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ABSTRACT: The intraband exciton dynamics of molecular aggregates is a crucial
initial step to determine the possibly coherent nature of energy transfer and its
implications for the ensuing interband relaxation pathways in strongly coupled
excitonic systems. In this work, we fully characterize the intraband dynamics in linear
J-aggregates of porphyrins, good model systems for multichromophoric assemblies in
biological antenna complexes. Using different 2D electronic spectroscopy schemes
together with Raman spectroscopy and theoretical modeling, we provide a full
characterization of the inner structure of the main one-exciton band of the porphyrin
aggregates. We find that the redistribution of population within the band occurs with a
characteristic time of 280 fs and dominates the modulation of an electronic coherence.
While we do not find that the coupling to vibrations significantly affects the dynamics
of excitonic coherence, our results suggest that exciton fluctuations are nevertheless
highly correlated.

Despite being the object of thorough theoretical and
experimental studies for more than 60 years,1−3

J-aggregates continue to arouse considerable interest.4−7 Such
interest is mainly due to the collective nature of their optical
excitations, known as excitons, endowed with unique linear
and nonlinear optical responses.7,3−10 The attention on these
systems has recently been renewed after the discovery that light-
harvesting complexes in natural photosynthetic systems are
governed by principles very similar to those holding in aggregates
of artificial dyes.11 It has been recognized that excitons play a
fundamental role in the mechanism of electronic energy transfer,
which can notably include quantum coherent dynamics, in
various synthetic nanoscale and biological systems.12−16 In light
of the possible role of quantum coherence in exciton transfer, the
attention is currently focused on the characterization of transport
properties of excitonic systems and how they are affected by
the coupling with vibrations and the environment.5,17−22

An important aspect in this regard, still not fully investigated,
is intraband dynamics (i.e., the dynamics within states building
the optically active one-exciton band) in J-aggregates, foregoing
the more characterized interband dynamics.
In this work, different 2D electronic spectroscopy (2DES)

schemes have been applied together with Raman spectroscopy
and theoretical modeling to fully characterize the intraband
exciton dynamics in porphyrin J-aggregates at room temper-
ature, with particular attention to the effects of the coupling
between electronic and vibrational degrees of freedom.
Aggregates of porphyrins, in particular of the diacid form

of the water-soluble tetra-(p-sulphonato)-phenyl-porphyrin
(H2TPPS) (Figure 1a), are particularly meaningful because they
have been often proposed as model systems for chlorosomes

and LH2 complexes.23,24 The aggregation properties of H2TPPS
are well known, and a significant number of works have
already been devoted to clarify the aggregation conditions, the
aggregate geometry and structure, and the photophysical and
dynamical properties in both monomeric and aggregated
form. The appearance of new blue- or red-shifted bands in
the absorption spectra is a typical signature of aggregate
formation (Figure 1b).6,7,3,25−30 The optical properties of
H2TPPS aggregates are typically described using an ideal
model of a linear homogeneous aggregate of N monomers
with nearest-neighbor coupling only.7 In this model the expres-
sion of eigenstates and eigenenergies can be calculated exactly.
The one-exciton band is formed by N eigenstates |k⟩,
characterized by a single quantum number k and an energy
Ek = E + 2J cos(πk/(N + 1)), where E is the energy of the
excited state of the monomer and J < 0 is the electronic
coupling.6,3 The state with k = 1 (|1⟩) collects the majority of
the oscillator strength, and the rest is distributed among all of
the odd k states with a decreasing relevance as k increases, such
that the linear optical properties can be justified considering
only the first two optically bright states |1⟩ and |3⟩. The
description of nonlinear optical properties requires us to
invoke also the two-exciton band, which is formed by
states |k, k′⟩ (k ≠ k′) with energies related to the one-exciton
energies by Ek,k′ = Ek + Ek′.31 Exciton binding interactions
leading to biexciton formation can be neglected in these
systems.28,32
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In this work we focus on the so-called JB band
27,33 located at

20 380 cm−1 (∼490 nm), which is characterized by the higher
excitonic coupling. The exciting laser band in 2D experiments
has thus been tuned to cover the above-mentioned band
(Figure 1b). Details of 2D spectroscopy and the physical
meaning of 2D signals can be found in refs 34 and 35. The
optical setup and data analysis techniques specifically employed
in this work are described in the SI.
Figure 2a shows two examples of 2D maps measured in the

rephasing (R) and nonrephasing (NR) schemes, recorded at
waiting time t2 = 0 fs. t2 is the time delay between the second
pump and the probe pulses, during which the population and
coherence dynamics take place.35 For all times t2 investigated,
the R signal is dominated by a positive diagonal peak elongated
along the diagonal direction, while the NR map is dominated
by a positive diagonal peak elongated in the antidiagonal
direction, both attributed to ground-state bleaching and
stimulated emission of the JB transition. The upper and lower
off-diagonal (diagonal) negative features in R (NR) spectra are
the result of the typical dispersion lineshapes. The possible
contribution of an excited-state absorption from one-exciton
to the two-exciton states can be invoked to explain the slight
asymmetry of the upper negative peak, being more intense than
the lower one, although the process cannot be fully captured in
the analyzed spectral range. (see SI Figure S1)
The absence of distinct features in the R and NR 2D maps

does not allow the clear characterization of the internal
structure of the JB band. To gain more insight, 2D experiments
have been repeated in the so-called “double-quantum” scheme
(2Q2D), reported in the last column of Figure 2a. 2Q2D is able
to capture the transition toward two-exciton states in the
absence of all of the other superimposed R and NR contribu-
tions. In a 2Q2D experiment, a nonnegligible signal is detected
only if the system is at least a three-level system.35,40−43 The
sequence of pulses is such that the first two pulses generate
a double-quantum coherence between the ground (g) and a
two-exciton state ( f), whose phase oscillates during t2 at the

frequency of the g−f energy gap, close to twice the frequency
of the ground and single exciton (g−e) gap, in resonance with
the exciting pulse. The third excitation pulse then returns the
system to a one-quantum coherence (g−e or e−f), and the
signal is emitted. Differently from R and NR 2D maps, a 2Q2D
map is obtained varying t2 for fixed values of t1, and thus it
reports the signal as a function of ω2 and ω3 (see the SI). The
2Q2D technique is particularly suited in the case of J-aggregates
because it allows determining the position of the two-exciton
states with respect to the one-exciton transitions. Moreover,
because the two-exciton state energies are related to the one-
exciton state energies, a 2Q2D experiment can provide informa-
tion also on the one-exciton band structure. In the absence
of line-broadening effects the distance between the positive
and the negative peaks along the ω3 axis Δω3 in a 2Q2D map
corresponds to the difference between the two-exciton to one-
exciton energy gap and the one-exciton to ground-state energy
gap, that is, Δω3 = (Ef − Ee) − (Ee − Eg). Homogeneous
broadening results in a slight increase in this distance as well a
shift of the peaks along the ω2 axis.

41 For linear J-aggregates,
the selection rules state that the transitions with the highest
oscillator strength are |0⟩ → |1⟩ and |1⟩ →|1, 2⟩;11,44 therefore,
we can identify e = |1⟩ and f = |1, 2⟩ and the energy difference
Δω3 can be related to the k = 2 and k = 1 exciton gap, Δω3 ≳
(Ef − Ee) − (Ee − Eg) = E2 − E1. The estimation of the E2 − E1
gap from 2Q2D measures (Δω3 ≈180 cm−1, Figure 2a) and the
estimation of the E1 − E gap from linear absorption measures
(Figure 1), allow extrapolating the values of J and N that
best reproduce experimental data using the expression of
exciton energies. A k = 2 and k = 1 exciton gap in the range of
E2 − E1 ≈ 160−200 cm−1 leads to − J ≈ 1170−1400 cm−1 and
N ≈ 12−14. Using the same expression, these values have been
then used to estimate the exciton gap between the states |1⟩
and |3⟩, E3 − E1 ≈ 420−520 cm−1 (see the SI).
This estimated energy gap is also consistent with the analysis

of the time dependence of the R and NR 2D maps. The
dynamic evolution of such 2D maps along t2 has been studied

Figure 1. (a) Schematic of the linear self-assembled geometry of H2TPPS aggregates. (b) Steady-state absorption spectrum of the H2TPPS aggregate
in water solution in the JB band region (black) and experimental spectrum of the exciting laser pulse used in 2D spectroscopy (green shadowed area).
The band is generated by the interaction of dipole moments oriented parallel along the linear chain (head-to-tail configuration).33 The inset
compares the absorption spectra in the whole visible range for the monomer (red) and the aggregate (black), where new excitonic bands are
detected at ∼23 700 cm−1 (HB), 20 400 cm

−1 (JB), and 14 200 cm
−1 (JQ).

3,25,33 The JB band in the aggregate is shifted by ∼2660 cm−1 to the red with
respect to that of the monomer, so that E1 − E = 2J cos(π/(N + 1)) ≈ −2660 cm−1.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.6b02433
J. Phys. Chem. Lett. 2016, 7, 4996−5001

4997

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b02433/suppl_file/jz6b02433_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b02433/suppl_file/jz6b02433_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b02433/suppl_file/jz6b02433_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b02433/suppl_file/jz6b02433_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.6b02433


with a recently proposed global analysis methodology able
to simultaneously extract coherence and population dynamics
of R and NR contributions.36 The results of this analysis are
reported in Table 1.

The population dynamics of the purely absorptive signal is
dominated by two time constants, whose amplitude distribu-
tions in the 2D maps are shown in the form of decay-associated
spectra36 (DAS). Together with a long time constant (>1 ps)
describing the overall decay of the maps, the dynamics in the
investigated time window is characterized by a time constant of

280 fs. The amplitude distribution of this time constant (DAS
in Figure 2c) shows a positive peak (i.e., signal is decaying)
on the upper diagonal, whereas negative peaks (i.e., signal is
raising) are present on the lower diagonal and off-diagonal
positions. This witnesses a transfer of signal amplitude from
higher to lower energy states with a 280 fs time constant. Other
ultrafast dynamic phenomena typically characterized by similar
time scales, such as spectral diffusion, would have presented
significantly different amplitude distributions.36 We therefore
suggest that this time constant is associated with a population
redistribution within the JB band, from states at higher energy
to states at the bottom of the band.
The evolution of the 2D signal also shows the presence of

oscillations, typical signatures of the coherent evolution of
the quantum superpositions prepared by the exciting laser.
The same global analysis allows identifying three frequency
components contributing to the overall 2D map beating: 258,
334, and 445 cm−1 (Figure 2d).
The first two components contribute in both R and NR maps

with damping times longer than the time window investigated
(>1 ps) and can be interpreted as vibrational coherences.

Figure 2. (a) Examples of experimental (upper line) and simulated (lower line) 2D maps obtained in the rephasing (R), non rephasing (NR), and
double-quantum (2Q) configurations for H2TPPS aggregates in solution at room temperature. The R and NR maps report the real part of the signal
at t2 = 0 fs. The 2Q maps refer to t1 = 0. All of the maps are normalized to their maximum. The energies of relevant states and the coordinates where
the traces shown in panels d−f are extracted are also pinpointed in the maps. (b) Simulation of the absorption spectrum. The parameters used to
simulate linear and 2D response are reported in the SI. (c) Decay-associated spectrum (DAS)36 of the purely absorptive (R+NR) maps, showing the
amplitude distribution of the 280 fs time constant. A positive (negative) amplitude is recorded, where the signal is decaying (rising). (d) Comparison
between beating modes in Raman and 2D spectra. Fourier transform (green) and linear prediction z-transform LPZ37−39 (red) of the oscillating part
of the NR signal extracted at coordinates where all three main oscillating components are expected to contribute. Resonant (black) and nonresonant
(blue) Raman spectra. (e,f) Comparison of the experimental and theoretical decay traces as a function of t2 in R (e) and NR (f) signals extracted at
relevant coordinates (ω1, ω3) ≈ (E1, E1 + ωα).

Table 1. Results of the Global Multiexponential Fit of the 2D
Maps (see SI and ref 36)a

componentb DAS 1 DAS 2 CAS 1 CAS 2 CAS 3

time constant (ps) >1 0.28 >1 >1 0.265
frequency (cm−1) 258 334 445

aStandard errors of the fit are in the order of 1% for frequencies
and 15% for time constants. bDAS, decay-associated spectrum; CAS,
coherence-associated spectrum as defined in ref 36.
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This assignment is also endorsed by the results of off- and
on-resonance Raman measurements (Figure 2d), showing
indeed a strong enhancement of two low-frequency vibrational
modes at 246 and 319 cm−1.
The third frequency component does not match any relevant

vibrational mode but is very close to the excitonic gap E1 − E3
estimated through the combined 2Q2D measures and model
analysis. Differently from the other two components, it is
damped within the first 265 fs after photoexcitation.
This evidence suggests that the 445 cm−1 oscillation has an

electronic origin and corresponds to the evolution of the
coherent superposition between the states |1⟩ and |3⟩, initially
prepared by the laser pulse. Note that the dephasing time of
this coherence is very similar to the relaxation time discussed
above.
To support the interpretation of our data, the experimental

optical responses have been simulated using a minimal model
for the excitations and vibrations in the aggregate that can
describe the most prominent features of the spectra. Given that
most of the oscillator strength is on the |1⟩ and to a lower
degree on |3⟩ exciton transition, we consider a four-level
electronic system, consisting of the ground state (|0⟩), the two
k = 1 and k = 3 one-exciton states, and the lowest two-exciton
state k, k′ = 1, 2 (|1,2⟩). The vibronic coupling in this minimal
model is included by considering the coupling of the electronic
states to two effective vibrational modes. The total Hamiltonian
of the system is given by Hs = Hel + Hel,vib + Hvib with the
electronic Hamiltonian given by Hel = E1|1⟩⟨1| + E3|3⟩⟨3| +
E12|1, 2⟩⟨1, 2| and the vibrational Hamiltonian Hvib = ℏωαaα

†aα +
ℏωβaβ

†aβ, where the operators aα(β)
† and aα(β) denote the creation

and annihilation operators of phonon modes, respectively, and
ωα(β) is the vibrational frequency. Finally, for the electron-
vibrational coupling we find that an interaction of the type
Hel,vib = ∑i=α,β gi(ai

† + ai)(|1⟩⟨3| + |3⟩⟨1|), which takes into
account the coupling of the one-exciton states by the vibra-
tions but neglects the displacement on each excited state, best
describes the experimental results. This can be justified in the
light of the weak vibronic coupling, as detailed in the SI.
We include decoherence, leading to homogeneous broad-

ening, by coupling the system to a Markovian environment that
induces exponential decay of electronic coherence at rates
Γij but not population transfer (for details, see the SI).
In particular, the electronic decoherence rates Γ0k (k = 1, 3)
describe the decay rate of the coherence between the electronic
ground state and the one-exciton state k, while Γ13 represents
the decay rate of the coherent superposition of the two one-
exciton states and in general includes correlated fluctuation
effects. Static disorder has been considered negligible in our
calculations. This assumption, typically verified in the case of
strongly coupled J-aggregates,45 is also justified by the round
shape of the absorptive spectra (Figure S5 of the SI).46

This model has been used to simulate the absorption
spectrum (Figure 2 b) and all of the 2D experiments (R, NR,
and 2Q schemes). All of the parameters are given in the SI.
In the simulation of the nonlinear experiments, the molecular
response to laser excitation is described in the framework of the
response function formalism,47 and the finite pulse duration of
the exciting pulses has been considered so that possible pulse
overlap effects have been accounted for (see the SI).
Figure 2a shows the simulated 2D maps at t2 = 0. The

position and relative strengths of the positive and negative
peaks are in good agreement with the experimental data.
The broadening of the positive peaks is slightly narrower in our

calculations. Because we reproduce the absorption width
(Figure 2b) it is possible that this difference is due to other
experimental pulse effects that have not been captured in the
simulations. Also, the dynamic behavior of the 2D maps along
t2 could be properly reproduced, as shown in Figure 2e,f.
The values of the coupling constants gi optimizing the

simulations (gα = 0.24ωα and gβ = 0.2ωβ) suggest that the two
vibrations are only weakly coupled to the electronic transition
giving rise to the JB band. We found that the vibronic coupling
does not alter in a relevant way the energies and the properties
of the excited states and the aggregate. In particular, this
degree of vibronic coupling does not significantly mix different
electronic states, and the energies of the strongest vibronic
transitions are relatively close to those of the simplistic linear
chain electronic system such that the insight gained from the
purely electronic chain regarding the energies of the single-
exciton and two-exciton states holds.
It is also interesting to highlight the values found for the

decoherence rates: Γ01 = 26 ps−1, Γ03 = 40 ps−1, and Γ13=
(0.265 ps)−1 = 3.8 ps−1. The dephasing rate Γ13 resulted in
being much slower than what was predicted for uncorrelated
dephasing:5 Γ13 ≪ Γ01 + Γ03 = 66 ps−1 (see the SI). This sug-
gests that correlated fluctuations are a fundamental intraband
mechanism in such strongly coupled aggregates. Correlated
dephasing mechanisms can be due to excitons sharing the same
pigments even when the environment-induced fluctuations at
each molecule are uncorrelated (local baths) as well as mol-
ecules experiencing correlated fluctuations (shared bath).5,48,49

Both processes are equally likely in the case of intraband
relaxation processes, where the relaxation involves one-exciton
states described as a combination of the same molecular states
with different symmetry.
In conclusion, the synergic use of several 2D techniques,

including a double-quantum experiment, allowed a full
characterization of the inner structure of the one-exciton
JB band of H2TPPS aggregates, including a dark state (k = 2)
not detectable with conventional techniques and two weakly
coupled vibrational modes (Figure 3). The intraband dynamics
of the most intense one-exciton band in the aggregates is
characterized by an internal population relaxation toward the
bottom of the band with a characteristic time of 280 fs, and it is
modulated by the evolution of a coherent superposition of
excitonic states dephasing on the same time scale. This time is
considerably longer than what is expected only on the basis
of spectral line-width considerations. The simulation of the
experimental data with a theoretical model taking into account
the possible coupling between vibrational modes and electronic
transitions and the dephasing action of the environment lead to
the conclusion that the long-living character of such electronic
coherence cannot be explained with the mixing between
vibrational and electronic degrees of freedom, as proposed for
other multichromophoric systems.5,50,51 This is expected in
light of previous work suggesting that such mechanism requires
the presence of vibrational modes having a frequency resonant
with the electronic transition,5,52 which is clearly not the case
here where two weakly coupled low-frequency modes dominate
the modulation of the optical response. The long dephasing
time of the intraband electronic coherence captured in this
work seems instead to be due to the presence of other environ-
mentally induced correlated dephasing mechanisms. On the
contrary, experimental data also suggest that the main
dephasing mechanism is the population decay. The electronic
coherence is indeed damped on a time scale corresponding to
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the relaxation of the population toward the state with the
lowest energy. These findings represent an important piece of
information in the debated issue of the possible relevance of
correlated fluctuations53 in energy and charge transport
processes. The nature of such correlations and their influence
on dynamics can indeed be crucial to begin to design environ-
ments that can be self-assembled to take advantage of these
correlations as a mechanism to control energy and charge
transport in fluctuating nanostructured environments. Further-
more, the characterization of the intraband dynamics is
particularly important considering that other ensuing interband
processes, including energy transfer, may involve an ultrafast
energy equilibration as the initial step. It would be interesting to
understand if this process has any effect on the overall energy-
transfer rate, especially given the close resemblance of such
aggregates with biological antennas.
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