
IL NUOVO CIMENTO VOL. 109 B, N. 11 Novembre 1994 

Accuracy of the Semi-Classical Approximation: 
the Pullen-Edmonds Hamiltonian (*). 

S. GRAFFI (1), V. R. MANFREDI (2) (**)(***) and L. SALASNICH("~) 

(1) Dipartimento di Matematica dell'Universifft 
Piazza di Porta S. Donato 5, I 40127 Bologna, Italy 

('z) Dipartimento di Fisica ,~G. Galilei, dell'Universit~ - Padovc~ Italy 
Interdisciplinary Laboratory, SISSA - Trieste, Italy 

(3) Dipartimento di Fisica dell'Universit~ - Firenze, Italia 
INFN, Sezione di Firenze - Largo E. Fermi 2, I 50125 Firenze, Italy 

(ricevuto il 5 Aprile 1994; approvato il 5 Settembre 1994) 

Summary. - -  A test on the numerical accuracy of the semi-classical approximation 
as a function of the principal quantum number has been performed for the 
Pullen-Edmonds model, a two-dimensional, non-integrable, scaling-invariant per- 
turbation of the resonant harmonic oscillator. A perturbative interpretation is 
obtained of the recently observed phenomenon of the accuracy decrease on the 
approximation of individual energy levels at the increase of the principal quantum 
number. Moreover, the accuracy provided by the semi-classical approximation 
formula is on average the same as that provided by quantum perturbation theory. 

PACS 03.65 - Quantum theory; quantum mechanics. 
PACS 05.45 - Theory and models of chaotic systems. 

Recently, there has been considerable renewed interest  in the various aspects of 
the semi-classical approximation (SCA), a powerful motivation behind that  being the 
problem of the so-called quantum chaos (see, for example, ref.[1-5]). An important  
aspect is represented by the effectiveness of the semi-classical quantization formula 
approximating the quantum energy levels, and in this connection one recent  work [6] 
shows that  the predictions of individual levels by SCA (by this we mean the 
Bohr-Sommerfeld formula, or one of its generalizations to the non-integrable case, 
such as EBK; see, e.g., [3,4]), worsen as the quantum number  increases, contrary  to 
the naive expectation. We argue that  this resul t  can be in terpre ted as follows: if h, no 
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matter how small, is kept fixed, the SCA on the individual levels has the meaning of a 
perturbation theory (PT) in h. Therefore, the accuracy of the approximation 
decreases for higher levels (to get good agreement it is necessary, as is well knob"a, to 
implement the classical limit h ---, O, n ----) ~ ,  nh = I classical action; see, e.g., [7]). 

The aim of this paper is to clarify this point, from the theoretical standpoint and 
from the computational one as well, considering a scaling-invariant potential, which 
makes ordinary quantum PT strictly equivalent to a power expansion in h. We do 
actually observe that, for h fixed, the perturbation strength has to be decreased to 
keep the accuracy at a constant value as the quantum number increases; however, we 
also observe that the algorithm provided by the appropriate SCA is always 
comparable to the algorithm provided by ordinary quantum PT. A very good agree- 
ment between the ,,exact,, eigenvalues, obtained by numerical diagonalization of the 
SchrSdinger operator, and the semi-classical ones, is indeed observed in the 
presence of high unperturbed degeneracy. 

The most significant examples to carry out this comparison are represented by 
non-separable two-dimensional systems exhibiting both regular and irregular 
spectrum[8], i.e., in particular, non-uniform behaviour of the level spacing, and 
among these the simplest one is the Pullen-Edmonds model[9]. Its quantum 
Hamiltonian is 

(1) H = - + + ~ ( q ,  + q~) + zq[q~  , 

where m has been put equal to 1. For y- = 0, (1) reduces to a resonant two-dimensional 
harmonic oscillator of levels (n, + we + 1)h - m~h,  ml = 1, 2, ..., of multiplicity m~. 

The scaling transformation ql ~ V ~  q~, qz ~ VChq2 yields the unitarily equivalent 
operator 

(2) H = - h -~ 3q---~x + aq~ + -2 qt + q~) + 7,hq z, q~ �9 

The coupling constant has become y h, which clearly shows equivalence between 
expansions in powers of Z or h. (An analogous result holds for any other polynomial 
perturbation.) Moreover, the symmetry of the potential enables us to split the 
Hamfltonian matrix, computed on the harmonic-oscillator basks, into submatrices 
reducing the computer storage required. The matrix elements of (I) can be written: 

(3) <n;n~ IHIn, n2> = h(nl  § n2 + 1)d~i~,~,r z + 

h 2 

" n1 + 2  1 '~ +Y--7- ['V/nl(nl - 1)~ ' l~ , -z  + v ~ n l  + 1)(nl + 2)~,~,~ + (2n, + )~'1nl] " 
4 

�9 [ ~ / n z ( n z  - 1)~n'2,~-z + ~r + 1)(n2 + 2) r162 +e + (2~ve + 1) #n'2, r ] 

and each submatrix can be labelled by the parity of the occupation numbers nl,  nz .  
We restrict from now on to the invariant subspace spanned by ml even, i.e. n ,  and n2 
of opposite parity. The eigenvalues of H in this subspace have constant multiplicity 
2 [9]. Therefore, the level m l h  = 2sh splits into s levels for y- > 0. 

The appropriate SCA is here provided by the Bohr-Sommerfeld quantitization of 
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the resonant (or secular) canonical perturbation theory[10], also known, in this 
particular case, as the Birkhoff-Gustafson normal form [ll,12], which we now con- 
struct at first order. Starting from the classical Pullen-Edmonds Hamiltonian 

1 z 1 
(4) He I __ ~(p~ + p~) + _~(qe x + q~) + y, qZq2 , 

Z 

we introduce the standard action-angle variables (I, 0) by the canonical transforma- 
tion: 

(5) I qi = V ~ /  cos0i, i = 1, 2. 
[ Pi = V ~ i  sin 0i, 

Then (4) becomes 

(6) ncl  = 11 + Iz + 4XI~I~ cos 2 01 COS 2 02 �9 

The second canonical transformation into the well-known ,,slow- and -fast .  
variables, 

(7) { A1= I1+ I2 ' { 01= r r ' 
A2 11 - / 2 ,  02 ---- r -- r 

eliminates the dependence on the ,,slow action, Az in the unperturbed part, so that 
the Hamiltonian becomes 

(8) Hcl = A1 + z(A'~ -A~)  cos 2 (r + C z)cos z (r - r 

We now eliminate the dependence on the angles up to terms of order Z 2 by resonant 
(or secular) canonical perturbation theory[10]. To eliminate the dependence on the 
,,fast angle, r it is enough to average the perturbation on this variable. This yields 

2~ 

1 f d ~ l C O S 2 ( r 1 6 2 1 6 2  l ( 2 q - c o s 4 r  (9) 2zr 
o 

and thus 

(lO) Z (A 2 _A~)(2  + cos4r /~d = A1 + ~ 1 

The dependence on r o the perturbation part can now be eliminated by af further 
canonical transformation. The Hamiltonian-Jacobi equation for the perturbation part 
is in fact 

(11) 

(12) 

and thus the Hamiltonian (9) becomes 

- -~2 (2 + cos4r = K,  

~S _ + J A ~ ( 2  + cos4r - K 

(13) HcJ = B1 + 8K(B1, Bz), 
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where 

1 f 3S 
dr (14) B1 = A, , B2 = 27: 3r 

It appears from the structure of eq. (12) that the motions generated by the 
perturbation part of our system have the following qualitative behaviour: 

0 < K < B~ rotational motion, 

(15) K = B[ separatrix, 

B~ < K < 3B~ librational motion. 

The appearance of a separatrix (which is not immediately obvious in the (p, q) 
coordinates) accounts, as is well known (see, e.g., [3]), for the stochastic layers 
originating near it. This corresponds to local irregular behaviour of the quantum 
spectrum; one of its manifestations is (see Delande in [4]) the local shrinking of the 
level spacing and the presence of avoided crossings. This shrinking of the level 
spacing is best accounted for by the SCA, as we will discuss below. 

On the separatrix we have 

(16) 

while, in general, 

B12(2 + cos4r = K,  

2 I B~(2+_cos4x) -  K 
(17) B2 = - -  d x  

7: ~ 2 + cos 4x ' 

where 

(18) 

with 

a = 0 ,  b 7: 
2 

a = r (K, B 1 ) ,  b = r (K, B1) 

rotational motion, 

librational motion, 

+ l a r ccos  / K _ 2/.  (19) r177 (K, B1) = 
- 4  ~B~ ] 

Now the approximate Hamiltonian (13) depends only on the actions, so that a 
semi-classical quantization formula for the ml even part  of spectrum of the operator 
(1) can be obtained by a straightforward application of the Bohr-Sommerfeld 
quantization rules [10]. Set therefore 

I1 = ( n l  -~- 1/2)h,  

12 = (n~ + 1/2)h,  
(20) 

whence, from (6), 

(21) 
A1 = (nl + n2 + 1)h, 

A2 = (nl - n2)h.  
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Set 

A1 = ml h,  

(22) A2 = m2 h.  

By comparison of (19) and (20) we obtain 

(23) I m l  = n l  + n 2  + 1 ,  

[ m 2  = n l  - n 2  , 

w h e r e  ml = 2, 4, . . .  a n d  me = + ( m l  - 1 ) ,  _ + ( m  t - 3 ) ,  _ + ( m  1 - 5 ) ,  . . . .  

Finally, 

(24) Bl = ml h,  B2 = mh; 

then the semi-classical approximation to the quantum spectrum is 

(25) E,~,, ,~2 = ml  h + ~ K ( m l  h, n~z h),  
8 

where K is implicitly defined by the relation 

2 ( (mlh)2(2 + cos4x)  - K 
(26) nv2h = + -  ~ dx 

. 2 + cos 4x 
a 

and 

(27) 
a = O, b = n / 2 ,  0 < K < ( m l h )  2 , 

a = r  (K, m 1 h ) ,  b = r + (K, ml h) (ml h) 2 < K < 3(ml h) 2 . 

Remark that  for ] m 2 ] <  [am1] we obtain the quantization of the rotational 
motions, while for ]me ] > [aml ] ([x] = integer par t  of x) we have the quant~at ion of 

3 . 0 0 4  , . , . ,  . . . . .  , . ,  . . . . .  , . , . , . , .  

3 . 0 0 3  

~. 3 .O02  

3.ool  

3 . 0 0 0  
a )  b)  c) 

2 . 9 9 9  . . . . . . . . . . . . . . . . . . .  i . . . . . . .  

Fig. 1. - Comparison between the ,,exact,, levels (a)) the semi-classical ones (b)) and the levels 
obtained by first-order perturbation theory (c)), for )~ = 10 -a, h = 0.1, ml = 30. 
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Fig. 2. - Comparison between the <,exact,, levels (a)), the semi-classical ones (b)), and the levels 
obtained by first-order perturbation theory (c)), for ml = 60, Z = 10-~. 

the librational ones. Here, by (17) 

r./2 

(28) a = -- dm = 0.602. 
7: + cos 4x 

0 

Moreover, it is easy to see that  for ml fixed, the function K, and hence the 
semi-classical energy E,~, ,~, is a decreasing function of the secondary quantum 
number me. I t  is furthermore proved in[13] that  (25) coincides with the exact 
quantum spectrum up to terms of order h and 7. 2. The numerical computations (see 
fig. 4 below) show that  at order 1 in 7. the corrections of order h affect at most  the 
eighth decimal figure. 

The ,<exact>> levels have been computed, and compared with the semi-classical 
ones as well as with the levels computed by degenerate first-order quantum 
perturbation theory[14], for ml = 1, ..., 60 at tt = 0.1 and for different values of Z 
(given the degeneracy, this is equivalent to compute 1800 different levels). The 

10 -3 

A 

1 0  - 4  

10 -~ 

0 ' ' ' ' ' ' ' ' J ' ' ' ' ~ ' ' ' ' ' ' ' ' ' 5 ~ 0  ' ' ' ' ~ 1 0  20 30 40 m 1 60 

Fig. 3. - The difference A between the , e x a c t ,  levels and the semi-classical ones vs. m~,  with 

rn2 = (m I - 1) and rrhh = 1. 
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resul ts  ob ta ined  for  ml = 30, h = 0.1, ;( = 10 -8 and ml  = 60, tZ = 0.1, 7. = 10 -~ are  
shown in fig. 1 and 2, respectively.  The  local shr ink ing  of  the  spacing,  r ep roduced  by  
both  methods ,  can be immedia te ly  noticed; r e m a r k  tha t  the  co r r e spond ing  
semi-classical levels are  those  near  the  separa t r ix  (by (28), m ~ -  18 and n ~ -  36, 
respectively).  

In  fig. 3 the  function 

(29) A = I Enx  _ _  ESCA I 

vs. m l  is plot ted for  ml 7. = 1; this shows that ,  if the coupl ing cons tan t  is decreased  in 
inverse p ropor t ion  to the  principal qua n t um  n u m b e r  the  accuracy  of  S C A  not  only 

2 �9 i . i , i , i , i - .  J , i �9 ! �9 ] , i . i , 

a) 

( 2  

N 1 
E l  

6.00000 6.00005 6.00010 

2 , - .  , . , �9 , . , . , �9 , . , . , . , . i �9 , . , . 

_ lO IA 
~__~__~ ~1 1 

0! . . . .  l~ . . . . . .  .a, . , . , . i .  , . , . 
6.00000 6.00005 6.00010 

exact energy (a.u.) 

Fig. 4. - a) The difference between the ,,exact- levels and the semi-classical ones; b) the 
difference between the ,,exact,, levels and the first-order quantum PT ones; (m] = 60, h = 0.1, 
;~ = 1 0 - 5 ) .  

1.5 x l 0 -  �9 , . , , , . i , , . ~ . l . ~ , , . i . , .  , . 

~ - -  - 7  

1 .0x l0  

I 
< 

5• -s 

6.00000 6.00005 6.00010 
SCA energy (a.u.) 

Fig. 5. - The difference between the semi-classical levels and the first-order quantum PT ones; 
(ml = 60, h = 0.1, ;~ = 10-'~). 
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remains constant but  actually improves, as anticipated because the scaling invariance 
makes the limit m, ~ r162 ;/--) 0, mly. ~ const equivalent to the classical limit ml ~ ~ ,  
tz --~ 0, ml h ~ const. 

In fig. 4 the accuracies obtained through semi-classical and quantum first-order 
perturbat ion theories are compared for m, = 60, y. = 10 -~, h = 0.1, and in fig. 5 the 
difference between the two per turbat ion theories is plotted (remark that  the energy 
decreases as me increases). As can be seen, the agreement  with the (~exact- levels is 
very  good and the accuracy is on average the same. Remark however that, as it 
should be expected (the Bohr-Sommerfeld rules take no account of tunnelling[15]), 
the lowest accuracy of the SCA is reached near  m2 = 36 which corresponds to the 
levels near  the separatrix: for these levels the quantum PT is therefore  be t te r  than 
SCA. 

The authors are great ly indebted to Dr. Stefano Isola for many useful discussions 
and to Mr. G. Salmaso for his valuable computational assistance. 
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