖xn(s)‖
,
−1

εn
∇Ψ(xn(s)) + f(xn(s), un(s))

〉
ds≤ β,

which, in particular, implies that xn is defined in the whole
of [0, T ]. Moreover,

‖ẋn‖2L2 =

T∫
0

〈
ẋn(t),

−1

εn
∇Ψ(xn(t)) + f(xn(t), un(t))

〉
dt

=

T∫
0

(−1

εn

d

dt
Ψ(xn(t)) + 〈f(xn(t), un(t)), ẋn(t)〉

)
dt

=
−1

εn
Ψ(xn(T )) +

1

εn
Ψ(x0) + β

T∫
0

‖ẋn(t)‖ dt

≤ β
√
T‖ẋn‖L2 ,

where we have used the fact that x0 ∈ C and that
ψ(xn(T )) ≥ 0. The above estimate implies that the
sequence ẋn is uniformly bounded in L2(0, T ). Thus, up
to a subsequence, xn converges weakly in W 1,2(0, T ) to x̄.
Observe now that the from the uniform boundedness of
‖ẋn‖L2(0,T ) and of f , we can deduce from (7), thanks to
(5), that

‖d(xn(·))2‖L2(0,T ) ≤ Kεn (9)

for a suitable constant K. Thus x(t) ∈ C for all t. Again
up to a subsequence, un converges weakly in L2(0, T ) to
some ū. By using the very same argument of Proposition
4.3 in Arroud et al. (2016), one can prove that x̄ is the
solution of (3), (2) corresponding to ū, that ū = u∗, and
so that x̄ = x∗, and that the convergence is indeed strong.



Remark. Eq. (9) implies that, up to a subsequence,

‖d(xn(·))‖L2(0,T ) ≤
√
TK
√
εn. (10)

From the uniform convergence of xn (again up to a
subsequence) we also get ‖d(xn(·))‖L∞ → 0 for n → ∞.
This is an important difference between this approach and
the use of Moreau-Yosida approximation, which instead
yields the stronger estimate ‖d(xn(·))‖L∞ ∼ εn (see Sene
et al. (2014) or (Arroud et al., 2016, Proposition 4.1)).
Observe that the assumption that C is constant appears
essential in order to obtain uniform a priori estimates for
‖ẋn‖L2 within the present approach, which essentially uses
the weaker penalization d3 instead of the Moreau-Yosida
one, namely d2.

3.2 Necessary conditions for the regularized problem

The approximate problem Pε(u∗) satisfies the assumptions
for necessary conditions of classical unconstrained optimal
control problems. The same computations of Section 6
in Arroud et al. (2016) yield that for every ε and every
minimizer (uε, xε) there exists an absolutely continuous
adjoint vector pn : [0, T ]→ Rn such that

−ṗε(t) =
(−1

ε
∇2Ψ(xε(t)) +∇xf(xε(t), uε(t))

)
pε(t) (11)

a.e. on [0, T ], together with the final condition

−pε(T ) = ∇h(xε(T )), (12)

and the maximality condition

〈pε(t),∇uf(xε(t), uε(t))uε(t)〉 − 〈uε(t)− u∗(t), uε(t)〉 =

max
u∈U
{〈pε(t),∇uf(xε(t), uε(t))u〉 − 〈uε(t)− u∗(t), u〉}

for a.e. t ∈ [0, T ].

4. PASSING TO THE LIMIT

From now on we consider a sequence εn → 0 such that the
minimum (un, xn) of the approximate problem converges
as in the statement of Proposition 1. We set pn := pεn .

4.1 A priori estimates for the adjoint vectors of the
approximate problem

We obtain from (11) and (6) that

‖pn(t)‖ − ‖pn(T )‖ =
−1

εn

T∫
t

(〈
∇2Ψ(xn(s))pn(s), pn(s)

〉
‖pn(s)‖

+
〈
∇xf(xn(s), un(s))pn(s),

pn(s)

‖pn(s)‖
〉)

ds ≤

(since ∇2Ψ is positive semidefinite and ∇xf is bounded)

≤ L
T∫
t

‖pn(s)‖ ds.

Recalling (12), we obtain from the above inequality and
Gronwall’s lemma that there exists a constant K1 inde-
pendent of n such that

‖pn‖∞ ≤ K1. (13)

Now we address ourselves to prove an a priori estimate on
‖ṗn‖L1 . To this aim, we define

ξn(t) = 〈pn(t),∇d(xn(t))〉,

(whenever it makes sense, i.e., if xn(t) 6∈ ∂C(t)), so that,

ξ̇n(t) = 〈ṗn(t),∇d(xn(t))〉+ 〈pn(t),∇2d(xn(t))ẋn(t)〉.

Set now

δn(t) = d(xn(t)), δ′n(t) = ∇d(xn(t)), δ′′n(t) = ∇2d(xn(t)).

With this notation, thanks to (5) and (6), eq. (11) can be
rewritten as

−ṗn(t) = −δ
2
n(t)

εn
δ′′n(t)pn(t)− 2

δn(t)ξn(t)

εn
δ′n(t) +

+∇xf(xn(t), un(t))pn(t). (14)

Inserting ṗn and ẋn in the expression for ξ̇n we ob-
tain (omitting the t-dependence and using the fact that
∇2d(x)∇d(x) = 0 for all x where it makes sense, and that
δn‖∇ψ(xn)‖2 = δn‖∇d(xn)‖ = δn)

−ξ̇n + 2
δnξn
εn

= −δ
2
n

εn
〈δ′′npn, δ′n〉

+〈∇xf(xn, un)pn, δ
′
n〉 − 〈pn, δ′′nf(xn, un)〉.

Observe now that the first summand in the right hand
side of the above expression is bounded in L1(0, T ) uni-

formly with respect to n, because, recalling (10),
‖δ2n‖L1

εn
is uniformly bounded. In turn, the second and the third
summands are seen to be bounded in L∞(0, T ), uniformly
with respect to n, by invoking (13). By multiplying both
sides by sign(ξn) and integrating, we thus obtain the sec-
ond estimate

1

εn

T∫
t

δn(s)|ξn(s)| ds ≤ K2, (15)

for a suitable constant K2, independent of n. As a conse-
quence, all three summands in the right hand side of the
adjoint equation (14) are bounded in L1(0, T ), uniformly
with respect to n, and so we reach our final estimate

‖ṗn‖L1(0,T ) ≤ K3 (16)

for a suitable constant K3 independent of n.

4.2 Passing to the limit along the adjoint equation

By possibly extracting a further subsequence, we can
assume that the sequence of measures ṗn dt converges
weakly∗ in the sense of Radon measures to a signed vector
measure µ, which is the distributional derivative of the BV
function p(t) =: lim pn(t), i.e., µ = dp, where the limit of
the pn is pointwise in [0, T ]. By arguing as in (Arroud et al.,
2016, Proposition 7.3), we obtain first that the sequence
of measures

δn(t)ξn(t)

εn
δ′n(t) dt

converges weakly∗ to a finite signed vector Radon measure,
which can be written as

ξ(t)n∗(t) dν,



where ξ ∈ L1
ν(0, T ), ξ ≥ 0 ν-a.e., n∗(t) denotes the unit

outward normal vector to C at x∗(t) if x∗(t) ∈ ∂C and 0
if x∗(t) ∈ intC, and ν is a finite vector measure. Moreover

δ2n(t)

εn
δ′′n(t)pn(t) ⇀ η(t)∇2d(x∗(t))p(t)

in L2(0, T ), where η ∈ L∞ν (0, T ) and η ≥ 0 a.e., with η ≡ 0
when x∗ is in intC.

4.3 Passing to the limit along the maximality condition

By taking into account Proposition 1, we obtain that the
limit adjoint vector p is such that

〈p(t),∇uf(x∗(t), u∗(t))u∗(t)〉 =

= max
u∈U
{〈p(t),∇uf(x∗(t), u∗(t))u〉} for a.e. t ∈ [0, T ]. (17)

5. THE MAIN RESULT

We deduce from Sections 3 and 4 the following necessary
conditions:

Theorem 2. Under the assumptions stated in Section 2,
let (x∗, u∗) be a global minimizer for (4) subject to (3)
and to (2). Then there exist a BV adjoint vector p :
[0, T ]→ Rn, together with a finite signed Radon measure
ν on [0, T ], and measurable vectors ξ, η : [0, T ]→ R (with
ξ ∈ L1

ν(0, T ), ξ(t) ≥ 0 for ν-a.e. t, η ∈ L∞(0, T ), and
η(t) ≥ 0 for a.e. t) such that ξ(t) = η(t) = 0 for all t with
x∗(t) ∈ int C, satisfying the following properties:

• (adjoint equation)

for all continuous functions ϕ : [0, T ]→ Rn

−
∫

[0,T ]

〈ϕ(t), dp(t)〉 = −
∫

[0,T ]

〈ϕ(t), n∗(t)〉ξ(t) dν(t)

−
∫

[0,T ]

〈ϕ(t),∇2
xd(x∗(t))p(t)〉η(t) dt

+

∫
[0,T ]

〈ϕ(t),∇xf(x∗(t), u∗(t))p(t)〉 dt,

• (transversality condition)

−p(T ) = ∇h(x∗(T )),

• (maximality condition)

〈p(t),∇uf(x∗(t), u∗(t))u∗(t)〉 =

= max
u∈U
〈p(t),∇uf(x∗(t), u∗(t))u〉 for a.e. t ∈ [0, T ].

Some more precise statements on the measure ν require
some assumptions on the reference trajectory x∗. In fact,
consider the sets

E0 := {t ∈ [0, T ] : x∗(t) ∈ intC}
E∂ := {t ∈ [0, T ] : x∗(t) ∈ ∂C}.

Of course, E0 is open and E∂ is closed, but one has to
take into account the possibility that E∂ be irregular (e.g.,

totally disconnected). Such phenomenon, in stratified state
constrained control theory, is sometimes referred to as
Zeno phenomenon, namely the switching from a stratum
(the boundary of C, in this case) to other strata (the
interior of C in this case) occurs at a complicated set (see,
e.g., Barnard et al. (2013)).

The following is the second part of our necessary condi-
tions. It is only a partial result, with respect to the rich
set of conditions proved in Brokate et al. (2013).

Theorem 3. Under the assumptions stated in Section 2,
let (x∗, u∗) be a global minimizer for (4) subject to (3)
and to (2), and let p the adjoint vector given by Theorem
2. Define pN (t) = 〈p(t), n∗(t)〉, t ∈ [0, T ]. The following
properties hold:

(1) pN (t) = 0 for all t ∈ E0, and p is absolutely
continuous on E0, where it satisfies the classical
adjoint equation

−ṗ(t) = ∇xf(x∗(t), u∗(t)) p(t). (18)

(2) At every interior (or such that a left or right neigh-
borhood is contained in E∂) point t of E∂ , jumps of p
may occur only in the normal direction n∗(t), namely

p(t−)− p(t+) =
(
pN (t−)− pN (t+)

)
n∗(t).

(3) The adjoint vector p is absolutely continuous on every
open interval contained in E∂ , and for a.e. t in such
interval we have

−ṗ(t) = 〈ṅ∗(t), p(t)〉n∗(t) + Γ(t)p(t)−
−〈Γ(t)p(t), n∗(t)〉n∗(t), (19)

where Γ(t) = ∇xf(x∗(t), u∗(t))− η(t)∇2
xd(x∗(t)).

Proof. (1). The first assertion is obvious, since on E0 we
have n∗ ≡ 0 and the absolute continuity together with (18)
follow from the properties of the functions ξ and η proved
in Theorem 2.

(2). Since n∗(t) is continuous on E∂ , there exist n −
1 continuous unit vectors v1(t),. . . , vn−1(t) such that
Rn = Rn∗(t) ⊕ span 〈v1(t), . . . , vn−1(t)〉 for all t ∈ E∂ .
Let t ∈ E∂ and σ > 0 be such that [t − σ, t + σ] ⊂ E∂ .
Let ϕ : [0, T ]→ Rn be continuous, with support contained
in [t − σ, t + σ]. Set ϕT (t) = ϕ(t) − 〈ϕ(t), n∗(t)〉n∗(t). By
putting ϕT (t) in place of ϕ in the adjoint equation we
obtain

−
t+σ∫
t−σ

〈ϕT (s), dp(s)〉+

t+σ∫
t−σ

〈ϕT (s), n∗(s)〉ξ(s) dν

=

t+σ∫
t−σ

〈ϕT (s),∇xf(x∗(s), u∗(s))p(s)〉 ds

−
t+σ∫
t−σ

〈ϕT (s), η(s)∇2d(x∗(s))p(s)〉 ds. (20)

Observe now that 〈ϕT , n∗(t)〉 ≡ 0, so that, by letting
σ → 0 in the above equation and using the continuity
of ϕT , we obtain 〈ϕT (t), p(t+) − p(t−)〉 = 0, namely
〈p(t+)−p(t−), ϕ(t)〉 =

〈
p(t+)−p(t−), 〈ϕ(t), n∗(t)〉n∗(t)

〉
.

By taking subsequently ϕ such that ϕ(t) = n∗(t), and
ϕ(t) = vi(t), i = 1, . . . , n − 1, we obtain that p(t−) −



p(t+) =
(
pN (t−)− pN (t+)

)
n∗(t), namely jumps of p may

occur only in the direction n∗(t), for all t in the interior of
E∂ . If t is a left or a right endpoint of E∂ , one can extend
n∗ as a constant to the left or to the right of t and repeat
the same argument.

(3). Fix now an interval [s, t] ⊆ E∂ . The regularity
condition on ∂C allows us to integrate by parts on (s, t),
so that

t∫
s

〈n∗(τ), dp(τ)〉+

t∫
s

〈ṅ∗(τ), p(τ)〉 dτ =

= 〈n∗(t+), p(t+)〉 − 〈n∗(s−), p(s−)〉 = 0. (21)

Observe that both summands in the right hand side of (21)
vanish, as a consequence of (1) and of the fact that p has
bounded variation, since s and t belong to the interior of
I∂ . In other words, the two measures 〈n∗, dp〉 and 〈ṅ∗, p〉 dt
coincide in any open interval contained in E∂ . Therefore,
for all continuous ϕ with support contained in (s, t), we
obtain from (20) and (21) that

−
t∫
s

〈ϕ(τ), dp(τ)〉 =

= −
t∫
s

〈ϕ(τ), n∗(τ)〉 〈n∗(τ), dp(τ)〉 −
t∫
s

〈ϕT (τ), dp(τ)〉

=

t∫
s

〈ϕ(τ), n∗(τ)〉〈p(τ), ṅ∗(τ)〉dτ

+

t∫
s

〈
ϕ(τ)− 〈ϕ(τ), n∗(τ)〉n∗(τ),∇xf(x∗(τ), u∗(τ))p(τ)

〉
dτ

−
t∫
s

〈
ϕ(τ)− 〈ϕ(τ), n∗(τ)〉n∗(τ), η(τ)∇2

xd(x∗(τ))p(τ)
〉
dτ

Since ϕ and the interval (s, t) are arbitrary, we obtain (19).

6. AN EXAMPLE

The state space is R2 3 (x, y), the constraint is C :=
{(x, y) : y ≥ 0}, the upper half plane.

We wish to minimize h(x(1), y(1)) = x(1) + y(1) subject
to (

ẋ(t), ẏ(t)
)
∈ −NC

(
x(t), y(t)

)
+
(
ux(t), uy(t)

)(
x(0), y(0)

)
=
(
0, y0

)
, y0 ≥ 0,

where the controls
(
ux(t), uy(t)

)
belong to [−1, 1] ×

[−1, 1] =: U .

This problem satisfies all our assumptions.

Observe first that if y0 ≥ 1, the constraint C does not
play any role, and the optimality of the control (−1,−1)
is straightforward. Moreover, since the state constraint is
not active, necessary optimality conditions are well known.
If instead 0 ≤ y0 < 1, then our analysis becomes relevant.
An inspection to the level sets of the cost h shows that as

long as the trajectory does not hit ∂C the only optimal
control is (−1,−1). Therefore, there exists at most one
t̄ such that the optimal solution hits ∂C and after t̄ it
remains on ∂C. On ∂C, namely for x = 0, we have
∇2
xdC

(
(0, y)

)
≡ 0. Thanks to Theorems 2 and 3 we obtain,

for the optimal trajectory (x∗, y∗) corresponding to the
optimal control (ux∗ , u

y
∗) an adjoint vector (px, py), such

that (px, py) is absolutely continuous on (0, t̄)∪ (t̄, 1), and
such that ṗx = 0, ṗy = 0 a.e. on [0, T ], px(1) = py(1) = −1,
px is continuous at t = 1 and py(1−) + 1 = 1, namely
py(1−) = 0. Thus the adjoint vector (px, py) satisfies:

px(t) = −1 for all t ∈ [0, 1]

py(t) is constant on [0, t̄) ∪ (t̄, 1)

py(1) = −1.

The maximum condition reads as

〈(−1,−1), (ux∗ , u
y
∗)〉= max

|u1|≤1,|u2|≤1
〈(−1,−1), (u1, u2)〉

for t = 1

〈(−1, py(t)), (ux∗ , u
y
∗)〉= max

|u1|≤1,|u2|≤1
〈(−1, py(t)), (u1, u2)〉

for 0 ≤ t < 1, t 6= t̄,

which gives ux∗ = −1, while no information is available for
uy∗(t). If we assume that uy∗ is constant, then an expected
optimal control uy∗ = −1 is found. Of course all other
optimal controls uy∗, namely uy∗(t) = −1 for 0 ≤ t < t̄ and
uy∗(t) ≤ 0 for t̄ < t < 1 satisfy our necessary conditions,
and in this case t̄ = y0.
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