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Abstract. We calculate the WKB series for the angular momentum and the non-relativistic
three-dimesional Kepler problem. This is the first semiclassical treatment of the angular
momentum for terms beyond the leading WKB approximation. We explain why the torus
quantization (the leading WKB term) of the full problem is exact, even if the individual torus
quantization of the angular momentum and of the radial Kepler problem separately is not exact.
In this way we derive Langer’s rule, calculate the first correction to the leading Langer’s term
and conjecture the form of all higher terms.

1. Introduction

The semiclassical methods used to solve the Schrödinger problem are of extreme importance
in understanding the global behaviour of eigenfunctions and energy spectra, especially as a
function of some external parameter, since usually they are the only approximation known
in the form of an explicit formula.

The leading semiclassical approximation is just the first term of a certain ¯h-expansion.
The method goes back to the early days of quantum mechanics and was developed by Bohr
and Sommerfeld for one-freedom systems and separable systems, it was then generalized for
integrable (but not necessarily separable) systems by Einstein (1917), which is called EBK
or torus quantization. In fact, Einstein’s result was corrected for the phase changes due to
caustics by Maslov (1961) (see also Maslov and Fedoriuk (1981)), but the torus quantization
formula thus obtained is still just a first term in a certain ¯h-expansion, whose higher terms
are unknown in systems with more than one degree of freedom. Thus recently it was
observed (Prosen and Robnik 1993, Graffiet al 1994) that these leading-order semiclassical
approximations generally fail to predict the individual energy levels (and the eigenstates)
within a vanishing fraction of the mean-energy level spacing. This conclusion is believed to
be correct not only for the torus quantization of the integrable systems, but also in applying
the Gutzwiller trace formula (Gutzwiller 1990) to general systems, including the completely
chaotic ones, cf Gaspard and Alonso (1993). Therefore, a systematic study of the accuracy
of semiclassical approximations is very important, especially in the context of quantum

§ E-mail address: robnik@uni-mb.si
‖ E-mail address: luca.salasnich@uni-mb.si

0305-4470/97/051719+11$19.50c© 1997 IOP Publishing Ltd 1719



1720 M Robnik and L Salasnich

chaos (Casati and Chirikov 1995, Gutzwiller 1990). To present full generality is an almost
impossible task, but in some special cases it is possible to work out the quantum corrections
to higher or even all orders (Degli Espostiet al 1991, Graffi and Paul 1987, Salasnich and
Robnik 1996, Robnik 1984, Narimanov 1995). On the other hand, in systems with one
degree of freedom a systematic WKB expansion is possible, at least in principle, and in a
few cases can be worked out even explicitly to all orders, resulting in a convergent series
whose sum is identical to the exact spectrum (Dunham 1932, Benderet al 1977, Voros
1993, Robnik and Salasnich 1996).

Our goal in the present paper is to deal systematically with the WKB expansions for
the angular momentum problem and for the Kepler problem. This is important not only
from the point of view of mathematical physics (formal existence of the systematic series,
its convergence properties and the summation), but also because the Kepler problem is so
fundamental in physics. To the best of our knowledge a detailed analysis of this problem
has not been undertaken in the literature so far. As will be seen, our treatment is to some
extent, a derivation of the famous Langer correction (Langer 1937) together with higher
corrections.

We shall work out some next to the leading terms for the Kepler problem and show—
under a conjecture about the higher terms—that an exact result is obtained after all
corrections have been taken into account and the resulting series has been summed. This
is non-trivial, because we know that the torus quantization of the three-dimensional (3D)
Kepler problem yields an exact result, whereas the individual torus quantization of the radial
and of the angular momentum problems is not exact. Thus our present work is the first
systematic semiclassical expansion of the angular momentum problem as a prerequisite to
the full study of the 3D Kepler problem.

To define the language and to introduce the notation we first give the essential formulae
of the torus quantization. The Hamiltonian of the 3D Kepler problem is given by

H = P 2
r

2
+ L2

2r2
− α
r

(1)

where

L2 = P 2
θ +

P 2
φ

sin2 (θ)
(2)

and

Pφ = Lz (3)

are constants of motion. Of course, the Hamiltonian is a constant of motion, whose value
is equal to the total energyE.

It is well known that the exact energy spectrum can be obtained with the Bohr–
Sommerfeld (torus) quantization. To perform the torus quantization it is necessary to
introduce the action variables

Iφ = 1

2π

∮
Pφ dφ = Pφ (4)

Iθ = 1

2π

∮
Pθ dθ = L− |Iφ| (5)

Ir = 1

2π

∮
Pr dr = α√−2E

− L. (6)

The Hamiltonian as a function of the actions reads

H = −α2

2[Ir + Iθ + |Iφ|]2
(7)
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and after the torus quantization

Ir = (nr + 1
2)h̄ Iθ = (nθ + 1

2)h̄ Iφ = nφh̄ (8)

the energy spectrum is given by

Enr l =
−α2

2h̄2[nr + l + 1]2
(9)

wherel = nθ + |nφ|. (The two quantum numbers,nr andnθ , are non-negative integers by
construction, whilstnφ can be negative, but obeys the rule|nφ| 6 l, wherel is of course also
non-negative.) This is the exact energy spectrum, which can also be obtained by solving
the Schr̈odinger equation. Also the condition|nφ| 6 l is precisely as in the exact quantum
result.

Note that we have quantized the angular momentumL = Iθ + |Iφ| with a semiclassical
formulaL = (l + 1/2)h̄. If we use the exact quantization of the angular momentum, i.e.,
L = h̄√l(l + 1), we obtain a wrong formula. How can this observation be explained?

In section 2 we treat the angular momentum problem by calculating the corrections to
the leading torus quantization term, and in section 3 we then proceed with the analysis of the
radial Kepler problem, again by calculating the corrections to the leading torus quantization
term, now using the exact result for the quantized angular momentum. In section 4 we
discuss the results and draw some general conclusions.

2. WKB expansion for the angular momentum

We consider the eigenvalue equation of the angular momentum

L̂2Y (θ, φ) = λ2h̄2Y (θ, φ) (10)

whereL̂2 is formally given by the equation (2) with

P̂ 2
θ = −h̄2

(
∂2

∂θ2
+ cot(θ)

∂

∂θ

)
(11)

P̂ 2
φ = −h̄2 ∂

2

∂φ2
. (12)

We can write the eigenfunction as

Y (θ, φ) = T (θ) einφφ (13)

and we obtain

P̂ 2
φ Y (θ, φ) = n2

φh̄
2Y (θ, φ) (14)

and also

T ′′(θ)+ cot(θ)T ′(θ)+
(
λ2− n2

φ

sin2 (θ)

)
T (θ) = 0. (15)

Notice thath̄ no longer appears in this equation. The special caseλ = nφ = 0 can
be worked out exactly, not only for the angular momentum problem but also for the radial
Kepler problem (see section 3). Thus in this case no expansions are necessary.

Now we turn to the non-trivial case ofλ > 0. To perform the WKB expansion we
introduce a small parameterε, which might be thought of as proportional to ¯h, and consider
the eigenvalue problem

ε2T ′′(θ)+ ε2 cot(θ)T ′(θ) = Q(θ)T (θ) (16)
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where

Q(θ) = W(θ)− λ2 = n2
φ

sin2 (θ)
− λ2. (17)

This smallε limit is equivalent to the largenφ and/or largeλ limit. The parameterε helps
to organize the WKB series; we setε = 1 when the calculation is completed. First we put

T (θ) = exp

{
1

ε
S(θ)

}
(18)

whereS(θ) is a complex function that satisfies the differential equation

S ′2(θ)+ εS ′′(θ)+ ε cot(θ)S ′(θ) = Q(θ). (19)

The WKB expansion for the functionS(θ) is given by

S(θ) =
∞∑
k=0

εkSk(θ) (20)

and by comparing like powers ofε we obtain a recursion formula (n > 0)

S ′20 = Q
n∑
k=0

S ′kS
′
n−k + S ′′n−1+ cot(θ)S ′n−1 = 0. (21)

Straightforward calculations give for the first few terms

S ′0 = −Q
1
2 (22)

S ′1 = − 1
4Q
′Q−1− 1

2 cot(θ) (23)

S ′2 = −
1

32
Q′2Q−5/2− 1

8

d

dθ
(Q′Q−3/2)− 1

8
cot2 (θ)Q−1/2− 1

4

(
d

dθ
cot(θ)

)
Q−1/2. (24)

The exact quantization of the wavefunction (18) is given by∮
dS =

∞∑
k=0

∮
dSk = 2π inθ (25)

where we have now setε = 1. This integral is a complex contour integral which encircles
the two turning points on the real axis. Obviously, it is derived from the requirement of the
uniqueness of the complex wavefunctionT (Dunham 1932, Benderet al 1977).

The zero-order term is given by∮
dS0 = 2i

∫
dθ
√
λ2−W(θ) = 2π i(λ− |nφ|) (26)

and the first term reads∮
dS1 = − 1

4 lnQ|contour= −π i. (27)

Evaluating lnQ once around the contour gives 4π i because the contour encircles two simple
zeros ofQ.

All the other odd terms vanish when integrated along the closed contour because they
are exact differentials (Benderet al 1977). So the quantization condition (25) can be written
as

∞∑
k=0

∮
dS2k = 2π i

(
nθ + 1

2

)
(28)
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and thus it is a sum over even-numbered terms only. The next non-zero term is given by∮
dS2 = −i

[
1

12

∂2

∂(λ2)2

∫
dθ

W ′2(θ)√
λ2−W(θ)

+ 1

2

∂

∂(λ2)

∫
dθ
W ′(θ) cot(θ)√
λ2−W(θ)

+1

4

∫
dθ

cot2 (θ)√
λ2−W(θ)

]
. (29)

These three integrals give (see the appendix A)∮
dS2 = π i

4λ
(30)

where, importantly, thenφ dependence drops out now. Thus up to the second order inε

the quantization condition reads

λ+ 1

8λ
= l + 1

2
(31)

wherel = nθ + nφ . The term 1/8λ is the first quantum correction to the the quantization
of the angular momentum. From this result we can argue (‘conjecture by educated guess’)
that theε2k term in the WKB series is (k > 0)∮

dS2k = 2π i

(
1
2
k

)
2−2kλ1−2k (32)

so that the WKB expansion of the angular momentum to all orders is given by

∞∑
k=0

(
1
2
k

)
2−2kλ1−2k = l + 1

2
. (33)

This is the exact formula for the relationship betweenl andλ, because

∞∑
k=0

(
1
2
k

)
2−2kλ1−2k = 1

2

√
1+ 4λ2 (34)

and the equation
√

1+ 4λ2/2 = l + 1
2 can be inverted and givesλ = √l(l + 1). Please

observe that this series is convergent forλ > 1
2, which means that the series converges for

all non-zero values ofl.
This completes our investigation of the semiclassical expansion for the angular

momentum, where it remains in general to prove the conjectured formula (32) fork > 2.
At this point it is necessary to give some historical comments. It was Langer’s (1937)

discovery that by replacing the exact value ofL2 = λ2h̄2 = l(l + 1)h̄2 with the torus
quantized value(l+ 1

2)
2h̄2 in the radial Kepler problem defined by equation (35) of section 3

and performing the torus quantization of this radial eigenvalue problem one can get the exact
result. However, Langer gave no deep justification for such a ‘prescription’ and it is one of
the major goals of our present paper to explain Langer’s rule and to go one order beyond
Langer’s term and further to formulate the well supported conjecture embodied in equation
(32) about all the higher corrections. In doing so we thus demonstrate the tour from Langer’s
correction to the exact result. For a discussion of the Langer’s rule see Gutzwiller’s book
(1990, p 212).
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3. WKB expansion for the radial Kepler problem

We consider the Schrödinger equation for the radial problem[
−h̄

2

2

d2

dr2
+ V (r)

]
ψ(r) = Eψ(r) (35)

where

V (r) = L2

2r2
− α
r
. (36)

We can always write the wavefunction as

ψ(r) = exp

{
i

h̄
σ (r)

}
(37)

where the phaseσ(r) is a complex function that satisfies the differential equation

σ ′2(r)+
(
h̄

i

)
σ ′′(r) = 2(E − V (r)). (38)

The WKB expansion for the phase is

σ(r) =
∞∑
k=0

(
h̄

i

)k
σk(r). (39)

Substituting (39) into (38) and comparing like powers of ¯h gives the recursion relation
(n > 0)

σ ′20 = 2(E − V (r))
n∑
k=0

σ ′kσ
′
n−k + σ ′′n−1 = 0. (40)

The quantization condition is obtained by requiring the uniqueness of the wavefunction∮
dσ =

∞∑
k=0

(
h̄

i

)k ∮
dσk = 2πnrh̄ (41)

wherenr > 0, an integer number, is the radial quantum number.
The zero-order term, which gives the Bohr–Sommerfeld formula (6), is given by∮

dσ0 = 2
∫

dr
√

2(E − V (r)) (42)

and the first odd term in the series gives the Maslov corrections (the Maslov index is equal
to two) (

h̄

i

)∮
dσ1 = −πh̄. (43)

All the other odd terms vanish when integrated along the closed contour because they are
exact differentials (Benderet al 1977). So the quantization condition (41) can be written as

∞∑
k=0

(
h̄

i

)2k ∮
dσ2k = 2π

(
nr + 1

2

)
h̄ (44)

thus again a sum over even-numbered terms only. The next two non-zero terms are (Bender
et al 1977)(
h̄

i

)2 ∮
dσ2 = −h̄2 1

12

∂2

∂E2

∫
dr

V ′2(r)√
2(E − V (r)) (45)(

h̄

i

)4 ∮
dσ4 = h̄4

[
1

240

∂3

∂E3

∫
dr

V ′2(r)√
2(E − V (r))
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− 1

576

∂4

∂E4

∫
dr

V ′2(r)V ′′(r)√
2(E − V (r))

]
. (46)

A straightforward calculation of these terms gives (see appendix B)(
h̄

i

)2 ∮
dσ2 = −h̄2 π

4L
(47)

and (
h̄

i

)4 ∮
dσ4 = h̄4 π

64L3
. (48)

Up to the fourth order in ¯h the quantization condition reads(
α√−2E
− L

)
− h̄2 1

8L
+ h̄4 1

128L3
=
(
nr + 1

2

)
h̄. (49)

So we have obtained the first two quantum corrections to the torus quantization of the radial
Kepler problem. Obviously at this point of truncating the series we get the wrong spectrum
if we use the torus quantized angular momentumL = (l + 1

2)h̄, and this is still true if the
series is expanded to all orders. However, for the anticipated infinite series expansion we
shall obtain the exact quantized value of the eigenenergies when using the exact angular
momentumL2 = l(l + 1)h̄2. To show this we note that higher-order corrections quickly
increase in complexity but each integral gives a polynomial inE with leading termEM ,
whereM is the power of the operator∂M/∂EM in front of the integral (Barclay 1993).
DifferentiatingM times leaves a constant independent ofE. Since this happens in all terms
in the series (withk > 0), the WKB corrections to the Bohr–Sommerfeld formula have
no E-dependence. From this result we can guess the general formula, based on our two
correcting terms to the torus quantization, namely

α√−2E
= h̄

[(
nr + 1

2

)
+ λ+

∞∑
k=1

(
1
2
k

)
2−2kλ1−2k

]
= h̄

[(
nr + 1

2

)
+
∞∑
k=0

(
1
2
k

)
2−2kλ1−2k

]
(50)

whereλ = L/h̄, and so the ¯h2k term in the WKB series is (k > 0)(
h̄

i

)2k ∮
dσ2k = −2πh̄

(
1
2
k

)
2−2kλ1−2k. (51)

In conclusion, the energy spectrum of the WKB algorithm to all orders is given by

EWKB
nrλ
= −α2

2h̄2[(nr + 1
2)+

∑∞
k=0

( 1
2
k

)
2−2kλ1−2k]2

. (52)

Now, by using the formula (33) of the WKB expansion of the angular momentum, we
obtain the exact resultEWKB

nrλ
= Enr l , as given in equation (9).

We can summarize the mathematical reason for the exactness of the torus quantization
formula (derived in section 1) for the 3D Kepler problem: since the problem is separable,
the wavefunctions (for the angular momentum and for the radial part) multiply and their
phases have the additivity property, and therefore the total phase written as(i/h̄)(σ − ih̄S)
must obey the quantization condition (uniqueness of the wavefunction). From the two
formulae (32) and (51) one can see that the quantum corrections (i.e. terms higher than the
torus quantization terms) do indeed compensate mutually term-by-term.
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In concluding this section we mention another closely related problem, namely the 3D
isotropic harmonic oscillator, where the same Langer’s rule must be applied to get the exact
result by the torus quantization in spherical coordinates. (This problem is of course also
separable in Cartesian coordinates and thus the torus quantization of each 1D oscillator leads
to the exact result.) Therefore, here, we find exactly the same mathematical mechanism for
mutual cancellation of all correcting terms higher than the torus quantization term. This
similarity is of course not very surprising since the 3D Kepler problem is equivalent to a
4D harmonic oscillator with a constraint and thus through O(4) symmetry Kepler problem
is dynamically equivalent to the harmonic oscillator.

4. Discussion and conclusions

In the present paper we offer (to the best of our knowledge) the first calculation of the higher
WKB terms beyond the torus quantization leading terms for the angular momentum and the
radial Kepler problem. This analysis explains the curious compensation of the higher-order
quantum corrections (of the two separated problems) resulting in the exactness of the torus
quantization for the entire 3D Kepler problem (see section 1). In this way we in fact derive
Langer’s (1937) rule but also go higher by one order or calculation, and then make the
reasonable and well supported conjecture about all higher orders. We have no reason to
doubt that our conjectured general formulae (32) and (51) are correct for allk > 0, but this
still has to be proved mathematically.

We consider this kind of study as important in understanding the accuracy of the
semiclassical methods, and many of the results in this context for 1D problems are known,
including some more general families of 1D potentials studied by Barclay (1993) which are
characterized by the factorization property (Infeld and Hull 1957, Green 1965). For related
developments see (Inomataet al 1993, Inomata and Junker 1994) and references therein.

One important future project is to analyse a more general class of the 1D potentials
and in particular to extend the results to systems with two or more degrees of freedom,
even if they are integrable (but not separable). Further, it remains as an important project
to assess the accuracy of much more general (although mathematically not yet completely
satisfactory, due to the divergent series expansions) methods like the Gutzwiller theory
(1967, 1969, 1970, 1971, 1990), applicable to non-integrable systems, including the chaotic
systems (Gaspard and Alonso 1993).
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Appendix A

In this appendix we show how to obtain the formula (30). In all integrals of this section the
limits of integration are between the two turning points. After substitutionz = tan(θ), we
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have∫
dθ

W ′(θ)√
λ2−W(θ)

= 4n4
φ√

λ2− n2
φ

∫
dz
(1+ z2)

z6

√
z2

z2− β

= 3π

2|nφ| (λ
2− n2

φ)
2+ 2π |nφ|(λ2− n2

φ) (53)

whereβ = n2
φ/(λ

2− n2
φ), so that

∂2

∂(λ2)2

∫
dθ

W ′2(θ)√
λ2−W(θ)

= 3π

|nφ| . (54)

For the other integrals we use the same procedure.∫
dθ
W ′(θ) cot(θ)√
λ2−W(θ)

= − 2n2
φ√

λ2− n2
φ

∫
dz

1

z4

√
z2

z2− β = −
π

|nφ| (λ
2− n2

φ) (55)

from which we obtain
∂

∂(λ2)

∫
dθ
W ′(θ) cot(θ)√
λ2−W(θ)

= − π

|nφ| . (56)

The last integral gives∫
dθ

cot2(θ)√
λ2−W(θ)

= 1√
λ2− n2

φ

∫
dz

1

z2(1+ z2)

√
z2

z2− β = π
(

1

|nφ| −
1

λ

)
. (57)

In conclusion∮
dS2 = −i

[
1

12

3π

|nφ| +
1

2

(
− π

|nφ|
)
+ 1

4
π

(
1

|nφ| −
1

λ

)]
= π i

4λ
. (58)

Appendix B

In this appendix we show how to obtain formulae (47) and (48). In this section again
all integrals are taken between the two turning points. For the first one, after substitution
y = 1/r, we have∫

dr
V ′2(r)√

2(E − V (r)) =
∫

dy
L4y4− 2L2αy3+ α2y2

L
√
a + by − y2

(59)

wherea = 2E/L2 andb = 2α/L2. We observe that

I2 =
∫

dy
y2√

a + by − y2
= π

8
(4a + 3b2) (60)

I3 =
∫

dy
y3√

a + by − y2
= π

16
(12a + 5b2) (61)

I4 =
∫

dy
y4√

a + by − y2
= π

128
(48a2+ 128ab2+ 35b4). (62)

Because we must apply the operator∂2/∂E2 anda = 2E/L2, the only non-zero contribution
stems from the integralI4 and we obtain

∂2

∂E2

∫
dr

V ′2(r)√
2(E − V (r)) =

3π

L
. (63)
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In conclusion we have(
h̄

i

)2 ∮
dσ2 = −h̄2 1

12

3π

L
= −h̄2 π

4L
. (64)

To obtain the formula (48) we proceed in the same way.∫
dr

V ′′2(r)√
2(E − V (r)) =

∫
dy

9L4y6− 12L2αy5+ 4α2y4

L
√
a + by − y2

(65)

its leading integral is

I6 =
∫

dy
y6√

a + by − y2
= π

1024
(320a3+ 1680a2b2+ 1260ab2+ 231b6) (66)

from which we obtain

∂3

∂E3

∫
dr

V ′′2(r)√
2(E − V (r)) =

135π

L3
. (67)

For the last integral we have∫
dr

V ′2(r)V ′′(r)√
2(E − V (r)) =

∫
dy

3L6y8− 8L4y7+ 7L2α2y6− 2α3y5

L
√
a + by − y2

(68)

its leading integral is

I8 =
∫

dy
y8√

a + by − y2
= π

32768
(8960a4+ 80640a3b2+ 110880a2b4

+48048ab6+ 6435b8) (69)

from which we obtain

∂4

∂E4

∫
dr

V ′2(r)V ′′(r)√
2(E − V (r)) =

315π

L3
. (70)

In conclusion we have(
h̄

i

)4 ∮
dσ4 = h̄4

[
1

240

135π

L3
− 1

576

315π

L3

]
= h̄4 π

64L3
. (71)
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