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1 Introduction

During the last years a theory of both minimal and constant mean curvature (hyper)surfaces in sub-
Riemannian Carnot groups has been gradually, but only partially developed, even if mainly for the case of
Heisenberg groups H". For some results and perspectives concerning minimal or constant horizontal mean
curvature hypersurfaces in Carnot groups, we refer the reader to [1], [4], [10], [13], [14, 15], [16], [19], [23, 24],
[29], [30], [37, 38], [42], [45], [46], but this list is far from being complete.

In this paper we extend to Carnot groups some qualitative (and quantitative) results of the Euclidean
theory of minimal surfaces. To be more precise, we will prove suitable versions of the classical enclosure and
existence/non-existence theorems for minimal surfaces. We refer the reader to Chapter 6 of the book [21] for
a detailed account on this topic; see also [28], [20]. A key feature of all these theorems is that they can be
obtained as a straight consequence of the classical strong maximum principle for 2nd order elliptic operators.

Let us give a quick survey of the classical results.

Let x : Sy — R" be an immersion of an m-dimensional C?> smooth manifold S, into the Euclidean n-
dimensional space and set S := x(Sg) C R". By definition, S has the convex hull property if, for every domain
(that is, open connected) D C Sq such that x maps D into a bounded subset of R”, the image of D lies in the
convex hull of its boundary values. It is a classical and well-known result that minimal submanifolds of R"
satisfy this property; we refer the reader to Osserman’s book [40] (see Lemma 7.1, p. 53) and also to the paper
[41], where a geometric characterization of this property is given based on the sign of the normal curvatures
of the submanifold. It is worth observing that the convex-hull property has several geometric consequences.
For example, it implies a sort of “monotonicity” of topology of minimal submanifolds; see [17].

Now, we would like to recall some stronger enclosure theorems that somehow indicate the saddle-surface
character of non-flat minimal surfaces. To this end, we begin with the so-called “Hyperboloid theorem”,
stated in its simplest form:
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Theorem A. Let S C R> be a compact minimal surface and assume that 9S is contained in a solid body which
is congruent to the hyperboloid Hyp(e) := {(x,y,z) € R? : x> + y> - 2% < €?}, then S C Hyp(e).

A straight consequence of this result is the “Cone theorem”:

Theorem B. Let C be a solid cone congruent to Hyp(0) which consists of the two half-cones C* and €~ corre-
sponding to the two sheets Hyp*(0) and Hyp~(0) of Hyp(0). Then there is no connected minimal surface the
boundary of which lies in C and intersects both C* and €.

Note that the “test cone” Hyp(0) for non-existence may even be replaced by a slightly larger set; see [20].
The Cone theorem can be used to prove nonexistence results for Plateau problems, or for free (or partially
free) boundary value problems.

At this point, let us say a few words about the proofs and their generalizations.

Let S ¢ R" be an m-dimensional, compact minimal submanifold with boundary. For what concerns the
convex-hull property of minimal submanifolds in the Euclidean case, one begins with a well-known fact: the
coordinates functions {x; : i = 1, ..., n} are Ars-harmonic, where Ars denotes the Laplace-Beltrami operator on
S. From the Ars-harmonicity of the coordinate functions it follows that every affine function is Ars-harmonic
(that is, for every f : R" — R given by f(x) = (@, X)r + b (@ € R", b € R), one has Arsf = 0). Hence, by
the maximum principle for the Laplace-Beltrami operator Ars, f(x) reaches its maximum on the boundary
0S. Then, the convex-hull property follows because any closed convex set is the intersection of its supporting
half-planes.

We stress that the aforementioned Hyperboloid and Cone theorems, either the ones above or their gener-
alized n-dimensional versions (see, for instance, [20], [21]), can be proved by using similar arguments mainly
based on the maximum principle. In fact, the core of the matter is somehow to find (or “construct”) Ars-
subharmonic “test functions”: in the Euclidean framework, these functions are suitable quadratic functions,
see [20].

In this paper, we shall try to adapt these ideas to Carnot groups.

Let G be an n-dimensional Carnot group and let S G be a non-characteristic hypersurface of class C?
(for precise definitions concerning Carnot groups and hypersurfaces, we refer the reader to Sections 1.1, 1.2).
In this framework, the HS-Laplacian Ags is a 2nd order differential operator playing the role of the Laplace-
Beltrami operator Ars in Riemannian geometry. More precisely, let HS be the subbundle of TS generated by
horizontal tangential vector fields on S (that is, HxS = Hx N TxS for every x € S, where Hy denotes the fiber at
x of the horizontal subbundle H of TG). If we fix an orthonormal frame {Z1, ..., Z,_; } for HS, then it follows
that Aps = Z]’-:ll Z 52), which is an operator “sum of squares” of vector fields on S.

Our starting point is an elementary formula for Axs (see formula (2.1), Section 2.1) that is used to show
the Ays-subharmonicity of some simple monomial functions of degree 1 and 2 (with respect to the usual
dilations in R"). As a direct consequence, we will find some quadratic, Axs-subharmonic “test functions”,
which are similar to the classical ones; see Section 2.1. It is worth to observe that these calculations hold for
the case of step 2 Carnot groups only. The reason is a technical one. For instance, in step k Carnot groups,
with k > 2, it is not true that all degree 1 (Euclidean) monomials are Axs-subharmonic: hence, we cannot
apply the same strategy to prove the convex-hull property. It is an open problem to find new classes of test
functions for arbitrary step k Carnot groups, when k > 2.

Here we would like to stress another key aspect of this paper: the validity of the maximum principle for
the HS-Laplacian Axs. Basically, in order to prove such a result, we shall apply a generalized version of the
“Bony’s maximum principle” (see Corollary 3.1 in [8]). More precisely, we will use a theorem by Bonfiglioli
and Uguzzoni which holds true under weak regularity assumptions; see [7]. We remark that this result can be
applied to our setting by assuming a Hérmander-type condition for the subbundle HS; see Definition 2.16.

The validity of this condition seems to be deeply connected with the algebraic features of the underlying
Lie algebra g of the group G. As an example, the condition holds true in Heisenberg groups H" only if n >
1; see Example 1.7 and Remark 2.17. For brevity reasons, we do not consider this problem here. Rather, we
address the following question:
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under which algebraic conditions on G does the subbundle HS < TS of any (smooth enough) non-
characteristic hypersurface S C G satisfy the Hirmander condition?

Concerning the proof of the maximum principle (see Theorem 2.21) we also remark that one needs to
apply a suitable version of Chow’s theorem (with less regularity assumptions): in fact, we will use either a
result by Rampazzo and Sussman (see [44]), in the case of step 2 Carnot groups, or a more recent one by Feleqi
and Rampazzo (see [22]), for the step k case.

The organization of this paper is as follows.

In Section 1.1 we recall notation, basic definitions and preliminaries on Carnot groups.

In Section 1.2 we briefly introduce the theory of (smooth) hypersurfaces in Carnot groups and describe
the main geometric and analytic structures which are needed in the sequel. In particular, we define the HS-
Laplacian Ags.

Section 2.1 contains some explicit calculations for step 2 Carnot groups. More precisely, we compute the
HS-Laplacian of some simple degree 1 or 2 monomials. In this way we find some important (and at the same
time simple) examples of quadratic Axs-subharmonic functions: this is a key point of this paper, exactly as it
happens in the classical case; see [28], [20], [21].

In Section 2.2 we discuss a suitable version of the strong maximum principle for C? solutions of the dif-
ferential inequality Aus ¢ = O, under the validity of a Hérmander-type condition for the subbundle HS; see
Definition 2.16 and Theorem 2.21.

In Section 3 we present our main results for the case of step 2 Carnot groups. In particular, we prove
the convex-hull property (see Theorem 3.1) together with suitable versions of the Hyperboloid theorem and
of the Cone theorem; see Theorems 3.2 and 3.3. We stress that the axis of the “test hyperboloid/cone” is here
assumed to be a horizontal direction. In addition, we prove a (quantitative) consequence of the Cone theorem
(see Corollary 3.4) and some inclusion properties for paraboloids and cylinders with axis a vertical direction;
see Theorem 3.5.

In Section 3.1 we discuss the case of Heisenberg groups H". If n = 1 our strategy cannot be applied. Still
it can be seen that the convex-hull property for H-minimal surfaces of class C? follows easily from a classical
theorem by Osserman; see Remark 3.6. On the contrary, the case n > 1 fits with our previous results and we
are able to state a further version of the Hyperboloid/Cone theorem for suitable truncated hyperboloids and
cones with axis the T-axis of H"; see Theorem 3.8 and Corollaries 3.9 and 3.10.

In Section 4 we make a few remarks on the case of step k Carnot groups (with k > 3). In particular, we
have here to say that our only result for the step k setting is a weak version of the convex-hull property; see
Definition 4.2 and Theorem 4.3. As already observed, the problem is that much of the calculations for step
2 groups do not hold in this general context so that further studies are needed to find new, and hopefully
luckier, classes of Axs-subharmonic functions.

In the Appendix we prove a technical lemma which states that the HS-Laplacian commutes with isome-
tries; see Proposition A.4.

1.1 Carnot groups

A step k Carnot group (G, e) is an n-dimensional connected, simply connected, nilpotent and stratified Lie
group with respect to a polynomial group law e. We denote by O the identity of G and assume that g = TyG,
where g denotes the Lie algebra of G. It follows from definition that g fulfills the following conditions: g =
Hi & ...®Hy, [H1,H; 1] = H; foralli = 2, ...,k + 1, and Hy,, = {0}, where [-, -] denotes the Lie bracket and
each H; is a vector subspace of g. We set h; := dimH; (i = 1, ..., k), ng := 0, and n; := Z;=1 hj(i=1,..,k).
Hence ny = hy, ny = hy + hy,..., and n; = n. Note that H; RM for anyi=1,...,k;thusg @f-‘:l]R{h" =R",
Below, we will often use the notation H := Hy and V := H, @ ... ® Hy.

Notation 1.1. Throughout this paper, the differential of a map f is denoted either as df or as f« and the pull-
back by f is denoted as f~. Let E be a smooth subbundle of TG, with fiber at x € G denoted as Ex. The space
of C"-smooth sections of E is denoted as X"(E) (r € N U {0}); if r = oo, then we simply write X(E). We use the
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following sets of indices: Ju, := {nj_1 +1,...,n;} foranyi =1, ..., k, Jv := {hy + 1, ..., n}; in particular, we
set Ju = Ju, . We use either capital 1, ], K, ... or small i, j, k, ... Latin letters for indices belonging to {1, ..., n}
and Greek letters a, B, v, ... for indices belonging to Jv. Finally, we set h := h1 and v := n — h. Any further index
notation will be clear from the context.

Each element X, € g induces a left-invariant vector field X € X(TG) such that X(x) = (Lx)«Xo and X(0) =
X, forevery x € G. In fact, the Lie algebra g of G turns out to be isomorphic to the set Lie(G) of all left-invariant
vector fields of the group; see [32], [49]. In particular, the subspaces H and V of g can naturally be viewed as
smooth subbundles of the tangent bundle TG of the group (the fibers of H and V are given, respectively, by
Hy = (Lx)«H and Vx = (Lx)+V for every x € G). The subbundles H and V of TG are called, respectively,
horizontal bundle and vertical bundle. We have rank(H) = h and rank(V) = v.

From now on, we suppose that the horizontal bundle H is generated by a frame {X3, ..., X;} of left-
invariant vector fields. This frame can be completed to a global graded, left-invariant frame {X1, ..., Xn} for
TG. With no loss of generality, we assume that X;(x) = Lx«e; (i = 1, ..., n), where e; = (0, ...,0,1,0,...,0)

i-thplace
denotes the i-th vector of the canonical basis of R"(= ToG). We further assume that {e; : i = 1, ..., n} of R"
is graded, in the sense that H; = spang{e; : i = n;_; + 1, ..., n;} forany i = 1, ..., k. By construction, one has

X;(0) = e; foreveryi =1, ..., n (such a frame is sometimes called the Jacobian basis of G; see [6]).

Letexp : g — G be the (Lie group) exponential map and denote by log : G — g its inverse. Hereafter, we
will use exponential coordinates of the 1st kind; see [49], Ch. 2, p. 88.

As for the case of nilpotent Lie groups, the multiplication e of G is uniquely determined by the “struc-
ture” of its Lie algebra g: this is the content of the Baker-Campbell-Hausdorff formula; see [6]. Note that
0 =exp (0, ..., 0) and that the inverse of x = exp (X1, ..., Xn) € G is given by x ! = exp (=x1, ..., =Xn).

A sub-Riemannian metric gu : Hx H — R, U {0} is a symmetric positive bilinear form on H. Without
loss of generality, we also define a metric g : g x g — R+ U {0} on g by declaring that {e; : i = 1, ..., n} isan
orthonormal basis; hence, in particular, the subspaces H; are automatically orthogonal. The metrics g» and g,
hereafter denoted as (-, -)» and (-, -), respectively, extend to the whole group G by means of left-translations.
In this way (G, g) is a Riemannian manifold. Below, for simplicity, we shall assume that g := 8|H-

The Carnot-Carathéodory-distance dcc(x, y) between x, y € G is defined as

oo, y) = inf / G dt,

where the infimum is taken over all absolutely continuous horizontal curves ~ joining x to y. As a matter of
fact, by virtue of Chow’s connectivity theorem, this is a distance, which makes (G, d.¢) a complete geodesic
metric space; see [39]. Moreover, we recall that Carnot groups are homogeneous groups, that is, they admit
a l-parameter family of automorphisms (usually called Carnot dilations) 6; : G — G (t = 0) defined as
O¢x :=exp (Z]I-‘:l ZZ”:"HH v x,-}.el-].) for every x = exp (Z}’.‘:l Zj:n]-,ﬁl x,-}.e,-].) €G.

The structural constants of g associated with the frame {X1, ..., X} are defined by C 1’] = ([X;, X;], Xy) for
alli,j,r =1, ..., n. They are skew-symmetric and satisfy Jacobi’s identity. We mention that the stratification

of the Lie algebra g implies the following “structural” property: if i € Ju, and j € Jx, , then
Cij #0=m € Ju,, . 1y
Notation 1.2. Let G be a step 2 Carnot group (hence V = H,). From now on, we will set

Cf} = [C?J.]i,]'=1 RS thh(R) Vaeiy = {h +1,..., n}.

Notation 1.3. Let \"(T"G) be the vector bundle of alternating left-invariant r-tensors of G and let A'(G) be the
vector space of left-invariant sections of \"(T"G), that is, the set of all left-invariant differential r-forms. We also
denote by A} (G) the vector space of horizontal left-invariant sections of \'(H"), that is, the set of all horizontal
left-invariant r-forms.



220 —— Francescopaolo Montefalcone DE GRUYTER OPEN

Let us define the left-invariant co-frame {w; : i = 1, ..., n} dual to the frame {X; : i = 1, ..., n}, where
w; = Xl* € AY(G) for every i = 1, ..., n. The left-invariant 1-forms {w; : i = 1, ..., n} are uniquely determined
by the condition w;(X;) = (X;, X;) = 6’11 foralli,j = 1,...,n, where 6{: denotes Kronecker delta. From now
on, we will set voly := /\;’:1 w;and voly := A}_,., wa. The (Riemannian) left-invariant volume form of G is
defined as o3 := A, w; = vols A voly.

Notation 1.4. We shall denote by Px, : TxG — Ex the orthogonal projection map from TxG onto Ex. In partic-
ular, if the subbundle E is defined by left-translation of a vector subspace E of g, then we shall simply write P
rather than Pr, .

Definition 1.5. Let V be the unique left-invariant Levi-Civita connection on G associated with the fixed left-
invariant metric g = (-, -). In addition, for any X, Y € X(H) = C*(G, H) we define a “partial connection” on G
by setting V4Y := Pu(VxY).

Let {X3, ..., Xn} be a global left-invariant frame for G. Then, it turns out that
1w L
VX =5 > (Ch-Ch+C) X Vij=1nn (1.2)
r=1

see, for instance, Milnor’s paper [35], Section 5, pp. 310-311. It is not difficult to check that V* is flat, compatible
with the sub-Riemannian metric gr and torsion-free; see [37, 38]. Concerning the partial connection V#, also
called H-connection, we refer to [26]; see also [37, 38].

Definition 1.6. The horizontal gradient of ¢ € C1(G), say grad, ¢, is the unique continuous horizontal vector
field such that (grad, ¢, X) = X¢ for all X € X(H). The horizontal divergence of X ¢ ¥'(H), denoted as divy X,
is defined at each x € G by divs X(x) := Trace (Y — V#X) (x) (Y € Hx). The H-Laplacian Ay is the 2nd order
operator given by Au ¢ := divs (grad, ¢) for all ¢ € C*(S). Forany Y = Yicay ViXi € x1(H), we denote by Ju Y
the horizontal Jacobian matrix of Y, thatis, Ju Y := [X; (yj)L.’i o The horizontal Hessian matrix of ¢ € C*(G)

is defined as Hessu ¢ := Ju (grad, ¢) = [X;(X;9)], jcn, - Note that Au ¢ = Tr (Hessu ¢) for every ¢ € C%(G).
Example 1.7 (Heisenberg groups H"). The base manifold of H" is R>"*! and every p € H" is represented as
p =exp(zu,t) € H", where zu := (X1, Y1, X2, Y2, -.» Xn, Yn). The Lie algebra bhn of H" is described by means of
the global left-invariant frame {X1, Y1, ..., Xi, Yi, ..., Xn, Yn, T}, where X;(p) := a%- - Y2 Yi(p) := aiyl_ +520
foranyi = 1,...,n, and T(p) := %. One has [X;,Y;] = T forany i = 1,...,n, and all other commutators
vanish. In other words, b, is a nilpotent and stratified Lie algebra with step 2 and center spang{T}, that is,
bn = H ® H,, where H = spang{X1, Y1, ..., X, Yi, ..., Xn, Yn} and H, = spany{T}. The structural constants of
bn are described by the following skew-symmetric (2n x 2n)-matrix

o 1 - 0 O

-1 0 - 0 O
C121n+1 =

0O O 0o 1

0O O -1 0

1.2 Hypersurfaces

Let S ¢ G bean orientable hypersurface (that is, a codimension 1submanifold of G) of class C" (r > 1) and let v
be the (Riemannian) unit normal vector along S. By definition, we say that x € Sis a characteristic point if, and
only if, dim Hy = dim(Hx N TxS). The characteristic set of S is given by Cs := {x € S : dim Hx = dim(HxNTxS)}.
In other words, a point x € S is non-characteristic if, and only if, Hy is transversal to TxS. Hence, it turns out
that Cs = {x € S : |Puv(x)| = 0}, where Py is the orthogonal projection map onto H; see Notation 1.4. We say
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that a hypersurface S C G is non-characteristic if its characteristic set is empty (that is, |Px v(x)| # O for all
x € S). In the theory of C? hypersurfaces immersed in Carnot groups, it is of fundamental importance that
the Riemannian measure of the characteristic set Cs vanishes: precise estimates of the Riemannian Hausdorff
dimension of Cg can be found in [3]; see also [2] for the case of Heisenberg groups. At each non-characteristic
point x € S\ Cs, we define the unit H-normal as v, (x) := &: :E)’gl . The horizontal tangent space HxS := HyNTxS
and the horizontal normal space spang{v,(x)} C Hy split the horizontal space Hy into an orthogonal direct

sum, that is, Hx = spang{v,(x)} & HxS.

Notation 1.8. Let x ¢ S\ Cs. Throughout this paper we shall denote by Pu,s : TxS — HxS the orthogonal
projection map from TS onto HxS. When the point x € S\ Cg is clear from the context or irrelevant, we shall
simply write Pus instead of Pu,s.

Let S C G be a C?> non-characteristic hypersurface and denote by V" the induced connection on S from
V. The tangential connection V" induces a partial connection V#$ on HS given by

VEYi=Pus (ViY) VXY eX'(HS) = C'(S,HS).
In particular, it turns out that VY = V&Y — (VAY, v, ) v, forall X, Y € X1(HS); see [37, 38].

Definition 1.9 (see [37]). Let S c G be a C? non-characteristic hypersurface. The HS-gradient of ) € C1(S),
say gradys, is the unique continuous horizontal tangent vector field such that (grad,;,X) = Xy for all
X e x(HS). The HS-divergence operator is defined, for X € XY (HS) and x € S, by setting divusX(x) :=
Trace (Y — V‘;,SX) (x) (Y € HxS). The HS-Laplacian Ags is the 2nd order differential operator defined as
Aus := divas(gradys ) for all Y € C*(S). By definition, the horizontal mean curvature Hx of S is given by
Hu := —divu Vg

Definition 1.10. Let S C G be a hypersurface of class C" (r = 1). We call adapted horizontal frame to S
any horizontal orthonormal frame {Z1, ..., Zy} for H such that HxS = spang{Z,(x), ..., Z,_1(x)} and Z,(x) =
v, (x) for every x € S\ Cs. Note in particular that {Z1, ..., Z,_, } is a horizontal orthonormal frame for HS|g\c,.
Furthermore, let {{1, ..., {,_1} be its dual coframe, which is uniquely defined by the condition {;(Z;) = 5’1: for all
i,j=1,...,h—-1. We also set volys := /\?;11 (; to denote the natural volume form on HS. In the sequel, we shall
often use the notation Jus := {1, ..., h - 1}.

Remark 1.11. Let S be a C? non-characteristic hypersurface, with or without boundary. The HS-Laplacian Aus
is a 2nd order degenerate elliptic operator of the form “sum of squares”, which acts on smooth functions defined
on S (these operators are called “sub-Laplacians”; see Stein’s book [48], or the recent monograph [6]). Precisely,
starting from Definition 1.9 and using an adapted horizontal frame {Z; : i € Jus } for HS, we get that

h-1
Musp=>"7ZP¢ ¥ eC(S).

i=1

2 Technical preliminaries and main calculations

2.1 Some calculations for step 2 Carnot groups

This section contains all the calculations needed to prove our main results. Below, we will assume that G is
a step 2 Carnot group and, accordingly, we will set V := H,. In this case, we have the the following explicit
formulas for the horizontal frame {X;, ..., X;} introduced in Section 1.1:

1 .~ ~
Xi(x) :=e; + 5 Zj <C1‘§e,-,xH>Rh ea, Vi€ TIu={1,....,h}. Xalx):=e€q, YacIv={h+1,..,n}.
acJy
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Recall that, in exponential coordinates, any x € G is written as x = exp (x#, xv) and that e; = 0y, for every
I =1, ..., n.Concerning the above formulas, which can be obtained by direct calculations, we refer the reader
to Chapter 3 of the book [6].

Let S be a hypersurface of class C” (r > 2). We shall make repeatedly use of the formula

Aush = A+ H §T¢ — (Hessu vy, vy ; 1)
H

see [38]. From now on, we will assume that S is an H-minimal hypersurface, that is, Hx = 0
We start by studying (Euclidean) degree 1 monomials.

Lemma 2.1. Let G be a step 2 Carnot group. The coordinate functions {x; : I = 1, ..., n} are As-harmonic.
More precisely, we have:

(i) Aux; =0 foranyie Ju;
(ii) Arxa =0 foranya € Jv.

Proof. We have grad, x; = X; and hence divs (X;) = Zje:iH (V’;(iXi, X;) = 0 for every i € Ju, since VﬁjX,- =0
forall i, j € Ju (this easily follows from (1.2) and Definition 1.5; see Section 1.1). Moreover, since

1 1
grad, xq = 5 Z (Chej, xu >Rh X; = —ECgXH, 2.2)
i€dy

it follows that Ax xq = dive (grad, xq) = divs (% Yicy (Cire, xu >Rh Xi) . Since C%e; is a constant vector, we

get that X; ((Cfej, Xu )ps) = a%,« ((Chei, xu)pn) = (Ciie;, €j)r,. Hence using again the fact that Vi Xi =0

yields
1 1 i
AHXq = 5 Z <C§ei, ej>R,1 <Xi,Xj> = 5 Z <C§§e,~, ej>R,, 611 = 0,
i,j€ETn i,j€Ty

where the last equality follows from the skew-symmetry of the matrices Cf .

O
Now we consider (Euclidean) degree 2 monomials.
Lemma 2.2. Let G be a step 2 Carnot group. The following formulas hold:
() Au (x}) =2 foranyi€ Ju;
(i) An (x3) =3 |C3xﬂ|2 forany a € Jv.
Proof. Foranyi € Ju, we have

Ax (x,z) = divy (ingrad,,x,-) = 2(<gradei,Xi> + X; Ayxi) =2,
N—— —— —~——
=X =X =0
where we have used (i) of Lemma 2.1. Moreover, for any @ € Jv we have
An (xﬁ) = 2(<grade,x,gradea) + Xa AHxa) = 2|grad, xq|* = 1 |C;‘§XH 2,
—— 2
=0

where we have used (ii) of Lemma 2.1 and (2.2). O

Lemma 2.3. Let G be a step 2 Carnot group. Then:

(i) Hessu (x;) = Opey € Mpn(R) foranyi € Ju;
(i) Hessn(xa) = -1C € My u(R) forany a € Jv.
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Proof. Since grad,x; = X; for any i € Ju, the proof of (i) it is an immediate consequence of the fact that
VﬁjX,- =0foralli,j € Ju.Leta € Jv;in order to prove (ii), we first note that

Hessx (xq) = Jn (grad, xa) = Ju (—%Cﬂm) .
Since Ju xu = Idpyy € Mpgn(R), the proof easily follows. O

Lemma 2.4. Let G be a step 2 Carnot group. Then:

(i) Hessy (Xlz) =2X;®X;) € thh(R) fOI’ anyi € Ju;
(i) Hessu (x3) = 3 (Cixn ® Cixu) = xaCff forany a € Jv.

Proof. We have
Hessy (xlz) = Ju (2x;8rad, x;) = 2 (grad, x; ® grad, x;) = 2 (X; ® X;) Vi€ Ju,
where we have used also (i) of Lemma 2.3. Moreover, we have
Hessn (xﬁ) = Ju (2xagrad, Xq) = 2 (grad, Xo ® grad, Xa + XoaHessy (X))
=2<—%C3XH> ® (_%CSXH) -xaCli  Vac v,
where we have used also (ii) of Lemma 2.3. O

Remark 2.5. Let S ¢ G be an H-minimal C? hypersurface and let v, be its horizontal unit normal vector. By
applying Lemma 2.3, it follows that ( (Hessx (x;)) Vi, vy ) = O for any i € Ju. By skew-symmetry of the matrices
Cff (a € Iv), we get (Hessu (Xa) vy, ;) = —3 (Ciivy, v, ) = O for any a € Jv. Furthermore, by applying (i) of
Lemma 2.4, it follows that

2
<HessH (x,z) Vigs VH> =2{(X;i @ X))V, V) =2 (v,f,) Vie .

Finally, by using (ii) of Lemma 2.4 (and again the skew-symmetry of C3) we get that
<HessH (xﬁ) Vi VH> = < B (Ciixn ® Ciixn) —xaCﬁ} vy, vH> = % <C,°}XH,VH>2 VacJv.
We are now in a position to state two propositions, which will be important in the following:

Proposition 2.6. Let G be a step 2 Carnot group and let S C G be a C? non-characteristic H-minimal hyper-
surface. Then, the standard coordinate functions {x; : I = 1, ..., n} of G are Aus-harmonic on S. More precisely,
the following equations hold:

(i) Ausx; =0 foranyi e Ju;

(ii) Ausxa =0 foranya € Jv.

Thus, for any @ = (a1, ..., an) € R" the function fz(x) := >"1_, ayx; is Auss-harmonic on S.

Proof. Since Hx = 0, the proof of (i) and (ii) follows easily from formula (2.1), by applying Lemma 2.1 and
Lemma 2.3.
O

Proposition 2.7. Let G be a step 2 Carnot group and let S C G be a C? non-characteristic H-minimal hyper-
surface. Then, the following hold:

(i) Aus (x}) =2 (1 - (v;)z) >0 foranyie€ Ju;
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(i) Aus (x3) = 3 (‘Cﬁx;;‘z - <C,”,‘XH,VH>2) >0 foranya e Jv.
In particular, the monomial functions {x3 : I = 1, ..., n} turn out to be Ans-subharmonic on S.

Proof. Similarly to Proposition 2.6, since Hx = 0, the proof of (i) and (ii) follows from (2.1), by Lemma 2.2 and
Lemma 2.4; see also Remark 2.5. O

Notation 2.8. Let us set gy, (xu) := S x? — (h - 2)x}. Let R, := {x € R : x > 0} and let B be any v-tuple of
strictly positive numbers, that is, B := (Bp,1, -, Bn) € RY := Ry x....x Ry C R". We set gE(XV) =30 1 Baxa
and, accordingly, gz(xv) := g p.1 x2, where1 = (1, ..., 1) € RY. We also define a quadratic function on G by
setting g(h’ﬂ)(x) = gplxu) + gE(XV) .

Definition 2.9 (Hyperboloids and Cones with horizontal axis). Lete > 0 and f € RY. We define a solid hyper-
boloid by setting

Hyp(0, €, Xy, B) := {x eG: g(h’ﬁ)(x) = gplxn) +gﬁ(xV) < ez} 2.3)

(note that the axis of this hyperboloid is a Euclidean line passing through O € G and having horizontal direction
Xp). Also, we denote by Hyp(e, B) any element of the congruence class of Hyp(0, €, X, B). In addition, suppose
that € = 0 in the previous definitions. In this case, we set C(0, X, B) := Hyp(0, 0, X}, B) to denote the solid cone

(0, Xy, B) := {x eG: g(h’ﬁ)(x) = gnlxn) +gE(XV) < O} . (2.4)

The upper and lower parts of the cone C(0, Xj, E) (with respect to the axis X,) are denoted by €*(0, X, B) and
€ (0, X, B), respectively. That is, we set

e*(0, Xy, B):=C00, Xy, )N{xeG:x,20}, €(0,Xp,B):=0C0,X,,BN{xeG:x,=0}.
Finally, we denote by C(B) any element of the congruence class of €(0, X}, B) and by C*(B) its upper/lower parts.
Concerning the notion of “congruence” we refer the reader to Definition A.2 in Section A.

Corollary 2.10. Let G be a step 2 Carnot group, let S C G be a C* non-characteristic H-minimal hypersur-
face. Then, the functions gy(xz) and gE(Xv) turn out to be both Aus-subharmonic on S. As a consequence, the

quadratic function g(h’ﬁ)(x) = gplxn) + gﬁ(xV) is Aus-subharmonic on S.

Proof. In order to prove the first claim, let us calculate the HS-Laplacian of the function g, (xx) by using (i)
in Proposition 2.7. We have

h-1

Ausgp(xu) = 2 (Z (1 - (v;)z) ~(h-2) (1 - (v:)2)> = 2(h-1) (v:)z >0,

i=1
N2
where we have used the identity |vx|? = Z?zl (v;) = 1. The fact that gﬁ(xV) is Aus-subharmonic follows
from (ii) in Proposition 2.7. The last claim follows from the previous ones. O

Notation 2.11. Let @ := (aq,...,ay) € R := Ry x ... x Ry c R" and set galxu) = ZL a,-xiz. Let a €
Jv and let V' be the (v - 1)-dimensional subspace of V such that V = V' @ spang{X«}. We accordingly set
Xvr = (Xpats ooes Xao1s Xai L +oer Xn)- Letﬁl = (Bhsts o> Ba-1s Bas1s ---» Bn) € RY 1 be any (v - 1)-tuple of strictly
positive numbers, where Ry ™! := R, x ... x Ry C RV"L, Finally, set

8z (xy) = E /37)(3,, g(ﬁ’ﬁ) = gz(xu) + 8y (xy).
h+1<y<a
a<y<sn
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Definition 2.12 (Cylinders and Paraboloids with vertical axis). Let @ € R" and B € RY. We define a solid
paraboloid by setting

Par(0, Xq, a, /?I) = {x eG: g(E’B/)(x) = gzlxn) + gF(x,,/) < xa} (2.5)

(note that the axis of Par(0, Xq, a, B/) is a Euclidean line passing through O € G with vertical direction X,).

We denote by Par(a, B/) any element of the congruence class of Par(0, Xq, a, B/). Furthermore, let € € Ry and
—/

denote by Cyl(0, X4, €, a, ') the solid cylinder given by

Cyl(0, €, X4, a, ﬁ/) = {x cG: g(a’ﬁl)(x) < 62} . (2.6)
Finally, we denote by Cyl(e, a, B/) any element of the congruence class of Cyl(0, €, X4, a, B/).

Corollary 2.13. Let G be a step 2 Carnot group, let S C G be a C? non-characteristic H-minimal hypersurface.
Then, the functions g4(xu) and gy (xy+) turn out to be Ans-subharmonic on S. As a consequence, the quadratic

functions g(a’/?)(x) = ggz(xn) + g5 (xy/) and gEXE’B )(x) = g(a’/?)(x) — Xq are both Ays-subharmonic on S.

Proof. The proof follows by applying (ii) of Proposition 2.6 and (i) and (ii) of Proposition 2.7. O

The next result is an immediate consequence of the above calculations and will be used in the proof of The-

orem 2.21; see Section 2.2. Below, we will set ry := Zf’:l xl.z.

Lemma 2.14. Let C > 0 and set ¢(x) := e/ 21 Then, we have (Aus p)(x) < O for every x € G such that ry <
h%.Furthermore, letus set Q¢ := {x €G:ru <4/ ’%1} C G. Then, for every C% compact non-characteristic

hypersurface S C Qc (with or without boundary), there exists a function ¢ € C*(S) such that Aus ¢ < 0 and
@ >0.

Proof. First, note that Ause/™ = /™ (Ausf(x) + |grady f|?) for every f € C(S). Now, let f(x) = —(C/2) - r7.
By Proposition 2.7 we have Axs f(x) = —%Ays rz = —-C(h - 1). Moreover

lgradys f|* = C*|xus|? = C*|xu — (xu,v,)|?

XH XH v
Tu e’ Y

The conclusion of the lemma follows from the last formula. O

and hence

AHS(p = —C(p ((h - 1) - Chzi

2.2 Strong maximum principle

First, let us recall a fundamental result in Analysis: Bony’s Maximum Principle; see [8]. To this end, let us
consider a real 2nd order differential operator £, defined in a connected open set @ c RN, whichis an operator
“sum of squares” of vector fields with C* coefficients. Precisely, let

L= ZP¢ V¢eC Q) @.7)

i=1
(r < N) and assume the following well-known “Hérmander condition”:

e {Z1,...,Zy} is a family of vector fields of class C> in Q;
e the rank of the Lie algebra spanned by {Zj,...,Z;} is equal to N at each point of Q, that is,
rank (Lie{Z1, ..., Zr}(x)) = Nforall x € Q.
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Theorem 2.15 (see Corollary 3.1in [8]). Under the above assumptions, let € C*(Q) be such that L > 0. If
Y has a positive maximum at a point xo € Q, then Y has to be constant in Q, that is Y(x) = P(xo) for all x € Q.

Roughly speaking this means that sub-Laplacians satisfy an elliptic type strong maximum principle. Let
us formulate a key assumption for the sequel.

Definition 2.16 (Hérmander condition for HS). Let G be a k-step Carnot group and let S c G be a non-
characteristic hypersurface (with or without boundary) of class C', with r > k. We say that the subbundle HS
satisfies the Hormander condition if there is an adapted orthonormal frame {Z1, ..., Zy_1 } for HS such that

rank (Lie{Z1, ..., Zp1} (X)) =n-1 VxeS. 2.8)

Remark 2.17 (The Heisenberg groups H" satisfy (2.8) iff n > 1). Let S ¢ H" be a C* hypersurface and assume
that n > 1. Then, we claim that condition (2.8) holds at each non-characteristic point p € S\ Cs. To prove this
claim, let {Z1, ..., Zon-1} be an orthonormal frame for HS)| S\Cs This frame can be completed to an orthonormal
frame for TS|g\c, by adding the vector field U := |Puv|T — (v, T)vy,. In other words {Z,, ..., Zy-1, U} is an
orthonormal frame for TS|g\c,. For simplicity, set w := (v, T)/|Pxv|. Now, we observe that

1
[Puv]

<[Zi, Z]], U> = <[Zia Z}], (T - (DVH)> = (1 + w2)<[Zi, Z]], T> Vl,] € Jus. (29)

Since ([Z;, Z;], T) = (Ci"™'Z;, Z;), using (2.9) together with the identity 1 + w* = 1/|Puv|? yields

1

<[Zi!Zj]a U> = |?HV|

(CE™1Z,, 2y Vi, € Tns. (2.10)

One also verifies that ker(C3™*! |H,,s) = spang {(C2"*1v,)(p)}, which is a 1-dimensional subspace of HpS. Since
n > 1, it follows that U belongs to the linear R-span of the set {Z),[Z;, Z;] : i,j,1 € 3Jus}. Therefore
rank (Lie{Zl, ...,ZZ,,,l}(p)) = 2n, as wished. Finally, if n = 1, then HS = spang{C;V,} is 1-dimensional
and condition (2.8) cannot be satisfied.

A first consequence of Theorem 2.15 is contained in the next:

Corollary 2.18 (Strong Maximum Principle: 1st version). Let G be a step k Carnot group. Let S C G be a con-
nected, non-characteristic hypersurface (with or without boundary) of class C= and assume that HS satisfies
the Hormander condition (2.8). Then the HS-Laplacian satisfies the strong maximum principle on S. More pre-
cisely, let Yy € C%(S) be such that Ausp = 0. If 1) has a positive maximum at an interior point xo € Int(S), then
has to be constant in S, that is Y(x) = P (xo) for all x € S.

Proof. The HS-Laplacian Axs = Z?:_ll ZEZ) (=: L) is a sub-Laplacian on S and the assumptions in Theorem
2.15 are satisfied by the set of vector fields {Z; : i € Jus }. More precisely, let A be a smooth atlas for S and let
(U, ¢) € Abe such that xo € U, where { : U — R" 1, Let us set Z; := (+Z; for any i € Jus. Accordingly,
we define a 2nd order operator on {(U) by setting L = ?;11 ZQ). By the naturality of Lie brackets (see,
for instance, Proposition 13.3 in [32]) one has [Z;, Z;] = («[Z;, Z;] for every i,j € Jus. By repeated use of
this formula, it follows that {Z- : 1 € Jus} is a family of C™ vector fields on {(U) satisfying the Hormander
condition. Furthermore, by using the {-relatedness of Z; and Z, it follows that £(¢ o {) = (Z ¢)({) for every
C? function ¢ : {(U) C R™! — R.Solety : S — R (and xg € U C Int(S)) be as in the statement of the
corollary. In addition, set ¢ := 1 o {"! and y; := {(xo). Then Li(x) = Z(;b(y) and Y(xo) = ¢(yo). By applying
Theorem 2.15 (with the following obvious modifications: replace Q by {(U); replace N by n - 1; replace £ by
Z), we get that ¥ has to be constant on U. If U = §, this achieves the proof. Otherwise, let (U’, {/) € A be

1 Since the Lie bracket of tangent vector fields is tangent, it follows that ([Z;, Z;], v) = 0. This in turn implies that ([Z;, Z;], v;) =
-w([Z;, Zj], T) forevery i, j € Jus.
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such that Un U’ # ¢ and fix x{, € UN U’. Since x;, must be a positive maximum of 1), we can use the previous
arguments (with xo replaced by x{) in the new chart (U’, {’) and as S is connected, the thesis follows.
O

In order to use less restrictive regularity assumptions, we shall apply to our framework the results of a paper
by Bonfiglioli and Uguzzoni; see [7].

Let @ ¢ RY be open and Zi, ..., Zy € Lip;,.(Q2, RY). Below we write ¢ € I'*(Q)if¢p : Q — Risa
continuous function with continuous Lie-derivatives along Z, ..., Z; up to 2nd order. Let us state a simplified
version of their result, for the sub-Laplacian £ defined by (2.7).

Theorem 2.19 (see Theorem 1.21in [7]). Let Q c RN be open and Z1, ..., Zy € C1(Q, RY). Then:

e IfQis bounded and there exists ¢ € I'’*(Q) such that £L¢p < 0 and ¢ > 0 in Q, then L satisfies the I'>-Weak
Maximum Principle (abbreviated as I'>-WMP) on Q, that is, for every ¢ € I'*(Q) satisfying L¢p > 0 in Q and
limsup,_,, ¢(x) <0 forany xo € 0Q, there holds ¢ < 0 in Q.

o If £ locally satisfies the I'>-WMP on Q, then, for every ¢ € I'*(Q) satisfying L¢p = 0 and ¢ < 0 in Q, the set
F={x e Q: ¢(x) = 0} contains (the closure of) the set of points connected to any x € F by trajectories of
Z1, ..., Zr, backward and forward in time.

Remark 2.20 (Hérmander condition and Chow’s Theorem). Given a family of C° vector fields on RY satisfy-
ing the Hormander condition, Chow’s Theorem asserts that any two points of RN can be joined by an absolutely
continuous curve tangent a.e. to the distribution generated by these vector fields. This result has had many re-
cent generalizations in which the regularity of the vector fields is weakened; see [9], [31], [36] and bibliographic
references therein. Among them we would like to mention the paper by Rampazzo and Sussmann [44]. Their
result is a nonsmooth version of Chow’s Theorem valid for step 2 tangent distributions in RN associated with
Lipschitz vector fields satisfying (an appropriate version of) the Hormander condition; see Theorem 2.1 in [44].
Furthermore, an extended version of this result to step k distributions has been recently proved by Feleqi and
Rampazzo; see Theorem 4.4 in [22].

Theorem 2.21 (Consequence of Theorem 1.2 in [7]). Let G be a step k Carnot group. Let S C G be a C¥ com-
pact, connected, non-characteristic hypersurface (with or without boundary) and assume that HS satisfies the
Hérmander condition (2.8). Then, the HS-Laplacian satisfies the strong maximum principle on S. More precisely,
let € C?(S) be such that Axsp > 0. If 1 has a positive maximum at an interior point xo € Int(S), then ¥ has to
be constant in S, that is Y(x) = P(xo) for all x € S.

Proof. Observe preliminarily that Theorem 2.19 can be applied to our situation by arguing exactly as in the
proof of Corollary 2.18. Thus, using Lemma 2.14 yields the existence of a strictly positive function ¢ € C?(S)
such that Axs @ < 0. As a consequence, we can use (the first part of) Theorem 2.19, which ensures the validity
of the I'2-WMP. This, in turn, makes applicable the second part of the same theorem. Precisely, let ¢ € c(S)
be such that Ausp = 0 and P < cin S, for some ¢ € R. Under our assumptions, Chow’s connectivity property
for S follows by applying either Theorem 2.1 in [44], in the step 2 case, or alternatively, Theorem 4.4 in [22], in
the case k > 2. In other words, any two points in S can be joined by an absolutely continuous curve tangent
a.e. to the fibers of the subbundle HS, which is R-linearly generated by the vector fields {Z; : i € Jus }. This
fact jointly with (the second part of) Theorem 2.19 implies that the closure of F = {x € S : {(x) = ¢} coincides
with S. Thus, if i reaches its maximum at an interior point of S, it must be everywhere constant.

O

3 Main results in the step 2 case.

Theorem 3.1 (Convex hull property). Let G be a step 2 Carnot group. Let S C G be a C> compact, connected,
non-characteristic H-minimal hypersurface with boundary and assume that HS satisfies the Hormander con-
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dition (2.8). Then S is contained in the convex hull ¢.h.(0S) of its boundary 9S. Furthermore, if S touches the
set ¢.h.(0S) at some interior point, then S is part of a hyperplane; in particular, there is no compact H-minimal
hypersurface S without boundary.

Proof. Leta = (ay, ..., an) € R" be a constant vector and set fz(x) := >"1_; ax;. It follows from Proposition
2.6 that the linear function f5 is Axss-harmonic on S. Thus, we can apply the strong maximum principle (see
Theorem 2.21) to f5. Thus, if for some number K € R, the inequality fz(x) < K holds true for all x € 98, it
is also satisfied for all x € S. Since any closed convex set is the intersection of its supporting half-spaces,
the first assertion easily follows. Suppose now that fz(xo) = K holds for some xo € Int(S) in addition to the
inequality fz(x) < K for all x € 9S. Applying again the strong maximum principle we get that fz(x) = K for
any x € S = S, as wished. O

Theorem 3.2 (Inclusion Property for the Hyperboloid Hyp(e, ). Let G be a step 2 Carnot group. Let S c G
be a C? compact, connected, non-characteristic H-minimal hypersurface with boundary and assume that HS
satisfies the Hormander condition (2.8). Then, the following inclusion property holds: if 0S c Hyp(e, ), then
S c Hyp(e, B).

Here Hyp(e, B) is a solid hyperboloid congruent to Hyp(xo, €, X, B); see (2.3) in Definition 2.9.

Proof. Starting from the invariance of the HS-Laplacian under isometries (see Proposition A.4) we can as-
sume, without loss of generality, that Hyp(e, B) = Hyp(0, €, Xj,, B). By Corollary 2.10, the function g(h’ﬁ) (x)is
Ans-subharmonic on S and, by the hypothesis that 0S ¢ Hyp(0, €, X}, B), we see that g(h’ﬂ) x) < ezifor every
x € 3S. Therefore, by applying the strong maximum principle (see Theorem 2.21), we get that g™ (x) < €2
for every x € S, which is equivalent to the inclusion property, that is, S ¢ Hyp(0, €, X, B). This achieves the
proof. O

The following theorem is one of the main results of this paper.

Theorem 3.3 (Non-Existence result for the Cone C(8)). Let G be a step 2 Carnot group. Let C(B) be a solid
cone with vertex xo € G which is congruent to the cone €(0, Xy, B); see (2.4) in Definition 2.9. Let C()* be
the two disjoint parts of C(B) corresponding to €*(0, X, B). Then, there exists no C> compact, connected, non-
characteristic H-minimal hypersurface S C G satisfying the Hormander condition (2.8) and with S C C(B)
such that S N C(B)* # 0 and dS N C(B)™ # 0.

Proof. Weargue by contradiction. Suppose that such an S exists. Using the invariance of Axs under isometries,
we can assume that C(8) = €(0, Xy, B). Moreover, by Corollary 2.10 the function g##)(x) is Axs-subharmonic
on S and, since we are assuming that S  €(0, Xy, B), the inequality g#)(x) < 0 must hold for every x € 9.
Hence, by the strong maximum principle (see Theorem 2.21) we get that g (x) < 0 for every x € S, which is
equivalent to the fact that S ¢ €(0, X, B). By hypothesis, S is connected and 0S N €(8)* # 0. This implies that
S must contain the vertex 0 of the cone €(0, Xy, ), that is a contradiction to the fact that S is (everywhere) a
C? hypersurface. This concludes the proof. O

The next result, which is in the spirit of Corollary 3 in [20], explains how to apply the preceding “non-existence
theorem” to get quantitative estimates for H-minimal hypersurfaces; see also Chapter 6 in [21].

Corollary 3.4 (Consequence of the Non-Existence result for the Cone €(B)). Let G be a step 2 Carnot group.
Let W € H, |W| = 1, and let vy := exp (RW) be the line through O € G with direction W. Let t; € R. (i = 1, 2)
and set xq := exp (t1 W), x» := exp (-t W). Let Br. (x;, 8;) denote the Euclidean ball centered at x; ¢ G and
with radius 0 < 6; < t; (i = 1, 2). In addition, let S C G be a c? compact, connected, non-characteristic H-
minimal hypersurface satisfying the Hérmander condition (2.8). Assume that 0S C Bru(x1, 61) U Bru (X2, 62)
and 0S N Beu (x4, 8;) # 0 for every i = 1, 2. Finally, let R := dz. (X1, X2) be the Euclidean distance between the
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centers of the two balls. Then
h-1
R < m(al + 52).

Proof. By contradiction; assume that R? > "=1(6,+6,)?. With noloss of generality, let us suppose that W = X},
and that

) RS, ) RS,
X1 =exp (0, ..., 0, = ,0,...,0), Xy = exp (0,...,0, s ,0,...,0).
S—— ——
h-th place h-th place

The fact that x € G belongs either to Br. (x1, 61), or to Be (X3, 6>), is expressed by one of the following in-
equalities:

2
.ZXZ (h_51Rf152> PILALE le ( 51+52) 2 X <0

acTy acdy

By subtracting to both sides of these inequalities the quantity (h - 2)x;, we get that the function g(hj) x) =
gn(xn) + g7(xv) (recall that g7(xv) = 3 2y x2; see Notation 2.11) satisfies either of the inequalities below:

D () < 52 > RS \* D (y) < 52 2 R6; \*
1 _ _ _ _ 1 ,1 _ _ —
g"P(x) < 67 - (h-2)x3 (Xh 5+ 52) » 80700 <83 -(h-2)x;, (Xh+51+52) '

Denote by RHS the right hand side of the first inequality above. This is a polynomial of degree 2 in the
indeterminate xj,. Precisely, we have

R6, 2 R?
RHS = —(h - 1)xh+25 5xh+6 < —m)
It is easy to check that the discriminant of this polynomial is negative. Therefore, one has g(hj) (x) <0, and
the same happens in the other case. If x € Be.(x1, 81), then x € €*(0, X}, 1). Analogously, if x € Br. (x2, 6,),
then x € (0, Xj,, 1). But the fact that the balls B (x1, 61) and B (x2, §,) are contained, respectively, in the
upper and lower cones C*(0, X;,, 1) and € (0, X}, 1), contradicts Theorem 3.3. This achieves the proof. [

Theorem 3.5 (Inclusion Property for Cylinders and Paraboloids with vertical axis). Let G be a step 2 Carnot
group. Let S C G be a C? compact, connected, non-characteristic H-minimal hypersurface with boundary and
assume that HS satisfies the Hormander condition (2.8). Then, the following inclusion properties hold:
e ifdS C Cyl(e,a, B), then S C Cyl(e, @, B);
—/ —/
e ifoS c Par(a, B ), then S C Par(a, B).

Recall that Cyl(e, a, B/) is a solid cylinder congruent to Cyl(0, €, X4, a, B/) and Par(a, E/) is a solid paraboloid

congruent to Par(0, Xq, a, F); for more details, see Definition 2.12.

Proof. By invariance of Axs under isometries (see Proposition A.4) we can clearly assume that Cyl(e, a, B’) =

eyl(0, €, Xq, @, E’) and that Par(a, B/) = Par(0, X, @, E’). By Corollary 2.13, the functions g(ﬁ’ﬁ/)(x) and
(E F)(x) are both Axs -subharmonic functions on S. Hence, using the fact that either 0S c Cyl(0, €, X4, @, Bl),

or 0S C Par(0, Xq,a, B ) we get either g(“ B )(x) < €2, or g(a B )(x) < 0, for every x € 9S. The proof follows by

applying Theorem 2.21. O
3.1 The case of Heisenberg groups H".

We already know from Remark 2.17 that our method does not apply to the 1st Heisenberg group H'. However,
we have the following:
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Remark 3.6 (Convex hull property for H-minimal surfaces in H'! ). Let S ¢ H' be a C? non-characteristic H-
minimal surface. It is well-known that S is a ruled surface; more precisely, S turns out to be ruled by horizontal
lines; see [43], [12], [46]. As a consequence, the classical Gaussian curvature of S, seen as a surface in R3, is
everywhere nonpositive and using the main theorem in Osserman’s paper [41] one gets that S has the convex-
hull property. We also observe that the same holds for complete “area-stationary surfaces” of class C?; see [46].
More precisely, it follows from Theorem 6.15 in [46] that these are ruled surfaces, so that Osserman’s result still
applies, as claimed.

Finally, concerning the 1st Heisenberg group H*, we would like to mention an interesting, and somehow
related, “half-space” theorem by Cheng and Hwang; see Theorem D in [13].

For the Heisenberg groups H" (n > 1), we are going to prove an inclusion property for a truncated hy-
perboloid (with axis the T-axis) and a related non-existence result for a suitable truncated cone. Although
possible, we do not generalize these last results to general step 2 Carnot groups. Before to start, let us collect
some further remarks:

Remark 3.7 (Validity of Theorems 3.1, 3.2, 3.3 and 3.5 in the Heisenberg group H", with n > 1). Itis worth ob-
serving that, by Remark 2.17, all of our step 2 results apply to the Heisenberg groups H" (n > 1). In particular,
the following facts hold true:

e Convex Hull Property; see Theorem 3.1.

o Inclusion Property and the related Non-Existence result for (the class of congruence of) a suitable hyper-
boloid with horizontal axis; see Theorems 3.2 and 3.3 .

e Inclusion Property for (the class of congruence of) suitable cylinders and paraboloids with axis the T-axis;
see Theorem 3.5.

For the notation used in this section, see Example 1.7. Recall that p = exp(zu,t), where zx =
(X1, V1, eoes Xn, Yn) € R?™, We also set ry := > (x? +y?#). Now let us consider the function gg:H" - R
given by gg(zn, t) := ri — Bt*, where B € R.. The set of points satisfying the inequality gg(zx,t) < €” is a
solid hyperboloid, hereafter denoted as Hyp(0, €, T, B), with axis the T-axis and with (tangent of the angle
of) slope given by 8 > 0. Precisely, we set

Hyp(0,¢,T,B):={p=exp(zu,t) c H" : gplzn, t) < €’}.

If € = 0, then this region becomes a solid cone, hereafter denoted as C(0, T, B), with the same axis as
Hyp(0, €, T, B), and with slope B; also, the upper and lower parts of this cone (with respect to the T-axis)
are denoted as €*(0, T, B). In other words, we set

¢, T,p) := Hyp(0,0, T, B)
and €*(0, T, B) :=C(0, T, )N {p =exp(zu,t) € H" : £t = 0}.

Theorem 3.8. Set ry; := /2(2n-1)/B. Let S ¢ H" be a C*> compact non-characteristic H-minimal hyper-
surface with boundary and assume that S is contained in the solid cylinder Cyl(O, i, T), with axis the T-axis
passing through 0 € H", defined as

eylo,ry, T) := {p=exp(zH,t) ceH" : 1y < rZ}

Then, the function gﬂ(ZH , t) is Aus -subharmonic on S.

Proof. By using Proposition 2.7 we get that Assr7 = 2(2n-1) and Aust? = 3 (r,z, - {(Ci" 'z, vH>2> . From these
calculations, we immediately get that

2 2n+1 2
AHsgﬁ(zH,t)=(2n—1)—ﬁer <1—< i Z”,v,,> )

ra
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Thus, if rs </ % = ry;, then it follows that Ass gp(zn, t) > 0, as wished. O

Following the arguments in the proof of Theorem 3.2 with the help of Theorem 3.8 we get:

Corollary 3.9 (Inclusion Property for the Truncated Hyperboloid Hyp(0, €, T, B) N Cyl(0, r;;, T)). Let S C
H"(n > 1) be a C*> compact, connected, non-characteristic H-minimal hypersurface with boundary. Further-
more, let us denote by Hyp trunc any truncated hyperboloid which is congruent to Hyp(0, €, T, B)nCyl(0, i, T).
Then, the following inclusion property holds: if 0S C Hyptrunc, then S € Hyptrunc-

Finally, arguing as in the proof of Theorem 3.3 and using Theorem 3.8, we get the following:

Corollary 3.10 (Non-Existence result for the Truncated Cone C(0, T, ) N Cyl(0, ri;, T)). Denote by Cirunc any
truncated cone which is congruent to (0, T, B) N Cyl(0, ry, T). Moreover, let C,,,. be the two disjoint parts
of Ctrunc corresponding to C*(0, T, B) N Cyl(0, ry;, T). Then, there exists no C> compact, connected, non-
characteristic H-minimal hypersurface S C H", with S C Ctrunc, such that 0S N Cync # 0 and 0S N Crync # 0.

4 Remarks about the case of step k Carnot groups.

Let G be a step k Carnot group (k > 3). In this case, the elements of the horizontal left-invariant frame
{X1, ..., X} have the following general polynomial expression

kK h
Xj(x)=eﬁZZaj,ai(xH,xﬂz,...,xH,.,l)eai vxeG VieT,, (4.1)
i=2 a;=1

where a; 4,(x#, Xn, , ..., Xu_, ) is @ homogeneous polynomial function of degree i — 1 (with respect to Carnot
dilations); see, for instance, [6], page 59, formula (1.8.1). However, apart from the case of step 2 Carnot
groups, the functions aj’ai(XH , X, , ..., Xu_, ) have a complicated expression, which depends on the struc-
ture constants of the Lie algebra. For instance, for step 3 Carnot groups, we remark that the monomial func-
tions {Xq, : @3 € Ju, }, where Ju; = {n, + 1, ..., n}, are not in general Aus-harmonic (and not even Axs-
subharmonic).

Example 4.1. To give an example, consider the step 3 Carnot group G on R® with 3 generating horizontal vector
fields X1, X, X5 given by

1 1 1
X1=e1- Exze4 + —§X5 + ﬁx2x3 e

Xy =e +1xe—1xe—1xxe
2 2+ 5X1€4 = 5 X385 — FX1X3€6

Xs5=e +1xe+ 1x+ixx €63
3= €3+ 5X28s5 X4t 15%1X2 | €65

see [6], page 226. These vector fields satisfy the following algebraic rules

1 1
[X19XZ] =e4— ix3e6, [XZ’X3] =es5+ ixle6’ [Xl, [X25X3]] =€¢ = _[X3’ [Xl’XZ]]’

with all other commutators zero. It is elementary to check that Ax x¢ = 0 and that

Hessu (xg) = | —

o o o
WX O Wi
|
o o\ o

Thus, using (2.1) yields Aus (X6) = % {X3V; Vi — 2X2V,V; + X1V, v, }, which is not a positive function.
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Nevertheless, we have to stress that for any step k Carnot group the monomials {xj (je jy} and
{Xa, : @2 € Ju, } are Aus-harmonic. The last claim follows from (4.1). In fact, it turns out that a;j 4,(x#) =
1 (Ciej, xu >Rh for every j € Ju. Hence, if one considers (smooth) functions of the variables (xx, xx, ) such as
¢ (xx, xu, ), the generating vector fields will act exactly as in the case of step 2 Carnot groups.

Definition 4.2 (Partial Convex Hull). Let G be a step k Carnot group and let D C G. Moreover, we denote by
a? = (ay, ..., an,) € R™ any constant vector and we set f,»(x) := Z?jl a;x;. By definition, the partial
convex hull of D, denoted as p.c.h.(D), is the intersection of all half-spaces J kgt = {xeG: fa(u)(x) < K}
containing D, that is

p.ch.(D) := ﬂ Tg g0+
DCI 2,2

Following the arguments in the proof of Theorem 3.1 with the above linear functions we get:

Theorem 4.3 (Partial convex hull property in Carnot groups of step k). Let G be a step k Carnot group. Let
S C G be a C* compact, connected, non-characteristic H-minimal hypersurface with boundary and assume
that HS satisfies the Hormander condition (2.8). Then S is contained in the partial convex hull p.c.h.(0S) of its
boundary 0S. Furthermore, if S touches the set p.c.h.(0S) at some interior point, then S is part of a hyperplane.

As a consequence of the previous theorem we can state the following weaker property:

Remark 4.4 (Horizontal convex hull property). Let G be a step k Carnot group. For any X € g let us denote by
IxX) :={x € G : {xu, X)u < K} the “vertical half-space”? orthogonal to X. We define the horizontal convex hull
h.c.h. of a bounded set D C G as the intersection of all vertical half-spaces Jx(X) containing D. Furthermore,
let S C G be a C* compact, connected, non-characteristic H-minimal hypersurface with boundary and assume
that HS satisfies the Hormander condition (2.8). Then, S is contained in the horizontal convex hull of 0S.

A Appendix: Agzs commutes with isometries

What are “congruences” in Carnot groups? To answer this question, below we will briefly recall some results
concerning isometries. Then, we will show that the HS-Laplacian Axs commutes with isometries.

Let Q C G be an open set and let f : Q — G be a map of class C'. By definition, f is an isometry if its
“Pansu differential” df (x) (see [34]) is an isometry for every x € Q. Moreover, one can show that f is distance-
preserving if, and only if, df(x) is an isometry for all x € Q; see Lemma 2.10 in [18]. Hence, we can always
identify distance-preserving maps with isometries.

Recall that an isometry of G (equipped with a left-invariant distance) is called affine if it is the composition
of a left translation with a graded automorphism; see [33].

For step k Carnot groups it is known that isometries are affine transformations; see [27]. Recently, this
result has been generalized for the case of sub-Finsler distances and isometries defined only on open subsets
of the group:

Theorem A.1 (see [33]). Let (G, d¢c) be a step k sub-Riemannian Carnot group. Let Q1, Q> C G be two con-
nected open sets. Let f : Q; — Q, be an isometry. If f(0) = O, then f is the restriction to Q of a graded
automorphism of G.

2 Notice that its boundary is the left-coset of a maximal subgroup of G.
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Definition A.2. We say that two subsets of G are congruent if there is an isometry of G carrying one to the
other. In particular, if S; and S, are two given hypersurfaces of G, then S and S, are congruent if, and only if,
there exists an isometry @ of G such that @|g, is an isometry from S1 to S,.

The last definition allows us to speak of the “congruence class” of a given hypersurface.

Remark A.3 (Horizontal divergence operators). We make the following remarks:

(i) Let du : AL(G) — ALY(G) be the horizontal exterior derivative, defined as restriction to H of the exterior
derivative d : A"(G) — A""1(G). Then, the H-divergence divi can equivalently be defined by the formula
dy (X _1 volg) = divy X voly, where _| denotes the “contraction” (or interior product) on differential forms;
see, for instance, [32] or [25]. The proof of this fact, which is elementary, can be given as in the Riemannian
case; see [47], Lemma 56 in Addendum 1 of Chapter 7.

(ii) Let dus : Als(S) — ALE1(S) be the horizontal tangent exterior derivative, that is the restriction to HS of the
tangential exterior derivative drs : A'(S) — A™1(S). Note that the HS-divergence divss can be defined by
the formula dus (X _| volus) = divas X volus ; see Definition 1.10. This formula can be proved again as in [47].

Now, let us analyze the behavior of the HS-Laplacian under isometries.

Proposition A.4 (Ass commutes with isometries). Let ¥ : G — G be an isometry, S C G a non-characteristic
hypersurface of class C" (r = 2), and set S := ¥(S). Then, one has Aus (f o ¥) = (Aﬂgf) o ¥ for every f € C2(S),
or equivalently, Aus ¥ = W' A,5.

Proof. The proof is an adaptation of the classical one valid for the Laplace-Beltrami operator; see [5] or [11].
We have here to remark that since ¥ is an isometry (and hence a graded automorphism), the differential ¥«
restricted to the horizontal tangent space HyS at x € S turns out to be an isometry between HyS and H.P(X)g.
Let us prove the following two claims.

Claim 1. We have Wsgrad,; ¥" = grad,;.
Proof. Let f € C1(S) and take Y € X1(HS). Then

Ygradys (), YY) = ( Wegrady ¥ (f), ¥ W'Y
{ )s = )

HS HS

<grast v (f), ¥t Y>Hs

- A [lp:ly} - [ ['P;ly} - df(Y) = (grad,sf, V) 5 -

Claim 2. We have ¥" (div,s Ws) = divus.

Proof. By (ii) in Remark A.3, the claim to be proved turns out to be equivalent to
dus (X _| volus) = ¥ div,;z (WsX) - volus.
This formula, in turn, is equivalent to

(lp‘l)* (dns (X I volus)) = divys (Wi X) - <(‘P‘1)* vole> :

or also to .
dis ((‘P1> (X volH5)> = div,z (7-X) - vol;,

where3 we have used the fact that volus = (‘I"l)*volﬂg (note that Zl = ¥ (@{ =1,..,h-1) and that
{15 ..s {n_1} is an orthonormal frame for HS; hence, one has vol,; = {1 A ... A §poq). But the last equality

*

3 Indeed, one has (V1) dus = dz (Y1)
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follows (from the standard definition of divergence operator) since

(‘P‘l)* (X I volus) = (¥.X) <(‘P‘1)* vole> = (¥.X) I vol,z.

O
The proof can now be achieved as follows. By using Claims 1 and 2, we get that
Nus ¥ = divas (grad,,s qf*) = divas ((%)*1 (¥.)grady lp)
= divus ((‘I’*)_lgrang) -y (‘P"l)* divus (('}’*)‘1 grang)
= ¥'div,; (grad,s)
= VA,
where we have used the fact that div,; = (‘P‘l)* divas (W») L.
O
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