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Feasibility and coexistence of large
ecological communities
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The role of species interactions in controlling the interplay between the stability of ecosys-

tems and their biodiversity is still not well understood. The ability of ecological communities

to recover after small perturbations of the species abundances (local asymptotic stability) has

been well studied, whereas the likelihood of a community to persist when the conditions

change (structural stability) has received much less attention. Our goal is to understand the

effects of diversity, interaction strengths and ecological network structure on the volume of

parameter space leading to feasible equilibria. We develop a geometrical framework to study

the range of conditions necessary for feasible coexistence. We show that feasibility is

determined by few quantities describing the interactions, yielding a nontrivial complexity–

feasibility relationship. Analysing more than 100 empirical networks, we show that the range

of coexistence conditions in mutualistic systems can be analytically predicted. Finally, we

characterize the geometric shape of the feasibility domain, thereby identifying the direction of

perturbations that are more likely to cause extinctions.
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N
atural populations are faced with constantly varying
environmental conditions. Environmental conditions
affect physiological parameters (for example, metabolic

rates1) as well as ecological ones (for example, the presence and
strength of interactions between populations2–5). Therefore, in
order to persist, ecological communities necessarily need, at
the very least, to be able to cope with small environmental
changes. Mathematically, this translates into an argument on the
robustness of the qualitative behaviour of an ecological dynamical
system: to guarantee robust coexistence, a model describing an
ecological community needs at least to be (qualitatively)
insensitive to small perturbations of the parameters6,7. This
notion has been formalized in the measure of robustness8 or
structural stability9, expressed as the volume of the parameter
space resulting in the coexistence of all populations in
a community.

While the local asymptotic stability (the ability to recover after
a small change in the population abundances) of ecological
communities has been studied in small10 and large11–14 systems,
the study of structural stability (that is, the ability of a community
to retain the same dynamical behaviour if conditions are slightly
altered)—despite being proposed early on as a key feature in
the context of the diversity–stability debate15–18—has historically
been restricted to the case of small communities, with the
first studies of larger communities appearing only recently9,19,
and—because of mathematical limitations—dealing exclusively
with the case of large mutualistic communities. Studies of
structural stability have so far focused on the effect of ecological
network structure (who interacts with whom) on the volume of
parameter space leading to feasible equilibria, in which all
populations have positive abundances.

Here we develop a geometrical framework for studying
the feasibility of large ecological communities. We overcome
the limitations that have hitherto prevented the study of
consumer–resource networks, thereby providing a unified view
of feasibility in ecological systems. Using a random matrix
approach (which helped identify main drivers of local asymptotic
stability), we pinpoint the key quantities controlling the volume
of parameter space leading to feasible communities, as well as its
sensitivity to changes in these parameters. We then contrast these
expectations for randomly connected systems with simulations on
structured empirical networks, quantifying the effects of network
structure on feasibility.

Results
Theoretical framework. For simplicity, we consider a community
composed of S species whose dynamics is determined by a system
of autonomous ordinary differential equations:

dni

dt
¼ni riþ

XS

j¼1

Aijnj

 !
; ð1Þ

where ni is the density of population i, ri is its intrinsic growth
rate and Aij measures the interaction strength between population
i and j. In this paper we consider only the linear functional
response (that is, A does not depend on n). In Supplementary
Note 13 we discuss how and under which condition one could
generalize our results to nonlinear functional responses. A fixed
point n* (that is, a vector of densities making the right side of
each equation zero) is feasible if ni*40 for every population.
A fixed point is locally asymptotically stable if, following any
sufficiently small perturbation of the densities, the system returns
to a small vicinity of the fixed point. The fixed point is globally
asymptotically stable if the system eventually return to it, starting
from any positive initial condition within a finite domain.
A system with a fixed point is structurally stable if, following

a sufficiently small change in the growth rates ri, the new fixed
point is still feasible and stable.

To study the range of conditions leading to stable coexistence,
we need to disentangle feasibility and local stability. This problem
is well discussed in ref. 9, where it was solved for the case of one
possible parameterization of mutualistic interactions. If A is
diagonally stable or Volterra-dissipative (that is, there exists
a positive diagonal matrix D such that DAþATD is stable), then
any feasible fixed point is globally stable20,21. Unfortunately,
a general characterization of this class of matrices is unknown22.
We proceeded therefore by considering only the matrices such
that all the eigenvalues of AþAT are negative (that is, the matrix
A is negative definite in a generalized sense23, corresponding to
D being equal to the identity matrix; see Methods and
Supplementary Notes 1 and 2). This choice reduces the number
of parameterizations one can analyse, as not all the diagonally
stable matrices are negative definite. However, as shown in
Supplementary Fig. 1, only very few parameter combinations
are excluded from this set. Moreover, the effects of negative
definitness are well studied for random matrices24, and by using it
we can extend the study of feasibility to any ecological network,
including food webs.

Our goal is to measure the fraction of growth rate combina-
tions, out of all possible ones, that lead to the coexistence of all S
populations. Since we can separate stability and feasibility, we
only need to find those ri leading to feasible fixed points,
and the condition above ensures that these will be globally stable.
As pointed out before9, the problem is not to find a particular
set of ri leading to coexistence, but rather to measure how
flexibly one may choose these rates. As shown in Fig. 1, this
quantity—indicated by X henceforth—can be thought of as
a volume, or more precisely a solid angle, in the space of growth
rates25 (see and Supplementary Note 3).

To calculate X, one might naively wish to perform direct
numerical computation of the fraction of growth rates, leading
to a feasible equilibrium. While a direct calculation is viable
when S is sufficiently small, this procedure becomes extremely
inefficient for large S (ref. 9). We introduce a method that can be
used to efficiently calculate X with arbitrary precision, even for
large S (see Supplementary Note 4). Using this method, we can
accurately measure the size of the feasibility domain, with larger
values of X corresponding to larger proportions of conditions
(intrinsic growth rates) compatible with stable coexistence.
For reference, we normalize X so that X¼ 1 when populations
are self-regulated and not interacting (Methods), that is, when the
interaction matrix A is a negative diagonal matrix, and thus
equation (1) simplifies to S independent logistic equations.

Feasibility is universal for large random matrices. May’s
seminal work11 pioneered the use of random matrices as
a reference, or null model, of ecological interactions.
A particularly interesting feature of random matrices is that the
distribution of their eigenvalues (determining local stability) is
universal26. This means that local stability depends on just a few,
coarse-grained properties of the matrix (that is, the number of
species and the first few moments of the distribution of
interaction strengths) and not on the finer details (for example,
the particular distribution of interaction strengths; see
Supplementary Note 5). In fact, these moments can be
combined into just three parameters: E1, E2 and Ec (Methods).
Together with S, they completely determine local asymptotic
stability.

We tested whether universality also applies to feasibility.
We considered different random matrix ensembles obtained
for different connectance values and distributions from which
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the matrix entries were drawn, but with constant values of S and
of E1, E2 and Ec. We then checked whether the size X of
the feasibility domain depended only on these four quantities
or also on finer details. Surprisingly, we found that the feasibility
of random matrices is also universal (Methods Supplementary
Note 5 and Supplementary Fig. 2). Two very different (random)
ecosystems, with completely different interaction types
and distributions of interaction strengths, but having the
same number of species S and the same E1, E2 and Ec, have
the same X in the large S limit. This result has important
theoretical implications, as it indicates those moments as
the drivers of feasibility, but also very practical consequences,
namely that the parameter space one needs to explore is
dramatically reduced.

An analytical complexity–feasibility relationship. The
universality of X suggests that it is amenable to analytical

treatment. As explained in Supplementary Note 6 and shown
in Fig. 2, when the mean and variance of interaction strengths
are not too large and in the limit of large number of species,
we are able to derive the following approximation for X for
large random interaction matrices A:

�� 1þ 1
p

E1 2d� SE1ð Þ
d� SE2

1

� �S

; ð2Þ

where S is is the number of species, d is the mean of A’s diagonal
entries and E1¼Cm, the product of the connectance C and
the average interaction strength m (see Methods). A more
accurate formula is presented in Supplementary Note 6.

In analogy with the celebrated result of May11 connecting
stability and complexity, equation (2) can be considered
as a complexity–feasibility relationship. While in May’s scenario
and in its generalizations12 the effect of complexity and diversity
on stability is always detrimental, it does depend on
the interaction type in the case of feasibility. Given that
d is negative by construction, having more species or
connections can either increase (E140) or shrink (E1o0) the
size of the feasibility domain, as a function of the sign of
interaction strenghts (see Fig. 2). It is important to stress that
we computed X under the assumption of A being negative
definite. When we consider how X depends on S and other
parameters, we need to take into account the conditions making
the matrix negative definite (see Methods and Supplementary
Notes 2 and 5). In the case of positive interaction strengths,
this condition is dþ SCmo0, implying an upper bound for
m that depends on S.

Analytical prediction of the feasibility of empirical networks.
Having explored the feasibility of random networks, we proceed
to investigate the effects of incorporating empirical network
structure. Ecological networks are in fact non-random27–29,
and many studies have hypothesized that the structure of
interactions could increase the likelihood of coexistence30–32.
Having an analytical prediction for random matrices, we can
study whether it predicts the size of the feasibility domain for
empirical networks as well. Figure 2 shows the simulated values of
X for 89 mutualistic networks and 15 food webs (Supplementary
Note 8 and Supplementary Table 1), parameterized multiple
times and compared with our analytical approximation
(see Methods). We find that X of empirical mutualistic
networks is well predicted by our formula, while it
overestimates the feasibility domain of food webs, indicating
that their non-random structure has a strong negative effect on
feasibility.

We compared the effect of the empirical structure of
mutualistic networks with randomizations, by controlling for
the interaction strengths (see Supplementary Note 9 and
Supplementary Figs 5–9). We show that, in the absence of
variability in interaction strengths, the structure of empirical
mutualistic networks has a positive effect on feasibility, which is
strongly reduced when interaction strengths are allowed to vary.
While this effect of empirical mutualistic networks is statistically
significant, its effect on X is negligible compared with the effect
of the mean interaction strengths, and can only be detected
by controlling very precisely for interaction strengths
(see Supplementary Note 9). On a broader scale, as shown in
Fig. 2, the size of the feasibility domain of empirical networks is
well predicted by our analytical formula.

On the other hand, the negative effect of food web structure
on X is substantial. We compare each network with randomiza-
tions and also with predictions of the cascade model27, which
has recently been shown to predict well the stability of empirical
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Figure 1 | Geometrical properties of feasibility. The panels show the size

and shape of the feasibility domain for three interaction matrices, each

defining the interactions between three populations. If r corresponds

to a feasible equilibrium, so does cr for any positive c; one can therefore

study the feasibility domain on the surface of a sphere25 (Supplementary

Note 3). The grey sphere represents the S¼ three-dimensional space of

growth rates, while the coloured part corresponds to the combination of

growth rates leading to stable coexistence. The area (or volume for higher-

dimensional systems) of the coloured part is measured by X. Larger values

of X correspond to a higher fraction of growth rate combinations leading to

coexistence: the red interaction matrix (panel a) is therefore more robust

against perturbations of r than the green one (b). The size of this region

(that is, the value of X) does not capture all the properties relevant for

coexistence. The red (a) and blue (c) systems have the same X, but the two

regions—despite having the same area—have very different shapes,

summarized in d, where we show the length of each side for the red and

blue systems. In the red system (a), the three sides have about the same

length, and thus moving from the centre in any direction will have about the

same effect. In the blue system (c), however, one side is much shorter than

the other two, implying that even small perturbations falling along this

direction may drive the system outside the feasibility domain. One of our

main results is that, roughly speaking, if the red system corresponds to the

random case, then the green one to food webs (having the same

heterogeneity in side lengths as the random case but with a smaller

X overall), and the blue one to empirical mutualistic networks (X rougly

the same as in the random case but with the heterogeneity in side lengths

much greater).
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food webs14 (see Supplementary Note 9 and Supplementary
Figs 10–12). By analysing different parameterizations we found
that the feasibility domain of empirical structures is consistently
and significantly smaller than that of both the randomizations
and the cascade model. For most of the webs, the prediction
obtained from the cascade model is better than that of
randomizations, suggesting that the directionality of empirical
webs plays a role in reducing feasibility, with other properties
of the structure of empirical networks also contributing
significantly to feasibility.

Shape of the feasibility domain. So far, we have focused on
the volume of the parameter space resulting in feasiblity.
However, two systems having the same X can still have
very different responses to parameter perturbations, just as
two triangles having the same area need not to have sides of
the same length (Fig. 1). The two extreme cases correspond to
(a) an isotropic system in which if we start at the barycentre of
the feasibility domain, moving in any direction yields roughly the
same effect (equivalent to an equilateral triangle); (b) anisotropic
systems, in which the feasibility domain is much narrower
in certain directions than in others (as in a scalene triangle). For
our problem, the domain of growth rates leading to coexistence

is—once the growth rates are normalized—the (S� 1)-dimen-
sional generalization of a triangle on a hypersphere. For S¼ 3,
this domain is indeed a triangle lying on a sphere as shown
in Fig. 1. If all the S(S� 1)/2 sides of this (hyper-)triangle are
about the same length, then different perturbations will have
similar effects on the system. On the other hand, if some sides
are much shorter than others, then there will be changes of
conditions which will more likely have an impact on coexistence
than others. We therefore consider a measure of the heterogeneity
in the distribution of the side lengths (Fig. 1 and Supplementary
Note 10). The larger the variance of this distribution, the
more likely it is that certain perturbations can destroy
coexistence, even when X is large and the perturbation small. This
way of measuring heterogeneity is particularly convenient
because it is independent of the initial conditions. Moreover,
the length of each side can be directly related to the similarity
between the corresponding pair of species (Supplementary Note
10), drawing a strong connection between the parameter
space allowing for coexistence and the phenotypic space. As in
the case of X, this measure is a function of the interaction matrix
and corresponds to a geometrical property of the coexistence
domain.

While X is a universal quantity for random networks,
the distribution of side lengths is not: it depends on the full
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Figure 2 | Feasibility domain in random and empirical webs. The top two panels show X, the size of the domain of growth rates leading to coexistence, in

the case of random networks. (a) The dependence of X on E1¼Cm (where C is the connectance and m is the mean interaction strength), and the number

of species S. (b) The match between our analytical prediction (equation (2) and Supplementary Note 6) and the numerical value of X. The bottom

panels show a comparison between X computed for empirical webs (89 mutualistic networks in d, and 15 food webs in c, parameterized with different

distributions of interaction strengths) and our analytical approximation. Mutualistic networks have values of X comparable to random networks with similar

interactions (R2¼0.98), indicating that their structure has little effect on the size of the feasibility domain. Food webs have lower values of X than their

random counterparts (R2¼0.80). Empirical networks were parameterized extracting interaction strengths from a bivariate normal distribution with

different means, variances and correlations (see and Supplementary Note 8).
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distribution of interaction strengths (Supplementary Note 10).
On the other hand, it is possible to compute it analytically in
full generality, that is, for any distribution of interaction
strengths and any interaction types. In particular, we are able
to obtain an expression for its mean and variance, which
depend only on S, E1, E2 and Ec (Supplementary Note 10).
Figure 3 shows that the analytical formula, in the case of random
A, matches the observed mean and variance of side lengths of
random networks perfectly.

Empirical feasibility domains have more heterogeneous shapes.
As we have done for X, we can now test how non-random
empirical network topologies influence the distribution of
side lengths. Figure 3 shows that empirical food webs and, in
particular, empirical mutualistic networks display a much larger
variation in side lengths than expected by chance. This result is
particularly relevant, indicating that even if the feasibility
domains of empirical mutualistic networks are equal or larger
than those of random networks, their shapes are less regular
than expected by chance, and thus we expect perturbations in
certain directions to quickly lead out of the feasible domain of
growth rates.

Discussion
A classic problem in mathematical ecology is determining
the response of systems to perturbations of model parameters.
In the community context, one important application is getting at
the range of parameters allowing for species coexistence33–35.
Several methods exist for evaluating this range7,36–38, but they
either rely on raw numerical techniques or else can only evaluate
system response to small parameter perturbations. Here in
the context of the general Lotka–Volterra model, we have given
a method for the global assessment of all combinations of species’
intrinsic growth rates compatible with coexistence—what we have

called the domain of feasibility. Our geometrical approach can
determine not only the total size of the feasibility domain, but also
its shape: it is always a simply connected domain forming
a convex polyhedral cone whose side lengths can be evaluated
from the interaction matrix. Applying our method to empirical
interaction networks, we were able to characterize the region of
parameter space compatible with coexistence; the importance of
this kind of information is underlined by a rapidly changing
environment that is expected to cause substantial shifts in the
parameters influencing these systems.

The geometrical framework we employed, pioneered by
Svirezhev and Logofet25, allows for the formulation of a
complexity–feasibility relationship. In analogy with the
celebrated complexity–stability relationship, it relates the size of
the feasibility domain with diversity, connectance and interaction
strengths of a random interacting community. While
communities are not random, this relationship sets a null
expectation for the scaling of the proportion of feasible
conditions. We obtain that the mean of interaction strengths
sets the behaviour of feasibility with the number of species. If the
mean is negative (for example, in case of competition or
predation with limited efficiency), the larger the system is, the
smaller is the set of conditions leading to coexistence, while for
positive mean (for example, in the case of mutualism) the
converse is true.

Here we have shown that the fraction of conditions compatible
with coexistence is mainly determined by the number and
the mean strength of interactions. In terms of network properties,
the relevant quantity is the connectance, with other properties
(for example, nestedness or degree distribution) having minimal
effects. In particular, once the connectance and mean interaction
strength are fixed, the matrices built using empirical mutualistic
networks have feasibility domains very similar to that
expected for the random case, as was also observed previously
in a similar context39.
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trophic and mutualistic interactions show larger fluctuations of side lengths, suggesting the existence of perturbation directions to which the system is

more sensitive than to others. This effect is particularly pronounced and relevant for mutualistic networks. While mutualistic and random networks have a

similar feasibility domain size X, this result implies that the response of mutualistic networks to perturbations is in fact more heterogeneous than those of

their random counterparts.
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The empirical network structure of mutualistic networks has
a statistically significant effect on the size of the feasibility
domain. Whether this effect is ecologically relevant depends on
the specific application at hand. For instance, the effect of
structure could be neglected to quantify how the feasibility
domain would change if a fraction of pollinators went extinct,
and it could be evaluated using our analytical result. In contexts
where the interaction strengths are strongly constrained, structure
would play an important role. Our method provides, in this
respect, a direct way of quantifying the importance of different
factors, disentangling the way different interaction properties
affect feasibility.

For mutualistic interaction networks, our results clearly show
which properties determine the global health of the community,
and therefore indicate which properties should be measured in the
field. While not observing a link or measuring a wrong interaction
coefficient could have strong effects on ecosystem dynamics, they
have very little effect on the size of the feasibility domain and how
the community copes with environmental perturbations and how
likely extinctions are40. The major role is played by corse-grained
statistical properties of the interactions, such as connectance or the
mean and variance of the interaction strengths.

For food webs, on the other hand, empirical systems tend to
have feasibility domains smaller than either their random
counterparts or models conserving the directionality of interac-
tions (cascade model). It is an open question which properties of
real food webs are responsible for restricting the feasibility
domain in this way. A possible candidate is the group structure
observed in food webs41, corresponding to larger similarity of
how certain species interact with the rest of the system than
expected by chance, which in turn reduces the size of the
feasibility domain.

These results parallel those for the distribution of the side
lengths of the convex polyhedral cone delimiting the feasibility
domain. The variance of side lengths for empirical structures
is much higher than that in random networks. This implies that
even if the total size of the feasibility domain is large, it will have
a distorted shape that is very stretched along some directions and
shortened along others (Fig. 1). Consequently, it will be possible
to find growth rate perturbations of small magnitude that will
drive the system outside its feasibility domain42.

We have shown that each side of the feasibility domain
corresponds to a pair of species, with the length determined by
how similarly the two species interact with the rest of the system.
As two species interact more and more similarly (that is, have
a larger niche overlap), the corresponding side becomes shorter
and shorter, which in turns means greater sensitivity to parameter
perturbations. Consistently with earlier results7,8, this fact establi-
shes a relationship between niche overlap and the range of
conditions that lead to coexistence: greater niche overlap means
a more restricted parameter range allowing for coexistence,
irrespective of the details of the interactions.

Several recent lines of work have studied the effect of network
structure on coexistence in species-rich communities, with
contrasting results9,30–32,43,44. For instance, on one hand
nestedness was shown to increase biodiversity31, while, on the
other hand, it is known to be associated with lower stability43,45.
The differences between the size and shape of the feasibility
domain shed light on these contrasting results. Most of these
studies rely on numerical integration, and therefore strongly
depend on initial conditions. Given the difference in the shape
of the feasibility domains of random and empirical networks,
different initial conditions and their perturbations could result
in markedly different outcomes: the feasibility domain could
appear to be large or small depending on the direction in which
perturbations are made.

Our characterization of the geometrical properties of the
feasibility domain contributes to the complete picture of the
relation between feasibility and stability. It has been recently
proposed that nestedness promotes larger feasibility domain sizes
over stability19, suggesting the existence of a trade-off between
feasibility and stability. As we showed, the (mild) increase of the
feasibility domain size parallels with the increase of the variability
of side lengths. The latter property is crucial to quantify
the robustness to perturbations, and it might be interesting
to explore more carefully the relation between stability and
the shape of the feasibility domain.

Having established the general geometrical properties of
the feasibility domain, we are in a much better position to
critically evaluate the feasibility domains of real ecological
communities. We consider this as a first step along the way of
describing feasibility in more complex models and ecological
scenarios.

Methods
Disentangling stability and feasibility. From equation (1), a feasible fixed point,
if it exists, is given by the solution of

XS

j¼1

Aijn
?
j ¼� ri; ð3Þ

where the asterisk denotes equilibrium values. A fixed point is locally asymptoti-
cally stable if all eigenvalues of the community matrix

Mij¼n?i Aij ð4Þ

have negative real parts. As discussed in Supplementary Note 2, if A is diagonally
stable or Volterra-dissipative (that is, there exists a positive diagonal matrix D such
that DAþATD is stable), then a feasible fixed point is globally stable in Rþ .

A general characterization of diagonally stable matrices is unknown for more
than three species22. There exist algorithms46 that reduce the problem of
determining whether a S� S matrix is diagonally stable into two simultaneous
problems of (S� 1)� (S� 1) matrices. While this method can be efficiently used to
determine the diagonal stability of 4� 4 matrices, it becomes computationally
intractable for large S.

A matrix A is negative definite ifX
j

xiAijxjo0; ð5Þ

for any non-zero vector x. A necessary and sufficient condition for a real matrix A
to be negative definite is that all the eigenvalues of AþAT are negative23. A
negative definite matrix is also diagonally stable, as the condition for diagonal
stability holds with D being the identity matrix. Since it is extremely simple to
verify this condition and it has been characterized for random matrices, we will
study feasibility of negative definite matrices. In Supplementary Note 5 and
Supplementary Fig. 2 we show that with this choice we are excluding only a small
region of the parameter space.

Size of the feasibility domain. The quantity X is the proportion of intrinsic
growth rates leading to feasible equilibria. While a more rigourous definition is
presented in Supplementary Note 4, with a slight abuse of notation, X can be
thought of as

�¼2S number of growth rate vectors leading to feasible equilibrium
total number of growth rate vectors

: ð6Þ

The factor 2S is an arbitrary choice that does not affect the results. It has been
introduced to have X¼ 1 in absence of interspecific interactions (Aij¼ 0 if iaj in
equation (1)) and when all the species are self-regulated (Aiio0 if iaj in
equation (1)). Given the geometrical properties of the feasibility domain, the
proportion of feasible growth rates can be calculated considering only growth rate
vectors of length one (Fig. 1 and Supplementary Note 3), as this choice does not
affect the value given by equation (6). In Supplementary Note 4 we provide an
integral formula for X (refs 47,48), which makes both numerical and analytical
calculations possible.

Our method is still valid if some of the species are not self-regulated
(that is, Aii¼ 0 for some i). In Supplementary Note 7 we explicitly discuss the
properties of the feasibility domain of a community with consumer–resource
interactions. In that case, X¼ 0 either when the diversity of consumers exceeds the
diversity of resources or in the absence of interspecific interactions. Since
consumers are regulated by their resources, they cannot survive in their absence
and should therefore be characterized by negative intrinsic growth rates. We
observe indeed that a necessary condition for an intrinsic growth rate vector to be
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contained in the feasibility domain is to have negative values for the components
corresponding to consumers.

Random matrices and moments. E1, E2 and Ec are moments of the random
distribution for the off-diagonal elements of the interaction matrix, and are simply
and directly related to the interaction strengths. They can be calculated as

E1 ¼ 1
S S� 1ð Þ

P
i 6¼ j

Aij;

E2
2 ¼ 1

S S� 1ð Þ
P
i 6¼ j

A2
ij � E2

1 ;

Ec ¼ 1
S S� 1ð ÞE2

2

P
i 6¼ j

AijAji � E2
1

E2
2
:

ð7Þ

For random networks with connectance C, these expressions reduce to (ref. 26)

E1 ¼ Cm:
E2

2 ¼ C 1�Cð Þm2 þCs2;

Ec ¼ rs2 þ 1�Cð Þm2

s2 þ 1�Cð Þm2

ð8Þ

where m is the mean of the interaction strengths, s is their variance and r is the
average pairwise correlation between the interaction coefficients of species pairs26.

Universality of the size of the feasibility domain. The size of the feasibility
domain should, at least in principle, depend on all the entries of the interaction
matrix. When these elements are drawn from a distribution, the size X of the
feasibility domain is then expected to depend on all the moments of that
distribution. As S increases, the dependence of X on some of those moments and
parameters might become less and less important. X is universal if, in the limit of
large S, it depends only on a few properties of the interaction matrix (that is, on just
the first few moments of the distribution).

Specifically, for each unique pair of species (i, j), we set Aij¼ 0 with probability
1�C and assign a random pair of interaction strengths (Mij, Mji)¼ (x, y) with
probability C. The pair (x, y) is drawn from a bivariate distribution with given
mean m, variance s and correlation r between x and y (ref. 26). By considering
different bivariate distributions, we can analyse the effect of different sign patterns
(for example, only (þ , � ) or (þ , þ ) interactions) and different marginal
distributions (for example, drawing elements from a uniform or a lognormal
distribution).

Non-universality of X would mean that it depends on all the fine details of the
parameterization:

�¼f S; m;s; r;C; sign pattern; . . .ð Þ; ð9Þ
where f( � ) is an arbitrary function. The dependence on m, s and r can, without loss
of generality, be expressed in terms of E1, E2 and Ec:

�¼g S; E1; E2; Ec;C; sign pattern; . . .ð Þ: ð10Þ
However, if X is universal, then for large S, it is possible to express it as a function
of E1, E2 and Ec only:

�¼h S; E1;E2; Ecð Þ: ð11Þ
To verify this conjecture, we calculated X for matrices with the same values of E1,
E2 and Ec that differed for the values of the other parameters. As extensively shown
in Supplementary Note 5, X is uniquely determined by S, E1, E2 and Ec

(equation (2)).

Parameterization of mutualistic networks. The 89 mutualistic networks
(59 pollination networks and 30 seed-dispersal networks) were obtained from the
Web of Life data set (www.web-of-life.es), where references to the original works
can be found. Empirical networks are encoded in terms of adjacency matrices
L: Lij¼ 1 if species j interact with species i and 0 otherwise. When the original
network was not fully connected, we considered the largest connected component.

In the case of mutualistic networks, the adjacency matrix L is bipartite, that is, it
has the structure

L¼ 0 Lb

LT
b 0

� �
; ð12Þ

where Lb is a SA� SP matrix (SA and SP being the number of animals and plants,
respectively). The adjacency matrix contains information only about the
interactions between animals and plants, but not about competition within plants
or animals.

We parameterized the interaction matrix in the following way:

A¼ WA Lb �WAP

LT
b �WPA WP

� �
; ð13Þ

where the symbol o indicates the Hadamard or entrywise product (that is,
(A o B)ij¼AijBij), while WA, WAP, WPA and WP are all random matrices. WA and
WP are square matrices of dimension SA� SA and SP� SP, while WAP and WPA are
rectangular matrices of size SA� SP and SP� SA. The diagonal elements WA

ii and
WP

ii are set to � 1, while the pairs (WA
ij , WA

ji ) and (WP
ij , WP

ji ) are drawn from
a bivariate normal distribution with mean m� , variance s2

þ ¼ cm2
� and correlation

rs2
þ . Since these two matrices represent competitive interactions, m �o0. The

pairs (WAP
ij , WPA

ji ) were extracted from a bivariate normal distribution with mean
mþ , variance s2

� ¼ cm2
þ , and correlation rs2

� , where mþ40. For each network
and parametrization we computed the size of the feasibility domain X.

We considered different values of m� , mþ , c, and r. Their values cannot
be chosen arbitrarily, since A must be negative definite. For a choice of c, r, and
a ratio m� /mþ , the largest eigenvalue of (AþAT)/2 is linear in mþ (as an arbitrary
mþ can be obtained by multiplying A by mþ and then shifting the diagonal). Given
the values of m� /mþ , c and r, one can therefore determine mmax, the maximum
value of mþ still leading to a negative definite A (that is, the value of mþ such that
the largest eigenvalue of (AþAT)/2 is equal to 0). Figure 2 was obtained by
considering more than 1,000 parameterizations. Both the ratio m� /mþ and the
coefficient of variation c could assume the values 0.5 or 2, while the correlation
r assumed values from the set {� 0.9, 0.5, 0, 0.5, 0.9}. The value of mþ was set
equal to 0.25mmax and 0.75mmax. In addition, we considered the case m � ¼ 0.

Parameterization of food webs. In the case of food webs the adjacency matrix
L is not symmetric, Lij¼ 1 indicating that species j consumes species i. We removed
all cannibalsistic loops. Since Lij and Lji are never simultaneously equal to one
(there are no loops of length two), we parameterized the off-diagonal entries
of A as

Aij¼W þ
ij LijþW �

ji Lji; ð14Þ

while the diagonal was fixed at � 1. Both Wþ and W� are random matrices,
where the pairs (W þ

ij , W �
ij ) are drawn from a bivariate normal distribution with

marginal means (mþ , m� ) and correlation matrix

cm2
þ rcm2

þ
rcm2

� cm2
�

� �
: ð15Þ

We considered considering different values of m� , mþ , c and r. As explained
above, given the values of m� /mþ , c and r, one can determine mmax, the maximum
value of mþ still corresponding to a negative definite A. Figure 2 was obtained by
considering more that 350 parameterizations. Both the ratio m� /mþ and the
coefficient of variation c could assume the values 0.5 or 2, while the correlation
r assumed either the value � 0.5 or 0.5. The value of mþ was set either to
0.25mmax or 0.75mmax.

Data availability. The code needed to replicate the results presented here can be
found at https://github.com/jacopogrilli/feasibility.
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Amer. Math. Soc. 42, 304–305 (1936).

21. Goh, B. S. Global stability in many-species systems. http://www.jstor.org/stable/
2459985?seq=1#page_scan_tab_contents (1977).

22. Logofet, D. O. Stronger-than-Lyapunov notions of matrix stability, or how
flowers help solve problems in mathematical ecology. Linear Algebra Appl. 398,
75–100 (2005).

23. Johnson, C. R. Positive definite matrices. Am. Math. Monthly 77, 259 (1970).
24. Tang, S. & Allesina, S. Reactivity and stability of large ecosystems. Front. Ecol.

Evol. 2, 2–21 (2014).
25. Svirezhev, Y. M. & Logofet, D. O. The Stability of Biological Communities

(Nauka, 1978).
26. Allesina, S. & Tang, S. The stability-complexity relationship at age 40: a random

matrix perspective. Popul. Ecol. 57, 63–75 (2015).
27. Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and

Theory (Springer, 1990).
28. Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature

404, 180–183 (2000).
29. Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of

plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387
(2003).

30. Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks
facilitate biodiversity maintenance. Science 312, 431–433 (2006).

31. Bastolla, U. et al. The architecture of mutualistic networks minimizes
competition and increases biodiversity. Nature 458, 1018–1020 (2009).
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