A NEW CHARACTERIZATION OF COMPLETE HEYTING AND CO-HEYTING ALGEBRAS

FRANCESCO RANZATO

Dipartimento di Matematica, University of Padova, Italy *e-mail address*: francesco.ranzato@unipd.it

ABSTRACT. We give a new order-theoretic characterization of a complete Heyting and co-Heyting algebra C . This result provides an unexpected relationship with the field of Nash equilibria, being based on the so-called Veinott ordering relation on subcomplete sublattices of C, which is crucially used in Topkis' theorem for studying the order-theoretic stucture of Nash equilibria of supermodular games.

INTRODUCTION

Complete Heyting algebras — also called frames, while locales is used for complete co-Heyting algebras — play a fundamental role as algebraic model of intuitionistic logic and in pointless topology [\[Johnstone 1982,](#page-10-0) [Johnstone 1983\]](#page-10-1). To the best of our knowledge, no characterization of complete Heyting and co-Heyting algebras has been known. As reported in [\[Balbes and Dwinger 1974\]](#page-10-2), a sufficient condition has been given in [\[Funayama 1959\]](#page-10-3) while a necessary condition has been given by [\[Chang and Horn 1962\]](#page-10-4).

We give here an order-theoretic characterization of complete Heyting and co-Heyting algebras that puts forward an unexected relationship with Nash equilibria. Topkis' theorem [\[Topkis 1998\]](#page-10-5) is well known in the theory of supermodular games in mathematical economics. This result shows that the set of solutions of a supermodular game, *i.e.*, its set of pure-strategy Nash equilibria, is nonempty and contains a greatest element and a least one [\[Topkis 1978\]](#page-10-6). Topkis' theorem has been strengthned by [\[Zhou 1994\]](#page-10-7), where it is proved that this set of Nash equilibria is indeed a complete lattice. These results rely on so-called Veinott's ordering relation (also called strong set relation). Let $\langle C, \leq, \wedge, \vee \rangle$ be a complete lattice. Then, the relation $\leq^v \subseteq \wp(C) \times \wp(C)$ on subsets of C, according to Topkis [\[Topkis 1978\]](#page-10-6), has been introduced by Veinott [\[Topkis 1998,](#page-10-5) [Veinott 1989\]](#page-10-8): for any $S, T \in \wp(C)$,

$$
S \leq^v T \iff \forall s \in S. \forall t \in T. \ s \land t \in S \ \& \ s \lor t \in T.
$$

This relation \leq^v is always transitive and antisymmetric, while reflexivity $S \leq^v S$ holds if and only if S is a sublattice of C. If $SL(C)$ denotes the set of nonempty subcomplete sublattices of C then $\langle SL(C), \leq v \rangle$ is therefore a poset. The proof of Topkis' theorem is then based on the fixed points of a certain mapping defined on the poset $\langle SL(C), \leq^v \rangle$.

¹⁹⁹⁸ ACM Subject Classification: F.3.0 [Theory of computation]: Logics and meanings of programs—General. *Key words and phrases:* Complete Heyting algebra, Veinott ordering.

To the best of our knowledge, no result is available on the order-theoretic properties of the Veinott poset $\langle SL(C), \leq^v \rangle$. When is this poset a lattice? And a complete lattice? Our efforts in investigating these questions led to the following main result: the Veinott poset $SL(C)$ is a complete lattice if and only if C is a complete Heyting and co-Heyting algebra. This finding therefore reveals an unexpected link between complete Heyting algebras and Nash equilibria of supermodular games. This characterization of the Veinott relation \leq^v could be exploited for generalizing a recent approach based on abstract interpretation for approximating the Nash equilibria of supermodular games introduced by [\[Ranzato 2016\]](#page-10-9).

1. NOTATION

If $\langle P, \leq \rangle$ is a poset and $S \subseteq P$ then lb (S) denotes the set of lower bounds of S, *i.e.*, lb $(S) \triangleq \{x \in P\}$ $P | \forall s \in S$. $x \leq s$, while if $x \in P$ then $\downarrow x \triangleq \{y \in P | y \leq x\}.$ Let $\langle C, \leq, \wedge, \vee \rangle$ be a complete lattice. A nonempty subset $S \subseteq C$ is a subcomplete sublattice of C if for all its nonempty subsets $X \subseteq S$, $\wedge X \in S$ and $\vee X \in S$, while S is merely a sublattice of C if this holds for all its nonempty and finite subsets $X \subseteq S$ only. If $S \subseteq C$ then the nonempty Moore closure of S is defined as $\mathcal{M}^*(S) \triangleq \{ \land X \in C \mid X \subseteq S, X \neq \emptyset \}$. Let us observe that \mathcal{M}^* is an upper closure operator on the poset $\langle \wp(C), \subseteq \rangle$, meaning that: (1) $S \subseteq T \implies \mathcal{M}^*(S) \subseteq \mathcal{M}^*(T)$; $(2) S \subseteq M^*(S);$ (3) $M^*(M^*(S)) = M^*(S)$. We define

 $SL(C) \triangleq \{ S \subseteq C \mid S \neq \emptyset, S \text{ subcomplete sublattice of } C \}.$

Thus, if \leq^v denotes the Veinott ordering defined in Section then $\langle SL(C), \leq^v \rangle$ is a poset. C is a complete Heyting algebra (also called frame) if for any $x \in C$ and $Y \subseteq C$, $x \wedge (\bigvee Y) =$ $\bigvee_{y \in Y} x \land y$, while it is a complete co-Heyting algebra (also called locale) if the dual equation $x \vee (\bigwedge Y) = \bigwedge_{y \in Y} x \vee y$ holds. Let us recall that these two notions are orthogonal, for example the complete lattice of open subsets of $\mathbb R$ ordered by \subseteq is a complete Heyting algebra, but not a complete co-Heyting algebra. C is (finitely) distributive if for any $x, y, z \in C$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$. Let us also recall that C is completely distributive if for any family $\{x_{i,k} | j \in J, k \in K(j)\} \subseteq C$, we have that

$$
\bigwedge_{j \in J} \bigvee_{k \in K(j)} x_{j,k} = \bigvee_{f \in J \rightsquigarrow K} \bigwedge_{j \in J} x_{j,f(j)}
$$

where J and, for any $j \in J$, $K(j)$ are sets of indices and $J \rightsquigarrow K \triangleq \{f : J \rightarrow \bigcup_{j \in J} K(j) \mid \forall j \in J\}$ J. $f(j) \in K(j)$ denotes the set of choice functions. It turns out that the class of completely distributive complete lattices is strictly contained in the class of complete Heyting and co-Heyting algebras. Clearly, any completely distribuitive lattice is a complete Heyting and co-Heyting algebra. On the other hand, this containment turns out to be strict, as shown by the following counterexample.

Example 1.1. Let us recall that a subset $S \subseteq [0,1]$ of real numbers is a regular open set if S is open and S coincides with the interior of the closure of S. Let us consider $C = \sqrt{\{S\}}$ $[0, 1]$ | S is a regular open set}, \subseteq). It is known that C is a complete Boolean algebra (see e.g. [\[Vladimirov 2002,](#page-10-10) Theorem 12, Section 2.5]), where $\neg S$ denotes the complement of $S \in \mathcal{C}, \emptyset$ is the least element and $(0, 1)$ is the greatest element. As a consequence, C is a complete Heyting and co-Heyting algebra (see e.g. [\[Vladimirov 2002,](#page-10-10) Theorem 3, Section 0.2.3]). It also known that a complete Boolean algebra is completely distributive if and only if it is atomic (see [\[Koppelberg 1989,](#page-10-11) Theorem 14.5, Chapter 5]). Recall that an element $a \in C$ in a complete lattice is an atom if a is different from the least element \perp_C of C and for any $x \in C$, if $\perp_C < x \le a$ then $x = a$, while C is atomic if for any $x \in C^+ \triangleq C \setminus {\perp_C}$ there exists an atom $a \in C$ such that $a \leq x$. Let us

show that C is not completely distributive. We clearly have that $\bigwedge_{S \in \mathcal{C}^+} \vee \{S, \neg S\} = (0, 1)$. Let us assume, by contradiction, that $\mathcal C$ is completely distributive. Then, we have that

$$
(0,1) = \bigvee_{f \in \mathcal{C}^+ \to \{\text{tt}, \text{ff}\}} \bigwedge_{S \in \mathcal{C}^+} T_{S,f(S)}
$$

where for any $S \in \mathcal{C}^+$,

$$
T_{S,f(S)} = \begin{cases} S & \text{if } f(S) = \text{tt} \\ \neg S & \text{if } f(S) = \text{ff} \end{cases}
$$

First, let us observe that for any $V \in \mathcal{C}^+$,

$$
V = V \wedge (0,1) = V \wedge \Big(\bigvee_{f \in C^+ \to \{\text{tr,ff}\}} \bigwedge_{S \in C^+} T_{S,f(S)} \Big)
$$

so that it must exist some $f_V \in C^+ \to \{ \text{tt}, \text{ff} \}$ such that $\bigwedge_{S \in C^+} T_{S, f_V(S)} \neq \emptyset$. It turns out that for any $V \in C^+$, $\bigwedge_{S \in C^+} T_{S, f_V(S)}$ is an atom of C. In fact, if $U \in C^+$ is such that $\varnothing \subsetneq$ $U \subseteq \bigwedge_{S \in \mathcal{C}^+} T_{S, f_V(S)}$ then $U \subseteq T_{U, f_V(U)}$, so that $T_{U, f_V(U)} = U$, thus implying that $U = \bigwedge_{S \in \mathcal{C}^+} T_{S, f_V(S)}$. This implies that \mathcal{C} is atomic, which is a contradiction. $_{S \in \mathcal{C}^+} T_{S, f_V(S)}$. This implies that C is atomic, which is a contradiction.

2. THE SUFFICIENT CONDITION

To the best of our knowledge, no result is available on the order-theoretic properties of the Veinott poset $\langle SL(C), \leq^v \rangle$. The following example shows that, in general, $\langle SL(C), \leq^v \rangle$ is not a lattice.

Example 2.1. Consider the nondistributive pentagon lattice N_5 , where, to use a compact notation, subsets of N_5 are denoted by strings of letters.

Consider ed, abce $\in SL(N_5)$. It turns out that $\downarrow ed = \{a, c, d, ab, ac, ad, cd, ed, acd, ade, cde, abde,$ acde, abcde} and \downarrow abce = {a, ab, ac, abce}. Thus, {a, ab, ac} is the set of common lower bounds of ed and abce. However, the set $\{a, ab, ac\}$ does not include a greatest element, since $a \leq^v ab$ and $a \leq^v ac$ while ab and ac are incomparable. Hence, ab and c are maximal lower bounds of ed and *abce*, so that $\langle SL(N_5), \leq^v \rangle$ is not a lattice.

Indeed, the following result shows that if $SL(C)$ turns out to be a lattice then C must necessarily be distributive.

Lemma 2.2. If $\langle SL(C), \leq^v \rangle$ is a lattice then C is distributive.

Proof. By the basic characterization of distributive lattices, we know that C is not distributive iff either the pentagon N_5 is a sublattice of C or the diamond M_3 is a sublattice of C. We consider separately these two possibilities.

 (N_5) Assume that N_5 , as depicted by the diagram in Example [2.1,](#page-2-0) is a sublattice of C. Following Example [2.1,](#page-2-0) we consider the sublattices $ed, abc \in \langle SL(C), \leq v \rangle$ and we prove that their meet does not exist. By Example [2.1,](#page-2-0) $ab, ac \in \text{lb}(\{ed, abce\})$. Consider any $X \in SL(C)$ such that $X \in \text{lb}(\{ed, abce\})$. Assume that $ab \leq^v X$. If $x \in X$ then, by $ab \leq^v X$, we have that $b \vee x \in X$.

4 FRANCESCO RANZATO

Moreover, by $X \leq^v abce, b \vee x \in \{a, b, c, e\}$. If $b \vee x = e$ then we would have that $e \in X$, and in turn, by $X \leq^v ed$, $d = e \wedge d \in X$, so that, by $X \leq^v abce$, we would get the contradiction $d = d \vee c \in \{a, b, c, e\}$. Also, if $b \vee x = c$ then we would have that $c \in X$, and in turn, by $ab \leq^v X$, $e = b \land c \in X$, so that, as in the previous case, we would get the contradiction $d = d \lor c \in \{a, b, c, e\}.$ Thus, we necessarily have that $b \vee x \in \{a, b\}$. On the one hand, if $b \vee x = b$ then $x \leq b$ so that, by $ab \leq^v X$, $x = b \wedge x \in \{a, b\}$. On the other hand, if $b \vee x = a$ then $x \leq a$ so that, by $ab \leq^v X$, $x = a \land x \in \{a, b\}$. Hence, $X \subseteq \{a, b\}$. Since $X \neq \emptyset$, suppose that $a \in X$. Then, by $ab \leq^v X$, $b = b \lor a \in X$. If, instead, $b \in X$ then, by $X \leq^v abce$, $a = b \land a \in X$. We have therefore shown that $X = ab$. An analogous argument shows that if $ac \leq^v X$ then $X = ac$. If the meet of ed and abce would exist, call it $Z \in SL(C)$, from $Z \in lb({ed, abce})$ and $ab, ac \leq^v Z$ we would get the contradiction $ab = Z = ac$.

 (M_3) Assume that the diamond M_3 , as depicted by the following diagram, is a sublattice of C.

In this case, we consider the sublattices $eb, ec \in \langle SL(C), \leq^v \rangle$ and we prove that their meet does not exist. It turns out that abce, abcde \in lb($\{eb, ec\}$) while abce and abcde are incomparable. Consider any $X \in SL(C)$ such that $X \in lb({eb, ec})$. Assume that $abcde \leq^v X$. If $x \in X$ then, by $X \leq^v e^b$, ec, we have that $x \wedge b$, $x \wedge c \in X$, so that $x \wedge b \wedge c = x \wedge a \in X$. From abcde $\leq^v X$, we obtain that for any $y \in \{a, b, c, d, e\}$, $y = y \lor (x \land a) \in X$. Hence, $\{a, b, c, d, e\} \subseteq X$. From $X \leq^v e$, we derive that $x \vee b \in \{e, b\}$, and, from abcde $\leq^v X$, we also have that $x \vee b \in X$. If $x \vee b = e$ then $x \le e$, so that, from abcde $\le^v X$, we obtain $x = e \wedge x \in \{a, b, c, d, e\}$. If, instead, $x \vee b = b$ then $x \leq b$, so that, from $abcde \leq^{v} X$, we derive $x = b \wedge x \in \{a, b, c, d, e\}$. In both cases, we have that $X \subseteq \{a, b, c, d, e\}$. We thus conclude that $X = abcde$. An analogous argument shows that if abce $\leq^v X$ then $X = abc$. Hence, similarly to the previous case (N_5) , the meet of eb and ec does not exist. \Box

Moreover, we show that if we require $SL(C)$ to be a complete lattice then the complete lattice C must be a complete Heyting and co-Heyting algebra. Let us remark that this proof makes use of the axiom of choice.

Theorem 2.3. If $\langle SL(C), \leq^v \rangle$ is a complete lattice then C is a complete Heyting and co-Heyting algebra.

Proof. Assume that the complete lattice C is not a complete co-Heyting algebra. If C is not dis-tributive, then, by Lemma [2.2,](#page-2-1) $\langle SL(C), \leq^v \rangle$ is not a complete lattice. Thus, let us assume that C is distributive. The (dual) characterization in [\[Gierz](#page-10-12) *et al.* 1980, Remark 4.3, p. 40] states that a complete lattice C is a complete co-Heyting algebra iff C is distributive and join-continuous (*i.e.*, the join distributes over arbitrary meets of directed subsets). Consequently, it turns out that C is not join-continuous. Thus, by the result in [\[Bruns 1967\]](#page-10-13) on directed sets and chains (see also [\[Gierz](#page-10-12) *et al.* 1980, Exercise 4.9, p. 42]), there exists an infinite descending chain $\{a_{\beta}\}_{\beta<\alpha} \subseteq C$, for some ordinal $\alpha \in \text{Ord}$, such that if $\beta < \gamma < \alpha$ then $a_{\beta} > a_{\gamma}$, and an element $b \in C$ such that $\bigwedge_{\beta<\alpha}a_{\beta}\leq b<\bigwedge_{\beta<\alpha}(b\vee a_{\beta})$. We observe the following facts:

(A) α must necessarily be a limit ordinal (so that $|\alpha| \geq |\mathbb{N}|$), otherwise if α is a successor ordinal then we would have that, for any $\beta < \alpha$, $a_{\alpha-1} \le a_{\beta}$, so that $\bigwedge_{\beta<\alpha} a_{\beta} = a_{\alpha-1} \le b$, and in turn we would obtain $\bigwedge_{\beta<\alpha}(b\vee a_{\beta})=b\vee a_{\alpha-1}=b$, *i.e.*, a contradiction.

- (B) We have that $\bigwedge_{\beta<\alpha}a_{\beta} < b$, otherwise $\bigwedge_{\beta<\alpha}a_{\beta} = b$ would imply that $b \le a_{\beta}$ for any $\beta < \alpha$, so that $\bigwedge_{\beta < \alpha} (b \vee a_{\beta}) = \bigwedge_{\beta < \alpha} a_{\beta} = b$, which is a contradiction.
- (C) Firstly, observe that $\{b \vee a_{\beta}\}_{\beta < \alpha}$ is an infinite descending chain in C. Let us consider a limit ordinal $\gamma < \alpha$. Without loss of generality, we assume that the glb's of the subchains ${a_{\rho}}_{\rho<\gamma}$ and ${b \vee a_{\rho}}_{\rho<\gamma}$ belong, respectively, to the chains ${a_{\beta}}_{\beta<\alpha}$ and ${b \vee a_{\beta}}_{\beta<\alpha}$. For our purposes, this is not a restriction because the elements $\bigwedge_{\rho<\gamma} a_{\rho}$ and $\bigwedge_{\rho<\gamma} (b \vee$ a_{ρ}) can be added to the respective chains $\{a_{\beta}\}_{\beta<\alpha}$ and $\{b \vee a_{\beta}\}_{\beta<\alpha}$ and these extensions would preserve both the glb's of the chains $\{a_{\beta}\}_{\beta<\alpha}$ and $\{b \vee a_{\beta}\}_{\beta<\alpha}$ and the inequalities $\bigwedge_{\beta<\alpha}a_{\beta} < b < \bigwedge_{\beta<\alpha}(b\vee a_{\beta})$. Hence, by this nonrestrictive assumption, we have that for any limit ordinal $\gamma < \alpha$, $\bigwedge_{\rho < \gamma} a_{\rho} = a_{\gamma}$ and $\bigwedge_{\rho < \gamma} (b \vee a_{\rho}) = b \vee a_{\gamma}$ hold.
- (D) Let us consider the set $S = \{a_{\beta} \mid \beta < \alpha, \forall \gamma \geq \beta, b \not\leq a_{\gamma}\}\)$. Then, S must be nonempty, otherwise we would have that for any $\beta < \alpha$ there exists some $\gamma_{\beta} \geq \beta$ such that $b \leq \beta$ $a_{\gamma\beta} \le a_{\beta}$, and this would imply that for any $\beta < \alpha$, $b \vee a_{\beta} = a_{\beta}$, so that we would obtain $\bigwedge_{\beta<\alpha}(b\vee a_{\beta})=\bigwedge_{\beta<\alpha}a_{\beta}$, which is a contradiction. Since any chain in (*i.e.*, subset of) S has an upper bound in S, by Zorn's Lemma, S contains the maximal element $a_{\bar{\beta}}$, for some $\bar{\beta} < \alpha$, such that for any $\gamma < \alpha$ and $\gamma \geq \bar{\beta}$, $b \not\leq a_{\gamma}$. We also observe that $\bigwedge_{\beta<\alpha}a_{\beta}=\bigwedge_{\bar{\beta}\leq\gamma<\alpha}a_{\gamma}$ and $\bigwedge_{\beta<\alpha}(b\vee a_{\beta})=\bigwedge_{\bar{\beta}\leq\gamma<\alpha}(b\vee a_{\gamma})$. Hence, without loss of generality, we assume that the chain $\{a_{\beta}\}_{\beta<\alpha}$ is such that, for any $\beta<\alpha$, $b \nleq a_{\beta}$ holds.

For any ordinal $\beta < \alpha$ — therefore, we remark that the limit ordinal α is not included — we define, by transfinite induction, the following subsets $X_\beta \subseteq C$:

 $-\beta = 0 \Rightarrow X_{\beta} \triangleq \{a_0, b \vee a_0\};$

 $-\beta > 0 \Rightarrow X_{\beta} \triangleq \bigcup_{\gamma < \beta} X_{\gamma} \cup \{b \vee a_{\beta}\} \cup \{(b \vee a_{\beta}) \wedge a_{\delta} \mid \delta \leq \beta\}.$

Observe that, for any $\beta > 0$, $(b \vee a_{\beta}) \wedge a_{\beta} = a_{\beta}$ and that the set $\{b \vee a_{\beta}\} \cup \{(b \vee a_{\beta}) \wedge a_{\delta} \mid \delta \leq \beta\}$ is indeed a chain. Moreover, if $\delta \leq \beta$ then, by distributivity, we have that $(b \vee a_{\beta}) \wedge a_{\delta} = (b \wedge a_{\delta}) \vee a_{\delta}$ $(a_{\beta} \wedge a_{\delta}) = (b \wedge a_{\delta}) \vee a_{\beta}$. Moreover, if $\gamma < \beta < \alpha$ then $X_{\gamma} \subseteq X_{\beta}$.

We show, by transfinite induction on β , that for any $\beta < \alpha$, $X_{\beta} \in SL(C)$. Let $\delta \leq \beta$ and $\mu \leq \gamma < \beta$. We notice the following facts:

- (1) $(b \vee a_{\beta}) \wedge (b \vee a_{\gamma}) = b \vee a_{\beta} \in X_{\beta}$
- (2) $(b \vee a_{\beta}) \vee (b \vee a_{\gamma}) = b \vee a_{\gamma} \in X_{\gamma} \subseteq X_{\beta}$
- (3) $(b \lor a_{\beta}) \land ((b \lor a_{\gamma}) \land a_{\mu}) = (b \lor a_{\beta}) \land a_{\mu} \in X_{\beta}$
- (4) $(b \lor a_{\beta}) \lor ((b \lor a_{\gamma}) \land a_{\mu}) = (b \lor a_{\beta}) \lor (b \land a_{\mu}) \lor a_{\gamma} = b \lor a_{\gamma} \in X_{\gamma} \subseteq X_{\beta}$
- (5) $((b \lor a_{\beta}) \land a_{\delta}) \land ((b \lor a_{\gamma}) \land a_{\mu}) = (b \lor a_{\beta}) \land a_{\max(\delta,\mu)} \in X_{\beta}$
- (6) $((b \lor a_{\beta}) \land a_{\delta}) \lor ((b \lor a_{\gamma}) \land a_{\mu}) = ((b \land a_{\delta}) \lor a_{\beta}) \lor ((b \land a_{\mu}) \lor a_{\gamma}) = (b \land a_{\min(\delta,\mu)}) \lor a_{\gamma} =$ $(b \vee a_{\gamma}) \wedge a_{\min(\delta,\mu)} \in X_{\gamma} \subseteq X_{\beta}$
- (7) if β is a limit ordinal then, by point (C) above, $\bigwedge_{\rho<\beta}(b\vee a_{\rho})=b\vee a_{\beta}$ holds; therefore, $\bigwedge_{\rho<\beta}((b\vee a_\rho)\wedge a_\delta)=(\bigwedge_{\rho<\beta}(b\vee a_\rho)\bigwedge a_\delta=(b\vee a_\beta)\wedge a_\delta\in X_\beta$; in turn, by taking the glb of these latter elements in X_{β} , we have that $\bigwedge_{\delta \leq \beta} ((b \vee a_{\beta}) \wedge a_{\delta}) = (b \vee a_{\beta}) \wedge (\bigwedge_{\delta \leq \beta} a_{\delta}) =$ $(b \vee a_{\beta}) \wedge a_{\beta} = a_{\beta} \in X_{\beta}$

Since $X_0 \in SL(C)$ obviously holds, the points (1)-(7) above show, by transfinite induction, that for any $\beta < \alpha$, X_{β} is closed under arbritrary lub's and glb's of nonempty subsets, *i.e.*, $X_{\beta} \in SL(C)$. In the following, we prove that the glb of $\{X_\beta\}_{\beta<\alpha} \subseteq SL(C)$ in $\langle SL(C), \leq^v \rangle$ does not exist.

Recalling, by point (A) above, that α is a limit ordinal, we define $A \triangleq \mathcal{M}^*(\bigcup_{\beta < \alpha} X_{\beta})$. By point (C) above, we observe that for any limit ordinal $\gamma < \alpha$, the $\bigcup_{\beta < \alpha} X_{\beta}$ already contains the glb's

$$
\bigwedge_{\rho<\gamma}(b\vee a_{\rho})=b\vee a_{\gamma}\in X_{\gamma}, \qquad \bigwedge_{\rho<\gamma}a_{\rho}=a_{\gamma}\in X_{\gamma},
$$

$$
\{(\bigwedge_{\rho<\gamma}(b\vee a_{\rho}))\wedge a_{\delta}\mid \delta<\gamma\}=\{(b\vee a_{\gamma})\wedge a_{\delta}\mid \delta<\gamma\}\subseteq X_{\gamma}.
$$

Hence, by taking the glb's of all the chains in $\bigcup_{\beta<\alpha} X_{\beta}$, A turns out to be as follows:

$$
A = \bigcup_{\beta < \alpha} X_{\beta} \cup \{ \bigwedge_{\beta < \alpha} (b \vee a_{\beta}), \bigwedge_{\beta < \alpha} a_{\beta} \} \cup \{ (\bigwedge_{\beta < \alpha} (b \vee a_{\beta})) \wedge a_{\delta} \mid \delta < \alpha \}.
$$

Let us show that $A \in SL(C)$. First, we observe that $\bigcup_{\beta < \alpha} X_{\beta}$ is closed under arbitrary nonempty lub's. In fact, if $S \subseteq \bigcup_{\beta < \alpha} X_{\beta}$ then $S = \bigcup_{\beta < \alpha} (S \cap X_{\beta})$, so that

$$
\bigvee S=\bigvee\bigcup_{\beta<\alpha}(S\cap X_{\beta})=\bigvee_{\beta<\alpha}\bigvee S\cap X_{\beta}.
$$

Also, if $\gamma < \beta < \alpha$ then $S \cap X_{\gamma} \subseteq S \cap X_{\beta}$ and, in turn, $\bigvee S \cap X_{\gamma} \subseteq \bigvee S \cap X_{\beta}$, so that $\{\bigvee S \cap X_\beta\}_{\beta < \alpha}$ is an increasing chain. Hence, since $\bigcup_{\beta < \alpha} X_\beta$ does not contain infinite increasing chains, there exists some $\gamma < \alpha$ such that $\bigvee_{\beta < \alpha} \bigvee S \cap X_{\beta} = \bigvee S \cap X_{\gamma} \in X_{\gamma}$, and consequently $\bigvee S \in \bigcup_{\beta < \alpha} X_{\beta}$. Moreover, $\{ (\bigwedge_{\beta < \alpha} (b \vee a_{\beta})) \wedge a_{\delta} \}_{\delta < \alpha} \subseteq A$ is a chain whose lub is $(\bigwedge_{\beta < \alpha} (b \vee b_{\beta}) \wedge a_{\delta} \}_{\delta < \alpha} \subseteq A$ a_{β}) $\wedge a_0$ which belongs to the chain itself, while its glb is

$$
\bigwedge_{\delta<\alpha} \big(\bigwedge_{\beta<\alpha} (b\vee a_{\beta})\big) \wedge a_{\delta} = \big(\bigwedge_{\beta<\alpha} (b\vee a_{\beta})\big) \wedge \bigwedge_{\delta<\alpha} a_{\delta} = \bigwedge_{\delta<\alpha} a_{\delta} \in A.
$$

Finally, if $\delta \leq \gamma \leq \alpha$ then we have that:

- (8) $(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\bigwedge(b\vee a_{\gamma})=\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\in A$
- (9) $(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\big)\vee(b\vee a_{\gamma})=b\vee a_{\gamma}\in X_{\gamma}\subseteq A$
- (10) $(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\bigwedge((b\vee a_{\gamma})\wedge a_{\delta})=(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\big)\wedge a_{\delta}\in A$
- (11) We have that $(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\bigvee\big((b\vee a_{\gamma})\wedge a_{\delta}\big)=\big(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\bigvee\big(b\wedge a_{\delta}\big)\vee a_{\gamma}=$ $\left(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\right)\vee a_{\gamma}$. Moreover, $b\vee a_{\gamma} \leq \left(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\right)\vee a_{\gamma} \leq (b\vee a_{\gamma})\vee a_{\gamma} = b\vee a_{\gamma}$; hence, $(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\big)\vee((b\vee a_{\gamma})\wedge a_{\delta})=b\vee a_{\gamma}\in X_{\gamma}\subseteq A$.

Summing up, we have therefore shown that $A \in SL(C)$.

We now prove that A is a lower bound of $\{X_{\beta}\}_{{\beta}<\alpha}$, *i.e.*, we prove, by transfinite induction on β, that for any $\beta < \alpha$, $A \leq^v X_\beta$.

- $(A \leq^v X_0)$: this is a consequence of the following easy equalities, for any $\delta \leq \beta < \alpha$: $(b\vee a_{\beta})\wedge a_{0}\in X_{\beta}\subseteq A$; $(b\vee a_{\beta})\vee a_{0}=b\vee a_{0}\in X_{0}$; $(b\vee a_{\beta})\wedge(b\vee a_{0})=b\vee a_{\beta}\in X_{\beta}\subseteq A$; $(b \vee a_{\beta}) \vee (b \vee a_{0}) = b \vee a_{0} \in X_{0}; ((b \vee a_{\beta}) \wedge a_{\delta}) \wedge a_{0} = (b \vee a_{\beta}) \wedge a_{\delta} \in X_{\beta} \subseteq A;$ $((b \vee a_{\beta}) \wedge a_{\delta}) \vee a_0 = a_0 \in X_0$; $((b \vee a_{\beta}) \wedge a_{\delta}) \wedge (b \vee a_0) = (b \vee a_{\beta}) \wedge a_{\delta} \in X_{\beta} \subseteq A$; $((b \vee a_{\beta}) \wedge a_{\delta}) \vee (b \vee a_{0}) = b \vee a_{0} \in X_{0}.$
- $(A \leq^v X_\beta, \beta > 0)$: Let $a \in A$ and $x \in X_\beta$. If $x \in \bigcup_{\gamma < \beta} X_\gamma$ then $x \in X_\gamma$ for some $\gamma < \beta$, so that, since by inductive hypothesis $A \leq^v X_\gamma$, we have that $a \wedge x \in A$ and $a \vee x \in X_{\gamma} \subseteq X_{\beta}$. Thus, assume that $x \in X_{\beta} \setminus (\bigcup_{\gamma < \beta} X_{\gamma})$. If $a \in X_{\beta}$ then $a \wedge x \in X_{\beta} \subseteq A$ and $a \vee x \in X_{\beta}$. If $a \in X_{\mu}$, for some $\mu > \beta$, then $a \wedge x \in X_{\mu} \subseteq A$, while points (2), (4) and (6) above show that $a \lor x \in X_{\beta}$. If $a = \bigwedge_{\beta < \alpha} (b \lor a_{\beta})$ then points (8)-(11) above show that $a \wedge x \in A$ and $a \vee x \in X_{\beta}$. If $a = (\bigwedge_{\gamma < \alpha} (b \vee a_{\gamma})) \wedge a_{\mu}$, for some $\mu < \alpha$, and $\delta \leq \beta$ then we have that:

(12)
$$
((\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma})\bigwedge a_{\mu})\wedge (b\vee a_{\beta})=(\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma})\bigwedge a_{\mu}\in A
$$

- (13) $((\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma}))\wedge a_{\mu})\vee(b\vee a_{\beta})=((\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma}))\vee(b\vee a_{\beta}))\wedge(a_{\mu}\vee(b\vee a_{\beta}))=$ $(b \vee a_{\beta}) \wedge (b \vee a_{\min(\mu,\beta)}) = b \vee a_{\beta} \in X_{\beta}$
- (14) $((\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma}))\wedge a_{\mu})\wedge((b\vee a_{\beta})\wedge a_{\delta})=(\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma})\wedge a_{\max(\mu,\delta)}\in A)$ (15)

$$
\left(\left(\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma})\right)\wedge a_{\mu}\right)\vee\left((b\vee a_{\beta})\wedge a_{\delta}\right)=\n\right)
$$
\n
$$
\left(\left(\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma})\right)\vee(b\vee a_{\beta})\right)\wedge\left(\left(\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma})\right)\vee a_{\delta}\right)\wedge\left(a_{\mu}\vee(b\vee a_{\beta})\right)\wedge\left(a_{\mu}\vee a_{\delta}\right)=\n\right)
$$
\n
$$
\left(b\vee a_{\beta}\right)\wedge\left(b\vee a_{\delta}\right)\wedge\left(b\vee a_{\min(\mu,\beta)}\right)\wedge a_{\min(\mu,\delta)}=
$$
\n
$$
\left(b\vee a_{\beta}\right)\wedge a_{\min(\mu,\delta)}\in X_{\beta}
$$

Finally, if $a = \bigwedge_{\gamma < \alpha} a_{\gamma}$ and $x \in X_{\beta}$ then $a \leq x$ so that $a \wedge x = a \in A$ and $a \vee x = x \in X_{\beta}$. Summing up, we have shown that $A \leq^v X_\beta$.

Let us now prove that $b \notin A$. Let us first observe that for any $\beta < \alpha$, we have that $a_{\beta} \nleq b$: in fact, if $a_{\gamma} \leq b$, for some $\gamma < \alpha$ then, for any $\delta \leq \gamma$, $b \vee a_{\delta} = b$, so that we would obtain $\bigwedge_{\beta<\alpha}(b\vee a_{\beta})=b$, which is a contradiction. Hence, for any $\beta<\alpha$ and $\delta\leq\beta$, it turns out that $b \neq b \vee a_{\beta}$ and $b \neq (b \wedge a_{\delta}) \vee a_{\beta} = (b \vee a_{\beta}) \wedge a_{\delta}$. Moreover, by point (B) above, $b \neq \bigwedge_{\beta < \alpha} (b \vee a_{\beta})$, while, by hypothesis, $b \neq \bigwedge_{\beta < \alpha} a_{\beta}$. Finally, for any $\delta < \alpha$, if $b = (\bigwedge_{\beta < \alpha} (b \vee a_{\beta})) \wedge a_{\delta}$ then we would derive that $b \le a_{\delta}$, which, by point (D) above, is a contradiction.

Now, we define $B \triangleq \mathcal{M}^*(A \cup \{b\})$, so that

$$
B = A \cup \{b\} \cup \{b \wedge a_{\delta} \mid \delta < \alpha\}.
$$

Observe that for any $a \in A$, with $a \neq \bigwedge_{\beta<\alpha} a_{\beta}$, and for any $\delta < \alpha$, we have that $b \wedge a_{\delta} \leq a$, while $b \vee \Big(\big(\bigwedge_{\beta<\alpha}(b \vee a_\beta)\big) \wedge a_\delta\Big) = \Big(b \vee \big(\bigwedge_{\beta<\alpha}(b \vee a_\beta)\big)\Big) \wedge (b \vee a_\delta) = \big(\bigwedge_{\beta<\alpha}(b \vee a_\beta)\big) \wedge$ $(b \vee a_{\delta}) = \bigwedge_{\beta < \alpha} (b \vee a_{\beta}) \in B$. Also, for any $\delta \leq \beta < \alpha$, we have that $b \vee ((b \vee a_{\beta}) \wedge a_{\delta}) =$ $(b \vee (b \vee a_{\beta})) \wedge (b \vee a_{\delta}) = b \vee a_{\delta} \in B$. Also, $b \vee (\bigwedge_{\beta < \alpha} (b \vee a_{\beta})) = \bigwedge_{\beta < \alpha} (b \vee a_{\beta}) \in B$ and $b \vee \bigwedge_{\beta < \alpha} a_{\beta} = b \in B$. We have thus checked that B is closed under lub's (of arbitrary nonempty subsets), *i.e.*, $B \in SL(C)$. Let us check that B is a lower bound of $\{X_{\beta}\}_{\beta < \alpha}$. Since we have already shown that A is a lower bound, and since $b \wedge a_{\delta} \leq b$, for any $\delta < \alpha$, it is enough to observe that for any $\beta < \alpha$ and $x \in X_\beta$, $b \wedge x \in B$ and $b \vee x \in X_\beta$. The only nontrivial case is for $x = (b \lor a_{\beta}) \land a_{\delta}$, for some $\delta \leq \beta < \alpha$. On the one hand, $b \land ((b \lor a_{\beta}) \land a_{\delta}) = b \land a_{\delta} \in B$, on the other hand, $b \vee ((b \vee a_{\beta}) \wedge a_{\delta}) = b \vee ((b \wedge a_{\delta}) \vee a_{\beta}) = b \vee a_{\beta} \in X_{\beta}$.

Let us now assume that there exists $Y \in SL(C)$ such that Y is the glb of $\{X_{\beta}\}_{\beta < \alpha}$ in $\langle SL(C), \leq^v \rangle$. Therefore, since we proved that A is a lower bound, we have that $A \leq^v Y$. Let us consider $y \in Y$. Since $b \vee a_0 \in A$, we have that $b \vee a_0 \vee y \in Y$. Since $Y \leq^v X_0 = \{a_0, b \vee a_0\}$, we have that $b \vee a_0 \vee y \vee a_0 = b \vee a_0 \vee y \in \{a_0, b \vee a_0\}$. If $b \vee a_0 \vee y = a_0$ then $b \le a_0$, which, by point (D), is a contradiction. Thus, we have that $b \vee a_0 \vee y = b \vee a_0$, so that $y \le b \vee a_0$ and $b \vee a_0 \in Y$. We know that if $x \in X_\beta$, for some $\beta < \alpha$, then $x \le b \vee a_0$, so that, from $Y \le v X_\beta$, we obtain that $(b \vee a_0) \wedge x = x \in Y$, that is, $X_\beta \subseteq Y$. Thus, we have that $\bigcup_{\beta < \alpha} X_\beta \subseteq Y$, and, in turn, by subset monotonicity of \mathcal{M}^* , we get $A = \mathcal{M}^*(\bigcup_{\beta<\alpha}X_\beta)\subseteq \mathcal{M}^*(Y)=Y$. Moreover, from $y \le b \vee a_0$, since $A \le v \ Y$ and $b \vee a_0 \in A$, we obtain $(b \vee a_0) \wedge y = y \in A$, that is $Y \subseteq A$. We have therefore shown that $Y = A$. Since we proved that B is a lower bound, $B \leq^v Y = A$ must hold. However, it turns out that $B \leq^v A$ is a contradiction: by considering $b \in B$ and $\bigwedge_{\beta < \alpha} a_{\beta} \in A$,

8 FRANCESCO RANZATO

we would have that $b \vee (\bigwedge_{\beta < \alpha} a_{\beta}) = b \in A$, while we have shown above that $b \notin A$. We have therefore shown that the glb of $\{X_{\beta}\}_{\beta<\alpha}$ in $\langle \text{SL}(C), \leq^{\nu} \rangle$ does not exist.

To close the proof, it is enough to observe that if $\langle C, \leq \rangle$ is not a complete Heyting algebra then, by duality, $\langle SL(C), \leq^v \rangle$ does not have lub's. \Box

3. THE NECESSARY CONDITION

It turns out that the property of being a complete lattice for the poset $\langle SL(C), \leq^v \rangle$ is a necessary condition for a complete Heyting and co-Heyting algebra C.

Theorem 3.1. If C is a complete Heyting and co-Heyting algebra then $\langle SL(C), \leq^v \rangle$ is a complete lattice.

Proof. Let $\{A_i\}_{i\in I} \subseteq SL(C)$, for some family of indices $I \neq \emptyset$. Let us define

$$
G \triangleq \{x \in \mathcal{M}^*(\cup_{i \in I} A_i) \mid \forall k \in I. \ \mathcal{M}^*(\cup_{i \in I} A_i) \cap \downarrow x \leq^v A_k\}.
$$

The following three points show that G is the glb of $\{A_i\}_{i\in I}$ in $\langle SL(C), \leq^v \rangle$.

(1) We show that $G \in SL(C)$. Let $\perp \triangleq \bigwedge_{i \in I} \bigwedge A_i$. First, G is nonempty because it turns out that $\bot \in G$. Since, for any $i \in I$, $\bigwedge A_i \in A_i$ and $I \neq \emptyset$, we have that $\bot \in \mathcal{M}^*(\cup_i A_i)$. Let $y \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow \perp$ and, for some $k \in I$, $a \in A_k$. On the one hand, we have that $y \wedge a \in I$ $\mathcal{M}^*(\cup_i A_i) \cap \downarrow \perp$ trivially holds. On the other hand, since $y \leq \perp \leq a$, we have that $y \vee a = a \in A_k$.

Let us now consider a set $\{x_j\}_{j\in J}\subseteq G$, for some family of indices $J\neq\emptyset$, so that, for any $j \in J$ and $k \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \downarrow x_j \leq^v A_k$.

First, notice that $\bigwedge_{j\in J} x_j \in \mathcal{M}^*(\cup_i A_i)$ holds. Then, since $\downarrow (\bigwedge_{j\in J} x_j) = \bigcap_{j\in J} \downarrow x_j$ holds, we have that $\mathcal{M}^*(\cup_i A_i) \cap \downarrow (\bigwedge_{j \in J} x_j) = \mathcal{M}^*(\cup_i A_i) \cap (\bigcap_{j \in J} \downarrow x_j)$, so that, for any $k \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \downarrow (\bigwedge_{j \in J} x_j) \leq^v A_k$, that is, $\bigwedge_{j \in J} x_j \in G$.

Let us now prove that $\bigvee_{j\in J}x_j\in\mathcal{M}^*(\cup_i A_i)$ holds. First, since any $x_j\in\mathcal{M}^*(\cup_{i\in I}A_i)$, we have that $x_j = \bigwedge_{i \in K(j)} a_{j,i}$, where, for any $j \in J$, $K(j) \subseteq I$ is a nonempty family of indices in I such that for any $i \in K(j)$, $a_{j,i} \in A_i$. For any $i \in I$, we then define the family of indices $L(i) \subseteq J$ as follows: $L(i) \triangleq \{j \in J \mid i \in K(j)\}$. Observe that it may happen that $L(i) = \emptyset$. Since for any $i \in I$ such that $\widetilde{L(i)} \neq \emptyset$, $\{a_{j,i}\}_{j \in L(i)} \subseteq A_i$ and A_i is meet-closed, we have that if $L(i) \neq \emptyset$ then $\hat{a}_i \triangleq \bigwedge_{l \in L(i)} a_{l,i} \in A_i$. Since, given $k \in I$ such that $L(k) \neq \emptyset$, for any $j \in J$, $\mathcal{M}^*(\cup_{i\in I} A_i) \cap \downarrow x_j \leq^v A_k$, we have that for any $j \in J$, $x_j \vee \hat{a}_k \in A_k$. Since A_k is join-closed, we obtain that $\bigvee_{j\in J}(x_j\vee \hat a_k)=(\bigvee_{j\in J}x_j)\vee \hat a_k\in A_k.$ Consequently,

$$
\bigwedge_{\substack{k \in I, \\ L(k) \neq \varnothing}} \left(\left(\bigvee_{j \in J} x_j \right) \vee \hat{a}_k \right) \in \mathcal{M}^*(\cup_{i \in I} A_i).
$$

Since C is a complete co-Heyting algebra,

$$
\bigwedge_{\substack{k\in I,\\L(k)\neq\varnothing}}\left((\bigvee_{j\in J}x_j)\vee\hat{a}_k\right)=(\bigvee_{j\in J}x_j)\vee(\bigwedge_{\substack{k\in I,\\L(k)\neq\varnothing}}\hat{a}_k).
$$

Thus, since, for any $j \in J$,

$$
\bigwedge_{\substack{k \in I, \\ L(k) \neq \varnothing}} \hat{a}_k = \bigwedge_{j \in J} \bigwedge_{i \in K(j)} a_{j,i} \leq x_j,
$$

we obtain that $(\bigvee_{j\in J} x_j) \vee (\bigwedge)$ $k \in I,$
 $L(k) \neq \varnothing$ \hat{a}_k) = $\bigvee_{j \in J} x_j$, so that $\bigvee_{j \in J} x_j \in \mathcal{M}^*(\cup_{i \in I} A_i)$.

Finally, in order to prove that $\bigvee_{j\in J} x_j \in G$, let us show that for any $k \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \bigcup_i A_i$ $(\bigvee_{j\in J} x_j)\leq^v A_k$. Let $y\in \mathcal{M}^*(\cup_i A_i)\cap \downarrow (\bigvee_{j\in J} x_j)$ and $a\in A_k$. For any $j\in J$, $y\wedge x_j\in J$ \mathcal{M}^* ($\cup_i A_i$) $\cap \downarrow (\bigvee_{j \in J} x_j)$, so that $(y \wedge x_j) \vee a \in A_k$. Since A_k is join-closed, we obtain that $\bigvee_{j\in J} ((y \wedge x_j) \vee a) = a \vee (\bigvee_{j\in J} (y \wedge x_j)) \in A_k$. Since C is a complete Heyting algebra, $a \vee (\bigvee_{j \in J} (y \wedge x_j)) = a \vee (y \wedge (\bigvee_{j \in J} x_j))$. Since $y \wedge (\bigvee_{j \in J} x_j) = y$, we derive that $y \vee a \in A_k$. On the other hand, $y \wedge a \in \mathcal{M}^*(\cup_i \tilde{A}_i) \cap \downarrow (\bigvee_{j \in J} x_j)$ trivially holds.

(2) We show that for any $k \in I$, $G \leq^v A_k$. Let $x \in G$ and $a \in A_k$. Hence, $x \in \mathcal{M}^*(\cup_i A_i)$ and for any $j \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \downarrow x \leq^v A_j$. We first prove that $\mathcal{M}^*(\cup_i A_i) \cap \downarrow x \subseteq G$. Let $y \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow x$, and let us check that for any $j \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \downarrow y \leq^v A_j$: if $z \in$ $\mathcal{M}^*(\cup_i A_i) \cap \downarrow y$ and $u \in A_j$ then $z \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow x$ so that $z \vee u \in A_j$ follows, while $z \wedge u \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow y$ trivially holds. Now, since $x \wedge a \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow x$, we have that $x \wedge a \in G$. On the other hand, since $x \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow x \leq^v A_k$, we also have that $x \vee a \in A_k$.

(3) We show that if $Z \in SL(C)$ and, for any $i \in I$, $Z \leq^{v} A_i$ then $Z \leq^{v} G$. By point (1), $\bot = \bigwedge_{i \in I} \bigwedge A_i \in G$. We then define $Z^{\perp} \subseteq C$ as follows: $Z^{\perp} \triangleq \{x \vee \perp \mid x \in Z\}$. It turns out that $\bar{Z}^{\perp} \subseteq \mathcal{M}^*(\cup_i A_i)$: in fact, since C is a complete co-Heyting algebra, for any $x \in Z$, we have that $x \vee (\bigwedge_{i \in I} \bigwedge A_i) = \bigwedge_{i \in I} (x \vee \bigwedge A_i)$, and since $x \in Z$, for any $i \in I$, $\bigwedge A_i \in A_i$, and $Z \leq^v A_i$, we have that $x \vee \bigwedge A_i \in A_i$, so that $\bigwedge_{i \in I} (x \vee \bigwedge A_i) \in \mathcal{M}^*(\cup_i A_i)$. Also, it turns out that $Z^{\perp} \in SL(C)$. If $Y \subseteq Z^{\perp}$ and $Y \neq \emptyset$ then $Y = \{x \vee \perp\}_{x \in X}$ for some $X \subseteq Z$ with $X \neq \emptyset$. Hence, $\bigvee Y = \bigvee_{x \in X} (x \vee \bot) = (\bigvee X) \vee \bot$, and since $\bigvee X \in Z$, we therefore have that $\bigvee Y \in Z^{\perp}$. On the other hand, $\bigwedge Y = \bigwedge_{x \in X} (x \vee \perp)$, and, as C is a complete co-Heyting algebra, $\bigwedge_{x \in X} (x \vee \bot) = (\bigwedge X) \vee \bot$, and since $\bigwedge X \in Z$, we therefore obtain that $\bigwedge Y \in Z^{\bot}$. We also observe that $Z \leq^v Z^{\perp}$. In fact, if $x \in Z$ and $y \vee \perp \in Z^{\perp}$, for some $y \in Z$, then, clearly, $x \vee y \vee \bot \in Z^{\bot}$, while, by distributivity of C , $x \wedge (y \vee \bot) = (x \wedge y) \vee \bot \in Z^{\bot}$. Next, we show that for any $i \in I$, $Z^{\perp} \leq^v A_i$. Let $x \vee \perp \in Z^{\perp}$, for some $z \in Z^{\perp}$, and $a \in A_i$. Then, by distributivity of C, $(x \vee \perp) \wedge a = (x \wedge a) \vee (\perp \wedge a) = (x \wedge a) \vee \perp$, and since, by $Z \leq^v A_i$, we know that $x \wedge a \in Z$, we also have that $(x \wedge a) \vee \bot \in Z^{\bot}$. On the other hand, $(x \vee \bot) \vee a = (x \vee a) \vee \bot$, and since, by $Z \leq^v A_i$, we know that $\bot \leq x \lor a \in A_i$, we obtain that $(x \lor a) \lor \bot = x \lor a \in A_i$.

Summing up, we have therefore shown that for any $Z \in SL(C)$ such that, for any $i \in I$, $Z \leq^v A_i$, there exists $Z^{\perp} \in SL(C)$ such that $Z^{\perp} \subseteq \mathcal{M}^*(\cup_i A_i)$ and, for any $i \in I$, $Z^{\perp} \leq^v A_i$. We now prove that $Z^\perp\subseteq G.$ Consider $w\in Z^\perp,$ and let us check that for any $i\in I,$ $\mathcal{M}^*(\cup_i A_i)\cap \downarrow w\leq^v$ A_i. Hence, consider $y \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow w$ and $a \in A_i$. Then, $y \wedge a \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow w$ follows trivially. Moreover, since $y \in \mathcal{M}^*(\cup_i A_i)$, there exists a subset $K \subseteq I$, with $K \neq \emptyset$, such that for any $k \in K$ there exists $a_k \in A_k$ such that $y = \bigwedge_{k \in K} a_k$. Thus, since, for any $k \in K$, $z \wedge a_k \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow z \leq^v A_i$, we obtain that $\{(z \wedge a_k) \vee a\}_{k \in K} \subseteq A_i$. Since A_i is meet-closed, $\bigwedge_{k\in K} ((w\wedge a_k)\vee a)\in A_i$. Since C is a complete co-Heyting algebra, $\bigwedge_{k\in K} ((w\wedge a_k)\vee a)=(a_k)$ $a\vee(\bigwedge_{k\in K} (w\wedge a_k)\big)=a\vee\big(w\wedge(\bigwedge_{k\in K} a_k)\big)=a\vee(w\wedge y)=a\vee y,$ so that $a\vee y\in A_i$ follows.

To close the proof of point (3), we show that $Z^{\perp} \leq^v G$. Let $z \in Z^{\perp}$ and $x \in G$. On the one hand, since $Z^{\perp} \subseteq G$, we have that $z \in G$, and, in turn, as G is join-closed, we obtain that $z \vee x \in G$. On the other hand, since $x \in \mathcal{M}^*(\cup_i A_i)$, there exists a subset $K \subseteq I$, with $K \neq \emptyset$, such that for any $k \in K$ there exists $a_k \in A_k$ such that $x = \bigwedge_{k \in K} a_k$. Thus, since $Z^{\perp} \leq^v A_k$, for any $k \in K$, we obtain that $z \wedge a_k \in Z^{\perp}$. Hence, since Z^{\perp} is meet-closed, we have that $\bigwedge_{k\in K} (z\wedge a_k)=z\wedge (\bigwedge_{k\in K} a_k)=z\wedge x\in Z^{\perp}.$

To conclude the proof, we notice that ${\{\top_C\}} \in SL(C)$ is the greatest element in $\langle SL(C), \leq^v \rangle$. Thus, since $\langle SL(C), \leq^v \rangle$ has nonempty glb's and the greatest element, it turns out that it is a complete lattice. \Box

We have thus shown the following characterization of complete Heyting and co-Heyting algebras.

Corollary 3.2. Let C be a complete lattice. Then, $\langle SL(C), \leq^v \rangle$ is a complete lattice if and only if C is a complete Heyting and co-Heyting algebra.

To conclude, we provide an example showing that the property of being a complete lattice for the poset $\langle SL(C), \leq^v \rangle$ cannot be a characterization for a complete Heyting (or co-Heyting) algebra C .

Example 3.3. Consider the complete lattice C depicted on the left.

C is distributive but not a complete co-Heyting algebra: $b \vee (\bigwedge_{i \geq 0} a_i) = b < \bigwedge_{i \geq 0} (b \vee a_i) = \top$. Let $X_0 \triangleq {\{\top, a_0\}}$ and, for any $i \geq 0$, $X_{i+1} \triangleq X_i \cup \{a_{i+1}\}\)$, so that $\{X_i\}_{i\geq 0} \subseteq \text{SL}(C)$. Then, it turns out that the glb of $\{X_i\}_{i\geq 0}$ in $\langle SL(C), \leq^v \rangle$ does not exist. This can be shown by mimicking the proof of Theorem [2.3.](#page-3-0) Let $A \triangleq {\{\perp\}} \cup \bigcup_{i \geq 0} X_i \in SL(C)$. Let us observe that A is a lower bound of $\{X_i\}_{i>0}$. Hence, if we suppose that $Y \in SL(C)$ is the glb of $\{X_i\}_{i>0}$ then $A \leq^v Y$ must hold. Hence, if $y \in Y$ then $\top \wedge y = y \in A$, so that $Y \subseteq A$, and $\top \vee y \in Y$. Since, $Y \leq^v X_0$, we have that $\top \vee y \vee \top = \top \vee y \in X_0 = {\top, a_0}$, so that necessarily $\top \vee y = \top \in Y$. Hence, from $Y \leq^v X_i$, for any $i \geq 0$, we obtain that $\top \wedge a_i = a_i \in Y$. Hence, $Y = A$. The whole complete lattice C is also a lower bound of $\{X_i\}_{i>0}$, therefore $C \leq^v Y = A$ must hold: however, this is a contradiction because from $b \in C$ and $\bot \in A$ we obtain that $b \vee \bot = b \in A$.

It is worth noting that if we instead consider the complete lattice D depicted on the right of the above figure, which includes a new glb a_{ω} of the chain $\{a_i\}_{i>0}$, then D becomes a complete Heyting and co-Heyting algebra, and in this case the glb of $\{X_i\}_{i\geq 0}$ in $\langle \text{SL}(D), \leq^v \rangle$ turns out to be $\{\top\}$ \cup ${a_i}_{i>0} \cup {a_\omega}.$ \Box

ACKNOWLEDGEMENTS

The author has been partially supported by the University of Padova under the 2014 PRAT project "ANCORE".

REFERENCES

