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Abstract. We consider a variational principle for approximated Weak KAM

solutions proposed by Evans. For Hamiltonians in quasi-integrable form h(p)+

εf(ϕ, p), we prove that the map which takes the parameters (ε, P, %) to Evans’
approximated solution uε,P,% is real analytic. In the mechanical case, we com-

pute a recursive system of periodic partial differential equations identifying

univocally the coefficients for the power series of the perturbative parameter ε.

1. Introduction. In the classical integrability theory of Hamiltonian systems, a
central role is played by the Hamilton-Jacobi method. The basic idea is to integrate
the Hamilton’s ODE by a change of variables (x, p)→ (X,P ) implicitly defined by
a generating function v(x, P ). That is{

X = ∂P v(x, P )

p = ∂xv(x, P )
(1)

In particular, one looks for a function v(x, P ) and for an integrable Hamiltonian
H̄(P ) which solve the so-called Hamilton-Jacobi equation

H(x, ∂xv(x, P )) = H̄(P ). (2)

If there exists a smooth change of variable (x, p)→ (X,P ) which satisfies (1), then
the original Hamiltonian dynamics transforms into the trivial dynamics{

Ẋ = DP H̄(P )

Ṗ = 0

Clearly, only special Hamiltonians are integrable in the above sense: the Hamilton-
Jacobi equation (2) does not in general admit smooth global solutions and, even if it
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does, the new variables (X,P ) are not globally defined. However, most mechanical
systems are quasi-integrable. That is

H(ϕ, p) = h(p) + εf(ϕ, p), (3)

where (ϕ, p) ∈ Td × Rd are the angle-action variables, ε is a small real parameter
and d ∈ N, d ≥ 1, is the fixed dimension of the ambient space.

For quasi-integrable Hamiltonians, the classical perturbation approach consists
in finding a canonical transformation which pushes the perturbation to the order ε2

and then iterating the procedure. Since for ε = 0 the Hamiltonian (3) is integrable,
we look for a generating function in the form

v(ϕ, P ) = P · ϕ+ εu(ϕ, P ) +O(ε2)

and possibly expand v(ϕ, P ) in a power series of ε. We note here that the ε-
dependence of the generating function v(x, P ) is crucial also for numerical inves-
tigations, e.g. in Celestial and Quantum Mechanics. We also observe that in this
context one has to deal with the resonances related to the so-called small divisors.
The main strategies to handle such a problem are based on KAM and Nekhoroshev
theorems (cf. [15, 2, 23, 26]) and on Newton-Nash-Moser implicit function theorem
(cf. [24, 14]).

The application of such deep results leads to new intriguing questions concerning,
for example, the generalization of the KAM Theory to a wider class of Hamiltonians
which are not necessarily almost-integrable. The most important outcomes in this
direction have been obtained by the Weak KAM Theory introduced by Mather,
Mané and Fathi (see, e.g., [22, 21, 10]) which exploits variational and PDE’s meth-
ods to treat Tonelli Hamiltonians. In particular, by the Weak KAM Theorem one
can prove that, for any P in Rd (and then with no non-resonance conditions) the
Hamilton-Jacobi equation (2) admits global Lipschitz continuous solutions. The
corresponding Hamiltonian H̄(P ) is given by

H̄(P ) = inf
u∈C1(Td)

sup
ϕ∈Td

H(ϕ, P + ∂ϕu(ϕ, P )) . (4)

and is called “effective Hamiltonian”. However, since Weak KAM solutions are in
general not differentiable, they cannot be used as generating functions in order to
conjugate the original flow to an integrable one.

In order to bypass this lack of regularity, in [7, 8] Evans introduced a sort of ap-
proximated integrability for Tonelli Hamiltonians. The main result of his approach
is a sequence of smooth functions uniformly converging to a Weak KAM solution
and defining, for any P ∈ Rd, a dynamics on Td. The properties of this torus
dynamics and its relations with the original Hamiltonian flow have been discussed
in [8] and in [3]. More recently, Evans returned to this subject in [9].

In the present paper, we propose a functional analytic approach to investigate
the variational approximated version of Weak KAM Theory introduced by Evans.
For Hamiltonians in the quasi-integrable form (3), we analyze the dependence on
parameters of the sequence of Evans’ approximated smooth solutions. In particular,
we prove that the map which takes the perturbative parameter ε to the approxi-
mated solution is real analytic in a neighborhood of 0 (see Theorem 1 here below).
As a consequence, it can be written in terms of a converging power series of ε for ε
close to 0. Moreover, for mechanical Hamiltonians, we compute a recursive system
of periodic partial differential equations which identifies univocally the coefficients
of the power series of the parameter ε (see Section 4). We underline two possible
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applications of this regularity result. First, the converging power series of ε can be
used in order to investigate the asymptotic behavior of the parameters involved in
Evans’ construction. Moreover, this series can be useful for a numerical treatment
of the above sequence of smooth functions uniformly converging to a Weak KAM
solution.

2. Analytical setting and main result. We start by recalling the main lines of
the approach to Weak KAM Theory proposed by Evans in [7, 8]. Instead of looking
for minimizers u for the sup norm

I[u] = sup
ϕ∈Td

H(ϕ, P + ∂ϕu(ϕ, P ))

as suggested by formula (4), Evans considers a positive real number % and looks for
minimizers u of the functional

I%[u] =

∫
Td

e%H(ϕ,P+∂ϕu)dϕ . (5)

Then, for all (P, %) ∈ Rd × R+ the corresponding Euler-Lagrange equation is

divϕ

(
e%H(ϕ,P+∂ϕu) ∂H

∂p
(ϕ, P + ∂ϕu)

)
= 0. (6)

In detail:

1

%

d∑
i=1

(Hpi(ϕ, P + ∂ϕu))ϕi
+

d∑
i,j=1

Hpi(ϕ, P + ∂ϕu)Hpj (ϕ, P + ∂ϕu)u′′ij+

+

d∑
i=1

Hϕi
(ϕ, P + ∂ϕu)Hpi(ϕ, P + ∂ϕu) = 0

(7)

where u′′ij = ∂2u
∂ϕi∂ϕj

. Under suitable convexity hypotheses on H –see (c1), (c2) and

(c3) below– and by using standard variational techniques, Evans proves the exis-
tence of minimizers u for (5) for all (P, %) ∈ Rd × R+. He also shows that such
minimizers are smooth and unique up to an additive constant. (So that there exists
a unique minimizer with zero integral mean, i.e. such that

∫
Td udϕ = 0.)

It is worth noting that the variational problem given by (5) arises in certain mean-
field games. For an exhaustive discussion of these structures, we refer to [20], [11]
and also to [12] for recent extensions for elliptic problems.

In the present paper we focus our attention on smooth real valued Hamilto-
nians H defined on the covering space Rd ×Rd of Tn ×Rn by the quasi–integrable
form

H(ϕ, p) = h(p) + εf(ϕ, p)

where the functions h and f satisfy the following conditions:

(c1) (periodicity in ϕ) For any p ∈ Rd, the mapping ϕ 7→ f(ϕ, p) is Td-periodic;
(c2) (strict convexity) There exists a constant γ > 0 such that

∂2h

∂pi∂pj
(p)ξiξj ≥ γ|ξ|2 (8)

for each p, ξ ∈ Rd;
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(c3) (growth bounds) There exists a constant C > 0 such that

|f(ϕ, p)| ≤ C, |D2
ϕ,pf(ϕ, p)| ≤ C(1 + |p|),

|D2
ϕf(ϕ, p)| ≤ C(1 + |p|2), |D2

pH(ϕ, p)| ≤ C

for each ϕ, p ∈ Rd;
(c4) (regularity of f and h) We suppose that f(ϕ, p) is a jointly real analytic

function of (ϕ, p) ∈ Td × R and that h is real analytic.

As proved by Evans [7, Thm. 5.2], conditions (c1) – (c3) imply the existence of a
unique solution of equation (6) with zero integral mean. We shall denote such a
solution by uε,P,ρ. Then we ask the following question:

what can be said on the function which takes (ε, P, ρ) to uε,P,ρ?

In particular,

what about the ε-dependence?

In our main Theorem 1 we prove that under conditions (c1) – (c4) the map
which takes (ε, P, ρ) to uε,P,ρ is real analytic. However, one may wish to relax the
regularity condition in (c4) and –for example– ask a differentiability condition on
f and h instead of the real analyticity prescribed in (c4) (cf. Proposition 3 below).
As one can expect, a weaker regularity assumption on f and h leads to a lower
regularity of the function which takes (ε, P, ρ) to the solution uε,P,ρ (cf. Thm. 6
below).

The proof of Theorem 1 utilizes a functional analytic approach. We identify
uε,P,% as the implicit solution of a functional equation M̃(ε, P, %, u) = 0, where M̃
is a (non-linear) operator acting between suitable Banach spaces (see (13) and (14)
below). Then we study the dependence of uε,P,% upon (ε, P, %) by means of the
Implicit Function Theorem for real analytic maps (cf., e.g., Deimling, Ch. 4 in [6]).
We observe that methods based on the Implicit Function Theorem have been largely
exploited for the study of nonlinear perturbation problems. We refer for example to
the works of Stoppelli and Valent in nonlinear elasticity (see, e.g., [27, 28, 29]) and
to the approach of Henry for the analysis of (regular) perturbations of the domain
in boundary value problems (cf. [13]). We also mention the papers written by the
second named author together with Lanza de Cristoforis and Musolino where a
method based on the Implicit Function Theorem is applied to the study of singular
perturbations of the domain in linear and nonlinear boundary value problems (see,
for example, [5, 17]).

In the present paper we will need to set the problem in the frame of Banach
spaces of periodic functions with the following two properties: they have to be
appropriate for the application of the standard elliptic regularity theory and, in
addition, they have to be closed under the product of functions. A suitable choice
is that of periodic Schauder spaces. Here below, we first introduce such spaces and
then we state the main result of the paper.

For any m ∈ N and β ∈ [0, 1[, we denote by Cm,β(Td) the space of periodic
functions from Rd to R which have continuous partial derivatives up to the order
m and β-Hölder continuous derivatives of order m. As is well known, Cm,β(Td) is a
Banach space. In addition, we denote by Cm,βz (Td) the closed subspace of Cm,β(Td)
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consisting of the functions with zero mean,
∫
Td u dϕ = 0. For the sake of brevity we

write Cm(Td) instead of Cm,0(Td). Then,

we fix once for all α ∈]0, 1[

and we have the following Theorem 1 which is an immediate consequence of Theorem
6 below.

Theorem 1. Let H : Rd×Rd → R be a smooth Hamiltonian in the quasi–integrable
form

H(ϕ, p) = h(p) + εf(ϕ, p) ,

where the functions h and f satisfy conditions (c1) – (c4). For any (P, %) ∈ Rd×R+,
there exists ε0 > 0 such that the map from ] − ε0, ε0[→ C2,β

z (Td) which takes ε to
the unique solution uε,P,% of equation (6) is real analytic.

We observe that by Theorem 6 one may also deduce that the map from ]−ε0, ε0[×Rd×
R+ to C2,β

z (Td) which takes a triple (ε, P, %) to uε,P,% is real analytic.
As an immediate consequence of Theorem 1, there exists 0 < ε1 ≤ ε0 and a

sequence {vk,P,ρ}k∈N in C2,α
z (Td) such that

uε,P,ρ =

+∞∑
k=0

εk

k!
vk,P,ρ ∀ε ∈]− ε1, ε1[

where the series converges absolutely and uniformly in C2,α
z (Td). In Section 4 we

consider the mechanical case H(ϕ, p) = |p|2/2 + εf(ϕ) and we compute a recursive
system of periodic partial differential equations which identify univocally the coef-
ficients {vk,P,ρ}k∈N. Finally, we observe that for a numerical use of such a system,
one may be interested in asymptotic approximations of uε,P,k rather than having
the complete series expansion. Under the hypothesis of Theorem 1 one can prove
that

uε,P,k =

N∑
h=0

εh

h!
vh,P,k +O(εN+1) as ε→ 0 ,

for all N ∈ N. However, asymptotic approximations of such a form do not require
the real analyticity of the functions f and h and can be deduced under weaker
regularity assumptions (cf. Theorem 6 below).

3. Proof of Theorem 1.

3.1. Regularity of the operators. We start by studying the linear operator LP,%
defined by

LP,%u =

d∑
i,j=1

(
1

%

∂2h

∂pi∂pj
(P ) +

∂h

∂pi
(P )

∂h

∂pj
(P )

)
u′′ij

for all u ∈ C2,α(Td). In view of the strict convexity hypothesis (8), we observe that

d∑
i,j=1

(
1

%

∂2h

∂pi∂pj
(P ) +

∂h

∂pi
(P )

∂h

∂pj
(P )

)
ξiξj ≥

γ

%
|ξ|2 +

(
d∑
i=1

∂h

∂pi
(P )ξi

)2

≥ γ

%
|ξ|2

for all ξ ∈ Rd. Thus LP,% is elliptic and we have the following

Proposition 2. Let (P, %) ∈ Rd × R+ be fixed. The following statements hold:

(i) LP,%u ∈ C0,α
z (Td) for all u ∈ C2,α(Td);

(ii) The map which takes u to LP,%u is an isomorphism from C2,α
z (Td) to C0,α

z (Td).
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We premise an elementary remark to the proof of Proposition 2. If we denote by
Qd the open domain ]0, 1[d with boundary ∂Qd, by νQd the outward unit normal to

∂Qd, and by dσ the area element on ∂Qd, then we have∫
Td

div v dϕ =

∫
∂Qd

νQd · v dσ = 0 (9)

for all vector valued functions v ≡ (v1, . . . , vd) ∈ (C1(Td))d. The proof of (9)
follows by the divergence theorem, by the periodicity of f , and by the equality
νQd(ϕ) = −νQd(ϕ′) which holds for all ϕ ≡ (ϕ1, . . . , ϕj−1, 0, ϕj , . . . , ϕd) and ϕ′ ≡
(ϕ1, . . . , ϕj−1, 1, ϕj , . . . , ϕd) in ∂Qd and for all j ∈ {1, . . . , d}. We now proceed with
the proof of Proposition 2.

Proof. (i) It is easily verified that LP,%u ∈ C0,α(Td), so it remains to show that∫
Td LP,%u dx = 0. Let AP,% denote the d × d real matrix with entries (AP,%)i,j

defined by

(AP,%)i,j ≡
1

%

∂2h

∂pi∂pj
(P ) +

∂h

∂pi
(P )

∂h

∂pj
(P ) ∀(i, j) ∈ {1, . . . , d}2

Then LP,%u = div(AP,%∇u) for all u ∈ C2,α(Td). Thus
∫
Td LP,%u dϕ = 0 by the

periodicity of AP,%∇u and equality (9).

(ii) Since LP,% is continuous from C2,α
z (Td) to C0,α

z (Td) it suffices to show that
it is one-to-one and onto in order to derive that it is an isomorphism by the open
mapping theorem. If LP,%u = 0 then a standard energy argument shows that∫
Td ∇u · A∇u dϕ = 0. Accordingly ∇u · A∇u = 0 on Td and thus ∇u = 0 by the

ellipticity of LP,%. Thus u is constant and then u = 0 because
∫
Td u dϕ = 0 by

the membership of u in C2,α
z (Td). Now we have to prove that LP,% is onto. Let

v ∈ C0,α
z (Td). Then we denote by NP,%(v) the periodic newtonian potential defined

by

NP,%(v)(ϕ) =

∫
Td

SLP,%,Td(ϕ− ϑ)v(ϑ) dϑ ∀ϕ ∈ Td ,

where SLP,%,Td denotes the periodic analog of a fundamental solution of LP,% intro-
duced in Appendix A. Then by a classical argument based on Fubini Theorem and
the periodicity of SLP,%,Td one verifies that∫
Td

NP,%(v)(ϕ) dϕ =

∫
Td

∫
Td

SLP,%,Td(ϕ−ϑ)v(ϑ) dϑ dϕ =

∫
Td

v(ϑ) dϑ

∫
Td

SLP,%,q(ϕ) dϕ = 0 .

Thus, by Proposition 8 in Appendix A we haveNP,%(v) ∈ C2,α
z (Td) and LP,%NP,%(v) =

v.
We proceed by studying the (nonlinear) operator M from R×Rd×R+×C2,α

z (Td)
to C0,α(Td) which takes (ε, P, %, u) to the function defined by the left hand side of
(7). So that (7) is equivalent to M(ε, P, %, u) = 0. In order to investigate the
mapping properties of M and establish the correct regularity assumptions on the
functions f and h, we exploit the following notation for the composition operators.

If F is a continuous function from Td × Rd to R, then we denote by TF the
(nonlinear nonautonomous) composition operator from (C(Td))d to C(Td) which
takes a vector valued function v ≡ (v1, . . . , vd) to the function TF (v) defined by

TF (v)(ϕ) ≡ F (ϕ, v(ϕ)) ∀ϕ ∈ Td .
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Similarly, for a continuous function G from Rd to R, we denote by TG the (nonlinear
autonomous) composition operator from (C(Td))d to C(Td) which takes a vector
valued function v ≡ (v1, . . . , vd) to the function TG(v) defined by

TG(v)(ϕ) ≡ G(v(ϕ)) ∀ϕ ∈ Td

In the sequel we shall assume the following condition:

The composition operators Tf , Th, and T∂ϕj
f , with j ∈ {1, . . . , d}, map

functions of (C1,α(Td))d to functions of C0,α(Td).
(10)

In addition we shall assume either one of the following conditions (11) and (12).
Here q is fixed natural number in N \ {0}.

The maps Tf and Th are of class Cq+2 from (C1,α(Td))d to C0,α(Td) and

the maps T∂ϕj
f , with j ∈ {1, . . . , d}, are of class Cq+1 from (C1,α(Td))d to C0,α(Td).

(11)

The maps Tf and Th are real analytic from (C1,α(Td))d to C0,α(Td) and

the maps T∂ϕj
f , with j ∈ {1, . . . , d}, are real analytic from (C1,α(Td))d to C0,α(Td).

(12)

We observe that condition (11) implies that T∂2
pipj

h, T∂pih, T∂pif , T∂ϕi
f , T∂2

pipj
f , and

T∂2
ϕipi

f are continuously Frechèt differentiable maps of class Cq from (C1,α(Td))d to

C0,α(Td) while condition (12) implies that T∂2
pipj

h, T∂pih, T∂pif , T∂ϕi
f , T∂2

pipj
f , and

T∂2
ϕipi

f are real analytic from (C1,α(Td))d to C0,α(Td), see [17, Prop. 6.3]. Clearly

condition (12) implies condition (11).
Finally, the next proposition gives some sufficient conditions for the validity of (10),
(11), and (12). In the sequel we say that a function f belongs to Cm(Td × Rd) if
f belongs to Cm(Rd × Rd) and for every ξ ∈ Rd fixed the map which takes x ∈ Rd
to f(x, ξ) is periodic. Similarly, we say that f is jointly real analytic from Td ×Rd
to R if it is jointly real analytic from Rd × Rd to R and for every ξ ∈ Rd fixed the
map which takes x ∈ Rd to f(x, ξ) is periodic.

Proposition 3. The following statements hold.

(i) If f ∈ Cq+4(Td × Rd) and h ∈ Cq+4(Rd), then conditions (10) and (11) are
verified.

(ii) If f is jointly real analytic from Td × Rd to R and h is real analytic, then
conditions (10) and (12) are verified.

Proof. Let Ω be an open neighbourhood of clQd in Rd and assume that Ω is of
class C1. Then the membership of f in Cq+4(Td × Rd) imply that f|clΩ×Rd ∈
Cq+4(clΩ×Rd). Accordingly, the validity of statement (i) follows by [29, Thm. 4.4
in Chap. II]. To show that statement (ii) holds, we note that if f is real analytic
then the functions from clΩ×Rd to R which takes (x, ξ) to f(x, ξ) and to ∂xi

f(x, ξ),
with i ∈ {1, . . . , d} are real analytic in ξ uniformly with respect to x. Then the
validity of (ii) follows by [29, Thm. 5.2 in Chap. II].
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We write now the (nonlinear) operator M in terms of the operators T∂2
pipj

h, T∂pih,

T∂2
ϕipi

f , T∂pif involving the integrable Hamiltonian h and the function f .

M(ε, P, %, u) =

d∑
i,j=1

(
1

%
T∂2

pipj
h(P + ∂ϕu) + T∂pih(P + ∂ϕu)T∂pjh(P + ∂ϕu)

)
u′′ij

+
ε

%

d∑
i,j=1

T∂2
pipj

f (P + ∂ϕu) +
ε

%

d∑
i=1

T∂2
ϕipi

f (P + ∂ϕu)

+ 2ε

d∑
i,j=1

T∂pif (P + ∂ϕu)T∂pjh(P + ∂ϕu)u′′ij + ε

d∑
i=1

T∂ϕi
f (P + ∂ϕu)T∂pih(P + ∂ϕu)

+ ε2
d∑

i,j=1

T∂pif (P + ∂ϕu)T∂pj f (P + ∂ϕu)u′′ij + ε2
d∑
i=1

T∂ϕi
f (P + ∂ϕu)T∂pif (P + ∂ϕu)

(13)

Then, by standard calculus in Banach spaces and by the continuity of the product
of functions from C0,α

z (Td)× C0,α
z (Td) to C0,α(Td), one proves the following

Proposition 4. Let condition (10) hold true.

(i) If condition (11) is verified for a q ∈ N \ {0}, then the map M is of class Cq

from R× Rd × R+ × C2,α
z (Td) to C0,α(Td).

(ii) If in addition condition (12) holds true, then the map M is real analytic from
R× Rd × R+ × C2,α

z (Td) to C0,α(Td).

3.2. Applying the Implicit Function Theorem. We plan to use the Implicit
Function Theorem for real analytic maps in order to study equation M(ε, p, %, u) = 0
in a neighbourhood of a fixed point (0, P0, %0, 0) ∈ R× Rd × R+ × C2,α

z (Td).
The partial differential ofM with respect to the variable u evaluated at (0, P0, %0, 0)

is delivered by

∂uM(0, P0, %0, 0).δu = LP0,%0δu ∀δu ∈ C2,α
z (Td)

and LP0,%0 is an isomorphism from C2,α
z (Td) to C0,α

z (Td) (cf. Prop. 2).
We note that, since

∫
Td M(ε, p, %, u) dϕ may be different from 0, the image of M is

not contained in C0,α
z (Td). To overcome this difficulty, we introduce the auxiliary

map M̃ defined by

M̃(ε, P, %, u) ≡ e%(h(P+∂ϕu)+εf(ϕ,P+∂ϕu))M(ε, P, %, u)

for all (ε, P, %, u) ∈ R×Rd×R+×C2,α
z (Td), or equivalently, by using the operators

Th and Tf ,

M̃(ε, P, %, u) = e%(Th(P+∂ϕu)+εTf (P+∂ϕu))M(ε, P, %, u) (14)

Then one verifies that

M̃(ε, P, %, u) =
1

%
divϕ

(
e%(Th(P+∂ϕu)+εTf (P+∂ϕu))(T∂pih(P + ∂ϕu) + εT∂pif (P + ∂ϕu))i∈{1,...,d}

)
and thus, by (9), we conclude that∫

Td

M̃(ε, P, %, u) dϕ = 0

for all (ε, P, %, u) ∈ R× Rd × R+ × C2,α
z (Td). Accordingly M̃(ε, P, %, u) ∈ C0,α

z (Td)
and by using Proposition 4 one shows an analog result for the map M̃ .
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Proposition 5. Let condition (10) hold true.

(i) If condition (11) is verified for a q ∈ N \ {0}, then M̃ is a map of class Cq

from R× Rd × R+ × C2,α
z (Td) to C0,α

z (Td).
(ii) If in addition condition (12) holds true, then M̃ is real analytic from R×Rd×

R+ × C2,α
z (Td) to C0,α

z (Td).

Finally, a straightforward calculation shows that the partial differential of M̃ with
respect to the variable u evaluates at (0, p0, %0, 0) ∈ R × Rd × R+ × C2,α

z (Td) is
delivered by

∂uM̃(0, P0, %0, 0).δu = e%0h(P0)LP0,%0δu ∀δu ∈ C2,α
z (Td)

Then, by Proposition 2, ∂uM̃(0, P0, %0, 0) is an isomorphism from C2,α
z (Td) to

C0,α
z (Td) and by the Implicit Function Theorem, see [6, Ch. 4], one deduces the

following

Theorem 6. Let (P0, %0) ∈ Rd × R+. Let condition (10) hold true.

(i) Assume that condition (11) is verified for a q ∈ N \ {0}. Then there exist
a neighborhood U of (0, P0, %0) in R × Rd × R+, a neighborhood V of 0 in
C2,α
z (Td) and a map U of class Cq from U to V such that the set of zeros of

M̃ in U × V coincides with the graph of U .
(ii) If in addition condition (12) is verified, then U is real analytic.

In particular we have U(0, P0, %0) = 0 and

M̃(ε, P, %, U(ε, P, %)) = 0 ∀(ε, P, %) ∈ U .

So that

M(ε, P, %, U(ε, P, %)) = 0 ∀(ε, P, %) ∈ U
(cf. equality (14)). Thus U(ε, P, %) coincides with the unique solution uε,P,% of

M(ε, P, %, uε,P,%) = 0

found by Evans under conditions (c1)–(c3) in the Introduction (see also Thm. 5.2
in [7]). Accordingly, we have

uε,P,% = U(ε, P, %) ∀(ε, P, %) ∈ U . (15)

Finally, since hypothesis (c4) for H(ϕ, p) = h(p) + εf(ϕ, p) imply conditions (10)
and (12) (cfr. Proposition 3), Theorem 1 immediately follows.

4. Mechanical case. This section is devoted to the mechanical case:

H(ϕ, p) = |p|2/2 + εf(ϕ)

Let us fix P ∈ Rd and k ∈ N \ {0}. We focus our attention on the dependence of
uε,P,k upon the perturbative parameter ε. As an immediate consequence of Theorem
1 and of equality (15), there exist ε1 > 0 and a sequence {vh,P,k}h∈N in C2,α

z (Td)
such that

uε,P,k =

+∞∑
h=0

εh

h!
vh,P,k ∀ε ∈]− ε1, ε1[

where the series converges uniformly in C2,α
z (Td).

We now show how to compute a sequence of recursive equations that determine
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the vh,P,k’s. Starting by equality M̃(ε, P, k, uε,P,%) = 0 (see formula (14)) and using
the general Leibniz rule, we have

∂hε (M̃(ε, P, k, uε,P,%)) = ek
( |P+∂ϕuε,P,%|2

2 +εg
)
∂hε (M(ε, P, k, uε,P,%))

+

h−1∑
l=0

(
h

j

)
∂h−jε (ek

( |P+∂ϕuε,P,%|2

2 +εg
)
)∂jε(M(ε, P, k, uε,P,%)) ∀ε ∈]− ε1, ε1[

(16)

for all h ∈ N, h ≥ 1.
We now take the limit as ε → 0 in equality (16) and apply a standard induction

argument on h, verifing that equation limε→0 ∂
h
ε (M̃(ε, P, k, uε,P,%)) = 0 is equivalent

to

lim
ε→0

∂hε (M(ε, P, k, uε,P,%)) = 0

for all h ∈ N, h ≥ 1. Then, by a straightforward calculation, we obtain that the
equations for v0,P,k, v1,P,k, and v2,P,k are as follows:

v0,P,k = 0 ,

LP,%v1,P,k = −P · ∂ϕg ,

LP,%v2,P,k = −2(∂ϕv1,P,k) · ∂ϕg − 4

d∑
i,j=1

Pi ∂ϕi
v1,P,k ∂

2
ϕiϕj

v1,P,k

while the (recursive) equations for the vh,P,k’s with h ≥ 3 are delivered by

LP,%vh,P,k = −h!(∂ϕvh−1,P,k) · ∂ϕg − 2

d∑
i,j=1

Pi

h−1∑
l=1

(
h

l

)
∂ϕi

vh−l,P,k ∂
2
ϕiϕj

vl,P,k

−
d∑

i,j=1

h−1∑
l1=1

(
h

l1

) h−1−l1∑
l2=1

(
h− l1
l2

)
∂ϕi

vl1,P,k ∂ϕj
vl2,P,k ∂

2
ϕiϕj

vh−l1−l2,P,k

Appendix A. Appendix. For fixed (P, %) ∈ Rd × R+, we consider the partial
differential operator on Rd defined by

LP,% ≡
d∑

i,j=1

(
1

%

∂2h

∂pi∂pj
(P ) +

∂h

∂pi
(P )

∂h

∂pj
(P )

)
∂xi

∂xj
.

and the polynomial function

Ξp,%(ξ) ≡
d∑

i,j=1

(
1

%

∂2h

∂pi∂pj
(p) +

∂h

∂pi
(p)

∂h

∂pj
(p)

)
ξiξj ∀ξ ∈ Rd

(so that Lp,% = Ξp,%(∂x1
, . . . , ∂xd

)). As is well known, there exists a periodic tem-
pered distribution SP,%,Td on Rd such that

LP,% SP,%,Td =
∑
z∈Zd

δz − 1 ,

where δz denotes the Dirac measure with mass in z (cf. e.g. [1, page 53] and [18]).
The distribution SP,%,Td is determined up to an additive constant, and we can take

SP,%,Td(x) = −
∑

z∈Zd\{0}

1

4π2 ΞP,%(z)
e2πiz·x ,
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in the sense of distributions in Rd (cf. e.g., [18, Thm. 3.1]). In addition, we have
the following result (for a proof we refer to [18, Thm. 3.5]).

Proposition 7. The following statements hold.

(i) SP,%,Td is real analytic in Rd \ Zd.
(ii) If SP,% is a fundamental solution of LP,% then the difference (SP,%,Td − SP,%)

is real analytic in (Rd \ Zd) ∪ {0}.
(iii) SP,%,Td belongs to L1

loc(Rd).

For all functions f ∈ C0,α(Td), we now denote by NP,%(f) the periodic newtonian
potential defined by

NP,%(f)(ϕ) =

∫
Td

SLP,%,Td(ϕ− ϑ)f(ϑ) dϑ ∀ϕ ∈ Td .

Then, by Proposition 7, by the properties of the fundamental solutions of elliptic
constant coefficient operators (cf. [16, Ch. III] and [4, Thm. 5.2]) and by arguing
as in [19, proof of Lem. 3.1] (see also [25, Thm. 2.1]) one verifies the validity of the
following

Proposition 8. If f ∈ C0,α(Td), then Np,%(f) ∈ C2,α(Td) and

LP,%NP,%(f) = f −
∫
Td

f(ϕ) dϕ .
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