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Optimal steering of a linear stochastic system
to a final probability distribution

Yongxin Chen, Tryphon Georgiou and Michele Pavon

Abstract—We consider the problem to steer a linear dynamical
system with full state observation from an initial gaussian distribution
in state-space to a final one with minimum energy control. The system
is stochastically driven through the control channels; an example for
such a system is that of an inertial particle experiencing random
“white noise” forcing. We show that a target probability distribution
can always be achieved in finite time. The optimal control is given in
state-feedback form and is computed explicitely by solving a pair of
differential Lyapunov equations that are coupled through their boundary
values. This result, given its attractive algorithmic nature, appears to have
several potential applications such as to active control of nanomechanical
systems and molecular cooling. The problem to steer a diffusion process
between end-point marginals has a long history (Schrödinger bridges)
and therefore, the present case of steering a linear stochastic system
constitutes a Schrödinger bridge for possibly degenerate diffusions. Our
results, however, provide the first implementable form of the optimal
control for a general Gauss-Markov process. Illustrative examples of
the optimal evolution and control for inertial particles and a stochastic
oscillator are provided. A final result establishes directly the property of
Schrödinger bridges as the most likely random evolution between given
marginals to the present context of linear stochastic systems.

Keywords: Linear stochastic system, Schrödinger bridge, stochastic
control.

I. INTRODUCTION

Active control of micro-mechanical systems has witnessed ma-
jor advances in the past twenty years. At the atomic scale, control of
quantum mechanical systems has also enormously increased its scope
and effective laboratory implementation. We mention laser-driven
molecular reactions, design of pulse sequences in NMR, adaptive
quantum measurements and feedback control of optical systems. For
a recent survey see [1] which is addressed to a control engineering
audience. Another important area where feedback control is playing
an increasing role is cooling. Advances in nanotechnology permit
nowadays to implement feedback control actions on nanodevices [2].
For instance, in surface topography, the deflection of a cantilever is
captured by a photodetector that records the angle of reflection from
a laser beam focused on the mirrored surface on back side of the
cantilever. Position feedback control is used to maintain the probe at a
constant force or distance from the object surface. Position can also be
differentiated allowing to apply a velocity dependent external force.
A velocity dependent feedback control (VFC) has been implemented
to reduce thermal noise of a cantilever in atomic force microscopy
(AFM) [3] and in dynamic force microscopy [4]. Another important
area of application is polymer dynamics [5].

Cooling is of interest for non-microscopic systems as well.
For macroscopic mechanical resonators, for instance, cooling to
ultralow temperatures is indispensable to investigate decoherence. In
[6], [7], a feedback cooling technique on a ton-scale resonant-bar
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gravitational wave detector and the corresponding thermodynamics is
described. See [8] for a recent survey of cooling techniques for both
meter-sized detectors and nanomechanical systems. In all cooling
applications, the basic model is a stochastic oscillator [9] which is
driven asymptotically to a desired non equilibrium steady state by
means of feedback control. These diffusion mediated devices are
sometimes called Brownian motors as work can be extracted from
them [10]. The issue of motor efficiency translates into an optimal
control problem [11]. Indeed, this problem may be viewed as a special
case of the theory of Schrödinger bridges for diffusion processes [12]
where the time interval is infinite [13]. The connection between these
problems and the so called “logarithmic transformation” of stochastic
control of Fleming, Holland, Mitter et al., see e.g. [14], has been
investigated for some time [15], [16], [17], [11], [18].

In spite of this large body of work, the situation is far from
satisfactory considering the challenges and opportunities offered
by modern technology in controlling micro and macro mechanical
systems. One drawback is that the basic theory of the Schrödinger
bridges has been developed for non degenerate diffusions where
the noise acts on all components of the state vector, whereas the
stochastic oscillators of interests are degenerate diffusions in phase
space. A much more serious problem is that the solution, excepting
very special cases [11], [18], is in general not given in a form
amenable to computations. Indeed, computing the optimal control
requires solving a pair of partial differential equations coupled
through their boundary values [12].

The purpose of this paper is to partially remedy this situation.
We provide what can be regarded as the first computable and
implementable solution in the important case of a Gauss-Markov
process (nonlinear stochastic oscillators are considered in [13]).
This case had been discussed in the discrete time setting in [19].
However, the existence and an implementable form of the optimal
control are missing in this paper and, moreover, the noise intensity
is assumed to be nonsingular. Another related line of research, in
the work by Robert Skelton and his co-workers [20], has been
to assign the asymptotic closed-loop state-covariance with dynamic
output feedback. In spite of the fact that control takes place over an
infinite time interval, here too, computational aspects and conditions
for “assignability” of steady state covariance are far from trivial.

In the present work we show that a linear dynamical system
can be optimally steered from any initial Gaussian distribution for
the initial state to any final one, over any finite interval [0, T ].
The unique minimum-energy state-feedback control is explicitly
constructed by solving two linear Lyapunov differential equations.
These are nonlinearly coupled through boundary conditions at the
two end points of the interval. However, we show that these boundary
values can be expressed in closed form as (nonlinear) functions of
the covariances for the initial and target Gaussian distributions.

The paper is structured as follows. The formulation of the main
problem and the variational analysis that shows the form of the
optimal control are given in Section II. The existence and the explicit
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construction of the optimal control is given in Section III. Although
the state process may be a degenerate diffusions (since, typically, the
rank of the input matrix is typically less than the dimension of the
state vector), the law of the controlled dynamics is closest in the
relative entropy sense to that of the uncontrolled dynamics, just as in
the theory of the Schrödinger bridges; this is shown in Section IV.
Finally, in Section V we present two illustrative examples. The first
one is on inertial particles experiencing random (white) acceleration,
and the second, on active damping of an oscillator driven by Nyquist-
Johnson thermal noise.

II. PROBLEM FORMULATION AND VARIATIONAL ANALYSIS

Consider a “prior” evolution given by the vector Gauss-Markov
process {x(t) | 0 ≤ t ≤ T} satisfying the n-dimensional linear
stochastic differential equation

dx(t) =A(t)x(t)dt+B(t)dw(t) (1)

with x(0) = ξ a.s.

and ξ an n-dimensional random vector independent of {w(t) | 0 ≤
t ≤ T} with density

ρ0(x) = (2π)−n/2 det(Σ0)−1/2 exp

(
−1

2
x′Σ−1

0 x

)
. (2)

Throughout, {w(t) | 0 ≤ t ≤ T} is a standard, m-dimensional
Wiener process and A(·) and B(·) are continuous matrix functions
taking values in Rn×n and Rn×m, respectively. Consider also the
controlled evolution

dxu(t) = A(t)xu(t)dt+B(t)u(t) +B(t)dw(t), (3)

xu(0) = ξ a.s.

and a “target” end-point distribution

ρT (x) = (2π)−n/2 det(ΣT )−1/2 exp

(
−1

2
x′Σ−1

T x

)
, (4)

which is Gaussian with zero mean with covariance ΣT > 0, we let
U be the family of adapted, finite-energy control functions such that
(3) has a strong solution and xu(T ) is distributed according to (4).
More precisely, u ∈ U is such that u(t) only depends on t and on
{xu(s); 0 ≤ s ≤ t} for each t ∈ [0, T ], satisfies

E
{∫ T

0

u(t)′u(t) dt

}
<∞,

and effects xu(T ) to be distributed according to (4). The family
U represents admissible control inputs which achieve the desired
probability density transfer from ρ0 to ρT . Thence we formulate the
following Schrödinger Bridge Problem:

Problem 1: Determine whether U is non-empty and if so,
determine u∗ := argminu∈U J(u) where

J(u) := E
{∫ T

0

u(t)′u(t) dt

}
.

In the next section we will prove that a minimizing control u∗

always exists. The stochastic process {x∗(t) = xu
∗
(t) | 0 ≤ t ≤ 1}

will be referred to as the Schrödinger bridge from ρ0 to ρ1 over the
prior {x(t) = x0(t) | 0 ≤ t ≤ 1}.

Notice that in the “controlled” equation (3) the control variables
u(t) act through the same input “channels” which are subject to
noise, i.e., both u(t) and dw(t) affect the state through the same

B(·) matrix. The theory that follows can accordingly be relaxed to
the case where the control has more “authority” (i.e., the range of
the corresponding B-matrix contains the range of the B-matrix for
the noise). It will be of interest to study in detail the case where the
control authority is less than that of the stochastic noise.

In the remaining of the section we identify a candidate structure
for the optimal controls and reduce the problem to an algebraic
condition involving two differential Lyapunov equations that are
nonlinearly coupled through split boundary conditions.

Let us start by observing that this problem resembles a standard
stochastic linear quadratic regulator problem except for the boundary
conditions. The usual variational analysis can in fact be carried out,
up to a point, namely the expression for the optimal control, in a
similar fashion. Of the several ways in which the form of the optimal
control can be obtained, we choose a most familiar one, namely the
so-called “completion of squares”1. Let {Π(t) | 0 ≤ t ≤ T} be a
differentiable function taking values in the set of symmetric, n × n
matrices. Observe that Problem 1 is equivalent to minimizing over U
the modified index

J̃(u) = E
{∫ T

0

u(t)′u(t) dt (5)

+x(T )′Π(T )x(T )− x(0)′Π(0)x(0)
}
.

Indeed, as the two end-point marginals densities ρ0 and ρT are fixed
when u varies in U , the two boundary terms are constant over U . We
can now rewrite J̃(u) as follows

J̃(u) = E
{∫ T

0

u(t)′u(t) dt+

∫ T

0

d
(
x(t)′Π(t)x(t)

)}
.

Assuming that on [0, T ] Π(t) satisfies the matrix Riccati equation

Π̇(t) = −A(t)′Π(t)−Π(t)A(t) + Π(t)B(t)B(t)′Π(t), (6)

a standard argument using Itō’s rule (e.g., see [22]) shows that

J̃(u) = E
{∫ T

0

‖u(t) +B(t)′Π(t)x(t)‖2 dt

+

∫ T

0

1

2
trace

(
Π(t)B(t)B(t)′

)
dt

}
.

Observe that the second integral is finite and invariant over U . Hence,
we obtain a candidate for the optimal control in the familiar form

u∗(t) = −B(t)′Π(t)x(t). (7)

Such a choice of control will be possible provided we can find a
solution Π(t) of (6) such that the process

dx∗(t) =
(
A(t)−B(t)B(t)′Π(t)

)
x∗(t)dt+B(t)dw(t), (8)

with x∗(0) = ξ a.s.

leads to x∗(T ) with density ρT . If this is indeed possible, then we
have solved Problem 1. It is important to observe that the optimal
control, if it exists, is in a state feedback form. Consequently, the
new optimal evolution is a Gauss-Markov process just as the prior
evolution.

Finding the solution of the Riccati equation which achieves the
density transfer is nontrivial. In the classical linear quadratic regulator
theory, the terminal cost of the index would provide the boundary

1Although it might be the most familiar to control engineers, the completion
of the square argument for stochastic linear quadratic regulator control is not
the most elementary. Indeed, a derivation which does not employ Itō’s rule
was presented in [21].
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value Π(T ) for (6). However, here there is no boundary value and
the two analyses sharply bifurcate. Therefore, we need to resort to
something quite different as we have information concerning both
initial and final densities, namely Σ0 and ΣT .

Let Σ(t) := E {x∗(t)x∗(t)′} be the state covariance of the
sought optimal evolution. From (8) we have that Σ(t) satisfies

Σ̇(t) =
(
A(t)−B(t)B(t)′Π(t)

)
Σ(t)

+ Σ(t)
(
A(t)−B(t)B(t)′Π(t)

)′
+B(t)B(t)′. (9)

It must also satisfy the two boundary conditions

Σ(0) = Σ0, Σ(T ) = ΣT (10)

and, provided (A(t), B(t)) is controllable (see Section III), Σ(t) is
positive definite on [0, T ]. Thus, we seek a solution pair (Π(t),Σ(t))
of the coupled system of these two equations (6) and (9) with split
boundary conditions (10).

Interestingly, if we define the new matrix-valued function

H(t) := Σ(t)−1 −Π(t),

then a direct calculation using (9) and (6) shows that H(t) satisfies
the homogeneous Riccati equation

Ḣ(t) = −A(t)′H(t)−H(t)A(t)−H(t)B(t)B(t)′H(t). (11)

This equation is dual to (6) and the system of the two coupled matrix
equations (6) and (9) can be replaced by (6) and (11). The new
system is decoupled, except for the coupling through their boundary
conditions

Σ−1
0 = Π(0) + H(0) (12a)

Σ−1
T = Π(T ) + H(T ). (12b)

These boundary conditions (12) are sufficient for meeting the two
end-point marginals ρ0 and ρT provided of course that Π(t) remains
finite. We have therefore established the following result.

Proposition 2: Suppose Π(t) and H(t) satisfy equations (6)-
(11) on [0, T ] with boundary conditions (12). Then the feedback
control u∗ given in (7) is optimal for Problem 1 and the optimal
evolution of the Schrödinger bridge is given by (8).

Since (6) and (11) are homogeneous, they always admit the zero
solution. The case Π(t) ≡ 0 corresponds to the situation where the
prior evolution satisfies the boundary marginals conditions and, in
that case, H(t)−1 is simply the prior state covariance.

Thus, Problem 1 reduces to the atypical situation of two
Riccati equations (6) and (11) coupled through their boundary values.
This might still at first glance appear to be a formidable problem.
However, (6)-(11) are homogeneous and, as far as their non singular
solutions, they reduce to linear differential Lyapunov equations. The
latter, however, are still coupled through their boundary values in a
nonlinear way. Indeed, suppose Π(t) exists on the time interval [0, T ]
and is invertible. Then Q(t) = Π(t)−1 satisfies the linear equation

Q̇(t) = A(t)Q(t) +Q(t)A(t)′ −B(t)B(t)′. (13a)

Likewise, if H(t) exists on the time interval [0, T ] and is invertible,
P (t) = H(t)−1 satisfies the linear equation

Ṗ (t) = A(t)P (t) + P (t)A(t)′ +B(t)B(t)′. (13b)

The boundary conditions (12) for this new pair (P (t), Q(t)) now
read

Σ−1
0 = P (0)−1 +Q(0)−1 (14a)

Σ−1
T = P (T )−1 +Q(T )−1. (14b)

Conversely, if Q(t) solves (13a) and is nonsingular on [0, T ], then
Q(t)−1 is a solution of (6), and similarly for P (t). We record the
following immediate consequence of Proposition 2.

Corollary 3: Suppose P (t) and Q(t) are nonsingular on [0, T ]
and satisfy the equations (13a-13b) with boundary conditions (12).
Then the feedback control

u∗(t) = −B(t)′Q(t)−1x(t). (15)

is optimal for Problem 1. The evolution of the optimal Gauss-Markov
process is given by

dx∗(t) =
(
A(t)−B(t)B(t)′Q(t)−1)x∗(t)dt+B(t)dw(t), (16)

with x∗(0) = ξ a.s.

Thus, the system (13)-(14) appears as the bottleneck of the
Schrödinger bridge problem. In the next section, we prove that in
fact (13) always has solution (P (t), Q(t)), with both P (t) and Q(t)
nonsingular on [0, T ], that satisfies (14) and that this solution is
unique.

III. EXISTENCE AND UNIQUENESS OF OPTIMAL CONTROL FOR

THE LINEAR GAUSSIAN BRIDGE

We assume throughout that the system (1) (or equivalently the
pair (A(t), B(t))) is controllable in the sense that the reachability
gramian

M(t1, t0) :=

∫ t1

t0

Φ(t1, τ)B(τ)B(τ)′Φ(t1, τ)′dτ,

is nonsingular for all t0 < t1 (with t0, t1 ∈ [0, T ]). As usual, Φ(t, s)
denotes the state-transition matrix of (1) determined via

∂

∂t
Φ(t, s) = A(t)Φ(t, s) and Φ(t, t) = I,

and this is nonsingular for all t, s ∈ [0, T ]. It is worth noting that
for t1 > 0 the reachability grammian M(t1, 0) = P (t1) > 0
satisfies the differential Lyapunov equation (13b) with P (0) = 0.
The controllability grammian

N(t1, t0) :=

∫ t1

t0

Φ(t0, τ)B(τ)B(τ)′Φ(t0, τ)′dτ,

is necessarily also nonsingular for all t0 < t1 (t0, t1 ∈ [0, T ]) and
if, we similarly set Q(t0) = N(T, t0), then Q(t) satisfies (13a) with
Q(T ) = 0.

However, as suggested in the previous section, we need to
consider solutions P (·), Q(·) of these two differential Lyapunov
equations (13) that satisfy boundary conditions that are coupled
through (14). In general, P (t) and Q(t) do not need to be sign
definite, but in order for

Σ(t)−1 = P (t)−1 +Q(t)−1. (17)

to qualify as a covariance of the controlled process (3) P (t) and
Q(t) need to be invertible. This condition is also sufficient and Σ(t)
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satisfies the corresponding differential Lyapunov equation for the
covariance of the controlled process (16)

Σ̇(t) = AQ(t)Σ(t) + Σ(t)AQ(t)′ +B(t)B(t)′ (18)

with
AQ(t) := (A(t)−B(t)B(t)′Q(t)−1). (19)

Next, we present our main technical result on the existence and
uniqueness of an admissible pair (P−(t), Q−(t)) of solutions to (13)-
(14) that are invertible on [0, T ]. Interstingly, there is always a second
solution (P+(t), Q+(t)) to the nonlinear problem (13)-(14) which is
not admissible as it fails to be invertible on [0, T ].

Proposition 4: Consider Σ0,ΣT > 0 and a controllable pair
(A(t), B(t)) as before. The system of the two differential Lyapunov
equations (13) has two sets of solutions (P±(·), Q±(·)) over [0, T ]
that simultaneously satisfy the coupling boundary conditions (14)
These two solutions are specified by

Q±(0) = N(T, 0)1/2S
1/2
0

(
S0 +

1

2
I ±

(
S

1/2
0 STS

1/2
0

+
1

4
I

)1/2
)−1

S
1/2
0 N(T, 0)1/2,

P±(0) =
(
Σ−1

0 −Q±(0)−1)−1

and the two differential equations (13), where

S0 = N(T, 0)−1/2Σ0N(T, 0)−1/2,

ST = N(T, 0)−1/2Φ(0, T )ΣT Φ(0, T )N(T, 0)−1/2.

The two pairs (P±(t), Q±(t)) with subscript − and +, respectively,
are distinguished by the following:

i) Q−(t) and P−(t) are both nonsingular on [0, T ], whereas
ii) Q+(t) and P+(t) become singular for some t ∈ [0, T ], possibly

not for the same value of t.

Proof: Apply the time-varying change of coordinates

ξ(t) = N(T, 0)−1/2Φ(0, t)x(t).

Then, in this new coordinates the dynamical system (1) becomes

dξ(t) = N(T, 0)−1/2Φ(0, t)B(t)︸ ︷︷ ︸
Bnew(t)

dw(t).

We will prove the statement in this new set of coordinates for the
state and revert back to the one at the end. Accordingly,

Ṗnew(t) = Bnew(t)Bnew(t)′,

Q̇new(t) = −Bnew(t)Bnew(t)′,

along with Mnew(T, 0) = Nnew(T, 0) = I and

Σ0,new = N(T, 0)−1/2Σ0N(T, 0)−1/2, (20a)

while

ΣT,new = N(T, 0)−1/2Φ(0, T )ΣT Φ(0, T )′N(T, 0)−1/2. (20b)

The relation between Qnew(t) and Q(t) is given by

Qnew(t) = N(T, 0)−1/2Φ(0, t)Q(t)Φ(0, t)′N(T, 0)−1/2.

This can be seen by taking the derivative of both sides

Q̇new(t) = −N(T, 0)−1/2Φ(0, t)A(t)Q(t)Φ(0, t)′N(T, 0)−1/2

−N(T, 0)−1/2Φ(0, t)Q(t)A(t)′Φ(0, t)′N(T, 0)−1/2

+N(T, 0)−1/2Φ(0, t)Q̇(t)Φ(0, t)′N(T, 0)−1/2

= −N(T, 0)−1/2Φ(0, t)B(t)B(t)′Φ(0, t)′N(T, 0)−1/2

= −Bnew(t)Bnew(t)′.

In the next paragraph, for notational convenience, we drop the
subscript “new” and prove the statement assuming that A(t) = 0 as
well as N(T, 0) = I . We will return to the notation that distinguishes
the two sets of coordinates with the subscript “new” and relate back
to the original ones at the end of the proof.

Since A(t) = 0, then Φ(t, x) = I for all s, t ∈ [0, T ]. Further,
M(T, 0) = N(T, 0) = I . Thus,

P (T ) = P (0) + I

Q(T ) = Q(0)− I.

Substituting in (14), we obtain that

Q(0)−1 + P (0)−1 = Σ−1
0

(Q(0)− I)−1 + (P (0) + I)−1 = Σ−1
T .

Solving the first for P (0) as a function of Q(0) and substituting in
the second, we have

Σ−1
T = ((Σ−1

0 −Q(0)−1)−1 + I)−1 + (Q(0)− I)−1

= ((Σ−1
0 −Q(0)−1)−1 + I)−1

×(Q(0) + (Σ−1
0 −Q(0)−1)−1))(Q(0)− I)−1

= ((Σ−1
0 −Q(0)−1)−1 + I)−1

×(Σ−1
0 −Q(0)−1)−1Σ−1

0 Q(0)(Q(0)− I)−1

= (Σ−1
0 + I −Q(0)−1)−1Σ−1

0 (I −Q(0)−1)−1

which after inversion leads to

(I −Q(0)−1)Σ0(I −Q(0)−1) + (I −Q(0)−1) = ΣT .

This is a quadratic expression and has two Hermitian solutions

I−Q(0)−1 = Σ
−1/2
0

(
−1

2
I ∓

(
Σ

1/2
0 ΣT Σ

1/2
0 +

1

4
I

)1/2
)

Σ
−1/2
0 .

(21)

This gives that

Q(0) = Σ
1/2
0

(
Σ0 +

1

2
I ±

(
Σ

1/2
0 ΣT Σ

1/2
0 +

1

4
I

)1/2
)−1

Σ
1/2
0 .

To see that i) holds evaluate (in these simplified coordinates where
there is no drift and M(T, 0) = I)

Q−(t)−1 = (Q−(0)−M(t, 0))−1

= −M(t, 0)−1 −M(t, 0)−1

×(Q−(0)−1 −M(t, 0)−1)−1M(t, 0)−1

= −M(t, 0)−1 −M(t, 0)−1Σ
1/2
0

(
Σ0 +

1

2
I

−
(

Σ
1/2
0 ΣT Σ

1/2
0 +

1

4
I

)1/2

− Σ
1/2
0 M(t, 0)−1Σ

1/2
0

)−1

Σ
1/2
0 M(t, 0)−1

for t > 0. For t ∈ (0, 1], the expression in parenthesis

Σ0 +
1

2
I −

(
Σ

1/2
0 ΣT Σ

1/2
0 +

1

4
I

)1/2

− Σ
1/2
0 M(t, 0)−1Σ

1/2
0
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is clearly maximal when t = T . However, for t = T when
M(T, 0) = I , this expression is seen to be

1

2
I −

(
Σ

1/2
0 ΣT Σ

1/2
0 +

1

4
I

)1/2

< 0.

Therefore, the expression in parenthesis is never singular and we
deduce that Q−(t)−1 remains bounded for all t ∈ (0, T ], i.e., Q−(t)
remains non-singular. For t = 0, Q(0)−1 is seen to be finite from
(21). The argument for P−(t) is similar. Regarding ii), it suffices
to notice that 0 < Q+(0) < I while Q+(T ) = Q+(0) − I < 0.
The statement ii) follows by continuity of Q+(t), and similarly for
P+(t).

We now revert back to the set of coordinates where the drift is
not necessarily zero and where N(T, 0) may not be the identity. We
see that

Q±(0) = N(T, 0)1/2(Q±(0))newN(T, 0)1/2

= N(T, 0)1/2Σ
1/2
0,new

(
Σ0,new +

1

2
I

±
(

Σ
1/2
0,newΣT,newΣ

1/2
0,new +

1

4
I

)1/2
)−1

Σ
1/2
0,newN(T, 0)1/2

where Σ0,new,ΣT,new as in (20a-20b), which for compactness of
notation in the statement of the proposition we rename S0 and ST ,
respectively.

Remark 5: We have numerically observed that the iteration

P (0)
↓

P (T ) = Φ(T, 0)P (0)Φ(T, 0)′ +M(T, 0)
↓

Q(T ) = (Σ−1
T − P (T )−1)−1

↓
Q(0) = Φ(0, T )(Q(T ) +M(T, 0))Φ(0, T )′

↓
P (0) = (Σ−1

0 −Q(0)−1)−1

using (14) , converges to Q−(0), P−(0), Q−(T ), P−(T ), starting
from a generic choice for Q(0). The choice with a “−” is the one that
generates the Schrödinger bridge as explained below. It is interesting
to compare this property with similar properties of iterations that lead
to solutions of Schrödinger systems in [23], [24].

Remark 6: Besides the expression in the proposition, another
equivalent formula for Q±(0) is

Q±(0) = Σ
1/2
0 (

1

2
I + Σ

1/2
0 Φ(T, 0)′M(T, 0)−1Φ(T, 0)Σ

1/2
0 ±

(
1

4
I + Σ

1/2
0 Φ(T, 0)′M(T, 0)−1ΣTM(T, 0)−1

Φ(T, 0)Σ
1/2
0 )1/2)−1Σ

1/2
0

Remark 7: Interestingly, the solution Π+(t) = Q+(t)−1 of the
Riccati equation (6) corresponding to the choice “+” in Q± has a
finite escape time.

We are now in a position to state the full solution to the
Schrödinger Bridge Problem 1.

Theorem 8: Assuming that the pair (A(t), B(t)) is controllable
and that Σ0,ΣT > 0, Problem 1 has a unique optimal solution

u8(t) = −B(t)′Q−(t)−1x(t) (22)

where Q−(·) (together with a corresponding matrix function P−(·))
solves to the pair of coupled Lyapunov differential equations in
Proposition 4.

Proof: Since Proposition 4 has established existence and unique-
ness of nonsingular solutions (P−(·), Q−(·)) to the system (13), the
result now follows from Corollary 3.

Thus, the controlled process (16) with Π(t) = Q−(t)−1,

dx∗ = (A(t)−B(t)B(t)′Q−(t)−1)x∗(t)dt+Bdw(t) (23)

steers the beginning density ρ0 to the final one, ρT , with the least
cost. Alternatively, it forms a least-effort bridge between the two
given marginals. It turns out that this controlled stochastic differential
equation specifies the random evolution which is closest to the prior
in the sense of relative entropy among those with the two given
marginal distributions. This will be explained next.

IV. MINIMUM RELATIVE ENTROPY INTERPRETATION OF OPTIMAL

CONTROL

As noted earlier, there is a close relationship between the
theory of large deviations, maximum entropy problems for random
evolutions and stochastic optimal control [25], [26], [15], [16], [17].
In particular, classical Schrödinger bridges can be interpreted as both,
a solution to a stochastic optimal control problem as well as inducing
a probability law on path space that is consistent with given marginals
and that is the closest to the prior in the sense of relative entropy.
In other words, in effect, they answer the question of what the
most likely path distribution is after “conditioning” the stochastic
evolution on the two end-point marginals. Below we show that the
same property holds for the present case of general stochastic linear
system, i.e., of possibly degenerate linear diffusions.

For the purposes of this section we denote by X =
C([0, T ];Rn) the space of continuous, n-dimensional sample paths
of a linear diffusion as in (1) and by P(·) the induced probability
measure on X . One can describe P(·) as a mixture of measures
pinned at the two ends of the interval [0, T ], that is,

P(·) =

∫
P(· | x(0) = x0, x(T ) = xT )P0,T (dx0dxT )

where P(· | x(0) = x0, x(T ) = xT ) is the conditional probability
and P0,T (·) is the joint probability of (x(0), x(T )). The two end-
point joint measure P0,T (·), which is gaussian, has a (zero-mean)
probability density function gS0,T (x0, xT ) with covariance

S0,T =

[
S0 S0Φ(T, 0)′

Φ(T, 0)S0 ST

]
(24)

where

S0 = E{x0x
′
0}

St = Φ(t, 0)S0Φ(t, 0)′ +

∫ t

0

Φ(t, τ)B(τ)B(τ)′Φ(t, τ)′dτ.

In view of Sanov’s theorem, see [12, Section 3], Schrödinger’s
question reduces to identifying a probability law P̃(·) on X that
minimizes the relative entropy

S(P̃,P) :=

∫
X

log

(
dP̃
dP

)
dP̃
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among those that have the prescribed marginals. This is a very
abstract problem. However, if we disintegrate P̃

P̃(·) =

∫
P̃(· | x(0) = x0, x(T ) = xT )P̃0,T (dx0dxT ),

then the relative entropy can be readily written as the sum of two
nonnegative terms, the relative entropy between the two end-point
joint measures ∫

log

(
dP̃0,T

dP0,T

)
P̃0,T

plus ∫
log

(
dP̃(· | x(0) = x0, x(T ) = xT )

dP(· | x(0) = x0, x(T ) = xT )

)
P̃.

The second term becomes zero (and therefore minimal) when the
conditional probability P̃(· | x(0) = x0, x(T ) = xT ) is taken
to be the same as P(· | x(0) = x0, x(T ) = xT ). Thus, the
solution is in the same reciprocal class [27] as the prior evolution
and, as already observed by Schrödinger, the problem reduces to
the finite-dimensional problem of minimizing relative entropy of the
joint initial-final distribution among those that have the prescribed
marginals.

It turns out that the probability law induced by (23) is closest,
in the relative entropy sense to the law of (1), that agrees with the
two end-point marginal distributions at t = 0 and t = T . Below we
show this by verifying directly that the densities between the two are
identical when conditioned at the two end points, i.e., they share the
same bridges, and that the end-point joint marginal for (23) is indeed
closest to the corresponding joint marginal for (1).

In order to show that two linear systems share the same bridges,
we need the following lemma which is based on [28].

Lemma 9: The probability law of the SDE (1), when condi-
tioned on x(0) = x0, x(T ) = xT , for any x0, xT , reduces to the
probability law induced by the SDE

dx = (A−BB′R(t)−1)xdt+BB′R(t)−1Φ(t, T )xT dt+Bdw

where R(t) satisfies

Ṙ(t) = AR(t) +R(t)A′ −BB′

with R(T ) = 0.

The stochastic process specified by this conditioning, or the
latter SDE, will be referred to as the pinned process associated to
(1). Thus, in order to establish that the probability laws of (23) and (1)
conditioned on x(0) = x0, x(T ) = xT are identical, it suffices to
show that they have the same pinned processes for any x0, xT . This
is done next.

Theorem 10: The probability law induced by (23) represents
the minimum of the relative entropy with respect to the law of (1)
over all probability laws on X that have gaussian marginals with zero
mean and covariances Σ0 and ΣT , respectively, at the two end-points
of the interval [0, T ].

Proof: We show that i) the joint distribution between the two
end-points of [0, T ] for (23) is the minimum of the relative entropy
with respect to the corresponding two-end-point joint of (1), over
distributions that satisfy the end-point constraint that the marginals
are gaussian with specified covariances and, ii) the probability laws of
these two SDEs on sample paths, conditioned on x(0) = x0, x(T ) =

xT for any x0, xT are identical by showing that they have the same
pinned processes. We use the notation

gS(x) := (2π)−n/2 det(S)−1/2 exp

[
−1

2
x′S−1x

]
,

to denote the standard Gaussian probability density function with
mean zero and covariance S.

We start with i). In general, the relative entropy between two
gaussian distributions gS(x) and gΣ(x) is∫

Rn

gΣ(x) log

(
gΣ

gS

)
dx =

∫
Rn

gΣ log

(
det(S)1/2

det(Σ)1/2

)
dx

+
1

2

∫
Rn

gΣ(x)(x′S−1x− xΣx)dx

=
1

2
log(det(S))− 1

2
log(det(Σ))

+
1

2
trace(S−1Σ)− 1

2
trace(I). (25)

If pΣ is a probability density function, not necessarily gaussian,
having covariance Σ, then∫

Rn

pΣ(x) log

(
pΣ

gS

)
dx =

∫
Rn

pΣ(x) log

(
pΣ

gS

gΣ

gΣ

)
dx

=

∫
Rn

pΣ(x) log

(
pΣ

gΣ

)
dx+

∫
Rn

pΣ(x) log

(
gΣ

gS

)
dx

(26)

where we multiplied and divided by gΣ and then partitioned accord-
ingly. We observe that∫

Rn

pΣ(x) log

(
gΣ

gS

)
dx =

∫
Rn

gΣ(x) log

(
gΣ

gS

)
dx.

since log
(

gΣ
gS

)
is a quadratic form in x. Thus, the minimizer of

relative entropy to gS among probability density functions with
covariance Σ is gaussian since the first term in (26) is positive unless
pΣ = gΣ, in which case it is zero.

We consider two-point joint gaussian distributions with covari-
ances S0,T as in (24) with S0 = Σ0, and

Σ0,T :=

[
Σ0 Y ′

Y ΣT

]
and evaluate Y that minimizes the relative entropy. To this end we
focus on

trace(S−1
0,T Σ0,T )− log det(Σ0,T ). (27)

Since

S0,T =

[
I

Φ(T, 0)

]
Σ0

[
I, Φ(T, 0)′

]
+

[
0 0
0 M(T, 0)

]
,

it follows that

S−1
0,T =

[
Σ−1

0 + Φ′M−1Φ −Φ′M−1

−M−1Φ M−1

]
,

where we simplified notation by setting Φ := Φ(T, 0) and M :=
M(T, 0). Then, the expression in (27) becomes

trace
(
(Σ−1

0 + Φ′M−1Φ)Σ0 − Φ′M−1Y − Y ′M−1Φ +M−1ΣT

)
− log det(Σ0)− log det(ΣT − Y Σ−1

0 Y ′).

Retaining only the terms that involve Y leads us to seek a maximizing
choice for Y in

f(Y ) := log det(ΣT − Y Σ−1
0 Y ′) + 2 trace(Φ′M−1Y ).
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Equating the differential of this last expression as a function of Y to
zero gives

− 2Σ−1
0 Y ′(ΣT − Y Σ−1

0 Y ′)−1 + 2Φ′M−1 = 0 (28)

To see this, denote by ∆ a small perturbation of Y and retain the
linear terms in ∆ in

f(Y + ∆)− f(Y )

= log det(I − (ΣT − Y Σ−1
0 Y ′)−1(∆Σ−1

0 Y ′ + Y Σ−1
0 ∆′))

+2 trace(Φ′M−1∆)

' − trace((ΣT − Y Σ−1
0 Y ′)−1(∆Σ−1

0 Y ′ + Y Σ−1
0 ∆′))

+2 trace(Φ′M−1∆)

= −2 trace(Σ−1
0 Y ′(ΣT − Y Σ−1

0 Y ′)−1∆)

+2 trace(Φ′M−1∆)

Let now

Σ0,T =

[
Σ0 Σ0ΦQ−(T, 0)′

ΦQ−(T, 0)Σ0 ΣT

]
where ΦQ−(T, 0) is the state-transition matrix of AQ−(t), i.e., it
satisfies

∂

∂t
ΦQ−(t, s) = AQ−(t)ΦQ−(t, s), and

− ∂

∂s
ΦQ−(t, s) = ΦQ−(t, s)AQ−(s),

with ΦQ−(s, s) = I . We need to show that Σ0,T here is the solution
of the relative entropy minimization problem above. By concavity
of f(Y ), it suffices to show that Y = ΦQ−(T, 0)Σ0 satisfies the
first-order condition (28), that is,

ΦQ−(T, 0)′(ΣT − ΦQ−(T, 0)Σ0ΦQ−(T, 0)′)−1

= Φ(T, 0)′M(T, 0)−1

= Φ(T, 0)′(ST − Φ(T, 0)S0Φ(T, 0)′)−1,

where St is as in (24) with S0 = Σ0. By taking inverse of both sides
we obtain an equivalent formula

ΣT ΦQ−(0, T )′ −ΦQ−(T, 0)Σ0 = ST Φ(0, T )′ −Φ(T, 0)Σ0. (29)

We claim

ΣtΦQ−(0, t)′ − ΦQ−(t, 0)Σ0 = StΦ(0, t)′ − Φ(t, 0)Σ0,

then (29) follows by taking t = T . We now prove our claim. For
convenience, denote

F1(t) = ΣtΦQ−(0, t)′ − ΦQ−(t, 0)Σ0

F2(t) = StΦ(0, t)′ − Φ(t, 0)Σ0

F3(t) = Q−(t)(ΦQ−(0, t)′ − Φ(0, t)′).

We will show that F1(t) = F2(t) = F3(t). First we show F2(t) =
F3(t). Since F2(0) = F3(0) = 0, we only need to show that they
satisfy the same differential equation. To this end, compare

Ḟ2(t) = ṠtΦ(0, t)′ − StA
′Φ(0, t)′ −AΦ(t, 0)Σ0

= (ASt + StA
′ +BB′)Φ(0, t)′ − StA

′Φ(0, t)′

−AΦ(t, 0)Σ0

= AF2(t) +BB′Φ(0, t)′,

with

Ḟ3(t) = Q̇−(t)(ΦQ−(0, t)′ − Φ(0, t)′)

+Q−(t)(−AQ−(t)′ΦQ−(0, t)′ +A′Φ(0, t)′)

= (AQ−(t) +Q−(t)A′ −BB′)(ΦQ−(0, t)′ − Φ(0, t)′)

−Q−(t)A′(ΦQ−(0, t)′ − Φ(0, t)′) +BB′ΦQ−(0, t)′

= AF3(t) +BB′Φ(0, t)′

which proves the claim F2(t) = F3(t). We next show that F1(t) =
F3(t). Let

H(t) = Q−(t)−1(F3(t)− F1(t))

= −(Q−(t)−1 − Σ−1
t )ΣtΦQ−(0, t)′

+Q−(t)−1ΦQ−(t, 0)Σ0 − Φ(0, t)′

= P (t)−1ΣtΦQ−(0, t)′

+Q−(t)−1ΦQ−(t, 0)Σ0 − Φ(0, t)′,

then

Ḣ(t) = Ṗ (t)−1ΣtΦQ−(0, t)′ + P (t)−1Σ̇tΦQ−(0, t)′ −
P (t)−1ΣtAQ−(t)′ΦQ−(0, t)′ + Q̇−(t)−1ΦQ−(t, 0)Σ0

+Q−(t)−1AQ−(t)ΦQ−(t, 0)Σ0 +A′Φ(0, t)′

= −A′H(t).

Since H(0) = Q−(0)−1(F3(0)−F1(0)) = 0, it follows that H(t) =
0 for all t, and therefore, F1(t) = F3(t). This completes the proof
of the first part.

We now prove ii). According to Lemma 9, the pinned process
corresponding to (1) satisfies

dx = (A−BB′R1(t)−1)xdt+BB′R1(t)−1Φ(t, T )xT dt+Bdw
(30)

where R1(t) satisfies

Ṙ1(t) = AR1(t) +R1(t)A′ −BB′

with R1(T ) = 0, while the pinned process corresponding to (23)
satisfies

dx = (AQ−(t)−BB′R2(t)−1)xdt+

BB′R2(t)−1ΦQ−(t, T )xT dt+Bdw (31)

where R2(t) satisfies

Ṙ2(t) = AQ−(t)R2(t) +R2(t)AQ−(t)′ −BB′

with R2(T ) = 0. We next show (30) and (31) are identical. It suffices
to prove that

A−BB′R1(t)−1 = AQ−(t)−BB′R2(t)−1 (32)

and
R1(t)−1Φ(t, T ) = R2(t)−1ΦQ−(t, T ). (33)

Equation (32) is equivalent to

R1(t)−1 = R2(t)−1 +Q−(t)−1.

Multiply R1(t) and R2(t) on both sides to obtain

R2(t) = R1(t) +R1(t)Q−(t)−1R2(t).

Now let

J(t) = R1(t) +R1(t)Q−(t)−1R2(t)−R2(t).
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Then

J̇(t) = Ṙ1(t) + Ṙ1(t)Q−(t)−1R2(t) +R1(t)Q̇−(t)−1R2(t)

+R1(t)Q−(t)−1Ṙ2(t)− Ṙ2(t)

= AJ + JAQ−(t)′.

Since

J(T ) = R1(T ) +R1(T )Q−(T )−1R2(T )−R2(T ) = 0,

it follows that J(t) = 0. This completes the proof of (32). Equation
(33) is equivalent to

Φ(T, t)R1(t) = ΦQ−(T, t)R2(t).

Let
K(t) = Φ(T, t)R1(t)− ΦQ−(T, t)R2(t),

and then

K̇(t) = −Φ(T, t)AR1(t) + Φ(T, t)Ṙ1(t) +

ΦQ−(T, t)AQ−(t)R2(t)− ΦQ−(T, t)Ṙ2(t)

= K(t)(A′ −R1(t)−1BB′).

Since

K(T ) = Φ(T, T )R1(T )− ΦQ−(T, T )R2(T ) = 0,

it follows that K(t) = 0 as well for all t. This completes the proof.

V. ILLUSTRATIVE EXAMPLES

We present two examples that illustrate the effect of optimal
probability density steering. The first is based on inertial particles
experiencing random accelerations and the second on an electrical
circuit experiencing Nyquist-Johnson thermal noise from a resistor.

A. Inertial particles

Consider inertial particles experiencing random acceleration
according to the model

dx(t) = v(t)dt

dv(t) = u(t)dt+ dw(t)

where u(t) is a control force at our disposal, x(t) represents position
and v(t) represents velocity. We want to squeeze the spread of the
particles from an initial Gaussian distribution with Σ0 = I at t = 0
to a terminal marginal Σ = 1

4
I at t = 1. Figure 1 shows sample

paths in the phase space of (x, v) as a function of time using the
optimal stragegy for feedback control as explained earlier. Figure 2
displays the corresponding control action for each trajectory.

We provide two additional situations where the final distribution
is localized in space and in velocity, respectively. The limit may be
thought to approximate singular marginals, in each case, and it is of
interest to compare the two since in one case the stochastic excitation
affects directly the component of interest (velocity) whereas in the
other after integration. Thus, we again take Σ0 = I while we take
Σ1 to equal to diag(.05, 1) and diag(1, .05), respectively, for the
two cases. Sample paths in phase space under the optimal control law
are shown in Figures 3 and 4, respectively. In all of these phase plots
1,3 and 4, the transparent blue “tube” represents the “3σ” tolerance

Fig. 1: Inertial particles: state trajectories for Σ1 = 1
4
I

interval. More specifically, the intersection ellipsoid between the tube
and the slice plane t is the set[

x v
]

Σ−1
t

[
x
v

]
≤ 32.

B. Nyquist-Johnson resistor noise

Consider the circuit in Figure 5 that includes a resistor with
a Nyquist-Johnson thermal noise voltage source. A model for the
circuit is

LdiL(t) = vC(t)dt

RCdvC(t) = −vC(t)dt−RiL(t)dt+ u(t)dt+ dw(t)

with all parameters R = L = C = 1 in compatible units. Without
any active control, i.e., when u(t) ≡ 0, the RLC circuit is driven by
the thermal noise and reaches a steady state where the covariance
matrix of the state vector (iL, vC)′ is 1

2
I . Thus, we begin with

random initial conditions for the state having an initial Gaussian
distribution with Σ0 = 1

2
I at t = 0. Our aim is to specify the

control voltage input u(t) so as to reduce the effect of the thermal
noise on the oscillator. As before, our target covariance at the end of
a pre-specified interval [0, 1] is set to to a terminal value; here this is
Σ1 = 1

16
I . Figure 6 shows the evolution of (iL, vC) as a function of

time under the effect of the least energy regulating input voltage u(t)
that aims to actively “cool” the resonator to its target final distribution.
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Fig. 2: Inertial particles: control inputs for Σ1 = 1
4
I

As before, Figure 7 displays the corresponding control inputs. Once
again, in 6, the transparent blue “tube” represents the “3σ” tolerance
interval.

VI. CONCLUDING REMARKS

The problem to steer linear stochastic systems from a starting
probability gaussian density to a target one with minimum effort
has an explicit solution in feedback form. The minimum-energy
control is computed by solving a pair of Lyapunov equations which
are coupled through their boundary values at the two end-points
of the interval. The stochastic process that is realized with the
optimal control in place turns out to coincide with a solution to a
seemingly different problem, that of seeking the most likely random
evolution that connects the two marginals given a prior law in the
form of the uncontrolled diffusion. Both of these properties, the
minimum energy and minimum relative entropy distance to the prior,
generalize corresponding properties of classical Schródinger bridges
for nondegenerate diffusions.

The control of final distributions for stochastic systems and, in
particular, the explicit form of solution in the present setting appears
quite attractive for applications of active damping of nanomechanical
systems and the “cooling” of stochastic thermal fluctuations.

Fig. 3: Inertial particles: state trajectories for Σ1 = diag(.05, 1)
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