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Highlights 

 Cognitive control was assessed in ex-obese individuals after bariatric surgery. 

 Two Stroop tasks, a Switching task and a Go/NoGo task were administered. 

 Ex-obese individuals showed higher verbal Stroop effect and switch cost. 

 An attenuated switch-positivity reflected altered proactive control processes. 

 More pronounced NoGo-N2 revealed higher involvement of conflict monitoring.  

 

 

Abstract 

Impaired cognitive control functions have been documented in obesity. It remains unclear 

whether these functions normalize after weight reduction. We compared ex-obese individuals, 

who successfully underwent substantial weight loss after bariatric surgery, to normal weight 

participants on measures of resistance to interference, cognitive flexibility and response 

inhibition, obtained from the completion of two Stroop tasks, a Switching task and a Go/NoGo 

task, respectively. To elucidate the underlying brain mechanisms, event-related potentials (ERPs) 

in the latter two tasks were examined. As compared to controls, patients were more susceptible 

to the predominant but task-irrelevant stimulus dimension (i.e., they showed a larger verbal 

Stroop effect), and were slower in responding on trials requiring a task-set change rather than a 

task-set repetition (i.e., they showed a larger switch cost). The ERP correlates revealed altered 

anticipatory control mechanisms (switch positivity) and an exaggerated conflict monitoring 

response (N2). The results suggest that cognitive control is critical even in ex-obese individuals 

and should be monitored to promote weight loss maintenance.  

 

Keywords: Obesity; Bariatric surgery; ERP; Stroop; Switching; Inhibition. 
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INTRODUCTION 

Obesity has been often associated with adverse neurocognitive outcomes, primarily in the form 

of executive function alterations (for reviews, Fitzpatrick, Gilbert, & Serpell, 2013; Prickett, 

Brennan, & Stolwyk, 2015; Smith, Hay, Campbell, & Trollor, 2011). Among these functions, 

available evidence suggests that obese adults are impaired in cognitive control, not necessarily 

involving food-related items.   

Cognitive control abilities refer to a set of processes, such as resistance to interference, 

cognitive flexibility and response inhibition, which regulate, coordinate and sequence lower level 

processes towards adaptive goal-directed behaviors (Braver, 2012; Shallice, 1994). Resistance to 

interference entails processes aimed on the one hand to suppress stimulus dimensions irrelevant 

to the task goal but eliciting over-learned and automatic response, and, on the other hand, to 

selectively respond to weaker but goal-relevant stimulus dimensions. These processes have been 

traditionally assessed by the Stroop Color Word test, which requires to name the ink color of a 

word while ignoring its meaning. Obese adults have been found to exhibit higher interference 

effect than normal weight controls on this test because of their higher susceptibility to the 

predominant but task-irrelevant stimulus dimensions (i.e, the word reading; Cohen, Yates, 

Duong, & Convit, 2011; Fagundo et al., 2012), irrespectively of medical and psychiatric 

comorbidities (such as hypertension, diabetes, cardiac disease, thyroid disease, bipolar disorders, 

and alcohol/drug abuse; Gunstad et al., 2007).  

Cognitive flexibility involves processes that allow the rapid shift from one task to another, in 

accordance with the change of environmental cues and/or internally formed goals (Braver, 

Paxton, Locke, & Barch, 2009). It has been usually examined by means of task-switching tests, 

such as the Wisconsin Card Sorting Test and the Trail Making Test. Compared to normal weight 

controls, obese individuals make more errors (especially perseverations) on the Wisconsin Card 

http://topics.sciencedirect.com/topics/page/Executive_functions
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Sorting Test (Cohen et al., 2011; Fagundo et al., 2012) and are slower in executing the Trail 

Making subtest, which requires to alternate between number and letter series (Cohen et al., 2011; 

Fergenbaum et al., 2009).  

Response inhibition refers to the ability of withholding an already prepared motor action in 

compliance with contextual cues. Typically, it has been investigated with the Stop Signal Task or 

Go/NoGo paradigms. Findings on these tasks are mixed (Calvo, Galioto, Gunstad, & Spitznagel, 

2014; Nederkoorn, Smulders, Havermans, Roefs, & Jansen, 2006). By comparing functional 

magnetic resonance images of obese and lean women, Hendrick et al. (2012) observed 

differences in brain activations during stop as compared to go trials despite similar behavioral 

performance between groups.  

From a neural point of view, all these control processes are mediated by multiple and distinct 

brain circuits, mainly involving prefrontal areas (e.g., Cole & Schneider, 2007; Vallesi, 2012). 

Neuroimaging findings confirmed that obesity is associated with structural and functional brain 

alterations of the prefrontal cortex (García-García et al., 2015; Lavagnino, Arnone, Cao, Soares, 

& Selvaraj, 2016; Marqués-Iturria et al., 2013; Pannacciulli et al., 2006; Walther, Birdsill, 

Glisky, & Ryan, 2010; Willeumier, Taylor, & Amen, 2011).  

Evidence supporting that obesity is negatively associated with cognitive functioning comes 

from studies on patients after bariatric surgical intervention. Bariatric surgery has emerged as the 

most effective procedure to achieve rapid, significant and long-lasting weight reduction in 

individuals with moderate to extreme obesity (Maciejewski et al., 2016; O’Brien, MacDonald, 

Anderson, Brennan, & Brown, 2013; Padwal et al., 2011; Sjöström et al., 2004). Longitudinal 

studies have documented that weight loss induced by the surgery produces rapid and significant 

cognitive improvements (for reviews Handley, Williams, Caplin, Stephens, & Barry, 2016; 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hendrick%20OM%5BAuthor%5D&cauthor=true&cauthor_uid=21720427
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Spitznagel et al., 2015; Veronese et al., 2017). Furthermore, improvements in executive 

functioning persist for at least 3 years after surgery (Alosco et al., 2014). Interestingly, Marques 

and collaborators (2014) found no differences in brain metabolism at rest between obese women 

6 months after surgery and normal weight controls, whereas there were significant differences 

before surgery. These findings suggest that cognitive functioning tends to go towards 

normalization following weight loss. Nevertheless, research on the normalization of cognitive 

control functions in ex-obese individuals is limited and it remains unclear whether patients who 

lost significant weight perform similarly to normal weight individuals. To the best of our 

knowledge, the functional mechanisms of cognitive control mechanisms during the execution of 

a task involving not food-related materials in post-bariatric patients have not been investigated 

yet.  

To address this issue, we recruited a group of patients who successfully reached a significant 

weight loss after bariatric surgery and a group of age- and education-matched normal weight 

controls. All participants were invited to complete four computerized tasks assessing resistance 

to interference, cognitive flexibility, and response inhibition, namely two Stroop tasks (verbal 

and spatial), a cued task-switching (Switching task) and a Go/NoGo task (the Sustained 

Attention to Response Test, SART). The electrophysiological signal was simultaneously 

recorded during the execution of the two latter tasks. The analysis of event-related potentials 

(ERPs) allowed us to detect fast brain responses mediating cognitive processing and, 

importantly, to elucidate the mechanisms underlying control processes. Unlike previous ERP 

studies (Hume, Howells, Rauch, Kroff, & Lambert, 2015; Nijs, Franken, & Muris, 2010; Nijs, 

Muris, Euser, & Franken, 2010), we focused on electrophysiological correlates of cognitive 

control processes exclusively evoked by non food-related stimuli, with the aim to investigate 
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general cognitive control functions, above and beyond attentional biases towards food-related 

materials. If the substantial weight loss in ex-obese patients reflected and/or induced normal 

cognitive control processes, no significant differences should emerge between the two groups. 

Alternatively, we expected to find differences in behavioral and/or electrophysiological 

responses to stimuli demanding higher cognitive control, as detailed below.  

In the case of the Stroop tasks, we predicted a larger interference effect (‘Stroop effect’), 

which means a worsening in performance (i.e., a decrease in accuracy and/or a slowing in RTs) 

on incongruent compared to congruent trials in the patient group.  

In the Switching task, we predicted a higher ‘switch cost’, in terms of accuracy and/or RTs, 

which means a worsening in performance on switch compared to repeat trials. Altered ERP 

responses to cue and target stimuli were also expected. In cued task-switching paradigms, the 

most robust ERP component is represented by a positive potential elicited by the onset of the cue 

(i.e., the signal that instructs the task to be implemented on the upcoming target), larger for 

switch relative to repeat trials, named ‘switch-positivity’ (for a review see Karayanidis & 

Jamadar, 2014). This potential has a parietal distribution on the scalp and emerges starting from 

about 150 ms after the cue onset, for a duration that varies depending on task parameters 

(Nicholson, Karayanidis, Poboka, Heathcote, & Michie, 2005). It reflects proactive control 

processes that prepare in advance the cognitive system to shift task-set on the upcoming target 

and includes mechanisms of goal shifting and rule activation (i.e., the loading of the relevant task 

goal and rules and the inhibition of the irrelevant ones; Karayanidis et al., 2010).  

Another robust ERP component is represented by a positive potential time-locked to the onset 

of the target, smaller for switch relative to repeat trials (Barceló, Periáñez, & Nyhus, 2007; 

Karayanidis, Whitson, Heathcote, & Michie, 2011; Kieffaber & Hetrick, 2005; Nicholson, 
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Karayanidis, Davies, & Michie, 2006). This relative parietal negativity for switch trials has been 

sometimes referred to as ‘switch-negativity’ (Karayanidis, Coltheart, Michie, & Murphy, 2003). 

When preceded by a long cue-to-target interval, it emerges as early as 150 ms and reaches 

maximal amplitude around 400 ms after the target onset. This component has a parietal scalp 

distribution and reflects the recruitment of reactive control processes, which intervene to resolve 

the stimulus-driven interference (Kiesel et al., 2010). With this in mind, we made the following 

predictions: on the one hand, if ex-obese patients fail in proactive control, the amplitude of their 

cue-related switch-positivity would be less pronounced than that of the control group; on the 

other hand, if they fail in reactive control, they should show a less pronounced target-related 

switch-negativity.  

In the SART, we expected to find more commission errors on the NoGo trials and altered ERP 

correlates as indexes of impaired inhibitory processes in patients. Specifically, the N2 and 

NoGo-P3 components, elicited by the NoGo trials, were examined (O’Connell et al., 2009; 

Zordan, Sarlo, & Stablum, 2008). The N2 is a negative potential occurring at about 200 ms after 

the onset of NoGo stimuli over fronto-central sites, whereas the NoGo-P3 is a positive potential 

occurring approximately at 300 ms after the onset of NoGo stimuli in a more anterior scalp 

position relative to the parietal Go-P3 (Eimer, 1993; M Falkenstein, Hoormann, & Hohnsbein, 

1999). Although the specific functional role of these ERP components is debated (Falkenstein, 

2006; Smith, Johnstone, & Barry, 2007, 2008), there is consensus that the N2 mainly reflects 

conflict monitoring rather than response inhibition per se, while the NoGo-P3 mainly reflects the 

suppression of a planned response (Donkers & Van Boxtel, 2004; Enriquez-Geppert, Konrad, 

Pantev, & Huster, 2010; Nieuwenhuis, Yeung, van den Wildenberg, & Ridderinkhof, 2003; 

Randall & Smith, 2011). Conflict especially occurs when a response must be refrained in 
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contexts in which NoGo trials are rare and there is a prepotent tendency to make a go response, 

as is the case for the SART. We expected that patients exhibit altered N2 and/or in NoGo-P3 

amplitude if they have problems in conflict monitoring and/or response inhibition, respectively.  

METHOD 

Participants  

Socio-demographic characteristics of the enrolled sample are summarized in Table 1. A total 

of 21 patients (aged from 21 to 61 years) and 22 normal weight controls (aged from 20 to 60 

years) took part in the study. Participants were included if they had a BMI < 35 kg/m2, if they 

reported normal or corrected-to-normal visual acuity, normal color vision, normal hearing, no 

neurological disorders (e.g., epilepsy, dementia), no major psychiatric disorders (e.g., bipolar, 

schizophrenia), and no substance abuse. Patients with medical conditions that may have caused 

obesity (e.g., endocrine disorders, type I diabetes), taking medication that suppresses appetite, or 

taking psychoactive medication (e.g., anxiolytics or antidepressants) were excluded. The patient 

group included a person with type II diabetes and a person with hypertension, both 

pharmacologically treated. The two groups were matched in terms of age, years of education, 

female to male ratio, and handedness (scored by the Edinburgh Handedness Inventory, EHI; 

Oldfield, 1971) (all ts ≤ 1.45, ps ≥ .15). They differed in BMI measures, namely maximum 

reached BMI (max BMI), current BMI, and ΔBMI (max BMI - current BMI)/ max BMI) (all ts ≥ 

2.62, ps ≤ .012). All participants completed the Beck Depression Inventory (BDI; Sica & Ghisi, 

2007) and the Binge Eating Scale (BES; Di Bernardo et al., 1998) to screen depression and binge 

eating disorder, respectively. None of patients scored above the cut-off of 16 on the BDI, 

therefore we could exclude the presence of clinically relevant depressive symptoms. One patient 

reported binge eating behaviors, i.e., scored above 17 on the BES. The Barratt Impulsiveness 

http://www.wordreference.com/enit/anxiolytic
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Scale (BIS-11; Fossati, Di Ceglie, Acquarini, & Barratt, 2001) was also completed in order to 

detect impulsivity traits. The two groups did not show differences in impulsivity traits (see Table 

1). Their general cognitive functioning was screened by the Mini Mental State Examination 

(Magni, Binetti, Bianchetti, Rozzini, & Trabucchi, 1996) and by a neuropsychological battery 

(’Esame Neuropsicologico Breve’, Mondini, Mapelli, Vestri, Arcara, Bisiacchi, 2011). All 

participants scored more than 28 on the MMSE and above the cut-off in more than 14 out of 16 

battery sub-tests, indicating a general cognitive functioning in the normal range. All patients 

underwent a bariatric surgical intervention for weight reduction (n = 16 gastric sleeve, n = 3 

gastric bypass, n = 1 lapband, n = 1 plication) in the past (27.2 ± 23.3 months before) and, at the 

time of the experimental session, they were not obese anymore (all BMIs < 30 kg/m2). In terms 

of BMI, they lost from 30 to 53 % (mean ΔBMI: 42.2% ± 7). All patients were recruited at the 

Unit of Plastic Surgery of the University Hospital of Padova, where they referred for seeking 

lipostructuring surgery after the massive weight loss. The control group was recruited from the 

general population. All participants signed a written consent prior to their participation and were 

informed of the general aim of the study (i.e., to investigate executive functions in ex-obese 

individuals). The procedures were approved by the Bioethical Committee of the Azienda 

Ospedaliera di Padova and the study was conducted according to the guidelines of the 

Declaration of Helsinki.  

 

Table 1.  Participant demographics 

 
Patients 

(n = 21) 

Controls 

(n = 22) 
p 

Age 40.57 (11.05) 40.18 (12.18) .913 

Education 11.14 (3.05) 12.68 (3.82) .153 

Female 14 17 .510a 

EHI 79.76 (44.31) 71.36 (49.01) .559 
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Experimental procedure 

Participants were individually tested in an electrically isolated and sound-shielded room. They 

performed the two Stroop tasks at the beginning of the session, in a counterbalanced order. 

Afterwards, they performed the Switching task and the SART, in a counterbalanced order; 

during these two tasks the EEG was continuously recorded.  

Tasks and stimuli 

Stroop tasks 

We used a verbal and a spatial version of the Stroop task (see details below). Both Stroop tasks 

were presented on a 15 inch LCD notebook monitor (1366 × 768 pixel), at a viewing distance of 

approximately 50 cm, using the Presentation software 16.3 (Neurobehavioral Systems, Inc., 

Berkeley, CA). 

Verbal Stroop task. This was a computerized version of the Color-Word Stroop test (see 

(Puccioni & Vallesi, 2012a, for details). Stimuli consisted of four words, namely, ‘BLU’ (Italian 

for ‘blue’), ‘GIALLO’ (‘yellow), ‘ROSSO’ (‘red’), and ‘VERDE’ (‘green’). Each word was 

individually displayed in one of four ink colors: blue, yellow, red and green. Participants were 

required to identify the ink color by pressing one out of four keys of the computer keyboard (‘c’, 

Maximum BMI  47.01 (7.32) 26.54 (4.95) < .001 

Current BMI 26.89 (3.04) 23.94 (4.19) .012 

ΔBMI .42 (.07) .09 (.07) < .001 

BDI-II 5.1 (4.6) 3.5 (4.2) .295 

BES 5.5 (6.1) 3.3 (4.3) .213 

BIS-11 (total score) 61.5 (7.5) 56.2 (9.6) .067 

Group means and standard deviation values in parentheses are reported; p-values are relative 

to 2-sided unpaired t-tests, unless otherwise specified; a Chi-square test; BMI = Body Mass 

Index (kg/m2); EHI = Edinburgh Handedness Inventory; ΔBMI = (Max BMI - Current 

BMI)/Max BMI; BDI = Beck Depression Inventory; BES = Binge Eating Scale; BIS = Barratt 

Impulsiveness Scale.  
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‘v, ‘b’, and ‘n’, marked by colored labels) and to ignore the word meaning. Participants were 

asked to respond as fast and accurately as possible by using the index and the middle fingers of 

both hands. Each stimulus was categorized as Congruent (C) when word ink and word meaning 

coincided (e.g., BLU written in blue), or Incongruent (I) when they did not coincide (BLU 

written in red). The ink color (target) and the word meaning (distractor) on current trial n were 

always different from the ink and the meaning on previous trial n-1 (Puccioni & Vallesi, 2012c). 

Accordingly, sequential pairs of trials could be categorized as follows: Congruent n-1 and 

Congruent n (cC), Congruent n-1 and Incongruent n (cI), Incongruent n-1 and Congruent n (iC), 

Incongruent n-1 and Incongruent n (iI).  

Spatial Stroop task. A visuo-spatial version of the Stroop task (see (Puccioni & Vallesi, 2012b, 

for details) was administered in order to capture possible domain specificities in the resistance to 

interference ability. Stimulus materials consisted of four black arrows, pointing either to north-

east, north-west, south–east or south–west. Each arrow was individually displayed on a light gray 

background in one out of four positions on the screen (upper right, upper left, lower right, or 

lower left). Participants were required to identify the pointing direction of the arrows and to 

ignore their position on the screen as quickly and accurately as possible. To this aim, four 

response keys were arranged of the keyboard so that they spatially reflected the arrow 

directions/positions (‘r’, ‘o’, ‘v’, ‘m’). Each stimulus was categorized as Congruent when arrow 

direction and position coincided (e.g., north-west pointing arrow positioned in the upper right 

corner of the screen) or Incongruent when they did not. Similar sequences as for the verbal 

Stroop task were presented here. 

At the beginning of both the verbal and the spatial Stroop tasks, a training block of 16 trials 

was performed to ensure that participants had understood the task and familiarized with it. After 
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the training block, two test blocks of 64 trials each were presented; Congruent and Incongruent 

trials were pseudo-randomly displayed and well-matched. Stimuli remained on the screen for 

500 ms and were followed by a blank of 2000 ms and a random extra blank of 200-700 ms; the 

maximum allowable response time was 2500 ms. 

Switching task 

The task was developed by Tarantino and colleagues (Tarantino, Mazzonetto, & Vallesi, 2016; 

see for details). Stimulus materials consisted of two auditory cue stimuli (tones), two target 

stimuli (letters), and a fixation asterisk. A trial began with the delivery of one of two tones (a 

high pitched tone of 1500 Hz or a low pitched tone of 200 Hz), lasting 300 ms. The tone was 

followed by a 900 ms blank and by a target stimulus, which consisted of one of two letters (‘A’ 

or ‘E’, 36 points, Courier New bold font), lasting 1500 ms, which could appear either above or 

below the fixation asterisk. The experiment comprised two single-task blocks and four mixed 

blocks, each including 60 trials. During the single-task blocks participants were repetitively 

presented with a tone and, upon the onset of a target letter, had to repetitively perform one of two 

tasks, namely a letter identity task or a letter position task. The identity task required identifying 

the type of letter (the letter ‘A’ or ‘E’), irrespective of its spatial position; the letter position task 

required identifying the position of the letter (‘above’ or ‘below’ the asterisk), irrespective of its 

identity. Participants had to decide by pressing one of two buttons of the keyboard (‘f’ and ‘k’) 

with the index finger of the left and right hand, respectively. The 

maximum allowable response time was 2000 ms from the target onset. In summary, in single-

task blocks the same tone was presented across all trials and participants were required to 

perform the same task (Single trials). During the mixed blocks the two tones were pseudo-

randomly presented and instructed participants about the specific task to be performed on each 
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trial. Therefore, participants were required to perform either the same task as the previous trial 

(Repeat trials) or the alternative task (Switch trials). The occurrence of Repeat and Switch trials 

in a block was equiprobable. In all blocks, a variable interval, ranging from 500 to 1000 ms, 

followed each trial. A four-trial practice session preceded the single-task blocks, and a 16-trial 

practice session preceded the mixed-task blocks. All visual stimuli were black on a white 

background; they were delivered on a 19 inch LCD monitor (1024 × 768 pixel), at a viewing 

distance of approximately 60 cm. The auditory stimuli were delivered by loudspeakers placed in 

the two sides of the monitor. The experiment was run on E-Prime 2.0 software (Psychology 

Software Tools, Pittsburgh, PA). 

SART 

The task, based on a Go/NoGo paradigm, was conceived by Robertson and colleagues 

(Robertson, Manly, Andrade, Baddeley, & Yiend, 1997). Here a modified version of the task was 

implemented. It consisted of a series of single digits, from 1 to 9, individually presented in a 

random order. Participants were required to press the button ‘b’ of the keyboard with the right 

index finger upon the appearance of each number (Go stimuli) except the number 3 (NoGo 

stimulus). Overall, two blocks of trials were presented, including 200 Go and 25 NoGo trials 

each. The digits were displayed in one of five sizes: 42, 54, 66, 78, 90 points, Times New Roman 

font. Each digit remained on the screen for 150 ms and was followed by a blank of 1050 ms. 

Therefore, the maximal duration for response was 1200 ms. The experiment began with a 

practice block designed to better understand the task and familiarize with it; at this phase, the 

examiner emphasized not to anticipate the stimulus onset. The digits were white on a grey 

background and were delivered on the 19 inch monitor (see Switching task for details). Stimulus 

presentation and response collection were controlled by E-Prime 2.0 software. 
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EEG recording and data preprocessing 

The EEG was recorded using the BrainAmp equipment (Brain Products, Munich, Germany), 

with 64 Ag/AgCl ring electrodes mounted on an elastic cap according to the extended 10-20 

system. The on-line reference and ground electrodes were placed at FCz and AFz, respectively. 

An electrode placed under the right eye (EOG) allowed the monitoring of blinks and vertical eye 

movements. The impedance of each electrode was kept below 5 kΩ. Raw data were band-pass 

filtered between 0.016-250 Hz and digitized at a sampling rate of 500 Hz. The off-line 

preprocessing of the EEG signal was performed in EEGLAB 12.0.2 (Delorme & Makeig, 2004), 

running in a Matlab environment (Version 8.2.0, MathWorks, Natick, MA, USA), and in 

BrainVision Analyzer 2.1 (Brain Products GmbH). The continuous EEG trace was low-pass 

filtered with a cut-off frequency of 40 Hz (windowed sinc FIR filter, Kaiser Window type 1, 

beta: 5.65, maximum passband deviation: 0.001, transition band: 10 Hz; Widmann, Schröger, & 

Maess, 2015). Blinks, ocular movements, and muscle artifacts were detected and removed by 

means of independent component analysis (ICA, Extended Infomax Algorithm). Afterwards, the 

EEG was segmented according to the task (see below).  

Switching task 

Two types of epochs were extracted: a) epochs from -200 to 1500 ms time-locked to the cue 

(cue-locked ERPs) and b) epochs from -50 to 800 ms relative to the target (target-locked ERPs). 

The resulting data were baseline-corrected using two different time windows, from -200 to 0 ms 

for cue-locked epochs, and from -50 to 50 ms for target-locked epochs. Practice trials, the first 

trial of each block, trials with errors and trials following errors were discarded. In addition, trials 

containing further artifacts were removed by means of a semi-automatic procedure. The 

automatic detection criteria included an absolute difference between two sampling points 
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exceeding 30 μV/ms, peak-to-peak deflections in a segment exceeding ±100 μV within intervals 

of 200 ms, amplitudes exceeding a value of ± 100 μV, and activity lower than 0.1 μV within 

intervals of 200 ms. Data were re-referenced to the average of the two mastoid channels (TP9, 

TP10), typically used in the ERP literature of task-switching. The averaging procedure was 

performed collapsing the letter identity and letter position trials. The number of included trials 

for each condition is reported in Table 1 of Supplementary materials. 

SART 

The EEG signal was segmented from -100 to 800 around the onset of Go and NoGo trials. 

Each epoch was baseline corrected by subtracting the average signal in the 100 ms pre-stimulus 

interval. In order to match Go and NoGo trials for numerosity, only the Go trials that preceded 

the NoGo trials were included in the analyses (Thomas, Grice, Najm-Briscoe, & Miller, 2004). 

Practice trials and trials containing errors were discarded. In addition, trials containing further 

artifacts were removed by adopting the same semi-automatic procedure used in the Switching 

task analyses. The number of included trials for each condition is reported in Table 2 of 

Supplementary materials. Data were re-referenced to the average of all channels.  

Statistical analyses 

All analyses were conducted with SPSS 23. The significance level for all tests was set at α = 

0.05. 

Behavioral data  

Stroop tasks  

Mean accuracy (percentage of correct responses) and mean RTs were extracted for each trial 

type (Congruent and Incongruent). Analyses were conducted to verify the presence of group 

difference in Stroop effect. This effect was quantified by subtracting accuracy or RTs on 
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Incongruent trials from accuracy or RTs on Congruent trials (I - C), in the verbal and in the 

spatial task, separately. Accuracy data were analyzed by means of the non-parametric Mann-

Whitney test, after excluding practice trials and the first trial of each block. For the RT data 

analysis, error trials, trials following an error (to avoid confounds of post-error slowing), trials 

with RTs below 80 ms (anticipations), and trials with RTs above 2500 ms were removed as well. 

A logarithmic transformation was applied to raw RTs on each trial in order to improve normality 

and reduce skewness (Verhaeghen & De Meersman, 1998). Afterwards, for each participant, 

trials with RT above or below 2.5 standard deviations (SD) from their individual mean were 

excluded (see Arbula, Capizzi, Lombardo, & Vallesi, 2016). On average, for each participant 1.2 

% (SD = 0.9 %) outliers in the verbal task and 0.5 % (SD = 0.7) outliers in the spatial task were 

removed. Unpaired samples t-tests were used to compare the Stroop between groups. Effect size 

was quantified in terms of Cohen’s d.  

In order to examine the group effect by taking into account the order of trials congruency, we 

calculated the Stroop effect as the difference in performance between Incongruent trials preceded 

by Congruent ones and Congruent trials preceded by Congruent ones (cI - cC), and as the 

difference in performance between Incongruent trials preceded by Incongruent ones and 

Congruent trials preceded by Incongruent ones (iI – iC), separately. We entered these values in a 

2 (Group: control vs. patients) × 2 (Trial sequence: cI – cC vs. iI – iC) repeated-measure 

ANOVA.  

Switching task 

Mean accuracy and RTs were extracted for each trial (Single, Repeat and Switch). Participants 

that did not success in at least 70 trials out of 120 per condition (2.7% error probability according 

to binomial distribution) or with noisy EEG were discharged from analyses. The final sample 
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comprised 18 patients and 19 controls, which did not differ in age, sex, education and 

handedness (all ps > .194). For the accuracy analysis, practice trials and the first trial of each 

block were excluded. In addition, for the RT analysis, trials with errors, trials following errors 

and trials with RTs below 80 ms (anticipations) were excluded. RT data were log-transformed 

and, for each participant, RTs above or below 2.5 SD from the individual mean were labeled as 

outliers and removed. Two behavioral indexes were then computed, namely the mixing cost and 

the switch cost. The mixing cost was obtained from the difference in accuracy or RTs between 

Repeat and Single trials and represents a worsening in performance (i.e., a decrease in accuracy 

and/or a slowing in response time) on Repeat compared to Single trials. It reflects control 

processes related to the maintenance of competing task-sets (Rubin & Meiran, 2005). The switch 

cost represents a worsening in performance on Switch compared to Repeat trials and reflects 

processes related to task-set reconfiguration (Monsell, 2003). The costs in accuracy were 

compared between the two groups by means of the Mann-Whitney test, whereas the group effect 

on RT costs was analyzed by unpaired t-test.  

SART 

Errors of commission (responses to NoGo stimuli) and mean RTs on Go stimuli were 

measured. Errors of omission (failures to press following a Go stimulus) were not analyzed since 

they were less than 2%. Participants that did not succeed in at least 31 trials out of 50 NoGo 

stimuli (3.2% error probability according to binomial distribution) or with excessive noise in 

EEG were discharged from analyses. The remaining sample included 14 patients and 16 controls. 

They did not differ in age, sex, education and handedness (all ps > .142). Trials with RTs shorter 

than 80 ms (anticipations) and longer than 1000 ms were excluded from analyses (patients: 0.8%, 

SD = 1.4; controls: 0.4%, SD = 0.9). RTs on each trial were then log-transformed. Group 
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differences in accuracy were statistically examined by the non-parametric Mann-Whitney test, 

whereas group differences in RTs were examined by unpaired t-test. Trials containing errors 

were excluded for RT analysis.       

ERP data  

Switching task 

Cue-locked and target-locked ERPs were separately analyzed. ERP components were extracted 

on the basis of previous findings on the same task (Tarantino et al., 2016) and visual inspection 

of grand-average waveforms. In an early time window, from 200 to 400 ms after the cue onset, a 

positive potential, larger for Switch trials, was expected, representing the so-called switch-

positivity. At the target onset, two positive ERP components were expected, a centro-frontal and 

a parietal one. The centro-frontal component should be larger for Repeat and Switch trials, 

whereas the parietal component should display amplitude attenuation in Switch trials compared 

to Repeat ones. Mean ERP amplitude over centro-frontal and parietal sites were examined in an 

early (160-200 ms) and later (280-380 ms) time window, respectively. The ERP amplitude in 

each of these time windows was averaged across electrodes where group differences appeared 

maximal. The resulting data were submitted to mixed 2 (Group) × 3 (Trial type) ANOVAs. For 

each ANOVA, the sphericity assumption was checked by the Mauchly test. When it was 

significant, the Greenhouse-Geisser correction was applied and corrected p-values were reported. 

The Bonferroni correction for multiple comparisons was applied to post-hoc tests. Effect size 

was expressed by partial eta squared (ƞp
2).  

SART  

As in the Switching task, the ERPs evoked by the stimuli (digits) onset were extracted on the 

basis of the Go/NoGo literature (see Kamijo et al., 2012 for similar analysis windows and 
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electrodes) and grand-average visual inspection. The N2 and Go-P3 components were measured 

as the mean amplitude in the 280-340 ms time window, over midline fronto-central and centro-

parietal electrode sites, respectively. The NoGo-P3 appeared later, over midline centro-parietal 

sites, and it was measured as the mean amplitude from 400 to 500 ms. The N2 amplitude was 

analyzed by means of a 2 (Group) × 2 (Trial type: Go, NoGo) ANOVA. Instead, the Group effect 

on the P3 amplitude was analyzed separately for Go and NoGo trials by means of two separate t-

tests, given that this component emerged in the two trial types with very different latencies (the 

former being the earlier). 

RESULTS 

Behavioral results  

Stroop tasks  

Mean accuracy and RTs for each trial type are reported in Table 4 of Supplementary materials. 

The analysis of the Stroop effect in terms of accuracy did not yield significant differences 

between the two groups, both in the verbal (patients: -1.7 % ± 4.3, controls: .1 % ± 2.2; Mann-

Whitney U = -1.76, p = .078) and in the spatial task (patients: -7.4 % ± 8.8, controls: -4.6 % ± 

5.1; Mann-Whitney U = -.77, p = .439). In terms of RTs, patients showed a significantly larger 

Stroop effect in the verbal task compared to the control group (91 ms ± 51, controls: 51 ms ± 46) 

[t(41) = 2.39, p = .021, Cohen’s d = .73]. The groups did not differ in the spatial version of the 

task (patients: 126 ms ± 82, controls: 147 ms ± 102) [t(41) = -1.43, p = .160] (see Figure 1). It is 

worth noting that mean RTs on Congruent trials as well as Incongruent ones per se did not differ 

between the two groups in either task version. This means that the larger verbal Stroop effect did 

not originate from an overall slowing in responding to Incongruent trials. Time from the surgery 

(in months) and RT verbal Stroop interference did not correlate (Spearman’s rho = .048, p = 
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.836). Furthermore, the group difference in the RT Stroop effect was not influenced by trial 

sequence. The mixed 2 (control vs. patients) × 2 (cI – cC vs. iI – iC) ANOVA on RTs showed 

only a main effect of Group (F(1,41)= 4.61, p = .038, ηp
2= .10). The interaction Group × Trial 

sequence was not significant (p = .909). This null result suggested that the Stroop effect differed 

between the two groups irrespective of the sequential effects. 

 

- PLEASE INSERT FIGURE 1 ABOUT HERE - 

 

Switching task 

Mean accuracy and RTs for each trial type is reported in Table 4 of Supplementary materials. 

As expected, a mixing and switch cost emerged in accuracy and RTs in both groups. The two 

groups differed only in terms of RT switch cost. Namely, patients showed a higher switch cost 

than controls (patients: 167 ms ± 137; controls: 92 ms ± 66) [t(35) = 2.3, p = .028, Cohen’s d = 

.70]. Significant differences did not emerge in RT mixing cost (patients: 160 ms ± 119, controls: 

146 ms ± 90) [t(35) = .057, p = .955], in accuracy mixing cost (patients: -4.9 % ± 8.7, controls: -

4.5 % ± 7.6) [Mann-Whitney U = -.30, p = .778], and in accuracy switch cost (patients: -3.4 % ± 

4.9, controls: -3.5 % ± 4) [Mann-Whitney U = -.15, p = .893]. As for the Stroop tasks, absolute 

RTs did not differ between the two groups in any trial type, thus excluding the presence of an 

overall slowing in patients. Furthermore, the time from the surgery did not correlate with the RT 

switch cost (Spearman’s rho = .256, p = .320).  

SART 

On average, the percentage of accuracy on the NoGo trials did not differ between the two 

groups (patients: 22.1% ± 8.7, controls: 18.9% ± 8.2) [Mann-Whitney U = .961, p = .355]. 
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Similarly, the mean RTs to Go trials did not show group difference (patients: 352 ms ± 51, 

controls: 340 ms ± 43) [t(28) = .699, p = .490].  

ERP results  

Switching task 

In the 200-400 ms time window locked to the cue onset, the control group showed a larger 

positivity compared to patients over centro-parietal sites, especially of the right hemisphere (i.e., 

over Cz, C2, C4, CPz, CP1, and CP2 electrodes). Figure 2 depicts the ERP waveforms for each 

group and trial type. The positivity evoked by the cue onset over centro-parietal sites, more 

pronounced in Switch trials, likely represents the switch-positivity. The ERP amplitude in this 

time window was collapsed across the above-listed electrodes and submitted to a 2 (Group: 

controls, patients) × 3 (Trial type: Single, Repeat, Switch) ANOVA. A significant effect of Trial 

type [F(2,70) = 38.8, p < . 001, ηp
2 = .714] and a significant Group × Trial type interaction 

[F(2,70) = 4.15, p = .020, ηp
2 = .106] emerged. The post-hoc test of the main effect revealed that 

overall the ERP amplitude was progressively more positive in Repeat compared to Single trials 

(p = .024), and in Switch compared to Repeat trials (p < .001). The post-hoc test of the 

interaction confirmed that the two groups differed in the Switch trials (p = .029), but not in the 

Single (p = .489) and in the Repeat (p = .074) ones. The main effect of Group was not significant 

[F(1,35) = 2.79, p = .104].  

The target-locked ERPs displayed group differences in amplitude, in all trial types, in the early 

(from 160 to 200 ms) as well as in the later (from 280 to 380 ms) time window. Here, positive 

ERPs emerged, larger in the control group compared to the patient one (see Figure 3). Group 

differences in the first time window were especially evident over CPz, Cz, C2, C4, and FC4 

electrodes, whereas in the second time window they were evident over Pz and POz.  
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The 2 × 3 ANOVA on the mean ERP amplitude in the first time window, averaged across the 

above-listed centro-frontal electrodes, confirmed the presence of a significant main effect of 

Group [F(1,35) = 7.45, p = .010, ηp
2 = .176]. In addition, a significant main effect of Trial type 

was found [F(1.5,53.2) = 20.26, p <.001, ηp
2 = .367]. The post-hoc test revealed that the ERPs 

were more positive in Repeat and Switch trials compared to Single ones (ps < .001), whereas 

they did not differ between Repeat and Switch trials (p = .131), in line with the previous study 

(Tarantino et al., 2016). The Group × Trial type interaction term was not significant [F(2,70) = 

.15, p = .859)]. 

Surprisingly, in this early time window the two groups also differed in midline parieto-

occipital sites (Pz and POz; see Figure 3, right panel). Here, an early negative peak was detected 

that, based on its spatio-temporal features, likely represents a parietal N1 component. Overall 

(i.e., in all trial types), the amplitude of this peak was significantly more negative in the patients’ 

group [main Group effect: F(1,35) = 4.97, p = .032, ηp
2 = .124]. In addition, it was affected by 

Trial type [F(2,70) = 13.40, p <.001, ηp
2 = .277], namely it was more pronounced in Single trials 

compared to Repeat and Switch trials (ps < .005). A significant Group × Trial type interaction 

was absent [F(2,70) = .289, p = .750].   

The later positive ERP component, analyzed across Pz and POz electrodes, was also affected 

by Trial type [F(2,70) = 23.35, p < .001, ηp
2 = .407]. In contrast to the earlier centro-frontal 

potential, it showed less positive amplitude in Switch trials compared to Repeat and Single ones 

(ps < .001), while it did not differ between Repeat and Single-task trials. This effect reflected the 

relative switch-negativity described in previous literature (e.g., Karayanidis et al., 2003). Neither 

a significant Group effect [F(1,35) = .961, p = .334] nor a significant Group × Trial type 

interaction [F(2,70) = 1.54, p = .221] were observed.  
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- PLEASE INSERT FIGURES 2 & 3 ABOUT HERE - 

SART 

In agreement with previous studies, a negative peak corresponding to the N2 component was 

detected in the 280-340 ms time window, whose amplitude was enhanced (more negative) in 

NoGo compared to Go trials over midline fronto-central (Fz and FCz; see Figure 4, left panel). 

The mean amplitude of this component was entered into a 2 (Group) × 2 (Trial type: Go, NoGo) 

ANOVA. The analysis yielded a significant main effect of Trial type [F(1,28) = 5.45, p = .027, 

ηp
2 = .163]. This result confirmed that the N2 component was more negative in NoGo trials. 

More importantly, the ANOVA revealed a significant Group × Trial type interaction [F(1,28) = 

4.83, p = .036, ηp
2 = .147]. The post-hoc test showed that the N2 amplitude was more negative in 

the patient group compared to the controls in NoGo trials (p = .004), but not in Go trials (p = 

.921).   

In the same time window (i.e., from 280 to 340 ms), the Go-P3 appeared, principally over 

centro-parietal sites (Pz and CPz; see Figure 4, right panel). Its amplitude significantly differed 

between the two groups [t(28) = 2.50, p = .018, Cohen’s d = .91].  

The NoGo-P3 component emerged later, i.e. from 400 to 500 ms (see Figure 4, right panel, 

bottom). The unpaired t-test revealed no group differences in amplitude [t(28) = .97, p = .341]. 

 

- PLEASE INSERT FIGURE 4 ABOUT HERE – 

 

DISCUSSION  
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Obesity impacts on cognitive functioning independently of its comorbidities, such as 

cardiovascular disorders or depression (Prickett et al., 2015; Smith et al., 2011). However, 

obesity-related cognitive dysfunctions can be reversed after bariatric surgery (e.g., Alosco et al., 

2014). A question that remains open is whether the achievement of substantial weight loss might 

normalize cognitive control functions. The present study aimed at clarifying this issue by 

comparing a group of ex-obese patients, who successfully reached a substantial weight loss (on 

average the 42.2% of their maximum BMI) after bariatric surgery, to a group of normal weight 

individuals on a series of cognitive control tasks. Specifically, resistance to interference, task-

switching and response inhibition functions were examined. In order to elucidate neural 

mechanisms mediating these control processes, electrophysiological responses (ERPs) during 

task execution were analyzed, relative to the latter two functions.  

The results revealed that ex-obese patients differ from normal weight control participants in 

terms of both behavioral performance and neural correlates. At the behavioral level, group 

differences emerged on the verbal Stroop task, namely, patients showed a significantly larger 

Stroop effect. This finding indicates that patients were more susceptible to the interference 

generated by the prepotent and task-irrelevant stimulus dimension (i.e., word meaning). 

Consequently, they were more impaired in inhibiting the habitual response evoked by this 

stimulus dimension (i.e., reading the word) and in activating the alternative, more unusual, 

response (i.e., naming the ink color). This pattern is consistent with previous evidence on obese 

adults using food-related stimuli (e.g., Nijs, Franken, et al., 2010). Unlike these studies, we were 

able to exclude that the difficulty of our patients in exerting cognitive control to resist 

interference reflected the avoidance of food stimuli. Group difference on the verbal Stroop effect 

was not related to differential sequential effects. Furthermore, the absence of a group effect in 
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the spatial version of the Stroop task suggests that the performance on the two versions of the 

task is based on at least partially dissociable underlying mechanisms (cf., Ambrosini & Vallesi, 

2017).  

In the Switching task, patients were significantly slower in responding to trials that required a 

change in task-set relative to the task-set implemented on the preceding trial (switch trials). 

When the task-set to be implemented was the same (repeat trials), no group differences emerged. 

These findings are in line with previous investigations on obese patients, which used the 

Wisconsin Card Sorting Test (e.g., Fagundo et al., 2012) and the Trail Making Test (e.g., 

Fergenbaum et al., 2009) and revealed that also ex-obese patients might show signs of cognitive 

flexibility impairment. The analysis of electrophysiological correlates helped in clarifying the 

brain mechanisms underlying this impairment. The positive ERP component evoked 200-400 ms 

after the presentation of the cue to switch at centro-parietal electrode sites (i.e., the switch-

positivity) showed significantly less pronounced amplitude in patients compared to controls only 

in Switch trials. This component has been found to be an electrophysiological marker of 

proactive control processes, namely the advanced preparation to a change of task-set (Capizzi, 

Fehér, Penolazzi, & Vallesi, 2015; Karayanidis & Jamadar, 2014; Karayanidis et al., 2010). 

Consequently, the attenuated amplitude of the switch-positivity in the patients’ group suggests 

the presence of altered proactive/anticipatory control processes. These control processes refer to 

the endogenous mechanisms of task-reconfiguration conceptualized by Rogers and Monsell 

(1995), which include shifting attention between stimulus attributes or features, retrieving task 

goals and rules, updating (or deleting) them in working memory. An alteration of these 

mechanisms might explain the RT slowing in switch trials.  
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In contrast to the cue-evoked ERPs, group differences on target-evoked potentials were present 

irrespective of the specific trial type. Namely, a less pronounced positivity at an early time 

window after the target onset over centro-frontal sites was found in the patient group, in all trial 

types. Given the task structure, we might speculate that this component is likely related to 

exogenous stimulus-driven attention mechanisms evoked by the onset of the target. These 

mechanisms help to rapidly direct attention towards task-relevant stimulus features (in this case, 

spatial location or letter identity). Once attention had been allocated to one of the two task-

relevant features, the procedural rules could be updated to implement the discrimination task, as 

indexed by the subsequent parietal positivity, which likely represents a P3b (Barceló et al., 

2007).  

Remarkably, it should be noted that the less pronounced positivity in switch trials relative to 

repeat trials over parietal sites (i.e., the switch-negativity) was equally present in both groups. 

This means that reactive control processes, specifically related to the switching requirements of 

the task, were unimpaired.  

An unexpected finding was an enhanced parieto-occipital N1 component evoked by the target 

stimulus in patients compared to controls, in all trial types. Classically, this early posterior ERP 

component reflects visual processing and its amplitude is modulated by selective attention (Luck, 

Heinze, Mangun, & Hillyard, 1990). Therefore, we may speculate that the larger N1 component 

observed in the patients group reflected an enhanced engagement of selective attention at early 

stage of (visual) target processing, and likely compensated deficit in more frontal attention 

orienting mechanisms (see also Prox, Dietrich, Zhang, Emrich, & Ohlmeier, 2007). Although 

this effect needs to be further investigated, it suggests that goal-relevant stimuli enrolled more 

low-level attentional resources in the patient group. 
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In summary, the behavioral results on the Switching task documented that ex-obese patients 

are slower in flexibly adapting their responses to changing task rules and the electrophysiological 

correlates suggested that this difficulty might specifically derive from altered 

preparatory/proactive control processes, which are consequently accompanied by a more 

pronounced engagement of visual attention to process target stimuli.  

From a behavioral point of view, no significant group differences were found in the Go/NoGo 

(SART) task. This finding is in line with previous investigations (Calvo et al., 2014; Hendrick et 

al., 2012) and, at a first glance, might be interpreted as reflecting the absence of response 

inhibition problems in ex-obese patients. Nonetheless, the analysis of electrophysiological 

correlates revealed that the two groups significantly differed in their brain responses, despite of 

the similar behavioral performance. Specifically, patients showed a significantly more 

pronounced fronto-central negative peak (N2) in response to the NoGo stimuli. This ERP 

component has been interpreted as an electrophysiological marker of conflict monitoring 

processes (Donkers & Van Boxtel, 2004; Enriquez-Geppert et al., 2010; Nieuwenhuis et al., 

2003). The NoGo stimuli elicit a response conflict because their stimulus-response set (i.e., 

number-withholding button press) competes with the Go ones (i.e., number-button press). 

Therefore, the larger N2 potential might be interpreted as an exaggerated response to overcome 

this conflict. Interestingly, this result replicated a previous ERP study on obese children on a 

Go/NoGo task (Kamijo et al., 2012). Furthermore, it converges with the results on the Stroop 

task, where participants have also to monitor and solve a conflict generated by the habitual and 

the required response (Botvinick, Braver, Barch, Carter, & Cohen, 2001). In spite of the N2 

difference, the NoGo-P3 amplitude was not significantly different in the two groups. Taken 

together, these results suggest that patients were more engaged in monitoring cognitive conflict 
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rather than inhibiting motor response per se. The similar number of commission errors observed 

in the two groups is likely due to the fact that the task taxed inhibitory control functions also in 

the control group and that patients implemented a compensation strategy, by relying more on 

reactive processes (i.e., the exaggerated N2).   

Some cautions should be taken into account when interpreting the study results. The main 

limitation is that the pre-surgical (baseline) data are missing, therefore we could not measure 

possible cognitive improvements or deteriorations. Moreover, the final sample size entered in the 

analyses of the Switching and Go/NoGo tasks was reduced compared to the original one since 

some participants could not handle the requirements of the tasks. This could have reduced ERP 

significant results and did not allow correlations with behavioral indexes. Also, the presence of 

overweight in some participants could have influenced the results. To test this possibility, we ran 

the analyses including the factor Overweight together with the factor Group (see Supplementary 

materials). All significant Group effects were confirmed whereas the Overweight factor never 

emerged as significant, therefore we could exclude the influence of Overweight factor. 

Collectively, the study reveals that even patients who successfully reached significant weight 

loss after bariatric surgery might show impaired cognitive control mechanisms, in their ability to 

resist to attentional interference, to flexibility adapt to task-set changes and to inhibit habitual 

responses. It is worth noting that ex-obese patients differed on some but not all measures from 

controls (i.e., in the verbal Stroop interference and in the switch cost), and this proves that they 

were impaired on specific cognitive control mechanisms, not globally. The fact that group 

differences only emerged at the electrophysiological level in the inhibitory task suggested that 

ERP measures could capture more subtle executive control dysfunctions. Furthermore, ERP 

results suggested that weight loss might result in some compensatory neural processes (larger N1 
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and N2 amplitudes). All these findings are relevant when considering that cognitive control 

processes, such as reduced flexibility, could undermine the adherence with diet and lifestyle 

recommendations (Galioto, Gunstad, Heinberg, & Spitznagel, 2013; Spitznagel et al., 2013) and 

that impaired cognitive abilities after surgery predict higher probability of later weight regain 

(Spitznagel et al., 2014).  
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Figure captions 

 

Figure 1. RT Stroop effect in the two Stroop tasks (Verbal and Spatial) for each group. Error 

bars represent the standard error of the mean. * p < .05 

 

Figure 2. Grand-average waveforms of cue-locked ERPs for each trial type (Single, Repeat, 

Switch) over centro-parietal sites. The waveforms represent ERPs averaged across Cz, C2, C4, 

CPz, CP1, and CP2 electrodes. The maps represent the topographical distribution of ERPs in the 

control group (left column), in the patient group (right column) and the ERP group difference 

(rightmost column) for the 200-400 ms time window.  

 

Figure 3. Grand-average waveforms of target-locked ERPs for each trial type (Single, Repeat, 

Switch) over central (left panel) and parieto-occipital (right panel) sites. The waveforms 

represent ERPs averaged across FC4, Cz, C2, C4, and CPz electrodes and across Pz and POz, 

respectively. The maps represent the topographical distribution of ERPs in the control group (left 

column), in the patient group (right column) and the ERP group difference (rightmost column) 

for the 160-200 ms time window. 

 

Figure 4. Grand-average waveforms of ERPs elicited in the SART. Group difference were 

detected over fronto-central electrodes (Fz and FCz), in the N2 component, maximally expressed 

in NoGo trials (bottom left panel). Additional group differences were found over centro-parietal 

electrodes (Pz and CPz), in the Go-P3 component, present only in Go trials. In the NoGo-P3 

component, present only in NoGo trials, group differences did not reached significance. The 

maps represent the topographical distribution of ERPs in the control and patient groups (upper 

maps) and the ERP group difference (lower maps), for the 280-340 ms time window. 
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