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ABSTRACT. We give a new order-theoretic characterization of a complete Heyting and co-Heyting
algebra C. This result provides an unexpected relationship with the field of Nash equilibria, being
based on the so-called Veinott ordering relation on subcomplete sublattices of C', which is crucially
used in Topkis’ theorem for studying the order-theoretic stucture of Nash equilibria of supermodular
games.

INTRODUCTION

Complete Heyting algebras — also called frames, while locales is used for complete co-Heyting al-
gebras — play a fundamental role as algebraic model of intuitionistic logic and in pointless topology
[Johnstone 1982| |Johnstone 1983|]. To the best of our knowledge, no characterization of complete
Heyting and co-Heyting algebras has been known. As reported in [Balbes and Dwinger 1974], a
sufficient condition has been given in [Funayama 1959] while a necessary condition has been given
by [Chang and Horn 1962].

We give here an order-theoretic characterization of complete Heyting and co-Heyting algebras
that puts forward an unexected relationship with Nash equilibria. Topkis’ theorem [Topkis 1998|]
is well known in the theory of supermodular games in mathematical economics. This result shows
that the set of solutions of a supermodular game, i.e., its set of pure-strategy Nash equilibria, is
nonempty and contains a greatest element and a least one [[Topkis 1978]]. Topkis’ theorem has been
strengthned by [Zhou 1994]], where it is proved that this set of Nash equilibria is indeed a complete
lattice. These results rely on so-called Veinott’s ordering relation (also called strong set relation).
Let (C, <, A, V) be a complete lattice. Then, the relation <"C ©(C') x p(C') on subsets of C,
according to Topkis [Topkis 1978, has been introduced by Veinott [Topkis 1998| [Veinott 1989]:
forany S, T € p(C),

S<UT L YseSVteT.sAteS & svteT.

This relation <" is always transitive and antisymmetric, while reflexivity S <" .S holds if and only
if S is a sublattice of C. If SL(C') denotes the set of nonempty subcomplete sublattices of C' then
(SL(C), <) is therefore a poset. The proof of Topkis’ theorem is then based on the fixed points of
a certain mapping defined on the poset (SL(C), <").
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To the best of our knowledge, no result is available on the order-theoretic properties of the
Veinott poset (SL(C'),<"). When is this poset a lattice? And a complete lattice? Our efforts in
investigating these questions led to the following main result: the Veinott poset SL(C) is a com-
plete lattice if and only if C' is a complete Heyting and co-Heyting algebra. This finding therefore
reveals an unexpected link between complete Heyting algebras and Nash equilibria of supermodular
games. This characterization of the Veinott relation <" could be exploited for generalizing a recent
approach based on abstract interpretation for approximating the Nash equilibria of supermodular
games introduced by [Ranzato 2016]].

1. NOTATION

If (P, <) is a poset and S C P then Ib(S) denotes the set of lower bounds of S, i.e., Ib(S) = {x €
P|Vs€ S.z <s}, whileifz € Pthen |z = {y € P|y < z}.
Let (C, <, A, V) be a complete lattice. A nonempty subset S C C' is a subcomplete sublattice of C'
if for all its nonempty subsets X C S, AX € S and VX € S, while S is merely a sublattice of C' if
this holds for all its nonempty and finite subsets X C S only. If S C C then the nonempty Moore
closure of S is defined as M*(S) = {AX € C | X C S, X # o}. Let us observe that M* is an
upper closure operator on the poset (p(C), C), meaning that: (1) S C T = M*(S) C M*(T);
(2) § C M*(S); (3) M*(M*(S)) = M*(S).
We define

SL(C) £ {S C C| S # @, S subcomplete sublattice of C'}.
Thus, if <" denotes the Veinott ordering defined in Section then (SL(C'), <") is a poset.
C' is a complete Heyting algebra (also called frame) if forany x € CandY C C,z A (\/Y) =
\/er x Ay, while it is a complete co-Heyting algebra (also called locale) if the dual equation
zV(AY) = A\ ey zVyholds. Let us recall that these two notions are orthogonal, for example the
complete lattice of open subsets of R ordered by C is a complete Heyting algebra, but not a complete
co-Heyting algebra. C is (finitely) distributive if for any z,y,z € C,x A (yVz) = (xAy)V (zAz2).
Let us also recall that C' is completely distributive if for any family {x; | j € J,k € K(j)} C C,

we have that
AV zie= N Az

jeJ keK(j) feJwK jeJ

where J and, for any j € J, K(j) are sets of indices and J ~ K = {f : J — Ujc K(j) | Vj €
J. f(j) € K(j)} denotes the set of choice functions. It turns out that the class of completely
distributive complete lattices is strictly contained in the class of complete Heyting and co-Heyting
algebras. Clearly, any completely distribuitive lattice is a complete Heyting and co-Heyting algebra.
On the other hand, this containment turns out to be strict, as shown by the following counterexample.

Example 1.1. Let us recall that a subset S C [0, 1] of real numbers is a regular open set if S
is open and S coincides with the interior of the closure of S. Let us consider C = ({S C
[0,1] | S is aregular open set}, C). It is known that C is a complete Boolean algebra (see e.g.
[Vladimirov 2002, Theorem 12, Section 2.5]), where —.S denotes the complement of S € C, @ is the
least element and (0, 1) is the greatest element. As a consequence, C is a complete Heyting and co-
Heyting algebra (see e.g. [Vladimirov 2002, Theorem 3, Section 0.2.3]). It also known that a com-
plete Boolean algebra is completely distributive if and only if it is atomic (see [Koppelberg 1989,
Theorem 14.5, Chapter 5]). Recall that an element ¢ € C in a complete lattice is an atom if a is
different from the least element | ¢ of C' and for any x € C, if Lo < x < a then x = a, while
C is atomic if for any z € C*t 2 O\ { L} there exists an atom a € C such that a < z. Let us
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show that C is not completely distributive. We clearly have that A g -+ V{5, =S} = (0,1). Let us
assume, by contradiction, that C is completely distributive. Then, we have that

(0,1) = \/ /\ Ts, t(s)

feCct—{u,ff} SeCt

SRS I ¥ (C)
ST 8 i £(S)

where for any S € CT,

tt
ff

First, let us observe that for any V' € C +,

feCt—{uwff} SeCt
so that it must exist some fyr € C* — {tt,ff} such that Aget Tsf,(s) # @. It turns out
that for any V € C*, Ageer Ts t,(s) 1s an atom of C. In fact, if U € C™ is such that @ C
U C Asece+ Ts,f(s) then U C Ty g, 1), so that Ty, iy = U, thus implying that U
Asec+ s, (s)- This implies that C is atomic, which is a contradiction.

1

2. THE SUFFICIENT CONDITION

To the best of our knowledge, no result is available on the order-theoretic properties of the Veinott
poset (SL(C'), <"). The following example shows that, in general, (SL(C'), <") is not a lattice.

Example 2.1. Consider the nondistributive pentagon lattice N5, where, to use a compact notation,
subsets of V5 are denoted by strings of letters.
e

a7\

I b

c\/
a

Consider ed, abce € SL(N5). It turns out that | ed = {a, ¢, d, ab, ac, ad, cd, ed, acd, ade, cde, abde,
acde, abede} and | abce = {a, ab, ac, abce}. Thus, {a, ab, ac} is the set of common lower bounds
of ed and abce. However, the set {a, ab, ac} does not include a greatest element, since a <" ab and
a <Y ac while ab and ac are incomparable. Hence, ab and ¢ are maximal lower bounds of ed and
abce, so that (SL(N5), <") is not a lattice. ]

Indeed, the following result shows that if SL(C') turns out to be a lattice then C' must necessarily
be distributive.

Lemma 2.2. If (SL(C), <") is a lattice then C'is distributive.

Proof. By the basic characterization of distributive lattices, we know that C' is not distributive iff
either the pentagon N is a sublattice of C or the diamond M3 is a sublattice of C. We consider
separately these two possibilities.

(N5) Assume that N5, as depicted by the diagram in Example is a sublattice of C'. Following
Example we consider the sublattices ed, abce € (SL(C'),<") and we prove that their meet
does not exist. By Example ab,ac € 1b({ed, abce}). Consider any X € SL(C) such that
X € 1b({ed, abce}). Assume that ab <" X. If x € X then, by ab <" X, we have that bV z € X.
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Moreover, by X <" abce, bV x € {a,b,c,e}. If bV x = e then we would have that e € X, and
in turn, by X <" ed,d = e Ad € X, so that, by X <" abce, we would get the contradiction
d=dVce{a,b,c,e}. Also,if bV x = c then we would have that ¢ € X, and in turn, by ab <" X,
e = bAc € X, so that, as in the previous case, we would get the contradiction d = dVc € {a, b, ¢, e}.
Thus, we necessarily have that bV « € {a, b}. On the one hand, if b V = = b then x < b so that, by
ab <" X,z =b Az € {a,b}. On the other hand, if b V = a then z < a so that, by ab <" X,
x=aANx € {a,b}. Hence, X C {a,b}. Since X # &, suppose that a € X. Then, by ab <" X,
b=>bVae€ X. I, instead, b € X then, by X <" abce, a = b A a € X. We have therefore shown
that X = ab. An analogous argument shows that if ac <" X then X = ac. If the meet of ed and
abce would exist, call it Z € SL(C), from Z € 1b({ed, abce}) and ab, ac <V Z we would get the
contradiction ab = Z = ac.

(Ms3) Assume that the diamond M3, as depicted by the following diagram, is a sublattice of C.

In this case, we consider the sublattices eb, ec € (SL(C'), <") and we prove that their meet does not
exist. It turns out that abce, abcde € 1b({eb, ec}) while abce and abede are incomparable. Consider
any X € SL(C) such that X € lb({eb,ec}). Assume that abcde <" X. If z € X then, by
X <Y eb,ec,wehavethat t Ab,x Ac € X,sothatt AbAc=xAa € X. From abcde <V X,
we obtain that for any y € {a,b,c,d,e},y =y V (x Aa) € X. Hence, {a,b,c,d,e} C X. From
X <V eb, we derive that z VV b € {e, b}, and, from abcde <" X, we also have that x V b € X. If
x Vb= ethenz < e, so that, from abede <" X, we obtain x = e A z € {a, b, c,d,e}. If, instead,
x Vb = bthen z < b, so that, from abede <" X, we derive x = b Az € {a,b,c,d,e}. In both
cases, we have that X C {a, b, ¢, d, e}. We thus conclude that X = abcde. An analogous argument
shows that if abce <" X then X = abce. Hence, similarly to the previous case (/N5), the meet of
eb and ec does not exist. 0]

Moreover, we show that if we require SL(C') to be a complete lattice then the complete lattice
C must be a complete Heyting and co-Heyting algebra. Let us remark that this proof makes use of
the axiom of choice.

Theorem 2.3. If (SL(C), <") is a complete lattice then C' is a complete Heyting and co-Heyting
algebra.

Proof. Assume that the complete lattice C' is not a complete co-Heyting algebra. If C' is not dis-
tributive, then, by Lemma (SL(C), <") is not a complete lattice. Thus, let us assume that C'
is distributive. The (dual) characterization in [Gierz et al. 1980, Remark 4.3, p. 40] states that a
complete lattice C' is a complete co-Heyting algebra iff C' is distributive and join-continuous (i.e.,
the join distributes over arbitrary meets of directed subsets). Consequently, it turns out that C'
is not join-continuous. Thus, by the result in [Bruns 1967]] on directed sets and chains (see also
[Gierz et al. 1980, Exercise 4.9, p. 42]), there exists an infinite descending chain {ag} B<a C C, for
some ordinal o € Ord, such that if 3 < v < « then ag > a-, and an element b € C such that
Np<a @8 <b < Ng_(bV ag). We observe the following facts:

(A) « must necessarily be a limit ordinal (so that || > |N|), otherwise if « is a successor
ordinal then we would have that, for any 5 < o, an—1 < ag, so that /\ f<a 08 = Qa—1 < b,
and in turn we would obtain /\ 5 <a(bVag) =bVag_1 = b, ie., acontradiction.
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(B) We have that /\5<a ag < b, otherwise /\B<a ag = b would imply that b < ag for any
B < a,sothat \s_,(bVag) = /\s.,as = b, which is a contradiction.

(C) Firstly, observe that {b \VV ag}s<, is an infinite descending chain in C. Let us consider a
limit ordinal v < «. Without loss of generality, we assume that the glb’s of the subchains
{ap}p<y and {b V a,},<~ belong, respectively, to the chains {ag}g<, and {bV a5}5<a
For our purposes, this is not a restriction because the elements /\ p< @p and A 0 <7(
a,) can be added to the respective chains {ag}g<q and {b V ag}g<, and these extensions
would preserve both the glb’s of the chains {ag}g<q and {bV ag}s<, and the inequalities
Ns<a @3 <b < s, (bV ag). Hence, by this nonrestrictive assumption, we have that for
any limit ordinal v < o, \ .., ap = ayand A\ ,_ (b V ay) = bV a, hold.

(D) Let us consider the set S = {ag | B < o, Vy > . b £ a,}. Then, S must be nonempty,
otherwise we would have that for any 8 < « there exists some g > /3 such that b <
Ay, < ag, and this would imply that for any 3 < «, b V ag = ag, so that we would
obtain A\ 5_,(bV ag) = A\, ap, which is a contradiction. Since any chain in (i.e., subset
of) S has an upper bound in S, by Zorn’s Lemma, S contains the maximal element ag,
for some B < a, such that for any v < aand vy > 3, b £ a~. We also observe that
Np<a @8 = Ng<yca @y and Ag_o(bV ag) = Ng<,o(bV ay). Hence, without loss of
generality, we assume that the chain {ag} < is such that, for any 5 < «, b £ ag holds.

For any ordinal 3 < o — therefore, we remark that the limit ordinal « is not included — we
define, by transfinite induction, the following subsets Xz C C"
-6=0= Xﬁé{ao, b\/ao};
- B>0 = XgE U5 X, U{bVagtU{(bVag)Aas|é < B}
Observe that, for any 5 > 0, (bV ag) Aag = ag and that the set {bV ag} U{(bVag)ANas|d < B}
is indeed a chain. Moreover, if § < 3 then, by distributivity, we have that (bV ag) Aas = (bAas) Vv
(ag Nas) = (b Aas) V ag. Moreover, if v < § < athen X, C X3g.
We show, by transfinite induction on £, that for any 8 < o, Xg € SL(C). Let 6 < /8 and
1 <y < . We notice the following facts:

(D (b\/ag) (b\/aw)—b\/a[gEXB

(2) (bvag)V(bVay) =bVa, X, CXg

(3) bVag)A((bVay)Aay,) = (b\/aﬁ)/\aueXB

@) (bVag) VvV ((bVay)Aay) =(0bVag)V(bAay)Va,=bVa, e X, CXg

(5) ((bVag) Nas) A((bV ay) Aay) = (bV ag) A amax(s,y) € Xp

©) ((bVag)Aas)V ((bVay)Aay) = ((bAas)Vag)V ((bAau)Vay) = (DA Gmines.)Vay =
(b\/ay)/\ammh ) € € X, CXg

(7) if 5 is a limit ordinal then, by point (C) above, A\ ,_5(bV a,) = bV ag holds; therefore,
Np<s ((BVap)Aas) = (\,<5(bVay)) Aas = (bVag)Aas € Xp; in turn, by taking the glb
of these latter elements in X 3, we have that /\;_4 ((bVag)Aas) = (bVag)A( Ns<p as) =
(b\/aﬂ)/\aﬁ =ag EXﬁ

Since X € SL(C') obviously holds, the points (1)-(7) above show, by transfinite induction, that for
any 5 < a, Xp is closed under arbritrary lub’s and glb’s of nonempty subsets, i.e., X3 € SL(C).
In the following, we prove that the glb of { X3} 5, C SL(C) in (SL(C'), <") does not exist.
Recalling, by point (A) above, that « is a limit ordinal, we define A = M*(|J B<a X 3). By
point (C) above, we observe that for any limit ordinal v < «, the | g<aq X already contains the
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glb’s
/\(b\/ap):b\/afyer, /\ap:aveX,y,
p<y p<y
{(N\N®Vay))ras|s <yt ={(bVay)Aas|d <~} CX,.
p<y

Hence, by taking the glb’s of all the chains in | J B<a XB> A turns out to be as follows:

A= JXgUu{ A\ ®Vag), \ agtu{( A®Vap)Aas|s<a}
B<a B<a B<a B<a

Let us show that A € SL(C'). First, we observe that | J4_,, X is closed under arbitrary nonempty
lub’s. In fact, if S C (Jg.,, Xp then S = Jg_, (5 N Xp), so that

Vs=\JEnxp=\\Vsnxs

B<a B<a
Also, if vy < 8 < athen SN X, C SN Xg and, in turn, \/ S N X, < \/ SN Xg, so that
{V 8N X3} p<q is an increasing chain. Hence, since [z, X3 does not contain infinite increasing
chains, there exists some 7 < « such that \/ B<a VSNnXs=\VSNX, € X,, and consequently
V'S € Ug<o X Moreover, {(/\B<a(b Vag)) Aasts<a C Ais a chain whose lub is (/\B<a(b v
ag)) A agp which belongs to the chain itself, while its glb is

A CACVag)ras=( A\ Ovag)n Nas= /\ as € A

<a PB<a B<a o<a <o
Finally, if § < v < « then we have that:
®) (/\B<a(b Vag)) A(bVay) = No<albVag) € A
) (AsealdVag)V(Va,)=bVa,eX,CA
(10) (Apea(dV 35)) A (0V @) Aas) = (AgoalbV as) Aas € A
(11) We have that (Az_,(0V ag)) V ((bV ay) Aas) = (Agea(bVap)) V (bAas)Vay, =
(Ap<a(dVap))Va,. Moreover, bV ay < (Ageo(DVag))Va, < (bVay)Vay, =bVay;
hence, (Aﬁ<a(bVa5)) (bVay) Aas) =bVa, € X, C A
Summing up, we have therefore shown that A € SL(C).

We now prove that A is a lower bound of { X3} <, i.e., we prove, by transfinite induction on
B, that for any 8 < a, A <" Xp.
(A < XO) this is a consequence of the following easy equalities, for any 6 < [ < a:
(b\/ag)/\ao € Xg C A, (b\/a/j)\/ao bvag € Xo; (b\/ag)/\(b\/ao) =bVag € Xg C A;
(bVag)V(bVag) =bVay € Xo; (bVag)Aas) Aag = (bV ag) ANas € Xz C 4
( bVag) /\a(s) Vag = ag € Xo; ((b\/ag) /\a5) AN(Vag)=(bVag)Nas € Xg C A
(b\/aﬁ /\a(s) (b\/ao)—b\/CLoGXo.

° (A <" X, B > 0): Leta € Aandz € Xg. If x € U7<5X7 then x € X, for
some v < f3, so that, since by inductive hypothesis A <" X, we have thata Az € A
and a Vz € X, C Xp. Thus, assume that z € X~ (U,-5X;). If a € Xp then
ahNz € XgCAandaVx € Xg. Ifa € X, for some i > S, thena Az € X, C A,
while points (2), (4) and (6) above show that a V 2 € Xg. If a = A < o(b V ag) then
points (8)-(11) above show thata Az € AandaVz € Xg. Ifa = (A, (bV ay)) Aau,
for some p < «, and 9 < [ then we have that:

<o



A NEW CHARACTERIZATION OF COMPLETE HEYTING AND CO-HEYTING ALGEBRAS 7

(12) /\'y<0¢ b\/ a”/ ) A aﬂ) A (b\/ag) = (/\'y<a(b\/a7)) A Ay €A

((
(13) ((Agea®V @) Aau) V (0Va5) = (AyzalbVa) v (bVas)) Al (bVag)) =
((IE\/ag) (b\/amm( )):bVageXﬁ

(14) 7<a bV ay) ) A au) A ((bVag) A a(g) = (/\,y<a(b\/ av)) A Gax(p,5) € A
15)
(( /\ (bVay) Aau) Vv ((bVag) Aas) =
<o
(N @Va))vEva))r(( N\BVa))Vvas)Ala,V(bVag)) Ala,Vas) =

<« <o
(bVag) AbVas) A bV aminus) A Gmin(us) =
(bv aﬁ) N Opin(p,5) € Xz
Finally,ifa = A\, ayandz € Xgthena < wsothataAz =a € AandaVz =z € Xp.
Summing up, we have shown that A <" Xj.

Let us now prove that b & A. Let us first observe that for any 3 < «, we have that ag £ b:
in fact, if a, < b, for some v < « then, for any 6 < 7, bV as = b, so that we would obtain
A f<a (b V ag) = b, which is a contradiction. Hence, for any 5 < a and § < f, it turns out that
b#bVagandb # (bAas)Vag = (bVag)Aas. Moreover, by point (B) above, b # A\ 5, (bVag),
while, by hypothesis, b # A, ap. Finally, for any § < o, if b = ( Az (bV ag)) A as then we
would derive that b < ag, which, by point (D) above, is a contradiction.

Now, we define B & M*(A U {b}), so that

B=AU{d}U{bAas|d < a}.
Observe that for any a € A, with a # /\ﬁ<a ag, and for any 6 < «, we have that b A as < a,

while b V/ (( As<albV ag)) A aé) - (b V (AgealdV aﬁ))) A BV as) = (NseadV ag)) A
(bVas) = Ngeo(bVag) € B. Also, forany 6 < 8 < a, we have that b V ((bVag) Aas) =
bV (bVag) A(bVas) =bVas € B. Also, bV (N\goo(bVag)) = Ageo(bV as) € Band
bV A g<a @8 = b € B. We have thus checked that B is closed under lub’s (of arbitrary nonempty
subsets), i.e., B € SL(C). Let us check that B is a lower bound of {X3}3<,. Since we have
already shown that A is a lower bound, and since b A a5 < b, for any § < «, it is enough to observe
that forany 8 < cvand z € Xg, bAx € Band bV 2 € Xg. The only nontrivial case is for
z = (bV ag) A as, for some § < 8 < . On the one hand, b A ((bV ag) Aas) =bAas € B,on
the other hand, bV ((bV ag) Aas) =bV ((bAas) Vag) =bVag € Xa.

Let us now assume that there exists Y € SL(C) such that Y is the glb of {Xg}g<, in
(SL(C),<"). Therefore, since we proved that A is a lower bound, we have that A <" Y. Let
us consider y € Y. Since bV ag € A, we have thatbVagVy € Y. Since Y <” Xy = {ap,bV ap},
we have that bV agVyVag =bVagVy € {ap,bVap}. IfbVagVy=agthenb < ag, which,
by point (D), is a contradiction. Thus, we have that bV ag V y = bV ag, so that y < bV ag and
bV ag € Y. We know that if x € X, for some 8 < «, then x < bV ag, so that, from Y <Y Xg,
we obtain that (b V ag) Az =z € Y, thatis, Xg C Y. Thus, we have that J;_, X3 C Y, and, in
turn, by subset monotonicity of M*, we get A = M* (U, X5) € M*(Y) =Y. Moreover, from
y < bVag,since A <"Y andbVag € A, weobtain (bVag) Ay =y € A, thatisY C A. We have
therefore shown that Y = A. Since we proved that B is a lower bound, B <” Y = A must hold.
However, it turns out that B <" A is a contradiction: by considering b € B and A B<a 08 € A,
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we would have that bV (A B<a ag) = b € A, while we have shown above that b ¢ A. We have
therefore shown that the glb of { X3} 3.4 in (SL(C), <) does not exist.

To close the proof, it is enough to observe that if (C, <) is not a complete Heyting algebra then,
by duality, (SL(C), <") does not have lub’s. [

3. THE NECESSARY CONDITION

It turns out that the property of being a complete lattice for the poset (SL(C), <") is a necessary
condition for a complete Heyting and co-Heyting algebra C'.

Theorem 3.1. If C' is a complete Heyting and co-Heyting algebra then (SL(C'), <") is a complete
lattice.

Proof. Let {A;}ier C SL(C), for some family of indices I # @. Let us define
G2 {$ € M*(Uiein) ’Vkﬁ el M*(Uz'e[Ai) Nlx <’ Ak}
The following three points show that G is the glb of {A4; }icr in (SL(C), <Y).

(1) We show that G € SL(C). Let L £ A,.; /A 4;. First, G is nonempty because it turns out
that L € G. Since, forany i € I, NA; € A; and I # @, we have that 1 € M*(U;A;).
Lety € M*(U;A4;) N | L and, for some k € I, a € Ag. On the one hand, we have that y A a €
M*(U;A;) N | L trivially holds. On the other hand, since y < L < a, we have thatyVa = a € A.

Let us now consider a set {:cj }je 7 C @G, for some family of indices J # @, so that, for any
jeJandk e I, M*(U; A;) N lo; <Y Ag.

First, notice that A\ ;c; z; € M*(U;A;) holds. Then, since | (A\;c; z;) = (e +2; holds,
we have that M*(U;A4;) N L (Ajeyz5) = M*(Uidi) N (Njes 4 x5), so that, for any k € I,
M*(UlAZ) N ‘L(/\jEJ l‘j) <V A, that is, /\jEJ T; € G.

Let us now prove that \/,. ; z; € M*(U;4;) holds. First, since any x; € M*(Ujer4;), we
have that ©; = A;ck ;) 5, where, for any j € J, K(j) € I is a nonempty family of indices
in I such that for any ¢ € K(j), a;; € A;. Forany ¢ € I, we then define the family of indices
L(i) C J as follows: L(i) = {j € J |i € K(j)}. Observe that it may happen that L(i) = @.
Since for any i € I such that L(7) # @, {a;}jeru) € Ai and A; is meet-closed, we have that if
L(i) # @ then a; = Nier@ @i € Ai. Since, given k € I such that L(k) # @, for any j € J,
M*(UierAi) N Loy <Y Ay, we have that for any j € J, x; V a;, € Aj. Since Ay, is join-closed, we
obtain that \/; ;(z; V ax) = (V;c; 2;) V ax € Ay. Consequently,

/\ ((\/ ;) V ak) € M*(User4;).

kel, jeJ
L(k)#o

Since C'is a complete co-Heyting algebra,

AN (\Vzpva) =\ z)v( N\ )

kel jed jeJ kel
(k)#2 L(k)#2
Thus, since, for any 7 € J,
N i = A Niexgaii < @
kel, Jj€J

L(k)#2
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we obtain that (\/;c ; ;) V ( /\ ak) =V ey zj, sothat \/ ;. ; x; € M*(Uier 4i).
O

Finally, in order to prove that \/,. ; z; € G, let us show that for any k € I, M*(U;A4;) N |
(Vjeszj) <¥ Ap. Lety € M*(U;A) N L (Ve ;) and a € Ag. Forany j € J,y Ax; €
M*(UiAi) N L (V ey ), so that (y A zj) Va € A Since Ay is join-closed, we obtain that
Vijes (yAzj)Va) =aV (Vjej(y A z;)) € Aj. Since C is a complete Heyting algebra,
aV (\/jeJ(y Azj)) =aV (yA (Vjes ;)). Since y A (Vjes ) =y, we derive that y V a € Ay,
On the other hand, y A a € M*(U;4;) N L(V ¢ ;) trivially holds.

(2) We show that for any & € I, G <V Aj. Letx € G and a € Aj. Hence, x € M*(U;4;)
and for any j € I, M*(U;4;) N L« <" A;. We first prove that M*(U;4;) N | o C G. Let
y € M*(U;A;) N | x, and let us check that for any j € I, M*(U;4;) N Ly <Y A if 2 €
M*(U;A;)) N L yand u € Aj then z € M*(U;A;) N | = so that z V u € A; follows, while
zAu € M*(U;A;) N |y trivially holds. Now, since x A a € M*(U;4;) N | =, we have that
x A a € G. On the other hand, since x € M*(U; 4;) N Lz <Y Ay, we also have that x V a € Ay.

(3) We show that if Z € SL(C) and, for any i € I, Z <" A; then Z <" G. By point (1),
L = Aics NAi € G. We then define Z+ C C as follows: Z+ £ {zV L |z € Z}. It turns
out that Z+ C M*(U;A;): in fact, since C is a complete co-Heyting algebra, for any z € Z, we
have that = V (A;c; A 4i) = Nier(z V A A;), and since € Z, forany i € I, \ A; € A;, and
Z <Y A;, we have that x V \ A; € A;, so that A\, ;(z VvV A\ A;) € M*(U;A;). Also, it turns
out that Z+ € SL(C). f Y C Z' andY # @ then Y = {2V L},cx for some X C Z with
X # @. Hence, \/Y = \/_ x(zVv L) = (VX)V L and since \/ X € Z, we therefore have
that \/Y € Z*. On the other hand, A\Y = A, .y (z V 1), and, as C is a complete co-Heyting
algebra, \,cy(z VL) = (AX) V L, and since \ X € Z, we therefore obtain that \Y € Z+.
We also observe that Z <V Z-1. In fact, if z € Z and yV.1le 7+, for some y € Z, then, clearly,
xVyV L € Z+, while, by distributivity of C, z A (yV L) = (x Ay)V L € Z+. Next, we show that
forany i € I, 7L <V A; Leta Vv L € Z+, forsome z € Z1+, and a € A,;. Then, by distributivity
of C,(xVL)ANa=(rANa)V(LAa)=(xAa)V L, andsince, by Z <" A;, we know that
r Aa € Z,we also have that (z A a) V L € Z+. On the other hand, (zV L) Va = (zVa)V L,
and since, by Z <" A;, we know that | < xVa € A;, weobtainthat (zVa)V L=xVacA,.
Summing up, we have therefore shown that for any Z € SL(C) such that, for any i € I,
Z <V A, there exists Z+ € SL(C) such that Z+ C M*(U;4;) and, forany i € I, Z+ <V A;. We
now prove that Z+ C G. Consider w € Z, and let us check that for any i € I, M* (U A) Ndw <Y
A;. Hence, consider y € M*(U;A;) N Lw and a € A;. Then, y A a € M*(U;4;) N | w follows
trivially. Moreover, since y € M*(U;A;), there exists a subset K C I, with K # &, such that
for any k € K there exists ay € Ay such that y = /\keK ag. Thus, since, for any k € K,
ZNap € M*(U;A;)N Lz <Y A;, we obtain that {(z Aag) Va}lrex C A;. Since A; is meet-closed,
Arer ((w A agp) Va) € A;. Since C is a complete co-Heyting algebra, Acx ((w A ay) Va) =
aV (Npexwhar)) =aV (wA (Ngeg ar)) =aV (wAy) =aVy,sothataVy € A; follows.
To close the proof of point (3), we show that Z+ <V G. Let z € Z+ and x € G. On the
one hand, since Z+ C G, we have that z € G, and, in turn, as G is join-closed, we obtain that
zV x € G. On the other hand, since z € M*(U; A;), there exists a subset K C I, with K # &,
such that for any k € K there exists a;, € Ay, such that x = A\, _j az. Thus, since Z+ <v A,
for any k € K, we obtain that z A a, € Z'. Hence, since Z' is meet-closed, we have that

Nierx(zNar) =2 A (Npe ar) =2 ANz € Z+.
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To conclude the proof, we notice that { T} € SL(C') is the greatest element in (SL(C'), <). Thus,
since (SL(C'), <") has nonempty glb’s and the greatest element, it turns out that it is a complete
lattice. [

We have thus shown the following characterization of complete Heyting and co-Heyting alge-
bras.

Corollary 3.2. Let C be a complete lattice. Then, (SL(C'), <") is a complete lattice if and only if
C'is a complete Heyting and co-Heyting algebra.

To conclude, we provide an example showing that the property of being a complete lattice for
the poset (SL(C'), <") cannot be a characterization for a complete Heyting (or co-Heyting) algebra
C.

Example 3.3. Consider the complete lattice C' depicted on the left.

T T
C 7\ 7\ D
ag b ago b
N NG
ai bo ai bo
NG N
a by a2 b1
(%)
L N
1 1

C is distributive but not a complete co-Heyting algebra: bV ( A;~gai) =b < Ajso(bVa;) = T.
Let X, £ {T, CL()} and, for any ¢« > 0, X; 1 = X; U {(I7;+1}, so that {Xi}iz() - SL(C) Then, it
turns out that the glb of {X;};>¢ in (SL(C'), <") does not exist. This can be shown by mimicking
the proof of Theorem Let A £ {1} UJ;50X; € SL(C). Let us observe that A is a lower
bound of {X;};>0. Hence, if we suppose that Y € SL(C) is the glb of {X;};>¢ then A < Y must
hold. Hence,ify € Ythen TAy =y € A,sothatY C A,and T Vy € Y. Since, Y <" Xy, we
havethat TVyV T =T Vy € Xg={T,ap}, so that necessarily T Vy = T € Y. Hence, from
Y <Y X;, for any ¢ > 0, we obtain that T A a; = a; € Y. Hence, Y = A. The whole complete
lattice C' is also a lower bound of {X;};>¢, therefore C' <" Y = A must hold: however, this is a
contradiction because from b € C'and 1. € A we obtainthat bV L =b € A.

It is worth noting that if we instead consider the complete lattice D depicted on the right of the above
figure, which includes a new glb a,, of the chain {a; };>0, then D becomes a complete Heyting and
co-Heyting algebra, and in this case the glb of {X;};>0 in (SL(D), <") turns out to be {T} U
{ai}izo U {aw}. []
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