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Abstract Recently it has been introduced an algorithm
for the Baker–Campbell–Hausdorff (BCH) formula, which
extends the Van-Brunt and Visser recent results, leading to
new closed forms of BCH formula. More recently, it has
been shown that there are 13 types of such commutator alge-
bras. We show, by providing the explicit solutions, that these
include the generators of the semisimple complex Lie alge-
bras. More precisely, for any pair, X , Y of the Cartan–Weyl
basis, we find W , linear combination of X , Y , such that

exp(X) exp(Y ) = exp(W ). (0.1)

The derivation of such closed forms follows, in part, by using
the above mentioned recent results. The complete deriva-
tion is provided by considering the structure of the root sys-
tem. Furthermore, if X , Y , and Z are three generators of the
Cartan–Weyl basis, we find, for a wide class of cases, W , a
linear combination of X , Y and Z , such that

exp(X) exp(Y ) exp(Z) = exp(W ). (0.2)

It turns out that the relevant commutator algebras are type
1c-i, type 4 and type 5. A key result concerns an iterative
application of the algorithm leading to relevant extensions of
the cases admitting closed forms of the BCH formula. Here
we provide the main steps of such an iteration that will be
developed in a forthcoming paper.

1 Introduction

The Baker–Campbell–Hausdorff (BCH) formula is of con-
siderable interest in Quantum Mechanics, Quantum Field
Theory, Conformal Field Theory, Statistical Mechanics,

a e-mail: matone@pd.infn.it

Quantum Computing, Optics, etc. (see, for example [1–
7]). It is then clear that it is of interest to find cases when
the BCH formula admits a closed form. Such a formula
expresses

Z = ln(eXeY ), (1.1)

in terms of an infinite series of commutators of X and Y .
In [8] it has been introduced a simple algorithm leading,

for a wide class of cases, including some Virasoro subalge-
bras, to closed forms of the BCH formula. Such an algorithm
exploits the associativity of the BCH formula and implement
the Jacobi identity. In [9] it has been shown that there are 13
types of commutator algebras admitting such simplified ver-
sions of the BCH formula. In [10] the closed form of the BCH
formula has been used to covariantize the conformal group.
The main points of the algorithm are the following. First, fol-
lowing the remarkable result of Van-Brunt and Visser, con-
sider two elements, X and Y , of an associative algebra, with
commutator

[X,Y ] = uX + vY + cI, (1.2)

with u, v, and c being c-numbers and I a central element.
Van-Brunt and Visser proved that [11] (see also [12,13])

exp(X) exp(Y ) = exp(X + Y + f (u, v)[X,Y ]), (1.3)

where f (u, v) is the symmetric function

f (u, v) = (u − v)eu+v − (ueu − vev)

uv(eu − ev)
. (1.4)

In [8] the BCH problem has been considered of finding the
closed form of W in

exp(X) exp(Y ) exp(Z) = exp(W ). (1.5)

The first step of the algorithm is to consider the decomposi-
tion

exp(X) exp(Y ) exp(Z)=exp(X) exp(αY ) exp(βY ) exp(Z),

(1.6)
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Table 1 The 13 cases of the
Jacobi identity

1 2 3 4 5

u = z = 0 u = 0, z �= 0 u �= 0, z = 0 u = z �= 0 u �= z, uz �= 0

cw �= dv w = 0 v = 0

cw = dv �= 0 w �= 0 v �= 0

cw = dv = 0

α + β = 1. If

[X,Y ] = uX + vY + cI, [Y, Z ] = wY + zZ + d I,

(1.7)

then, by (1.3) and (1.6),

exp(X) exp(Y ) exp(Z) = exp(X̃) exp(Ỹ ), (1.8)

where X̃ := ln(eXeαY ) and Ỹ := ln(eβY eZ ). By (1.3)
and noticing that [X, αY ] = (αu)X + v(αY ) + (αc)I and
[βY, Z ] = w(βY ) + (βz)Z + (βd)I ,

X̃ = X + αY + f (αu, v)[X, αY ],
Ỹ = βY + Z + f (z, βw)[βY, Z ], (1.9)

we rewrite in the form

X̃ := gα(u, v)X + hα(u, v)Y + lα(u, v)cI,

Ỹ := hβ(z, w)Y + gβ(z, w)Z + lβ(z, w)d I, (1.10)

with

gα(u, v) := 1 + αu f (αu, v), hα(u, v) := α(1 + v f (αu, v)),

lα(u, v) := α f (αu, v).

Next, imposing the requirement that exp(X̃) exp(Ỹ ) satisfies
the condition to apply (1.3), that is,

[X̃ , Ỹ ] = ũ X̃ + ṽỸ + c̃ I , (1.11)

we get the solution of (1.5) [8],

exp(X) exp(Y ) exp(Z) = exp(X̃ + Ỹ + f (ũ, ṽ)[X̃ , Ỹ ]).
(1.12)

Note that, by (1.7), (1.10), and (1.11), it follows that [X, Z ]
cannot be a linear combination of other terms in addition to
X , Y , Z , and I , that is,

[X, Z ] = mX + nY + pZ + eI, (1.13)

which is consistent with the Jacobi identity

[X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X,Y ]] = 0. (1.14)

The condition (1.11) fixes α, c̃, ũ, and ṽ, namely

c̃ = (hβ(z, w) − gβ(z, w)lα(u, v)m)c + (hα(u, v)

−gα(u, v)lβ(z, w)p)d + gα(u, v)gβ(z, w)e,

ũ = hβ(z, w)u + gβ(z, w)m,

ṽ = gα(u, v)p + hα(u, v)z, (1.15)

with α a solution of the equation

hα(u, v)[hβ(z, w)(u + z) + gβ(z, w)(m − w)] + gα(u, v)

×[hβ(z, w)(p − v) − gβ(z, w)n] = 0. (1.16)

Inserting (1.7) and (1.13) in the Jacobi identity leads to the
following linear system for e, m, n, and p:

uw + mz = 0,

vm − wp + n(z − u) = 0,

pu + zv = 0,

c(w + m) + e(z − u) − d(p + v) = 0. (1.17)

Such a system has 13 different solutions, reported in the Table
1, depending on the values and algebraic relations of c, d, u,
v, w, and z. Note that the case cw = dv = 0 corresponds to
five different conditions (see [9]).

Consider the symbol [9]
[
case

∣∣∣Jacobi constraints
∣∣∣parameters of [X, Z ] unfixed

]
D
.

The first slot specifies under which conditions the linear sys-
tem (1.17) is solved. This classifies the types of commutator
algebras. The constraints are the ones on the commutator
parameters that follow by the Jacobi identity. The third slot
reports which one, of the parameters m, n, p, and e in [X, Z ],
remains unfixed. D is the number of the commutator param-
eters unfixed by the Jacobi identity.

In this paper we explicitly show that the above algorithm
leads to closed forms for the BCH formula in the case of
semisimple complex Lie algebras. In particular, according
to the above classification the commutator algebras, we will
see that, in several cases, the commutator algebras associated
to the BCH problem for semisimple complex Lie algebras
corresponds to the type 1c-i, type 4 and type 5. This implies
that if X , Y , and Z are three generators of the Cartan–Weyl
basis, then, for a wide class of cases, W , defined by (1.5) is
explicitly expressed as a linear combination of X , Y , and Z .

In the last section we derive, by iteration, a basic gen-
eralization of the algorithm introduced in [8]. This provides
important extensions of the cases for which the BCH formula
admits a closed form.
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Before discussing the case of arbitrary semisimple com-
plex Lie algebras, we consider the BCH problem for sl3(C).

2 BCH formulas for the generators of sl3(C)

Consider the commutators for sl3(C) (see, for example, [14]),

[H1, H2] = 0, [E1+, E1−] = H1, [E2+, E2−] = H2,

[H1, E1±] = ±2E1±, [H1, E2±] = ∓E2±, [H1, Eθ±] = ±Eθ±,

[H2, E1±] = ∓E1±, [H2, E2±] = ±2E2±, [H2, Eθ±] = ±Eθ±,

[E1±, E2±] = ±Eθ±, [E1±, Eθ∓] = ∓E2∓, [E2±, Eθ∓] = ±E1∓,

[Eθ+, Eθ−] = H1 + H2,

with the remaining commutators vanishing

[E1±, E2∓] = [E1±, Eθ±] = [E2±, Eθ±] = 0.

In the following we will consider the BCH problem of
finding the closed form of W in

exp(X) exp(Z) = exp(W ), (2.1)

with X and Z all the possible generators of sl3(C).
Let us start with E1+, E2+, and E1−, E2−. Since

[E1+, [E1+, E2+]] = 0 = [E2+, [E1+, E2+]], (2.2)

we have

exp(E1+) exp(E2+) = exp(E1+ + E2+ + Eθ+/2). (2.3)

Similarly

exp(E1−) exp(E2−) = exp(E1− + E2− − Eθ−/2). (2.4)

Next, consider E1+ and Eθ−. Also in this case, since

[E1+, [E1+, Eθ−]] = 0 = [Eθ−, [E1+, Eθ−]], (2.5)

we have

exp(E1+) exp(Eθ−) = exp(E1+ + Eθ− − E2−/2) (2.6)

and

exp(E1−) exp(Eθ+) = exp(E1− + Eθ+ + E2+/2). (2.7)

Similar relations hold for exp(E2+) exp(Eθ−) and exp(E2−)

exp(Eθ+). Next, consider

exp(E j
±) exp(Hk), (2.8)

j, k = 1, 2. All these are of the same kind, so that we consider
only j = k = 1. By (1.3)

exp(E1+) exp(H1) = exp
( 2

e2 − 1
E1+ + H1

)
. (2.9)

Let us now consider the nontrivial cases

exp(Ek+) exp(Ek−), (2.10)

k = 1, 2, and

exp(Eθ−) exp(Eθ+). (2.11)

We focus on (2.10) with k = 1, the case k = 2 is equiva-
lent. This is a particular case of the type 4 commutator alge-
bras [9], and it has been worked out, as an example, in [8]
for sl2(R),

[Lm, Ln] = (n − m)Lm+n, (2.12)

m, n = −1, 0, 1. A straightforward application of the algo-
rithm leads to [8]

exp(λ−1L−1) exp(λ0L0) exp(λ1L1)

= exp
{ λ+ − λ−

e−λ− − e−λ+

[
λ−1L−1 +

(
2 − e−λ+ − e−λ−

)
L0

+ λ1L1

]}
, (2.13)

where λ−1, λ0, λ1 ∈ C, λ− + λ+ = λ0, and

e−λ± =
1 + e−λ0 − λ−1λ1 ±

√
(1 + e−λ0 − λ−1λ1)2 − 4e−λ0

2
.

(2.14)

Let us explicitly write down the case of exp(E1+) exp(E1−).
Setting λ0 = 0, corresponding to λ− = −λ+, in Eq. (2.13)
and using the identification

L−1 = −E1+, L0 = −H1

2
, L1 = E1−, (2.15)

this yields

exp(E1+) exp(E1−)

= exp
[ 2√

5
ln

3 + √
5

2

(
E1+ + H1

2
+ E1−

)]
. (2.16)

An identical expression holds in the case of E2−, E2+, one
has just to replace H1 by H2. The same happens for
exp(Eθ−) exp(Eθ+). Actually, setting

H := H1 + H2,

we see that the relevant algebra to treat exp(Eθ−) exp(Eθ+) is
again sl(2,R)

[H, Eθ±] = ±2Eθ±, [Eθ+, Eθ−] = H. (2.17)

Therefore, exp(Eθ−) exp(Eθ+) is again given by (2.16) by
obvious substitutions.

3 BCH formulas for the generators of semisimple
complex Lie algebras

Let �(g) be the root system of a semisimple complex Lie
algebra g. Denote by (α, β) the standard non-degenerate
inner product on the dual of the Cartan subalgebra g∗

0, and

α∨ := 2α

(α, α)
.
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For any g, consider its Cartan–Weyl basis,

[Hα, Hβ ] = 0,

[Hα, Eβ ] = (α∨, β)Eβ,

[Eα, E−α] = Hα,

[Eα, Eβ ] = eαβE
α+β, α �= −β, (3.1)

where eαβ , defined for any α �= −β, is non-zero if α + β ∈
�(g), and zero otherwise. In the following, for any X , Y , and
Z , identified with any triple of the Cartan–Weyl generators
Hα and Eβ , we consider the problem of finding the closed
form of W defined by (1.5). We will explicitly show that, for
a wide class of cases, such closed forms are the ones clas-
sified in [9]. In particular, the relevant commutator algebras
correspond to the type 1c-i, type 4, and type 5 commutator
algebras, leading to the closed forms of the BCH formula
introduced in [8].

For any a ∈ C, set

s(a) := sinh(a/2)

a/2
. (3.2)

The type 1c-i commutator algebras corresponds to the case

c = d = u = z = 0,

denoted in [9] by (v,w). It turns out that we have

Type 1c-i.

[
(v,w)

∣∣∣p = mv

w

∣∣∣e,m, n
]

5
,

[X,Y ] = vY, [Y, Z ] = wY

[X, Z ] = mX + nY + mv

w
Z + eI,

α = ns(v)ws(w) − e
w
2 vs(v)(m − w)

(m − w)(w − v)s(w − v)
,

ũ = m,

ṽ = mv

w
,

c̃ = e.

The type 4 corresponds to the case u = z �= 0, namely

Type 4.

[
u = z �= 0

∣∣∣m = −w, p = −v

∣∣∣e, n
]

8
,

[X,Y ] = uX + vY + cI, [Y, Z ] = wY + zZ + d I,

[X, Z ] = −wX + nY − vZ + eI,

xu , where x := eα satisfies the equation

x2u + xu
(nu

2
s(v)s(w)e

u+v−w
2

−eu − ev + eu+v − eu+v−w
)

+ eu+v−w = 0.

Therefore

xu± = −b ± √
b2 − 4eu+v−w

2
(3.3)

where

b := nu

2
s(v)s(w)e

u+v−w
2 − eu − ev + eu+v − eu+v−w,

ũ = βu − w,

ṽ = αu − v,

c̃ =
(
e + cw + dv

u

) e
u
2 s(v)s(w)

s(v − αu)s(w − βu)

− cw + dv

u
+ βc + αd. (3.4)

Let us first consider the case exp(λαHα) exp(μβEβ). This
corresponds to (1.3), so that

exp(λαH
α) exp(μβE

β)

= exp

(
λαH

α + λαμβ(α∨, β)

1 − e−λα(α∨,β)
Eβ

)
. (3.5)

Let us consider

exp(λαH
α) exp(μβE

β) exp(λγ H
γ ). (3.6)

This corresponds to the type 1c-i commutator algebras, where
the only non-vanishing commutator parameters are

v = λα(α∨, β), w = −λγ (γ ∨, β). (3.7)

Therefore,

α = 1 − eλγ (γ ∨,β)

e−λα(α∨,β) − eλγ (γ ∨,β)
,

ũ = 0,

ṽ = 0,

c̃ = 0. (3.8)

This leads to

exp(λαH
α) exp(μβE

β) exp(λγ H
γ )

= exp

[
λαH

α + λγ H
γ + μβ(λα(α∨, β) + λγ (γ ∨, β))

eλγ (γ ∨,β) − e−λα(α∨,β)
Eβ

]
.

(3.9)

Let us now consider the BCH problem exp(X) exp(Y ) =
exp(W ), with X = μαEα , Y = μβEβ , α �= −β, α + β ∈
�(g). In this case it is convenient to use the expansion
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W = X + Y + 1

2
[X,Y ] + 1

12
([X, [X,Y ]] + [Y, [Y, X ]])

− 1

24
[Y, [X, [X,Y ]]] + · · · . (3.10)

Note that

[Eβ, [Eα, [Eα, Eβ ]] (3.11)

would be proportional to E2(α+β). On the other hand, since
α + β is a root, it follows that 2(α + β) /∈ �(g). Therefore
(3.11) vanishes. In order to consider the higher order terms
in (3.10), we first recall that the length of root strings is at
most five. Here we do not consider the special cases in which
either 2α + 3β or 3α + 2β are roots, so that we specialize to
the cases in which the lengths of the root strings are at most
four. Denote by nX (nY ) the number of X (Y ) appearing in
each term of the expansion (3.10). Then observe that all the
terms in the dots of (3.10) correspond to either nX ≥ 4 and
nY ≥ 1, or nY ≥ 4 and nX ≥ 1, or nX ≥ 2 and nY ≥ 2.
Therefore the terms in (3.10) which are next to (3.11) are
proportional to either E4α+nβ , n ≥ 1, or Enα+4β , n ≥ 1, or
Emα+nβ , m, n ≥ 2. On the other hand, as explained above,
if α + β ∈ �(g), then 4α + nβ, nα + 4β, n ≥ 1, and
mα + nβ, m, n ≥ 2, cannot be roots, and the corresponding
commutators vanish. Summarizing, in the case α+β ∈ �(g),
there are three possibilities. If neither 2α + β nor α + 2β

belong to �(g), then

exp(μαE
α) exp(μβE

β) = exp
(
μαE

α + μβE
β

+1

2
μαμβeαβE

α+β
)
. (3.12)

If 2α + β ∈ �(g), then

exp(μαE
α) exp(μβE

β)

= exp
(
μαE

α + μβE
β + 1

2
μαμβeαβE

α+β

+ 1

12
μ2

αμβeα(α+β)eαβE
2α+β

)
. (3.13)

If α + 2β ∈ �(g), then

exp(μαE
α) exp(μβE

β)

= exp
(
μαE

α + μβE
β + 1

2
μαμβeαβE

α+β

+ 1

12
μαμ2

βeβ(α+β)eβαE
α+2β

)
. (3.14)

The above results can be used as building blocks to solve
more elaborated cases, such as

exp(Eα) exp(Eβ) exp(Eγ ). (3.15)

Let us now consider exp(μαEα) exp(λαHα) exp(μ−αE−α).
Again, this is a particular case of the type 4 commutator alge-
bras [9], worked out in [8]. We have

exp(μαE
α) exp(λαH

α) exp(μ−αE
−α)

= exp
{ λ+ − λ−

e−λ− − e−λ+

[
μ+Eα + 1

2

(
e−λ+ + e−λ− − 2

)
Hα

+ μ−αE
−α

]}
, (3.16)

where μ−α, λα, μα ∈ C, λ− + λ+ = λα , and

e−λ± = 1 + e2λα + μ−αμα ± √
(1 + e2λα + μ−αμα)2 − 4e2λα

2
.

(3.17)

Note that λα = 0 reproduces the closed form for
exp(μαEα) exp(μ−αE−α).

The next case is exp(μαEα) exp(λβHβ) exp(μγ Eγ ),
with γ �= −α, and α + γ /∈ �(g), so that

[Eα, Eγ ] = 0. (3.18)

As we will discuss later, this corresponds to the type 5 com-
mutator algebras. However, it is instructive to directly derive
the solution. Consider the identity

exp(μαE
α) exp(λβH

β) exp(μγ E
γ )

= exp(μαE
α) exp(λ−

β Hβ) exp(λ+
β Hβ) exp(μγ E

γ ),

(3.19)

where again λ−
β + λ+

β = λβ . Then note that

exp(μαE
α) exp(λ−

β Hβ)

= exp

(
λ−

β Hβ − λ−
β μα(β∨, α)

1 − eλ−
β (β∨,α)

Eα

)
(3.20)

and

exp(λ+
β Hβ) exp(μγ E

γ )

= exp

(
λ+

β Hβ + λ+
β μγ (β∨, γ )

1 − e−λ+
β (β∨,γ )

Eγ

)
. (3.21)

Imposing the requirement that the commutator between
the exponents on the right hand side of (3.20) and (3.21)
vanishes yields

μγ (β∨, γ )
(

1 − eλ−
β (β∨,α)

)

+ μα(β∨, α)
(

1 − e−λ+
β (β∨,γ )

)
= 0. (3.22)

It follows that

exp(μαE
α) exp(λβH

β) exp(μγ E
γ )

= exp

(
λβH

β −
λ−
β μα(β∨, α)

1 − eλ−
β (β∨,α)

Eα +
λ+
β μγ (β∨, γ )

1 − e−λ+
β (β∨,γ )

Eγ

)
.

(3.23)

Such a case corresponds to the commutator algebras [9]
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Type 5.
[
u �= z, uz �= 0

∣∣∣m = − uw
z , n = −vw

(
1
u + 1

z

)
,

p = − vz
u , e = − cw

z − dv
u

∣∣∣
]

6
,

[X,Y ] = uX + vY + cI, [Y, Z ] = wY + zZ + d I,

[X, Z ] = −uw

z
X − vw

( 1

u
+ 1

z

)
Y − vz

u
Z −

( cw
z

+ dv

u

)
I.

There are two equivalent solutions,

α = v

u
,

ũ = u − v − uw

z
,

ṽ = 0,

c̃ =
(

1 − v

u
− w

z

)
d,

and

α = 1 − w

z
,

ũ = 0,

ṽ = z − w − vz

u
,

c̃ =
(

1 − v

u
− w

z

)
d.

In the case at hand, the non-vanishing parameters are only
u = −λβ(β∨, α) and z = λβ(β∨, γ ). It is immediate to
check that using one of the two solutions one gets (3.23).

4 Generalization of the algorithm by iteration

In this section we iterate the algorithm introduced in [8] to
extend the original formula of Van-Brunt and Visser. The
problem then is to find, in more general cases, the closed
form W , defined by

exp(X) exp(Z) = exp(W ). (4.1)

A first result in this direction was already obtained in [8].
The point is to start with the BCH problem for the product
of the three exponentials in (1.5), choosing Y in such a way
that (1.7) and (1.13) are satisfied. Next, one reproduces the
steps of the algorithm leading to (1.12) where Y is replaced
by λY , and then one considers

exp(X) exp(Z) = lim
λ→0

exp(X) exp(λY ) exp(Z). (4.2)

Note that Eqs. (1.7) and (1.13) satisfied by X , Y , and Z can
also be expressed in terms of X , λY , and Z with u, c, z, d,

and Y multiplied by λ, whereas n is replaced by n/λ

[X, Z ] = mX +
(n
λ

)
(λY ) + pZ + eI,

[X, (λY )] = (λu)X + v(λY ) + (λc)I,

[(λY ), Z ] = w(λY ) + (λz)Z + (λd)I. (4.3)

It follows that the expression on the right hand side of (4.2),
before taking the λ → 0 limit, is given by (1.12) with u, c,
z, d, and Y multiplied by λ,

X̃ = gα(λu, v)X + hα(λu, v)(λY ) + lα(λu, v)(λc)I,

Ỹ = hβ(λz, w)(λY ) + gβ(λz, w)Z + lβ(λz, w)(λd)I.
(4.4)

It then follows by (1.12) that

exp(X) exp(Z) = lim
λ→0

exp(X̃ + Ỹ + f (ũ, ṽ)[X̃ , Ỹ ]).
(4.5)

On the other hand, in the λ → 0 limit we get X̃ = X , Ỹ = Z ,
and, by (1.15), ũ = m and ṽ = p. Hence

exp(X) exp(Z) = exp(X + Z + f (m, p)[X, Z ]), (4.6)

showing that the Van-Brunt and Visser formula in Eq. (1.3)
extends to the case in which there exists Y such that the
weaker conditions (4.3) are satisfied. Note that in the λ → 0
limit the linear system for e, m, n, and p is again (1.17).

The above results can be summarized by the following
lemma.
Lemma 1. If

[X, Z ] = mX + nY + pZ + eI, (4.7)

then the Van-Brunt and Visser formula,

exp(X) exp(Z) = exp(X + Z + f (m, p)[X, Z ]), (4.8)

holds if Y satisfies the conditions

[X,Y ] = uX + vY + cI, [Y, Z ] = wY + zZ + d I.

(4.9)

It is clear that the above construction can be iterated to gener-
alize the algorithm leading to (1.12). Namely, one can repeat
the steps of the algorithm, where now the Van-Brunt and
Visser condition is replaced by the weaker one given by
Lemma 1. In particular, the first step of the algorithm is again
to consider the decomposition

exp(X) exp(Y ) exp(Z)

= exp(X) exp(αY ) exp(βY ) exp(Z), (4.10)

with α+β = 1. However, now each one of the two conditions
(1.7) should be replaced by the weaker conditions in Lemma
1. Namely, if there exist Y ′ and Y ′′ satisfying the conditions
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[X,Y ] = aX X + aY Y + aY ′Y ′ + aI,

[X,Y ′] = bX X + bY ′Y ′ + bI,

[Y ′,Y ] = cY ′Y ′ + cY Y + cI, (4.11)

and

[Y, Z ] = dY Y + dY ′′Y ′′ + dZ Z + d I,

[Y,Y ′′] = eY Y + eY ′′Y ′′ + eI,

[Y ′′, Z ] = fY ′′Y ′′ + fZ Z + f I, (4.12)

then one can still apply the algorithm leading to (1.12). The
expression of exp(X) exp(Y ) exp(Z) is still the one in (1.12),
but now there is good news, namely the condition (1.7) is
replaced by the weaker conditions (4.11) and (4.12). Fur-
thermore, the conditions to be imposed on

X̃ := ln(eXeαY ) = X + αY + f (αaX , aY )[X, αY ],
Ỹ := ln(eβY eZ ) = βY + Z + f (dY , βdZ )[βY, Z ], (4.13)

that we rewrite as

X̃ = gα(aX , aY )X + hα(aX , aY )Y + lα(aX , aY )(aY ′Y ′ + aI ),

Ỹ = hβ(dY , dZ )Y + gβ(dY , dZ )Z + lβ(dY , dZ )(dY ′′Y ′′ + d I ),
(4.14)

are weaker with respect to (1.11). Namely, according to
Lemma 1, we now impose the requirement that there exists
Ỹ ′ such that

[X̃ , Ỹ ] = aX̃ X̃ + aỸ Ỹ + aỸ ′ Ỹ ′ + ã I,

[X̃ , Ỹ ′] = bX̃ X̃ + bỸ ′ Ỹ ′ + b̃ I,

[Ỹ ′, Ỹ ] = cỸ ′ Ỹ ′ + cỸ Ỹ + c̃ I. (4.15)

By (4.11), (4.12), (4.14), and (4.15) it follows that now X
and Z satisfy the weaker condition

[X, Z ] = mX + nY + pY ′ + qY ′′ + r Ỹ ′ + sZ + t I.

(4.16)

One then can apply the rest of the algorithm and classify all
the possible algebras leading to the closed BCH formula, in
a similar way to the classification developed in [9].

The next step is to investigate again (4.2), but now using
the weaker conditions (4.11), (4.12) and (4.15). This is the
content of Lemma 2. analogous to Lemma 1. but with the
previous weaker conditions on the commutators.
Lemma 2. If

[X, Z ] = mX + nY + pY ′ + qY ′′ + r Ỹ ′ + sZ + t I,

(4.17)

then the Van-Brunt and Visser formula,

exp(X) exp(Z) = exp(X + Z + f (m, p)[X, Z ]), (4.18)

holds if Y , Y ′, Y ′′, and Ỹ ′ satisfy the conditions (4.11), (4.12),
and (4.15).

Such an algorithm can be iterated indefinitely by applying
again the original algorithm to (4.10) but now using Lemma
2, applying the result to (4.2) will lead to Lemma 3, with
weaker conditions with respect to Lemma 2, etc. The full
consequences of such a construction are under investigation.
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