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Summary

Background Several pieces of evidence indicate that a complex relationship exists
between constitutional telomere length (TL) and the risk of cutaneous melanoma.
Although the general perception is that longer telomeres increase melanoma risk,
some studies do not support this association. We hypothesize that discordant data
are due to the characteristics of the studied populations.
Objectives To evaluate the association of TL with familial and sporadic melanoma.
Materials and methods TL was measured by multiplex quantitative polymerase chain
reaction in leukocytes from 310 patients with melanoma according to familial/
sporadic and single/multiple cancers and 216 age-matched controls.
Results Patients with sporadic melanoma were found to have shorter telomeres
compared with those with familial melanoma. In addition, shorter telomeres,
while tending to reduce the risk of familial melanoma regardless of single or
multiple tumours, nearly trebled the risk of single sporadic melanoma.
Conclusions This is the first time that TL has been correlated to opposite effects on
melanoma risk according to the presence or absence of familial predisposition.
Individual susceptibility to melanoma should be taken into account when assess-
ing the role of TL as a risk factor.

What’s already known about this topic?

• The role of telomere biology in tumorigenesis is complex and influenced by multi-

ple mechanisms, even acting in opposite directions.

What does this study add?

• Constitutive telomere length is significantly different between familial and sporadic

melanoma.

• Short telomeres increase the risk of single sporadic melanoma, but decrease that of

familial melanoma.

What is the translational message?

• Individual susceptibility to cancer should be taken into account when assessing the

role of telomere length as a cancer risk factor.

Telomeres are dynamic nucleoprotein complexes located at the

ends of chromosomes, which maintain genomic stability by

protecting the chromosomes against degradation, end-to-end

fusion and atypical recombination.1 Telomeres consist of

nucleotide repeats that shorten with each cell division; when

they reach a critical short length, cells undergo senescence or
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apoptosis, providing a barrier against cancer development.2,3

However, telomere erosion may lead to genomic instability, a

key event in carcinogenesis.4 Several epidemiological studies

have analysed the potential role of telomere length (TL) on

the risk of cancer, and their results indicate that the relation-

ship between TL and tumorigenesis is complex and probably

tumour-type specific.5 Regarding cutaneous melanoma, much

evidence supports the important role of telomere biology in

the onset and progression of disease.6–13

Although most studies indicate a positive relationship

between TL and melanoma risk (reviewed by Caini et al.14),

others do not,8,15 or else they show an association in particular

subgroups. For instance, Han et al.10 reported a weak positive

association between TL and melanoma risk after examining

female patients of whom 36�5% had a family history of skin

cancer. Anic et al.6 also reported a significant association

between TL and melanoma risk among women, but not in

men, whereas Nan et al.13 described such a relationship in a

cohort of 120 male subjects. Bodelon et al.,8 analysing a pool of

sporadic and familial cases of melanoma, found no association

between TL and melanoma risk, although Burke et al.9 described

a significant positive association between TL and melanoma risk

in familial melanoma cases without mutations in the CDKN2A

gene, but not in CDKN2A mutation carriers. The positive rela-

tionship between TL and number of melanocytic naevi, a well-

known risk factor for melanoma, is also still under debate.7–9,16

Melanoma is a complex disease with multifaceted aetiology,

involving phenotypic (e.g. light phototype, number of melano-

cytic naevi), genetic and environmental factors, and their com-

bination and prevalence generates different pathways for the

development of melanoma. In the presence of mutations in

high penetrance melanoma predisposition genes (e.g. CDKN2A),

familial clustering of cases is observed. Environmental factors,

such as sun exposure and sunburn, are the major risk factors

for sporadic melanoma cases.17,18 Both the number of naevi

and presence of dysplastic naevi are predominant risk factors in

multiple primary melanoma.19 Although melanomas occurring

in a familial setting do not seem to have significantly different

prognostic factors and survival rates when compared with spo-

radic melanoma,20 several studies highlight some differences

among groups, such as earlier age at onset, absence of clinically

detected sun damage, lower Breslow thickness and higher rate

of multiple primary melanomas in familial cases.21–23

We hypothesized that the discordant results in the literature

between TL and melanoma risk are due to the characteristics of

the studied populations, with special regard to the presence or

absence of familial predisposition. Thus, the aims of this study

were to investigate whether TL was differentially correlated with

familial or sporadic and multiple or single melanoma.

Materials and methods

Study population

This case–control study comprised 310 patients with mela-

noma referred to the Melanoma and Sarcoma Unit of the

Veneto Institute of Oncology in Padova, Italy, between 2007

and 2013. All cases of melanoma diagnosis were confirmed

by pathology reports; naevus count was calculated as patients

with < 10, 10–50, or > 50 melanocytic naevi, according to

physical examination by a trained dermatologist. Patients with

a family history of melanoma (defined by personal interviews

as having at least one other confirmed case of melanoma

among first- or second-degree relatives) were grouped as

familial melanomas (FM), and patients with no such family

history as sporadic melanomas (SpM). All patients with more

than one subsequent melanoma were included in the multiple

primary melanoma group (MPM) (median follow-up:

3�5 years, range 0�2–21�1 years). Patients were included in

the single primary melanoma group (SiM) if they had not had

a second melanoma within at least a 3-year period from the

first diagnosis (median follow-up: 7�9 years, range 3�0–
34�3 years). Details of sex, age at blood sampling and naevus

count are listed in the Supporting Information (see Table S1).

No patient showed spread of disease or was under chemother-

apy at the time of blood sampling. All melanoma cases were

screened for germline mutations in the CDKN2A gene, as previ-

ously described,24 and no mutations were found. Controls

were 216 healthy individuals without personal or familial

antecedents of cancer, collected between 2011 and 2012 at

the Blood Collection Centre, Hospital Transfusion Centre of

Padova. They were frequency-matched by age and sex to cases

(n = 94, 43�5% men; n = 122, 56�5% women;

53�8 � SD = 13�9 years, mean age at blood sampling). All

patients and controls were of Caucasian origin. Written

informed consent was obtained from all participants, as

approved by the local institutional ethics committee.

Telomere length measurement

Relative TL was determined by monochrome quantitative mul-

tiplex polymerase chain reaction (PCR) assay,25 with minor

modifications. All DNA samples were extracted from leuko-

cytes with the QIAmp DNA kit (Qiagen; Milan, Italy) and

their quality and concentration were assessed by both ultravio-

let (UV) spectroscopy and agarose gel electrophoresis. The

primer pair employed for telomere amplification were: TELG

50-ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT-30,
and TELC 50-TGTTAGGTATCCCTATCCCTATCCCTATCCCTAT
CCCTAACA-30. The primer pair for amplification of single-

copy gene albumin were: ALBU 50-CGGCGGCGGGCGGCGC
GGGCTGGGCGGAAATGCTGCACAGAATCCTTG-30 and ALBD

50-GCCCGGCCCGCCGCGCCCGTCCCGCCGGAAAAGCATGGTCG
CCTGTT-30. Single-copy gene albumin was amplified simulta-

neously with the telomere template in the same well and used

as a reference, to adjust for differing amounts of DNA in dif-

ferent samples. Each PCR reaction was performed in a final

volume of 25 lL, containing 5 lL sample (1 ng DNA lL�1)

and 20 lL reaction mix containing 0�75 9 SYBR Green I

(Invitrogen, Milan, Italy), 10 mmol L�1 Tris–HCl pH 8�3,
50 mmol L�1 KCl, 3 mmol L�1 MgCl2, 0�2 mmol L�1 each

dNTP (Applied Biosystems; Foster City, CA, U.S.A.),
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1 mmol L�1 DTT, 0�625 U AmpliTaq Gold DNA polymerase,

1% DMSO (Sigma-Aldrich; Milan, Italy) and 900 nmol L�1 of

each primer. PCR reactions were performed on a Light-

Cycler�480 real-time PCR detection system (Roche Applied

Science; Milan, Italy). The thermal cycling profile was 15 min

at 95 °C, two cycles of 15 s at 94 °C and 15 s at 49 °C, fol-
lowed by 40 cycles of 15 s at 94 °C, 10 s at 62 °C, 15 s at

74 °C, 10 s at 84 °C and 15 s at 88 °C, with signal acquisi-

tion at the end of the 74 °C and 88 °C steps. A standard curve

was generated at each PCR run, consisting of DNA from the

RAJI cell line, serially diluted from 100 to 0�41 ng lL�1.26 All

DNA samples and reference samples were run in triplicate.

LightCycler raw text files were converted to grid format with

LC480Conversion free software developed by the Heart Failure

Research Centre, Amsterdam, the Netherlands (http://

www.hartfaalcentrum.nl/index.php?main=-

files&fileName=LC480Conversion.zip&description=LC480%

20Conversion&sub=LC480Conversion). The converted data

were analysed with LinRegPCR free software developed by

Ruitjer et al.27 All DNA samples, from both cases and con-

trols, were blind and consecutively run in triplicate together

with reference samples. The intra- and inter-assay repro-

ducibility of both telomere and albumin PCR results was

evaluated with dilutions of the reference curve and three

DNA samples from patients. The SD of cycle threshold (Ct)

values was ≤ 0�19 (% coefficient of variation ≤ 0�94) in six

replicates of samples amplified in the same PCR run, and

≤ 0�28 (% coefficient of variation ≤ 1�31) among mean val-

ues of triplicates in different PCR runs. Mean Ct values

were used to calculate the relative TL, with the telomere/sin-

gle-copy gene ratio according to the formula: DCtsam-

ple = Cttelomere�Ctalbumin, DDCt = DCtsample�DCtreference curve

(where DCtreference curve = Cttelomere_RAJI�Ctalbumin RAJI) and then

T/S = 2�DDCt.26

Statistical analysis

Linear regression was used to model the relationship between

TL and covariates, i.e. diagnosis of melanoma, family history,

presence of multiple lesions and number of naevi, with adjust-

ments for age as a continuous variable and its first-order inter-

action with each covariate considered. The association

between TL and the risk of each melanoma case-type status

(i.e. melanoma, familial melanoma, sporadic melanoma, etc.)

was determined with a set of logistic regressions, adjusted for

age and sex. TL was used as a categorical variable to account

for a potential nonlinear relationship between TL and mela-

noma risk, and classified according to the quartiles of telomere

distribution of controls; the fourth quartile, the longest TL,

was used as the reference. All tests were two-sided and a

P < 0�05 was considered statistically significant. Statistical

analyses were performed with SAS, version 9�1�3 (SAS Insti-

tute; Cary, NC, U.S.A.).

Analysis of false-positive report probability (FPRP) was con-

ducted to assess the probability of finding a false positive in a

statistically significant test.28 The FPRP value for a given

association was calculated with a prior probability of 0�2 and

the statistical power to detect an odds ratio (OR) of 0�5. An
association with an FPRP value below 0�2 was declared note-

worthy.

Results

Telomere length in sporadic and familial melanoma

We analysed TL from 109 familial (FM) and 201 sporadic

(SpM) cases of melanoma, and found that FM samples had

longer telomeres than those of SpM cases (Fig. 1a). The age-

adjusted linear regression of TL was calculated (Fig. 1b), and

significant differences emerged between the groups [mean

TL_FM vs. mean TL_SpM: 1�075, 95% confidence interval (CI):

1�024–1�125 vs. 0�958; 95% CI: 0�921–0�995; P < 0�001].
Notably, the rate of telomere shortening by age in FM was

higher than in SpM (slope TL_FM vs. slope TL_SpM: �0�011,
95% CI: �0�015 to �0�008 vs. �0�005, 95% CI: �0�007 to

�0�002; P = 0�005).
Interestingly, when the TL of both groups was compared

with that obtained from a control cohort of 216 healthy indi-

viduals (mean TL_controls: 1�013; 95% CI: 0�976–1�049),
frequency-matched for age and sex, FM and SpM were

observed to have TL longer and shorter than controls, respec-

tively (Fig. 2). No differences emerged when the TL of overall

cases was compared with controls after adjusting for age and

sex (P = 0�602; Fig. S1; see Supporting Information).

Hence, familial and sporadic melanomas are characterized

by different TLs, and a significant opposite interaction

emerged between melanoma groups with respect to controls,

suggesting an opposite effect on melanoma risk.

Telomere length in patients according to number of naevi

and presence of multiple melanoma

We analysed the association between TL and naevi, as well as

the occurrence of multiple melanomas. Matching previous

reports,7 age-adjusted TL turned out to be positively associ-

ated with increased naevus count (P = 0�011) (Fig. S2; see

Supporting Information), whereas TL did not significantly dif-

fer between patients with multiple (MPM) or single mela-

noma (SiM) (Fig. S3; see Supporting Information). However,

multivariate analysis including all available covariates showed

that TL was significantly correlated with family history (SpM

vs. FM P = 0�009) but not with naevus count or presence of

MPM (Table 1). Hence, both single and multiple melanoma

cases were analysed separately according to familial character-

istics. In this subgroup analysis, we found that the age-

adjusted TL in the SiM group significantly differed between

sporadic and familial cases (SiSpM vs. SiFM; 0�93 vs. 1�08;
P < 0�001), whereas in the MPM group no difference

emerged between sporadic and familial cases (MSpPM vs.

MFPM; 1�00 vs. 1�06; P = 0�312) (Table 2).

The opposite association between TL and familial or spo-

radic melanoma was emphasized by the results of FPRP
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analysis. The association with TL was in fact found in both

sporadic and familial melanoma and in single sporadic and

familial melanoma, supporting the findings of a reduced risk

of being sporadic and single sporadic melanoma for every

one-unit increase in TL, after adjusting for age (Table S2; see

Supporting Information).

(a)

(b)

Fig 1. Comparison of telomere length (TL)

between cases of familial and sporadic

melanoma. (a) Box plots showing distribution

of raw values of TL in cases of familial (109)

and sporadic (201) melanoma. Upper and

lower limits of the boxes show 75th and 25th

percentiles, respectively; horizontal bar across

the box indicates the median. (b) TL

distribution as a function of age for cases of

familial (white circles) and sporadic (black

circles) melanoma. Regression lines and

respective equations are shown.

Fig 2. Correlation between telomere length

(TL) and age in sporadic and familial

melanoma cases and controls. Multiple linear

regression model for each group and pairwise

mean TL differences with 95% confidence

intervals are shown.
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Telomere length and melanoma risk

We then estimated the effect of TL on melanoma risk for the

familial and sporadic patient group, using a model adjusted

for age and sex. Cases were categorized into quartiles based

on the TL distribution of controls. As Table 3 shows, shorter

TLs were observed to be associated with a decreased risk in

familial cases (FM: OR = 0�46; 95% CI: 0�23–0�95) and an

increased risk in sporadic cases (SpM: OR = 1�74; 95% CI:

1�00–3�04) compared with longer TL, whereas TL did not

modify the risk of melanoma when all cases were taken into

account.

When the analysis was performed in subgroups of mela-

noma cases also taking into account the presence or absence

of MPM, the increase in melanoma risk in sporadic melanoma

cases with shorter TL was more evident in patients with single

melanoma (SiSpM: OR = 2�61; 95% CI: 1�34–5�10,

P = 0�008) but the risk was not related to TL in cases of mul-

tiple sporadic melanomas (MSpPM: OR = 1�04; 95% CI:

0�50–2�17, P = 0�909). In the familial subgroups, the associa-

tion between decreased risk and shorter telomeres did not vary

according to the presence or absence of multiple melanomas,

although it did not reach statistical significance, probably

because of the small sample size (SiFM: OR = 0�48, 95% CI:

0�21–1�07, P = 0�168; MFPM: OR = 0�42, 95% CI: 0�14–
1�30, P = 0�078).

Discussion

To our knowledge, this is the first study examining the rela-

tionship between TL and melanoma risk according to familial

or sporadic status, also taking into account the occurrence of

multiple or single tumours. We observed that constitutive TL

was significantly longer in familial than in sporadic mela-

noma, and that different kinetics of TL shortening with age

emerged between the groups, indicating the different role

played by TL in the pathogenesis of familial or sporadic mela-

noma. We also found that TL, which was longer and shorter

Table 1 Multiple linear regression model to test effects of family

history, naevus count and presence of multiple melanoma on age-

adjusted telomere length (TL)

Characteristics Cases, n (%) TL, meana (95% CI)

Melanoma group
Sporadic (SpM) 183 (66�5) 0�96 (0�92–1�00)
Familial (FM) 92 (33�5) 1�06 (0�99–1�12)
P-value 0�009
Naevus count
< 10 47 (17�1) 0�97 (0�88–1�06)
10–50 123 (44�7) 0�99 (0�94–1�05)
> 50 105 (38�2) 1�06 (1�05–1�12)
P-value 0�185
Number of melanomas

1 = Single (SiM) 161 (58�5) 1�01 (0�96–1�06)
≥ 2 = Multiple (MPM) 114 (41�5) 1�01 (0�94–1�07)
P-value 0�946

aEstimated mean TL values with 95% confidence intervals (CI).

P-values of differences between groups are reported.

Table 2 Subgroup analysis to test effects of family history and

presence of multiple melanoma on telomere length (TL) by age-

adjusted multiple linear regression model

Subgroup patients Cases, n (%) TL Meana (95% CI)

Single melanoma
Sporadic (SiSpM) 121 (39�0) 0�93 (0�88–0�98)
Familial (SiFM) 69 (22�3) 1�08 (1�01–1�14)
P-value < 0�001
Multiple melanoma
Sporadic (MSpPM) 80 (25�8) 1�00 (0�94–1�07)
Familial (MFPM) 40 (12�9) 1�06 (0�97–1�15)
P-value 0�312

aEstimated mean TL values with 95% confidence intervals. P-

values of differences between groups are reported.

Table 3 Association between telomere length and melanoma risk in

overall and stratified patients

Telomere length
Cases,
n (%) OR (95% CI) P-values

All melanoma
First quartile < 0�831 99 (32) 1�14 (0�69–1�88) 0�677
Second quartile
0�831–0�967

58 (19) 0�67 (0�40–1�11)

Third quartile
0�968–1�134

66 (21) 0�76 (0�46–1�24)

Fourth quartile ≥ 1�135 87 (28) 1

Familial melanoma (FM)
First quartile < 0�831 23 (21) 0�46 (0�23–0�95) 0�046
Second quartile
0�831–0�967

22 (20) 0�47 (0�24–0�92)

Third quartile
0�968–1�134

21 (19) 0�47 (0�25–0�90)

Fourth quartile ≥ 1�135 43 (40) 1
Sporadic melanoma (SpM)

First quartile < 0�831 76 (38) 1�74 (1�00–3�04) 0�049
Second quartile

0�831–0�967
36 (18) 0�83 (0�46–1�49)

Third quartile

0�968–1�134
45 (22) 1�02 (0�58–1�79)

Fourth quartile ≥ 1�135 44 (22) 1

Single sporadic melanoma (SiSpM)
First quartile < 0�831 51 (42) 2�61 (1�34–5�10) 0�008
Second quartile
0�831–0�967

21 (17) 1�04 (0�51–2�15)

Third quartile
0�968–1�134

28 (23) 1�37 (0�69–2�71)

Fourth quartile ≥ 1�135 21 (17) 1

OR, odds ratio estimated by logistic regression analysis adjusted

for age and sex; CI, confidence interval. P-values of the trend are

reported.

© 2016 The Authors. British Journal of Dermatology
published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

British Journal of Dermatology (2016) 175, pp937–943

Telomere length in sporadic/familial melanoma, C. Menin et al. 941



in FM and SpM than controls, respectively, plays the opposite

role in melanoma risk, according to the presence or absence

of familial predisposition. Short telomeres reduced the risk of

familial melanoma by more than half, regardless of single or

multiple tumours, but they nearly trebled the risk in sporadic

cases with only one melanoma. This effect was not detected in

sporadic cases with multiple lesions, suggesting that other risk

factors are involved in these melanoma-prone individuals.

Thus, on one hand, our data confirm previous results showing

a direct association between TL and melanoma risk in mela-

noma-prone families;9 on the other, they add the new finding

of an inverse association between TL and melanoma risk in

single sporadic cases.

Approximately 10% of cutaneous melanomas occur in a

familial setting, and a different aetiology arises between famil-

ial and sporadic melanoma, as certain inherited traits play a

critical role in the onset of the former and environmental fac-

tors in the latter. In this regard, the role of exposure to sun-

light, an important environmental risk factor for melanoma, is

under discussion in families with high disease susceptibil-

ity,17,18 in which genetic determinants are more predictive of

cancer risk. It is interesting in this context to examine the

hypothesis of Whiteman et al.,29 that cutaneous melanoma

develops along two diverging pathways: one naevus-depen-

dent, in which melanocytes of naevus-prone individuals are

induced to proliferate by host factors contributing to

melanomagenesis with little sun exposure; and the other UV

light-dependent, in which melanocytes become malignant

after intense sun exposure. According to its clinical and

histopathological characteristics, familial melanoma has been

associated with the former pathway,21 matching previous data

showing that sun exposure is not associated with melanoma

risk in melanoma-prone families.17,18

Iles et al.30 recently demonstrated that germline genetic

determinants underlying long telomeres increase the mela-

noma risk in a large cohort of patients preferentially selected

for family history or multiple primary tumours. Long telom-

eres, characterizing familial cases, may confer a high cellular

replicative potential, which in turn favours additional genetic

mutations and the development of melanoma. Conversely, in

the absence of constitutive predisposing factors, as in the case

of single sporadic melanoma, telomere shortening may con-

tribute to melanoma development by inducing genetic insta-

bility, as reported for other tumour histotypes.31 This

opposite effect of TL on melanoma risk according to familial

or sporadic status may reproduce the dual roles of telomere

biology in tumorigenesis32 and support the divergent path-

ways hypothesis in melanomagenesis.29 Genetic determinants

that favour long telomeres and cluster in a familial setting do

increase replicative potential,30 favouring the naevus-depen-

dent pathway of melanoma, whereas environmental factors,

such as exposure to the sun, induce telomere shortening33

and genetic instability, favouring a UV light pathway in spo-

radic melanoma.

Following the model very recently advanced by Rode

et al.,34 the association between short telomeres and sporadic

cancer that we observed may also be considered as an observa-

tional analysis due to a confounding factor, such as UV expo-

sure, which can lead independently to both telomere

shortening and increased melanoma risk. Conversely, the asso-

ciation between long telomeres and familial melanoma is

more probably due to genetic disposition, and the effect of

melanoma risk derives from the sum of alleles leading to long

telomeres, which may increase cancer cell replication.

Unfortunately, in the present study we could not evaluate

interactions between telomere and environmental risk factors,

such as exposure to sunlight, because some patient informa-

tion was missing. Larger studies on familial and sporadic mel-

anoma will be required to confirm the association among

genetic and environmental determinants, TL and familial sta-

tus. Another limitation of our study is that the family history

was ascertained primarily through personal interviews, and

these findings should therefore be validated in other familial

and sporadic melanoma sample sets. Nonetheless, our consid-

erations should be contextualized according to tumour histo-

type, in that short telomeres seem to be associated with an

increased cancer risk in both familial and sporadic cases in

ovarian cancer35 and in hereditary but not sporadic cases in

breast cancer.36

In conclusion, the role of telomeres in the genesis of mela-

noma is complex, and both short and long telomeres may

increase the individual risk of melanoma, depending on other

predisposing/risk factors. Emerging and future studies on the

genetics of telomere biology will help to better define the

complex relationship between TL and the risk of cutaneous

melanoma.
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Table S1. Mean age at blood sampling and mean telomere

length (TL) in patients with melanoma stratified by character-

istics.

Table S2. False-positive report probability values for the

logistic regression analysis of association of telomere length

with the probability of sporadic or single sporadic melanoma,

adjusted for age.

Fig S1. Correlation between telomere length (TL) and age

in melanoma cases and controls. TL distribution as a function

of age for melanoma cases (grey circles) and controls (white

circles). Regression lines and respective equations are shown.

Estimated mean TL values at mean age, with 95% confidence

intervals (CI) and pairwise differences between cases and con-

trols are reported under the graphic.

Fig S2. Correlation between telomere length (TL) and age

in cases of melanoma stratified according to number of naevi.

TL distribution as a function of age for melanomas with high

(> 50 total naevi; black circles), medium (10–50 total naevi;

grey circles) and low (< 10 total naevi; white circles) naevus

counts. Regression lines and respective equations are repre-

sented for each group. Estimated mean TL values at mean age,

with 95% confidence intervals (CI) and pairwise differences

between groups are reported under the graphic.

Fig S3. Correlation between telomere length (TL) and age

in multiple and single melanoma cases. TL distribution as a

function of age for multiple (white circles) and single (grey

circles) cases of melanoma. Regression lines and respective

equations are represented for each group. Estimated mean TL

values at mean age, with 95% confidence intervals (CI) and

pairwise differences between multiple and single melanomas

are reported under the graphic.
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