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ABSTRACT

We introduce a new tool – ÆSOPUS: Accurate Equation of State and OPacity Utility Software – for computing the equation of state
and the Rosseland mean (RM) opacities of matter in the ideal gas phase. Results are given as a function of one pair of state variables,
(i.e. temperature T in the range 3.2 ≤ log(T ) ≤ 4.5, and parameter R = ρ/(T/106 K)3 in the range −8 ≤ log(R) ≤ 1), and arbitrary
chemical mixture. The chemistry is presently solved for about 800 species, consisting of almost 300 atomic and 500 molecular
species. The gas opacities account for many continuum and discrete sources, including atomic opacities, molecular absorption bands,
and collision-induced absorption. Several tests made on ÆSOPUS have proved that the new opacity tool is accurate in the results,
flexible in the management of the input prescriptions, and agile in terms of computational time requirement. Purpose of this work is
to greatly expand the public availability of Rosseland mean opacity data in the low-temperature regime. We set up a web-interface
(http://stev.oapd.inaf.it/aesopus) which enables the user to compute and shortly retrieve RM opacity tables according to
his/her specific needs, allowing a full degree of freedom in specifying the chemical composition of the gas. As discussed in the paper,
useful applications may regard, for instance, RM opacities of gas mixtures with i) scaled-solar abundances of metals, choosing among
various solar mixture compilations available in the literature; ii) varying CNO abundances, suitable for evolutionary models of red
and asymptotic giant branch stars and massive stars in the Wolf-Rayet stages; iii) various degrees of enhancement in α-elements, and
C-N, O-Na, and Mg-Al abundance anti-correlations, necessary to properly describe the properties of stars in early-type galaxies and
Galactic globular clusters; iv) zero-metal abundances appropriate for studies of gas opacity in primordial conditions.

Key words. equation of state – atomic processes – molecular processes – stars: abundances – stars: atmospheres –
stars: AGB and post-AGB

1. Introduction

In a gas under conditions of local thermodynamical equilibrium
(LTE) and in the limit of the diffusion approximation (DA), the
solution to the radiation transfer equation simplifies and the total
flux of radiation F as a function of radius r is given by:

F(r) = −4π
3

1
κR(ρ, T )

∂B(r, T )
∂r

(1)

where T is the gas temperature, ρ denotes the density, B(r, T )
is the integral of the Planck function over frequency, and the
relation

1
κR(ρ, T )

=

∫ ∞

0

1
κ(ν)
∂Bν
∂T

dν
∫ ∞

0

∂Bν
∂T

dν
, (2)

first introduced by Rosseland (1924), defines the Rosseland
mean opacity κR(ρ, T ). Being a harmonic average over fre-
quency, κR emphasises spectral regions of weak absorption,
across which the energy flux is most efficiently transported.

Both LTE and DA conditions are usually met in the stel-
lar interiors, where collisions dominate the thermodynamic
state of matter, the photon mean free-path is much shorter
than the typical scale length of the temperature gradient, and

the Kirchoff’s law applies with the source function being the
Planckian. However, in the outermost layers of a star the pho-
ton mean-free path may become so long that the DA condi-
tions break down, thus invalidating the use of the RM opac-
ity. In these circumstances, a straight arithmetic average of the
monochromatic absorption coefficient (Eddington 1922), desig-
nated with κP, Planck mean (PM) opacity:

κP(ρ, T ) =

∫ ∞

0
κ(ν)Bνdν∫ ∞

0
Bνdν

(3)

may be more suitable to represent the absorption properties of
the gas in a simplified version of the radiation transport equation
(e.g. Helling et al. 2000).

Both RM and PM opacities are frequency-integrated aver-
ages, so that they only depend on two independent state vari-
ables, e.g. temperature T and density ρ (or pressure P), and the
chemical composition of the gas.

In stellar evolution models it is common practise to de-
scribe the absorption properties of matter with the RM opac-
ity formalism, adopting pre-computed static tables of κR which
should encompass a region of the bi-dimensional space T -ρ
wide enough to cover all possible values met across the stellar
structure during the evolution, from the atmosphere down to the
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central core. The chemical composition is usually specified by
a set of abundances, e.g.: the total metallicity Z, the hydrogen
abundance X, and the partitions {Xi/Z} of heavy elements in the
mixture, which depend on the specific case under consideration.
Frequent choices are assuming solar partitions {Xi/Z} = {Xi/Z}�,
or deriving {Xi/Z} from other constraints such as the enhance-
ment in α-elements (expressed by the ratio [α/Fe]), or the over-
abundances in C and O necessary to describe the hydrogen-free
chemical profile in He-burning regions.

In the literature several authors have calculated κR(ρ, T ) for
different combinations of the state variables and chemical com-
position. Let us limit here to briefly recall the most relevant
efforts, i.e. those mainly designed for supplying the scientific
community with extended and continuously updated RM opac-
ity databases.

In the high-temperature regime, i.e. 104 K <∼ T <∼ 109 K,
calculations of RM opacities are mainly provided by two inde-
pendent teams, namely: the Opacity Project (OP) international
collaboration coordinated by Seaton (Seaton 2005, and refer-
ences therein); and the Opacity Project at Livermore (OPAL) be-
ing carried on by Iglesias, Rogers and collaborators (see Iglesias
& Rogers 1996, and references therein). Both groups have set up
a free web-access to their RM opacity calculations, via either a
repository of static tables and/or source routines, or an interac-
tive web mask where the user can specify the input parameters
and run the calculations in real time.

In the low-temperature regime, 103 K <∼ T <∼ 104 K, widely-
used RM opacity tables are those provided by the research group
of the Wichita State University (Ferguson et al. 2005, and ref-
erences therein). A web page hosts an archive of static RM
opacity tables, for both scaled-solar and α-enhanced mixtures,
which cover a wide range of metallicities including the Z = 0
case. It should be acknowledged the large body of work made
by Kurucz, who provides, via web or CD-ROMs, all necessary
atomic and molecular data as well as FORTRAN codes to cal-
culate κR (see Kurucz 1993a,b,c), in the temperature interval
103 K <∼ T <∼ 105 K, for scaled-solar and α-enhanced mix-
tures. More recently, Lederer & Aringer (2009) have calculated
and made available via the VizieR Service a large catalogue of
RM opacity tables for C- and N-rich compositions, with the pur-
pose to supply RM opacity data suitable for the modelling of
asymptotic giant branch (AGB) stars. Helling & Lucas (2009)
have produced a set of gas-phase Rosseland and Planck mean
opacity tables for various metallicities, C/O and N/O ratios. It
is due mentioning also the recent paper by Sharp & Burrows
(2007), who provide an exhaustive and useful review on the
thermochemistry, techniques, and databases needed to calculate
atomic and molecular opacities at low temperatures.

Despite the undeniable merit of all these works, the pub-
lic access to low-temperature RM opacities still needs to be
widened to account for the miscellany of chemical patterns –
mostly relating to the photosphere of stars – that modern spec-
troscopy is bringing to our knowledge with an ever-growing
richness of details, and also to allow the exploration of possi-
ble opacity changes driven by any hypothetical chemical com-
position. The peculiar abundance features in the atmospheres
of AGB stars (e.g. McSaveney et al. 2007; Smith et al. 2002);
the α-enhanced abundance pattern of stellar populations belong-
ing to globular clusters (e.g. Gratton et al. 2004) and ellipti-
cal galaxies (e.g. Clemens et al. 2006, 2009); the large carbon
overabundance and other chemical anomalies of the so-called
carbon-enhanced metal-poor stars in the Galaxy (e.g. Beers &
Christlieb 2005); the striking C-N, O-Na and Mg-Al abundance
anti-correlations exhibited by stars in Galactic globular clusters

(e.g. Carretta et al. 2005); the chemical composition of the pri-
mordial gas after the Big Bang nucleosynthesis (e.g. Coc et al.
2004): these are a few among the most remarkable examples.

In this framework, purpose of our work is to greatly ex-
pand the availability of RM opacity data in the low-temperature
regime, by offering the scientific community an accurate and
flexible computational tool, able to deliver RM opacities tables
on demand, and with a full freedom in the specification of the
chemical mixture.

To this aim, we have developed the ÆSOPUS tool (Accurate
Equation of State and OPacity Utility Software), which con-
sists of two fundamental parts: one computes the equation of
state (EOS) of matter in the gas phase, and the other evalu-
ates the total monochromatic coefficient, κ(ν), as sum of sev-
eral opacity sources, and then computes the Rosseland mean.
The EOS is solved for ≈800 chemical species, including neutral
atoms, ions, and molecules. The RM opacities take into account
several true (continuum and discrete) absorption and scattering
processes. An interactive web-interface (http://stev.oapd.
inaf.it/aesopus) allows the user to run Æ SOPUS according
to his/her specific requirements just by setting the input param-
eters (T − R grid, reference solar composition, total metallicity,
abundance of each chemical species) on the web mask.

The paper is organised as follows. Section 2 specifies the
bi-modular structure of ÆSOPUS. In Sect. 2.1 we illustrate the
basic ingredients necessary to set up and solve the equation of
state. Numerical aspects are detailed in Appendix A. Section 2.2
indicates the opacity sources included in the evaluation of the to-
tal monochromatic absorption coefficient. The Rosseland mean
is presented in Sect. 2.2.1, with details on the computing-time re-
quirements provided in Sect. 2.2.2. Complementary information
on the frequency integration is given in Appendix B. The for-
malism introduced to describe the different ways the RM opac-
ity tables can be arranged, as a function of the state variables and
chemical composition, is outlined in Sect. 3. In Sect. 4 we anal-
yse five relevant cases of RM opacity calculations, characterised
by different chemical patterns, namely: scaled-solar elemental
abundances (Sect. 4.1), varying CNO abundances (Sect. 4.2),
α-enhanced mixtures (Sect. 4.3), mixtures with peculiar C-N-O-
Na-Al-Mg abundances (Sect. 4.4), and metal-free compositions
(Sect. 4.5). Appendix C specifies the general scheme adopted
to construct non-scaled-solar mixtures. Final remarks and in-
dications of future developments of this work are expressed in
Sect. 5.

2. The ÆSOPUS code

2.1. Equation of state

The equation of state quantifies the distribution of available par-
ticles in the unit volume, in the form of neutral and ionised
atoms, electrons, and molecules. At low temperatures (T <∼
6000 K) and sufficiently high densities, molecules can form in
appreciable concentrations so as to dominate the equation of
state at the coolest temperatures. To this respect a seminal work
was carried out by Tsuji (1964, 1973) who set up the theoretical
foundation of most chemistry routines still in use today.

In our computations the EOS is solved for atoms and
molecules in the gas phase, under the assumption of an ideal
gas in both thermodynamic equilibrium (TE) and instantaneous
chemical equilibrium (ICE). This implies that the abundances of
the various atomic and molecular species depend only on the lo-
cal values of temperature and density, regardless of the specific
mechanisms of interaction among them.

http://stev.oapd.inaf.it/aesopus
http://stev.oapd.inaf.it/aesopus
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Solving a chemical equilibrium problem requires three gen-
eral steps. First, one must explicitly define the gas system in
terms of its physical and thermodynamic nature. For example,
the classical problem in chemical equilibrium computations is
to calculate the state of a closed system of specified elemental
composition at fixed temperature T and pressure P. The nature
of the physical-chemical model determines the set of govern-
ing equations to be used in computations. The second step is to
manipulate this original set of equations into a desirable form,
to reduce the number of unknowns and/or to fulfil the format re-
quirements of the adopted computation scheme. The third step is
to solve the remaining simultaneous equations, usually be means
of iterative techniques (see, for instance, Tsuji 1963).

Rather than solving sets of equations, the equilibrium com-
putation can be formulated as an optimisation problem, such as
solving the so-called classical problem by minimising the calcu-
lated free energy of the system (Mihalas et al. 1988). An alterna-
tive approach, based on the neural network technique, has been
recently proposed by Asensio Ramos & Socas-Navarro (2005).

In this study we adopt the Newton-Raphson iteration scheme
to solve the chemical equilibrium problem of a gas mixture with
assigned chemical composition, pressure P (or density) and tem-
perature T . The adopted formalism and solution method are de-
tailed below.

2.1.1. Equilibrium relations

Under the ICE approximation, the gas species obey the equilib-
rium conditions set by the dissociation-recombination and ioni-
sation processes. Generally speaking, the chemical interactions
in the gas between species A and B may involve the simple
dissociation-recombination process

A + B � AB (4)

in which both forward and reverse reactions proceed at the same
rate. In the above equation A or B may be an atom, molecule,
ion or electron. Of course one may postulate more complicated
chemical interactions such as

AB + CD � AC + BD

or

A + B +C � ABC

but these can ultimately be reduced to Eq. (4), in the forms of
simple dissociation-recombination reactions, i.e.

(AB) + (CD) � (ABCD) � (AC) + (BD)

(A + B) + C � ABC.

From statistical mechanics we know that for any species A and B
in equilibrium with their compound AB (usually a molecule), the
number densities nA, nB, and nAB are related by the Guldberg-
Waage law of mass action:

KAB(T ) =
nAnB

nAB
, (5)

where KAB(T ) is the dissociation constant or equilibrium con-
stant of species AB, which depends only on temperature. It is
expressed with

KAB(T ) =

(
2πμkT

h2

)3/2 Qint,AQint,B

Qint,AB
exp

(
−DAB

kBT

)
, (6)

where kB is the Boltzmann’s constant; h denotes the Planck’s
constant; T is the local temperature; μ =

mAmB

mAB
is the reduced

mass of the molecule; the Qint’s are the internal partition func-
tions; and DAB is the dissociation energy of the (A, B, AB) reac-
tion given by Eq. (4). Species A and B themselves can be either
molecules or single atoms.

In the identical framework we can consider positive ionisa-
tion and recombination processes:

A+r � A+r+1 + e−.

Again, species A is taken in the general sense and can be either
a molecule or a single atom, and the superscript +r (or +r + 1)
denotes its ionisation stage.

These processes can be described through the corresponding
equilibrium or ionisation constant:

KSaha
A+r+1 (T ) =

nA+r+1 ne−

nA+r
(7)

which is explicitly given in the form of the Saha equation

KSaha
A+r+1 (T ) =

(
2πmekT

h2

)3/2 Qint,A+r+1 · 2
Qint,A+r

exp

(
− IA+r

kBT

)
· (8)

Here me is the mass of the electron; IA+r is the ionisation potential
of species A in the +rth ionisation stage; the Qint are the internal
partition functions appropriate to the corresponding species. The
factor 2 is the statistical weight ge for free electrons, correspond-
ing to two possible spin states.

The same formalism with r = −1 can be applied to account
for the electron-capture negative ionisation

A + e− � A−,

which is assigned the equilibrium constant

KSaha
A− (T ) =

nA−

nAne−
, (9)

and the Saha equation:

KSaha
A− (T ) =

(
h2

2πmekBT

)3/2 Qint,A−

Qint,A · 2 exp

(
IA−

kBT

)
, (10)

where IA− corresponds to the electron affinity, i.e. the energy
released when an electron is attached to a neutral atom or
molecule.

Where ionisation of diatomic and polyatomic molecules is
considered, there are at least three energy-equivalent ways of
forming positive molecular ions:

1) A + B→ AB ; AB − e− → AB+

2) A − e− → A+ ; A+ + B→ AB+

3) B − e− → B+ ; A + B+ → AB+.

Dissociation and ionisation equilibrium can be taken into ac-
count simultaneously by choosing that dissociation path in
which the atomic species that remains ionised is the one with
the lowest ionisation potential. For instance, for a ionised di-
atomic molecule AB+ with IA < IB the selected sequence is 2),
so that the number density of the ionised molecule is calculated
by combining Eq. (5) and Eq. (8), obtaining:

KAB+ (T ) =
nA+nB

nAB+
=

KAB KSaha
A+

KSaha
AB

(11)

=

(
2πμkBT

h2

)3/2 Qint,A+Qint,B

Qint,AB+
exp

(
−DAB+

kBT

)
, (12)



1542 P. Marigo and B. Aringer: ÆSOPUS, a computational tool for low-temperature gas opacity

where the dissociation energy is given by DAB+ = DAB + IA − IAB

and IAB is the ionisation energy of the molecule AB.
In the case of negative molecular ions and assuming that dis-

sociation of AB produces A− and B (hence IB− < IA− ), we can
extend the same formalism of Eq. (12) to calculate the dissocia-
tion constant:

KAB− (T ) =
nA−nB

nAB−
=

KAB KSaha
A−

KSaha
AB−

(13)

=

(
2πμkBT

h2

)3/2 Qint,A−Qint,B

Qint,AB−
exp

(
−DAB−

kBT

)
, (14)

where the dissociation energy is now DAB− = DAB + IAB− − IA− ,
and IAB− denotes the electron affinity of AB, or equivalently, the
neutralisation energy of AB−.

2.1.2. Conservation relations

In addition to the equilibrium relations (dissociation-
recombination and ionisation), there exist three additional
types of equations that will completely determine the con-
centrations of the various species of the plasma, namely: i)
conservation of atomic nuclei for each chemical species, ii)
charge neutrality; and iii) conservation of the total number of
nuclei.

Let us denote with Nel the number of chemical elements,
Nmol the number of molecules (neutral and ionised), andNtot the
total number of species under consideration (neutral and ionised
atoms and molecules).

Indicating with Nα the number density of nuclei of type α
(occurring in atoms, ions and molecules), and εα = Nα/Na its
fractional abundance with respect to the total number density of
nuclei Na (both in atoms and bound into molecules), then the
conservation of nuclei requires that each atomic species α (not a
molecule) fulfils the equation

εα Na = Nα = nα +
pz∑

r=1

nα+r + nα− +
Nmol∑
A=1

νA,αnA. (15)

In the right-hand side member, nα is the number density of neu-
tral atoms; the next two terms give the number density of ions
in all positive ionisation stages (up to the maximum stage pz),
and in the negative ionisation stage; the last summation is per-
formed over all molecules (neutral and ionised) which contain
the atom α. Here νA,α corresponds to the stoichiometric coeffi-
cient, expressing the number of atoms α in molecule A.

Charge neutrality requires that

ne =

Ntot∑
i=1

pz∑
r=1

r nA+r
i
−
Ntot∑
j=1

nA−j (16)

where we include all appropriate atomic and molecular ions,
with both positive and negative electric charges. For each species
Ai, the total number of free electrons is evaluated by means of
the second internal summation extended up to pz, which corre-
sponds to the highest positive ionisation stage. Negative ionisa-
tion produces a loss of free electrons, which explains the minus
preceding the last summation.

Finally, the necessary normalisation is given by the ideal gas
law, so that the total number density ntot of all particles obeys the
relation:

ntot = ne +

Ntot∑
A=1

nA =
P

kBT
(17)

where the summation includes all molecules and atoms (neutral
and ionised). The number density of each atomic species, Nα, is
then obtained from Eq. (15) once the fractions εα = Nα/Na are
given as a part of the problem specification.

The foregoing set of Eqs. (5) through (17) are sufficient for
problem solution, as illustrated in the following.

2.1.3. Solution to the ICE problem

The solution to the chemical equilibrium problem in ÆSOPUS
is based in large part on source code available under the
GPL from the SSynth project (http://sourceforge.net/
projects/ssynth/) that is developed by Alan W. Irwin and
Ana M. Larson. Basic thermodynamic data together with a few
FORTRAN routines were adopted with the necessary modifica-
tions, as detailed below.

2.1.4. Thermodynamic data

From the SSynth package we make use, in particular, of the
whole compilation of internal partition functions, ionisation and
dissociation energies. Each species (atomic and molecular) is as-
signed a set of fitting coefficients of the polynomial form

ln Q =
m∑

i=0

ai(ln T )i, (18)

based mostly on the works by Irwin (1981, 1988) and Sauval &
Tatum (1984). In most cases the degree of the polynomials is five
(m = 6). The original compilation was partially modified and
extended to include additional ionisation stages for atoms, and
two more molecules, H+3 and FeH, that may be relevant in the
opacity computation. We consider the ionisation stages from I
to V for all elements from C to Ni (up to VI for O and Ne), and
from I to III for heavier atoms from Cu to U. Specifically, our
revision/extension of the original Irwin’s database involve the
following species.

The partition functions for the C to Ni group have been
re-calculated with the routine pfsaha of the ATLAS12 code
(Kurucz 1993a), varying the temperature from 5000 to 20 000 K
in steps of 100 K. The partition functions of the 15 rare earth el-
ements belonging to the Lanthanoid series, from La to Lu, have
been re-computed with the routine pfword from the UCLSYN
spectrum synthesis code (Smith & Dworetsky 1988) increment-
ing the temperature from 6000 to 30 000 K in steps of 100 K.
This revision was motivated by the substantial changes in the
energy levels of the earth-rare elements introduced in more re-
cent years (Alan Irwin, private communication; see e.g. Cowley
et al. 1994). We have verified that, the UCLSYN partition func-
tions for third spectra of the Lanthanides are in close agreement
with the data presented in Cowley et al. 1994, while the results
from ATLAS12 or Irwin’s (1981) compilation are usually lower,
in some cases by up to a factor of two (e.g. for Ce+3 and Tb+3).
The partition function for FeH is given from Dulick et al. (2003)
over a temperature range from 1000 to 3500 K in steps of 100 K.
Then, for all the revised species, we have obtained the fitting
coefficients of Eq. (18) by the method of least-squares fitting.
In most cases the best fitting is achieved with a χ2 parameter
lower than 10−4. For H+3 we use the original fitting polynomial
provided by Neale & Tennyson (1995).

In total, our database of partition functions consists ofNtot ≈
800 species, including ≈300 atoms (neutral and ionised) from H
to U, and Nmol ≈ 500 molecules.

http://sourceforge.net/projects/ssynth/
http://sourceforge.net/projects/ssynth/
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Table 1. Scattering and absorption processes involving H and He nuclei, considered in this work.

Process Symbol Reaction References and Comments

Rayleigh
σRay(H2) H2 + hν→ H2 + hν′ Dalgarno & Williams (1962)
σRay(H) H + hν→ H + hν′

Dalgarno (1962)
σRay(He) He + hν→ He + hν′

Thomson Th(e−) e− + hν→ e− + hν′ NIST (2006 CODATA recommended value)

free-free

σff(H−) H + e− + hν → H + e− John (1988)
σff(H) H+ + e− + hν → H+ + e− Method as in Kurucz (1970) based on Karsas & Latter (1961)
σff(H+2 ) H+ + H + hν → H+ + H Lebedev et al. (2003)
σff(H−2 ) H2 + e− + hν → H2 + e− John (1975)
σff(H3) H+3 + e− + hν → H+3 + e− σff(H3) = σff(H) (assumed)
σff(He−) He + e− + hν → He + e− Carbon et al. (1969)
σff(He) He+ + e− + hν → He+ + e− σff(He) = σff(H) (assumed)
σff(He+) He++ + e− + hν → He++ + e− σff(He+) = σff(H) (assumed)

bound-free

σbf(H
−) H− + hν → H + e− John (1998)

σbf(H) H + hν→ H+ + e− Method as in Kurucz (1970) based on
Gingerich (1969) and Karsas & Latter (1991)

σbf(H
+
2 ) H+2 + hν → H+ + H Lebedev et al. (2003)

σbf(He) He + hν→ He+ + e− Method as in Kurucz (1970) based on
Gingerigh (1964) and Hunger & Van Blerkom (1967)

σbf(He+) He+ + hν→ He++ + e− Hunger & Van Blerkom (1967)
bound-bound σbb(H) H + hν→ H∗ Kurucz (1970) including Stark broadening

Collision
induced
absorption

σCIA(H2/H2) H2 + H2 + hν → H2 + H2
600 K < T < 7000 K, 20 cm−1 < ν̃ < 20 000 cm−1

Borisow et al. (1997)

σCIA(H2/He) H2 + He + hν → H2 + He
1000 K < T < 7000 K, 25 cm−1y < ν̃ < 20 088 cm−1

Jørgensen et al. (2000)

σCIA(H/He) H + He + hν → H + He
1500 K < T < 10 000 K, 50 cm−1 < ν̃ < 1 1000 cm−1

Borisow et al. (2001)

2.1.5. Method

First we need to specify the list of atoms, ions and molecules
which should be considered, together with the values of gas pres-
sure P, temperature T and chemical abundances εα = Nα/Na.
Then, the code arranges a system consisting of Nel + 2 non-
linear equations for the number densities of neutral atoms nα, the
total number density of atoms Na, and the electron density ne.
Once these densities are known, the number densities of any
other ionised and/or molecular species are calculated by solving
for their concentrations in Eqs. (5), (7), (9), (11), or (13) using
the equilibrium/ionisation constant appropriate for each atom or
molecule. Given the non-linearity of the equations, the system is
conveniently solved by using a standard Newton-Raphson iter-
ative method (Press et al. 1986). Numerical details are given in
Appendix A.

It is worth remarking that the EOS in ÆSOPUS can easily
deal with any chemical mixture, including peculiar cases such
as zero-metallicity (Z = 0) or hydrogen-free (X = 0) gas. In
general, no convergence problem has been encountered within
the assumed ranges of the state variables.

In place of the gas pressure P, it is also possible to specify
the gas density ρ. In this case a second external iteration cycle
is switched on according to a root-finding numerical scheme.
At each ith iteration a new value Pi is assigned to the pres-
sure and the EOS is solved yielding the corresponding ρi =
Pi (μmu)/kBT , where μ is the mean molecular weight in units
of atomic mass mu. The process is repeated until the difference
| log(ρi)− log(ρ)| decreases below a specified tolerance δρ. In our
computations we adopt δρ = 10−8, and convergence is reached
typically after 3–4 iterations.

2.2. Opacity

In our computations we consider the following continuum opac-
ity processes

– Rayleigh scattering;
– Thomson scattering;
– bound-free absorption due to photoionisation;
– free-free absorption;
– collision-induced absorption (CIA);

and line opacity processes

– atomic bound-bound absorption,
– molecular band absorption.

Denoting with σ j(ν) the monochromatic cross section (in cm2)
of the jth absorption process (not scattering), the monochro-
matic true absorption opacity and scattering opacity per unit
mass (in cm2 g−1) are calculated with

κabs
j (ν) =

n j

ρ
σabs

j (ν)
(
1 − e−hν/kBT

)
(19)

κscatt
j (ν) =

n j

ρ
σscatt

j (ν), (20)

where n j is the number density of particles of type j, ρ is the gas
density, and (1 − e−hν/kBT ) is a correction factor for stimulated
emission.

Tables 1 and 2 detail the whole compilation of the scattering
and absorption processes considered here.

The monochromatic opacity cross sections for atoms (ex-
cept for H and He), taken from the OP database, are interpolated
in frequency, temperature and electron density, according to the
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Table 2. Data sources for the atomic and molecular monochromatic
absorption coefficients.

Species Source & Reference

Atoms

C, N, O
Ne, Na, Mg

Al, Si, S OP: Seaton (2005) for log(T ) ≥ 3.6
Ar, Ca, Cr
Mn, Fe, Ni

Atoms
CI, NI Method as in Kurucz (1970) based on

OI, MgI Peach (1970) and Henry (1970)
AlI, SiI for log(T ) < 3.6

Molecules

HF LL: Uttenthaler et al. (2008)
HCl LL: Rothman et al. (2005)
CH LL: Jørgensen (1997)
C2 LL: Querci et al. (1974)
CN LL: Jørgensen (1997)
CO LL: Goorvitch & Chackerian (1994)
OH LL: Schwenke (1997, priv. comm.)
SiO LL: Rothman et al. (2005)
TiO LL: Schwenke (1998)
VO LL: Alvarez & Plez (1998)
CrH LL: Bauschlicher et al. (2001)
FeH LL: Dulick et al. (2003)
YO LL: Littleton (2007, priv. comm.) (2001)
ZrO LL: Plez (2007, priv. comm.)
H2O LL: Barber et al. (2006)
HCN LL: Harris et al. (2003)

C3 OS: Jørgensen et al. (1989)
CO2 LL: Rothman et al. (1995)
SO2 LL: Rothman et al. (2005)

C2H2 OS: Jørgensen (1997)

Atomic absorption coefficients (including both continuum and discrete
opacities) are from the Opacity Project (OP) database, while molecu-
lar absorption coefficients are extracted from either line lists (LL) or
opacity sampling (OS) data.

formalism described in Seaton et al. (1994) and Seaton (2005).
They include all radiative continuum and discrete opacity pro-
cesses. Line broadening is taken into account as the result of
thermal Doppler effects, radiation damping and pressure effects.

The monochromatic molecular absorption coefficient caused
by each of the different species included in our code is taken
from opacity sampling (OS) files produced for the selected fre-
quency grid (see Sect. 2.2.2 and Appendix B), that are in most
cases calculated directly from the corresponding line lists (see
Table 2). The only exceptions are C2H2 and C3 for which we use
already existing pre-computed opacity sampling data.

Where line lists are adopted, the absorption cross section of a
spectral line, involving the bound-bound transition from state m
to state n, is evaluated with the relation:

σabs
bb (ν) =

πe2

mec
g f

Q(T )
e−E0/kBT

(
1 − e−hν0/kBT

)
φ(ν) (21)

with e and me the charge and mass of the electron, c the speed
of light, hν0 the energy of the corresponding radiation, Q(T )
the total partition function (being the product, Qtrans Qint, of
the translational and internal partition functions) of the molec-
ular species under consideration, E0 the excitation energy of the
lower level m of the transition, g f the product of the statisti-
cal weight g(m) of the level times the oscillator strength f(m,n) of
the transition. The correction for stimulated emission is given
by the term in brackets. The normalised broadening function,
φ(ν), for the line profile takes into account the effect of thermal

broadening and non thermal-contribution of microturbolent ve-
locities, according to the equation:

φ(ν) =
1

Δν
√
π

e−
(
ν−ν0
Δν

)2

(22)

with a Doppler width Δν given by

Δν =
ν0
c

√
2kBT

m
+ ξ2, (23)

where m is the mass of the molecule, and ξ is the microturbolent
velocity, which is assigned the value 2.5 km s−1. More details
about the input data and the treatment of molecular line opacities
can be found in Aringer (2000), Lederer & Aringer (2009), and
Aringer et al. (2009).

In summary, to generate the molecular OS files directly from
the line lists, prior to the execution of ÆSOPUS, we proceed as
follows. For each value of a selected set of temperatures, (13 val-
ues in the range 600 K<∼ T <∼ 10 000 K), the monochromatic ab-
sorption coefficient of a molecular species at a given wavelength
point, σabs

mol(ν), is obtained by adding up the contributions of all
the lines in the list with the corresponding broadening functions
taken into account:

σabs
mol(ν) =

∑
lines

σabs
bb (ν), (24)

where each term σabs
bb (ν) is evaluated with Eqs. (21)–(23). Then,

during the computations with ÆSOPUS, we interpolate on the
OS tables for any given temperature of the gas. We notice that
the errors brought about by this interpolation are marginal com-
pared to all other sources of uncertainty (e.g. molecular data,
microturbolence velocity, solar abundances, etc.).

2.2.1. The Rosseland mean

Once the total monochromatic opacity coefficient is obtained
by summing up all the contributions of true absorption and
scattering

κ(ν) =
∑

j

κabs
j (ν) + κscatt

j (ν), (25)

then the Rosseland mean opacity, classically defined by Eq. (2)
is conveniently calculated with (see e.g. Seaton et al. 1994):

1
κR(ρ, T )

=

∫ ∞

0

FR(u)
κ(u)

du (26)

where

FR(u) =
15

(4π4)
u4 exp(−u)/[1 − exp(−u)]2. (27)

In the above equations ν is the photon frequency, and
u = hν/(kBT ) is the normalised photon energy. In our calcu-
lations κR denotes the absorption coefficient per unit mass, and
is always given in cm2 g−1. Since the opacity coefficient κν en-
ters Eq. (2) as an inverse, the minima dominate the values of
the Rosseland mean. It follows that a large κR implies large ab-
sorption from the radiation beam, while a small κR indicates that
the energy losses from the beam remain little as it propagates
through the matter.

In practise, the numerical integration of Eq. (26) requires to
specify two finite (lower and upper) limits, u1 and u2, and the
grid of frequency points. The choice of the limits must guarantee
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the covering of the relevant wavelength region for the weighting
function ∂Bν/∂T , so as to include its maximum and the declining
wings.

In this respect it useful to recall that, in analogy with the
Wien’s displacement law for the Planck function, the wavelength
λmax of the the maximum of ∂Bν/∂T is inversely proportional to
the temperature according to

λmax [μm] =
3756.56

T [K]
· (28)

It follows that the maximum of the function FR is reached for
umax = 3.8300.

In our calculations we adopt the integration limits u1  10−3

and u2  64, corresponding to the wave numbers ν̃1 = 10 cm−1

and ν̃2 = 2×105 cm−1, and wavelengths λ1 = 1000 μm and λ2 =
0.04 μm, respectively. We have verified that these values largely
satisfy the condition of spectral coverage of the weighting func-
tion over the entire temperature range, 3.2 ≤ log(T ) ≤ 4.5, here
considered.

2.2.2. The frequency grid and computing time

Since in our calculations a number of crucial opacity sources,
i.e. molecular absorption bands, are included as OS data, it is
convenient to specify, prior of computations, a grid of frequency
points, which should be common to both the OS treatment and
the numerical integration of Eq. (2). The frequency distribution
will be determined as a compromise between the precision (and
accuracy) of the integration and the speed of calculations.

For this purpose we employ the algorithm by Helling &
Jørgensen (1998), that was developed to optimise the frequency
distribution in the opacity sampling technique when dealing
with a small number of frequency points. We performed a few
tests adopting frequency grids with decreasing size, namely with
ntot = 5488, 1799, 944, 510, and 149 frequency points. More
details are given in Sect. B. The results discussed in the follow-
ing sections refer to the grid with ntot = 944 points, which has
proved to yield reasonably accurate RM opacities.

Besides the quality of the results, another relevant aspect is
the computing time. With the present choice of the frequency
grid, i.e. ntot = 944 points, generating one table at fixed chemical
composition, arranged with the default grid of the state parame-
ters (T and R, see Sect. 3.1), i.e. containing NT ×NR = 67×19 =
1273 opacity values, takes τ ∼ 45 s with a 2.0 GHz proces-
sor. Adopting other frequency grids would require shorter/longer
computing times, roughly τ ∼ 200 s for ntot = 5488; τ ∼ 70 s
for ntot = 1799; τ ∼ 30 s for ntot = 510; and τ ∼ 15 s for
ntot = 149. These values prove that ÆSOPUS is indeed a quick
computational tool, which has made it feasible, for the first time,
the setup of a web-interface (http://stev.oapd.inaf.it/
aesopus) to produce low-temperature RM opacity tables on de-
mand and in short times.

The main reason of such a fast performance mainly resides
in the optimised use of the opacity sampling method to describe
molecular line absorption, and the adoption of pre-tabulated ab-
sorption cross-sections for metals (available from the Opacity
Project website). In this way the line-opacity data is extracted
(e.g. from line lists and the OP database) and stored in a conve-
nient format before the execution of ÆSOPUS, thus avoiding to
deal with huge line lists during the opacity computations. This
latter approach is potentially more accurate, but extremely time-
consuming (e.g. F05).

Moreover the improvement in accuracy that would be
achievable with the on-the-fly treatment of the line lists is in

principle reduced when adopting a frequency grid for integration
which is much sparser (e.g. ∼104 frequency points as in F05)
than the dimension of the line lists (up to 107−108 line transi-
tions). On the other hand, as shown by our previous tests and
also by F05, while the computing time scales almost linearly
with the number of frequency points, the gain in precision does
not, so that the RM opacities are found to vary just negligi-
bly beyond a certain threshold (see also Helling et al. 1998,
and Appendix B). All these arguments and the results discussed
in Sects. 4.1.1 support the indication that the agile approach
adopted in ÆSOPUS is suitable to produce RM opacities with
a very favourable accuracy/computing-time ratio.

3. Opacity tables: basic parameters

Tables of RM opacities can be generated once a few input pa-
rameters are specified, namely: the chemical composition of the
gas, and the bi-dimensional space over which one pair of inde-
pendent state variables is made vary.

3.1. State variables

Under the assumption of ideal gas, described by the law

Pgas =
kB

μmu
ρT, (29)

one must specify one pair of independent state variables. Usual
choices are, for instance, (Pgas, T ) or (ρ, T ). For practical and
historical reasons, opacity tables are generally built as a function
of the logarithm of the temperature T , and the logarithm of the
R variable, defined as R = ρ/(T6)3, with T6 = T/(106 K).

An advantage of using the R parameter, instead of ρ or P,
is that the opacity tables can cover rectangular regions of the
(R, T )-plane, without the nasty voids over extended temperature
ranges that would come out if intervening changes in the EOS
are not taken into account (e.g. transition from ideal to degener-
ate gas).

Interestingly, as pointed out by Mayer & Duschl (2005;
see their Appendix D), different R values correspond to differ-
ent gas/radiation pressure ratios, δ = Pgas/Prad. The relation
between log(R) and log(δ) is linear, with larger R values cor-
responding to larger δ, i.e. an increasing importance of Pgas
against Prad. Moreover, we notice that the equality Pgas = Prad
takes place in the range at −4.8 <∼ log(R) <∼ −4.5, assuming a
mean molecular weight varying in the interval 0.5 <∼ μ <∼ 1. In
Fig. 1 we also plot the quantity β = Pgas/(Pgas + Prad), a param-
eter frequently used by stellar evolutionists.

In this respect Fig. 1 illustrates the rectangular region cov-
ered by our RM opacity tables in the log(T ) − log(R) dia-
gram, defined by the intervals (3.2 ≤ log(T ) ≤ 4.5) and
(−8 ≤ log(R) ≤ 1). We note that the table area lies in the
domain of the ideal gas, and it extends into the region dominated
by radiation pressure for log(R) ≤ −4.5. Non ideal effects related
to electron degeneracy, Coulomb coupling of charged particles,
and pressure ionisation of atoms are expected to become domi-
nant outside the table boundaries, in the domain of high-density
plasmas.

It is important to remark that our RM opacity tables can be
easily extended to higher temperatures, log(T ) > 4.5, with the
RM opacity data provided by OPAL and OP. As a matter of fact
the agreement between our results and OPAL is good in the over-
lapping transition region, say 3.9 <∼ log(T ) <∼ 4.5 (see Sect. 4.1.1
and panel c) of Fig. 7).

http://stev.oapd.inaf.it/aesopus
http://stev.oapd.inaf.it/aesopus
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Fig. 1. Location of our RM opacity tables in the log(T )−log(R) diagram
(shaded rectangular area), together with the approximate boundaries be-
tween regions where the total pressure is dominated by different effects:
radiation pressure, ideal gas, electron-degenerate gas, Coulomb inter-
actions, and pressure ionisation. The vertical line to the left of which
radiation dominates the pressure is given by Pgas = Prad with μ = 0.5.
Along the border line between the ideal and degenerate gas we equate
the corresponding pressures of a non-relativistic electron gas with mean
molecular weight μe = 2. The vertical boundary at log(R) ∼ 3, beyond
which the Coulomb coupling of charged particles should become im-
portant, is defined by the condition ΓC = 1, where ΓC = 1.1×10−5T/ρ1/3

is the Coulomb coupling parameter for an ionised-hydrogen plasma.
Pressure ionisation is assumed to become dominant at log(ρ) = 0 for
log(T ) ≤ 4.5, a typical value according to the analysis developed by
Luo (1997). The behaviour of the parameter β (defined in the text) is
also shown. As an example, the evolution of the photospheric param-
eters (Teff , Rphot) of a stellar model with initial mass M = 5 M�, and
metallicity Z = Zref = 0.02 is depicted by a magenta line, covering the
evolution from the pre-main sequence to the first pulses on the TP-AGB
(calculations performed with the Padova stellar evolution code).

Within the aforementioned limits of the state variables, the
interactive web mask enables the user to freely specify the ef-
fective ranges of log(T ) and log(R) of interest as well as the
spacing of the grid points Δ log(T ) and Δ log(R). From our tests
it turns out that a good sampling of the main opacity features
can be achieved with Δ log(T ) = 0.05 for log(T ) > 3.7 and
Δ log(T ) = 0.01 for log(T ) ≤ 3.7, and Δ log(R) = 0.5. In any
case, the choice should be driven by consideration of two as-
pects, i.e. maximum memory allocation, and accuracy of the
adopted interpolation scheme.

3.2. Chemical composition

It is specified in terms of the following quantities:

– The reference solar mixture;
– The reference metallicity Zref ;
– The hydrogen abundance X;
– The reference mixture;
– The enhancement/depression factor fi of each element (heav-

ier than helium), with respect to its reference abundance.

The reference solar mixture can be chosen among various op-
tions, which are referenced in Table 3. For their relevance to
the opacity issue, the corresponding solar metallicity, Z�, and

Table 3. Compilations of the solar chemical composition adopted in the
computation of the EOS and gas opacities.

Reference Z� (C/O)� (C/O)a
crit,1

Anders & Grevesse 1989 (AG89) 0.0194 0.427 0.958
Grevesse & Noels 1993 (GN93) 0.0173 0.479 0.952
Grevesse & Sauval 1998 (GS98) 0.0170 0.490 0.947
Holweger 2001 (H01)b 0.0149 0.718 0.937
Lodders 2003 (L03) 0.0132 0.501 0.929
Grevesse et al. 2007 (GAS07) 0.0122 0.537 0.929
Caffau et al. 2009 (C09)c 0.0155 0.575 0.938

a This abundance ratio is defined by Eq. (35). b The elemental abun-
dances are taken from Grevesse & Sauval (1998), but for C, N, O, Ne,
Mg, Si, and Fe that are modified following the revision by Howeger
(2001). c The elemental abundances are taken from Grevesse & Sauval
(1998), but for N, O, and Ne following the revision by Caffau et al.
(2008, 2009).
For each mixture the solar total metallicity Z� (in mass fraction), the
abundance ratios (C/O)� and (C/O)crit,1 are indicated for comparison.
The latter marks a critical boundary for the gas molecular chemistry in
the range 3.2 ≤ log(T ) ≤ 3.6. The C and O abundances are expressed
as number fractions.

the (C/O)� ratio1 are also indicated. Scrolling Table 3 from top
to bottom we note that Z� significantly decreases, passing from
∼0.019 in AG89 down to ∼0.012 in GAS07. This implies that
opacity tables constructed assuming the same Z may notably dif-
fer depending on the adopted solar mixture. Concerning C/O, a
key parameter affecting the opacities for log(T ) <∼ 3.5, we see
that it spans a rather narrow range (0.43 <∼ C/O <∼ 0.53) pass-
ing from one compilation to the other, except for the H01 which
corresponds to a higher value, C/O ∼ 0.72. How much these
differences in the reference solar mixtures may impact on the
resulting opacities is discussed in Sect. 4.1.

Let us indicate withNZ the number of metals, i.e. the chem-
ical elements heavier than helium, with atomic number Zi ≥ 3.
Each metal is characterised by an abundance Xi in mass fraction
and, equivalently, an abundance εi in number fraction, respec-
tively defined as:

Xi =
AiNi∑Nel

j=1 A jNj

and εi =
Ni

Na
=

Ni∑Nel
j=1 Nj

, (30)

where Ni is the number density of nuclei of type i with atomic
mass Ai, and Na is the total number density of all atomic species
(with the same notation as in Sect. 2.1.2). In both cases the nor-
malisation condition must hold, i.e.

∑Nel

i=1 Xi = 1 and
∑Nel

i=1 εi = 1.
The total metal abundance is given by Z =

∑
i≥3 Xi in mass frac-

tion, and εZ =
∑

i≥3 εi in number fraction.
We assign each metal species the variation factors, fi and gi,

relative to the reference mixture:

Xi = fiXi,ref and εi = giεi,ref . (31)

The reciprocal relations between Xi and εi derive straightfor-
wardly:

Xi =
Aiεi∑Nel

j=1 A jε j

and εi =
Xi/Ai∑Nel

j=1 X j/A j

, (32)

1 Throughout the paper the C/O ratio is calculated using the abun-
dances of carbon and oxygen expressed as number fractions, i.e.
C/O= εC/εO following the definition given by Eq. (30).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=1
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Table 4. Main characteristics of the α-enhanced mixtures described in text.

[α/Fe] Mixture fC gC fN gN fO gO fFe−group gFe−group fZ gZ

0.2 A 0.714 0.721 0.714 0.721 1.131 1.143 0.714 0.721 1.000 0.990
B 1.000 0.982 1.000 0.982 1.041 1.022 0.657 0.645 1.000 1.018
C 0.714 0.721 0.714 0.721 1.131 1.143 0.714 0.721 1.392 1.387

0.4 A 0.491 0.500 0.491 0.500 1.233 1.256 0.491 0.500 1.000 0.982
B 1.000 0.970 1.000 0.970 1.060 1.037 0.426 0.413 1.000 1.031
C 0.491 0.500 0.491 0.500 1.233 1.256 0.491 0.500 2.004 2.000

0.6 A 0.329 0.336 0.329 0.336 1.308 1.339 0.329 0.336 1.000 0.977
B 1.000 0.962 1.000 0.962 1.087 1.046 0.273 0.263 1.000 1.039
C 0.329 0.336 0.329 0.336 1.308 1.339 0.329 0.336 2.950 2.972

0.8 A 0.215 0.222 0.215 0.222 1.360 1.398 0.215 0.222 1.000 0.973
B 1.000 0.957 1.000 0.967 1.099 1.052 0.174 0.167 1.000 1.045
C 0.215 0.222 0.215 0.222 1.360 1.398 0.215 0.222 4.392 4.513

The variation factors of C, N, O, and Fe-group elements, defined by Eqs. (33) for abundances either in mass fraction or in mass fraction, are
indicated together with the quantities fZ = Z/Zref and gZ = εZ/εZref . The reference solar composition is GS98.

as well as those between fi and gi for metals:

fi = gi

∑
j≥3 A jε

ref
j∑

j≥3 A jε j
and gi = fi

∑
j≥3 Xref

j /A j∑
j≥3 X j/A j

· (33)

We have verified that fi ≈ gi as long as they are not too large
and the ratios between the two summations in the left-hand side
members of Eq. (33) do not deviate significantly from unity (see,
for instance, Table 4).

In principle, the reference chemical mixture can be any given
chemical composition. Frequent choices are, for instance, mix-
tures with scaled-solar partitions of metals, or with enhanced
abundances of α-elements. The ÆSOPUS code is structured to
allow large freedom in specifying the reference mixture. For
simplicity, in the following we will adopt the solar mixture as the
reference composition, so that the reference metal abundances
are

Xi,ref = Xi,�
Z
Z�

and εi,ref = εi,�
εZ

εZ�
(34)

with clear meaning of the symbols. The partitions, Xi,�/Z�, of
chemical elements from C to Zn are shown in Fig. 2 for a few
compilations of the solar chemical composition.

According to the notation presented by Annibali et al.
(2007), the chemical elements can be conveniently divided into
three classes depending on the sign of fi (or gi) , namely:

– enhanced elements with fi > 1 (or gi > 1);
– depressed elements with fi < 1 (or gi < 1);
– fixed elements with fi = 1 (or gi = 1).

The latter correspond to the reference abundances, i.e. scaled-
solar in the case discussed here. Moreover, let us designate

– selected elements with fi � 1 (or gi � 1)

the group of elements which are assigned variation factors dif-
ferent from unity (either enhanced or depressed), as part of the
input specification. We limit the discussion here to the case of
the abundances Xi expressed in mass fraction, since exactly the
same scheme, with the due substitutions, can be applied to the
abundances εi in number fraction. In this respect one should bear
in mind that the conversions Xi � εi are obtained with Eqs. (32).
Starting from the reference mixture, then the new mixture can be
obtained in two distinct ways:

1. Case Z � Zref . The enhancement/depression factors fi of the
selected elements produce a net increase/depletion of total

Fig. 2. Fractional abundances of elements, with nuclear charge Zi =
6−30, normalised to the solar metallicity according to various compila-
tions, as indicated.

metal content relative to the reference metallicity Zref . The
actual metallicity is calculated directly with Z =

∑NZ
i=1 fiXi,ref .

In this case allNZ variation factors fi can be freely specified
without any additional constrain.

2. Case Z = Zref . The enhancement/depression factors produce
non-scaled-solar partitions of metals, while the total refer-
ence metallicity Zref is to be preserved. This constraint can
be fulfilled with various schemes, e.g. by properly varying
the total abundance of all other non-selected elements so as
to balance the abundance variation of the selected group. For
instance, if the selected elements have all fi > 0, so that
we refer to them as enhanced group, then the whole posi-
tive abundance variation should be compensated by the neg-
ative abundance variation of the complementary depressed
group. Another possibility is to define a fixed group of el-
ements whose abundances should not be varied, hence not
involved in the balance procedure; in this case the preserva-
tion of the metallicity is obtained by properly changing the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=2
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abundances of a lower number of atomic species among the
non-selected ones.
In principle, the quantities fi can be chosen independently for
up to a maximum of (NZ − 1) elements, while the remaining
factor is bound by the Z = Zref condition. A simple practise is
to assign the same factor to all the elements belonging to the
selected group, either enhanced or depressed, as frequently
done for α-enhanced mixtures. In this respect more details
can be found in Sect. 4.3.

The former case (Z � Zref ) properly describes a chemical mix-
ture in which the abundance variations are the product of nuclear
burnings occurring in the stellar interiors. This applies, for in-
stance, to thermally-pulsing asymptotic giant branch (TP-AGB)
stars whose envelope chemical composition is enriched in C and
O produced by He-shell flashes and convected to the surface by
the third dredge-up, which leads to an effective increment of the
global metallicity (Z > Zref).

The latter case (Z = Zref ) corresponds, for instance, to
chemical mixtures with a scaled-solar abundance of CNO ele-
ments XCNO, but different ratios e.g. XC/XCNO, XN/XCNO, and
XO/XCNO. Alternatively, if we consider the abundances in num-
ber fractions, the condition, εCNO = const., may describe the
surface composition of an intermediate-mass star after the sec-
ond dredge-up on the early AGB, when products of complete
CNO-cycle are brought up to the surface. In this case the total
number of CNO catalysts does not change, while C and O have
been partly converted to 14N. Another example may refer to α-
enhanced mixtures with different [α/Fe]> 0 but the same metal
content Z.

Finally, it should be noticed that, once the actual metal-
licity Z is determined, in both cases the normalisation condi-
tion implies that the helium abundance is given by the relation
Y = 1 − X − Z.

4. Results

In the following sections we will discuss a few applications of
the new opacity calculations, selecting those ones that may be
particularly relevant in the computation of stellar models. For
completeness, our results are compared with other opacity data
available in the literature.

4.1. Scaled-solar mixtures

Let us first illustrate the case of scaled-solar mixtures, which
will serve as reference for other compositions. As an example,
Fig. 3 visualises the tri-dimensional plot of one opacity table
calculated over the whole log(T ) − log(R) parameter space for a
given chemical mixture. The latter is characterised by (X = 0.7;
Zref = 0.02; Z = Zref ; fi = 1, for i = 3 · · ·Nel) according to the
notation introduced in Sect. 3, meaning that all metal abundances
are scaled-solar. One can see that the grid of the state variables
(i.e. Δ log(T ) = 0.01 for 3.2 ≤ log(T ) ≤ 3.5, and Δ log(T ) =
0.05 for 3.5 < log(T ) ≤ 4.5; Δ log(R) = 0.5) is sufficiently dense
to allow a smooth variation of κR all over the parameters space,
which is a basic requirement for accurate interpolation.

Different opacity sources dominate the total κR in different
regions of the log(T )− log(R) plane. Roughly speaking, we may
say that the continuous and atomic opacities prevail at higher
temperatures, while molecular absorption plays the major rôle
for log(T ) <∼ 3.5. It has been known for long time (see e.g.
Alexander 1975), for instance, that the prominent opacity bump
peaking at log(T ) = ∼3.25 in Fig. 6 is mainly due to the strong
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Fig. 3. Rosseland mean opacity as a function of variables T and R over
the entire parameter space considered in our calculations. The adopted
composition is assumed to have Z = Zref = 0.02, X = 0.7 and the metal
abundances scaled-solar to the GS98 mixture.

absorption of H2O molecular bands. To delve deeper into the
matter it is instructive to look at Figs. 4 and 5, which illustrate
the basic ingredients affecting the RM opacity and their depen-
dence on wavelength, temperature and density.

Figure 4 displays the spectral behaviour of the monochro-
matic opacity coefficient per unit mass, κ j(ν), of several ab-
sorption and scattering processes, as defined by Eqs. (19), (20).
We consider three representative values of the temperature (i.e.
log(T ) = 3.3, 3.7, 4.0) and three choices of the R variable (i.e.
log(R) = −8, −3, 1), for a total of nine panels that should
sample the main opacity domains. For each temperature, we
also indicate in Fig. 4 the spectral range most relevant for the
Rosseland mean, by marking the wavelength, λmax, at which the
Rosseland weighting function reaches its maximum value (given
by Eq. (28)), and the interval across which it decreases by a fac-
tor 1/e.

At larger temperatures, i.e. log(T ) = 4.0 and λmax ∼ 0.38 μm
(top panels), the total monochromatic coefficient is essentially
determined by the Thomson e− scattering at very low gas den-
sities (see the top-left panel for log(R) = −8), while the H
opacity (bound-bound, bound-free, and free-free transitions)
plays the major rôle at large ρ. Next to hydrogen, some non-
negligible contribution comes from atomic absorption at shorter
wavelengths.

At intermediate temperatures, i.e. log(T ) = 3.7 and λmax ∼
0.75 μm (middle panels), Thomson e− scattering again controls
the total absorption coefficient at the lowest densities, whereas
at increasing ρ the most significant opacity sources are due to
metals and H− absorption (electron photo-detachment for λ <
1.644 μm and free-free transitions).

At lower temperatures, i.e. log(T ) = 3.3 and λmax ∼ 1.88 μm
(bottom panels), the molecular absorption bands (mainly of
H2O, VO, TiO, ZrO, CO) dominate the total absorption coef-
ficient at any gas density except for very low values, where the
spectral gaps between the molecular bands are filled in with the
Thomson e− scattering coefficient. Due to its harmonic charac-
ter, the Rosseland mean opacity emphasises just these opacity
holes, so that the total κR for log(T ) = 3.3 and log(R) = −8
will be mostly determined by the Thomson e− scattering, with a
smaller contributions from molecules.

This fact becomes more evident with the help of Fig. 5,
which provides complementary information on both the chem-
istry of the gas, and the characteristic temperature windows of
different opacity sources. Results are presented as a function of
temperature for three values of the parameter R.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=3
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Fig. 4. Monochromatic absorption coefficients for several opacity sources as a function of the wavelength, for three values of the temperature and
three values of the R variable, as indicated. The chemical composition is defined by Z = Zref = 0.02, X = 0.7 with metal abundances scaled-solar
to the GAS07 mixture. The total coefficient is depicted by the highest black line. The vertical arrow marks the wavelength of the maximum of the
Rosseland weighting function (given by Eq. (28)), while the horizontal arrows delimit the wavelength range within which the Rosseland weighting
function drops by a factor 1/e. Where molecular absorption bands are important, the corresponding spectral intervals are also indicated. For
graphical purpose only, line absorption coefficients for molecules and atoms are smoothed by convolution with a Gaussian function. The variance
is empirically chosen to depend on the wavelength so as to have a neat representation without missing important spectral details.

As for the chemistry (top panels of Fig. 5), we show the con-
centrations of a few species, selecting them among those that
are opacity contributors, while leaving out all other chemicals
to avoid over-crowding in the plots (we recall that ÆSOPUS
solves the chemistry for Ntot ≈ 800 species). It is useful to re-
mark a few important features, namely: i) at lower temperatures
molecular formation becomes more efficient at increasing den-
sity, ii) the most abundant molecule is either carbon monoxide
(CO) thanks to its high binding energy at low and intermedi-
ate densities, or molecular hydrogen (H2) at higher densities; iii)
the electron density ne is essentially supplied by H ionisation
down to temperatures log(T )  3.8−3.6, below which the main

electrons donors are nuclei with low-ionisation potentials, such
as: Mg, Al, Na, Si, Fe, etc. (see Fig. 22 and Sect. 4.3 for more
discussion of this point).

The bottom panels display the contributions of several ab-
sorption/scattering processes to the total RM opacity. This is
done by considering, for a given source j, the ratio κoffj /κR,

where κoffj is the reduced RM opacity obtained by including all
opacity sources but for the jth itself.

At very low densities, i.e. log(R) = −8 (left-hand side panel
of Fig. 5) the most important opacity source, all over the tem-
perature range under consideration, is by far Thomson scattering

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=4
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Fig. 5. Top panels: concentrations of various chemical species as a function of temperature, for three values of the R parameter, as indicated.
Bottom panels: contributions of different opacity sources (both continuous and line-absorption processes) to the total RM opacity. Each curve
corresponds to log(κ) − log(κoffj ), where κ is the full opacity including all opacity sources here considered, whereas κoffj is the reduced opacity
obtained omitting one particular source at once (labelled nearby). The logarithmic notation allows to highlight the temperature domains which
characterise the different opacity contributors. The adopted chemical composition consists of X = 0.7, Z = Zref = 0.02, with elemental abundances
scaled according to the GAS07 solar mixture.

from free electrons. Note that at lower temperatures a relatively
important contribution is provided by Rayleigh scattering from
neutral hydrogen, while the rôle of molecules is marginal since
at these low densities molecular formation is inefficient.

Different is the case with log(R) = −3 (middle panel of
Fig. 5). We can distinguish three main opacity domains as a
function of temperature. At lower temperatures, say for 3.2 <∼
log(T ) <∼ 3.6, molecules completely rule the opacity, with H2O
being the dominant source for log(T ) <∼ 3.4. Additional mod-
est contributions come from metal oxides, such as TiO, VO,
YO, and SiO. Note that, though for C/O < 1 the chemistry is
dominated by O-bearing molecules, there is a small opacity
bump due to CN at log(T ) ≈ 3.5. At intermediate temperatures,
3.6 <∼ log(T ) <∼ 3.8, the most important rôle is played by the
H− continuum opacity, which in turn depends on the availability
of free electrons supplied by ionised metals. Additional opac-
ity contributions are provided by Thomson scattering from elec-
trons and Rayleigh scattering from neutral hydrogen. At larger
temperatures, 3.8 <∼ log(T ) <∼ 4.5, the total RM opacity is de-
termined mostly by the b-f and f-f continuous absorption from
hydrogen, with further contributions from b-b transitions of H
and atomic opacities.

In the high density case with log(R) = 1 (right-hand side
panel of Fig. 5), the opacity pattern is similar to the one just
described, with a few differences. The most noticeable ones are
the sizable growth of the H− opacity bump in the intermediate

temperature window, and the increased importance of the H lines
at higher temperatures.

Finally, we close this section by examining the sensitiveness
of the RM opacity to the underlying reference solar mixture.
Figure 6 shows an example of our opacity calculations made
adopting a few solar abundances compilations available in the
literature. They are summarised in Table 3. The largest differ-
ences are expected for log T <∼ 3.4, where the RM opacity is
dominated by the opacity bump caused by the H2O molecule,
whose amplitude is extremely sensitive to the excess of oxygen
with respect to carbon, hence to the C/O ratio. In fact, we no-
tice that the opacity curves corresponding to GN93, GS98, L03,
GAS07, and C09 lie rather close one to each other, just reflecting
the proximity of their C/O ratios (≈0.5−0.6; see Table 3). For the
same reason, the RM opacity predicted at log T ∼ 3.3 with the
H01 solar mixture is roughly 50% lower, given the higher C/O
ratio (≈0.7).

Some differences in RM opacity are also expected in the
3.5 <∼ log(T ) <∼ 3.65 interval, which is affected mainly by the CN
molecular bands and the negative hydrogen ion H−. We see in
Fig. 6 that most of the results split into two curves: the opacities
based on L03 and GAS07 (and partly also C09) are higher than
those referring to GN93 and GS98 solar mixtures. In this case
the differences are not caused by the CN molecule, but rather
reflect the differences in the electron density. As one can notice
in Fig. 2, L03, GAS07 (and C09) compilations correspond to
higher solar partitions, Xi,�/Z�, of those elemental species that

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=5
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Fig. 6. Rosseland mean opacity as a function of temperature and as-
suming log R = −3. The adopted chemical composition consists of
X = 0.7, Z = Zref = 0.02, with elemental abundances scaled accord-
ing to a few compilations of the solar mixture abundances, namely:
Grevesse & Noels (1993); Grevesse & Sauval (1998); Holweger (2001);
Lodders (2003); Grevesse et al. (2007); Caffau et al. (2008, 2009). Note
the significant depression of the H2O bump in the Holweger (2001)
case compared to the others, due to the lower oxygen abundance, hence
(C/O)� ratio.

mostly provide the budget of free electrons at these tempera-
tures, such as: Mg, Si, Ca, and Fe (see also Fig. 22). As a con-
sequence, the H− opacity is strengthened in comparison to the
GN93 and GS98 cases. On the other hand, the opacity curve
corresponding to the H01 mixture lies somewhere in the middle.
This is the indirect result of the larger C/O ratio (i.e. more carbon
is available) which favours a larger concentration, hence opacity
contribution, of the CN molecule in this temperature window.

The arguments developed here indicate that the expression
“standard solar composition” should be always specified explic-
itly together with its reference compilation and not taken for
granted, since significant differences arise in the RM opacities
depending on the adopted solar mixture.

4.1.1. Comparison with other authors

As a next step we checked our opacity results against tabu-
lated RM data made publicly available from other authors. In
Fig. 7 we show eight representative comparisons, based on: the
widely-used and well-tested database set up by the Wichita State
University group, i.e. Alexander & Ferguson (1994), Ferguson
et al. 2005 (hereafter also F05); the recent data by Lederer &
Aringer 2009 (hereafter also LA09) stored in the VizieR ser-
vice; the RM data available in the Robert L. Kurucz’ home-
page, and the OPAL and OP data computed via their interactive
web-masks. The R and T intervals are different depending on the
source considered. For instance, the comparisons with the OPAL
and OP opacities cover the range from 3.8 ≤ log(T ) ≤ 4.5, since
no molecular contribution is included in the OPAL and OP data.

In general we can conclude that the check is quite satisfac-
tory in all cases under examination, as our opacity values agree

with the reference data mostly within ±0.05 dex, with the largest
differences reaching up to ≈±0.10−0.20 only in narrow regions.

Let us start discussing the comparison with Alexander &
Ferguson (1994) and Ferguson et al. (2005), illustrated in pan-
els from a) to d) assuming various reference solar compositions.
First we notice that the small magenta areas in the upper-left
corners of the four panels are not included in the test, since at
those densities and temperatures dust is expected to condensate2,
whereas our EOS describes the matter in the gas phase.

Besides this, in all cases the agreement between the opacity
data of the Wichita State University group and ÆSOPUS is very
good for 3.4 ≤ log(T ) ≤ 4.5, the differences Δ log(κR) being
mostly comprised within ±0.05 dex throughout the R range. For
log(T ) < 3.4 the deviations between F05 and ÆSOPUS appear
to grow with a systematic trend, i.e. log(κSOPUS

R ) > log(κF05
R ),

at increasing R. Anyhow, the variations are not dramatic, the
biggest values arriving at ≈−0.15/−0.20. This result is not sur-
prising since this is just the region where molecular absorption
dominates, so that the predicted RM opacity is sensitive to differ-
ences in the treatment of the molecular line opacities (line lists,
broadening, adopted frequency grid, etc.).

This applies also when comparing different releases of the
same database as it is illustrated, for instance, by panels a) and
b) relative to the data of the Wichita State University group.
We notice that where ÆSOPUS exhibits the best agreement
(<0.05 dex) with Alexander & Ferguson (1994) at log(T ) ≈ 3.4
and log(R) >∼ −3, the largest differences (0.15−0.20 dex) show
up instead in the comparison with F05 for the same set of abun-
dances. In this respect, we expect that much of the discrepancy
between F05 and ÆSOPUS for 3.2 ≤ log(T ) ≤ 3.4 is due
to the different molecular line data adopted for water vapour,
i.e. Partridge & Schwenke (1997) and Barber et al. (2006),
respectively.

Support to the above interpretation is found when compar-
ing panel c) and e), the latter showing the check of ÆSOPUS
results against Lederer & Aringer (2009) for the L03 solar mix-
ture. As we see the agreement here is quite fair all over the
log(T ) − log(R) diagram, even in the low-T corner dominated
by H2O, VO, and TiO absorption, where larger differences with
F05 (panel c) arise. As a matter of fact, in ÆSOPUS we adopt
essentially the same molecular data as in LA09, so that a good
match is in principle expected.

Finally, let us briefly comment on the bottom panels (g and
h) of Fig. 7, relative to two data sets, OP and OPAL, which are
widely used to describe the RM opacity of the gas in the high-T
regions, say for log(T ) > 4.0. The comparison with ÆSOPUS
in the overlapping interval, 3.8 ≤ log(T ) ≤ 4.5, is really excel-
lent, so that the OP and OPAL opacity tables may be smoothly
complemented in the low-T regime with Æ SOPUS calculations.

4.1.2. Tests with stellar models

The numerical differences in κR between different authors, illus-
trated in previous Sect. 4.1.1, assume a physical meaning when
one analyses their impact on the models in which the Rosseland
mean opacities are employed. As already mentioned in Sect. 1,
the largest astrophysical use of pre-tabulated κR(ρ, T ) is in the
field of stellar evolution models to describe, in particular, the
thermodynamic structure of the most external layers including
the atmosphere.

2 The inclusion of dust in pre-computed opacities is in any case prob-
lematic since in real stars it will hardly form under equilibrium condi-
tions.
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a) Alexander & Ferguson 1994 - solar comp.: GN93
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b) Ferguson et al. 2005 - solar comp.: GN93
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c) Ferguson et al. 2005 - solar comp.: L03
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d) Ferguson et al. 2005 - solar comp.: GS98
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e) Lederer & Aringer 2009 - solar comp.: L03
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f) Kurucz - solar comp.: AG89
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g) Opacity Project - solar comp.: GS98
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h) OPAL - solar comp.: GS98
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Fig. 7. Comparison between our RM opacity results and those provided by other authors, in terms of log(κauthor
R ) − log(κSOPUS

R ). Contour lines, with
an incremental step of 0.05 dex, are superimposed to guide the eye. In all cases, except for Kurucz, the adopted chemical composition corresponds
to Z = Zref = 0.02, X = 0.7. External data are taken from: Alexander & Ferguson (1994) and Ferguson et al. (2005) adopting the Grevesse &
Noels (1993) solar mixture (panels a) and b)); Ferguson et al. (2005) assuming the solar abundances from Lodders (2003) (panel c)) and Grevesse
& Sauval (1998) (panel d)); Lederer & Aringer (2009) adopting the Lodders (2003) solar mixture (panel e)); Kurucz’ web database for a chemical
composition with Z = Z� = 0.0194, X = X� = 0.7065 according to the Anders & Grevesse (1989) solar mixture (panel f)); OP and OPAL
assuming the Grevesse & Sauval (1998) solar mixture (panels g) and h)).

While it is beyond the scope of this paper to perform a
detailed analysis of the effects of low-T opacities on stellar

structure and evolution, we consider here two illustrative cases,
i.e. the predicted location in the H-R diagram of the Hayashi
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Fig. 8. Predicted RGB tracks described by a 1.5 M� model with Z = 0.02, X = 0.7 and scaled-solar abundances of metals according to either GN93
(left panel) or L03 (right panel). The luminosity is derived from the core-mass luminosity relation given by Boothroyd & Sackmann (1988), while
increasing the core mass from 0.20 M� to 0.45 M�. The effective temperature is the result of envelope integrations (see the text for more details).
The different curves correspond to RM opacity tables computed by different authors, in the temperature range 3.2 ≤ log(T ) ≤ 4.0.

Fig. 9. Predicted AGB tracks described by a 2.0 M� model with Z = 0.02, X = 0.7 and scaled-solar abundances of metals according to either
GN93 (left panel) or L03 (right panel). The luminosity is derived from the core-mass luminosity relation, at the quiescent stage of the pre-flash
maximum, given by Wagenhuber & Groenewegen (1998), while increasing the core mass from 0.50 M� to 0.75 M�. The effective temperature is
the result of envelope integrations (see the text for more details). The different curves correspond to different RM opacity tables, in the temperature
range 3.2 ≤ log(T ) ≤ 4.0.

tracks described by low-mass stellar models while evolving
through the RGB and AGB phases. To investigate the differ-
ences in Teff brought about by different choices of low-T opac-
ity tables, we have carried out numerical integrations of a com-
plete envelope model (basically the same as the one included in
the Padova stellar evolution code) which extends from the at-
mosphere down to surface of the degenerate core. The overall
numerical procedure is fully described in Marigo et al. (1996,
1998), and Marigo & Girardi (2007), so that it will not be re-
peated here. The mixing-length parameter is assumed α = 1.68.

As a matter of fact, it has long been known that the at-
mospheric opacity is critical in determining the position in the
H-R diagram of a red-giant star (e.g. Keeley 1970; Scalo &
Ulrich 1975). We also recall that during the quiescent burning
stages of both RGB and AGB phases of a low-mass star the stel-
lar luminosity is essentially controlled by the mass of the central
core (and the chemical composition of the gas), being largely
independent of the envelope mass. Adopting suitable core-mass
luminosity relations available in the literature, for given value
of the core mass and chemical composition, envelope integra-
tions yield the effective temperature at the corresponding lu-
minosity. We have repeated this procedure increasing the core

mass – from 0.2 M� to 0.46 M� for the RGB and from 0.5 M� to
0.75 M� for the AGB – and adopting different opacity tables for
T ≤ 10 000 K.

The results for 1.5 M� and 2.0 M� models with Z =
0.02, X = 0.7 are shown in Figs. 8 and 9 for the RGB and
AGB tracks respectively. We have adopted low-T opacities
from AF94, F05, LA09, and ÆSOPUS, and two reference so-
lar compositions, i.e. GN93 and L03. In all cases the compu-
tations with the opacities from ÆSOPUS and from the Wichita
State University group are in close agreement, typically being
abs(log T AF94

eff − log T SOPUS
eff ) <∼ 0.001 dex (ranging from ∼5 K

to ∼20 K) and abs(log T F05
eff − log T SOPUS

eff ) <∼ 0.005 dex (rang-
ing from ∼10 K to ∼50 K). The deviations from the results with
LA09 opacities are somewhat larger, 0.005 <∼ abs(log T LA09

eff −
log T SOPUS

eff ) <∼ 0.02 dex (ranging from ∼50 K to ∼100 K). In
this respect it should be recalled that in the Teff-range consid-
ered here, 3.4 <∼ log(Teff) <∼ 3.7, the main opacity contributors
are the absorption by H− and Thompson e− scattering (the con-
centration of water vapour is still relatively low even at the low-
est temperatures; see Fig. 5), so that differences in opacities are
likely due to differences in the description of the H− opacity,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=8
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Fig. 10. Comparison of RM opacities relative to two gas mixtures with
Zref = 0.02, X = 0.7 but different C/O ratios, namely C/O= 1.3 and
C/O=C/O� = 0.49 according to GS98 solar composition. The colour
map shows the difference log(κC/O=1.3

R ) − log(κC/O=0.49
R ) throughout the

standard location in the log(T ) − log(R) diagram of one opacity table
computed with Æ SOPUS. The contour lines corresponds to differences
Δ log(κR) multiple of ±0.25 dex. Note the large deviations occurring in
the low-T region dominated by molecular absorption.

and/or in the density of free electrons, which in turn may be af-
fected by differences in the partition functions of the ions with
low-ionisation potentials. Anyhow, the temperature differences
among the RGB and AGB tracks are in most cases lower than
the current uncertainty affecting the semi-empirical Teff-scale of
F-G-K-M giants (σ ∼ 60−80 K; e.g. Ramírez & Meléndez 2005;
Houdashelt et al. 2000).

4.2. Varying C-N-O mixtures

In several situations Rosseland mean opacities for non-scaled
solar abundances should be used. One of these cases applies, for
instance, to stellar models in which the surface abundances of C,
N, and O are altered via mixing and/or wind processes. A re-
markable example corresponds to the TP-AGB phase of low- and
intermediate-mass stars, whose envelope composition may be
enriched with primary carbon (and possibly oxygen) via the third
dredge-up, or with newly synthesised nitrogen by hot-bottom
burning. As a net consequence, the abundances of C, N, and O as
well as their abundance ratios may be significantly changed com-
pared to their pre-TP-AGB values (Wood & Lattanzio 2003).
Most critical is the variation of the surface C/O ratio, which con-
trols the chemistry of the gas at the low temperatures typical of
the atmospheres of AGB stars (e.g. Marigo 2002).

Indeed, one of the aims of the present work is to provide
a flexible computational tool to generate RM opacities for any
value of combination of the C-N-O abundances, hence C/O ratio.

Figure 10 shows clearly that big changes in κR are ex-
pected at low temperatures, say log(T ) < 3.5, when passing
from an O-rich to a C-rich chemical mixture. For instance, at
log(T ) = 3.3 RM opacities of a gas with C/O = 1.3 become
much larger than in the case with C/O = 0.49 at lower densi-
ties, −8 <∼ log(R) <∼ −3, while the trend is reversed at increasing
density, log(R) > −3. This fact is extremely important for the
consequences it brings about to the evolutionary properties of
C stars (see e.g. Marigo & Girardi 2007; Cristallo et al. 2007;
Marigo et al. 2008; Weiss & Ferguson 2009; Ventura & Marigo
2009).

In this context we will analyse in detail the impact of chang-
ing the C/O ratio in a gas mixture, thus simulating the effect of
the third dredge-up in TP-AGB stars.

Fig. 11. Concentrations of several gas species as a function of the
C/O ratio, in a gas mixture with log(T ) = 3.3, log(R) = −3 (or equiv-
alently log(ρ) = −11.1), Zref = 0.02, and X = 0.7, and adopting the
GAS07 reference solar partitions. The increase of C/O follows that of C,
while O abundance is kept unchanged. The actual metallicity Z also in-
creases with C. The molecules are divided into two groups, namely: O-
bearing molecules (top panel) and C-bearing molecules (bottom panel).
Note the sharp change in molecular concentrations at C/O ≈ 1.

4.2.1. Molecular chemistry: the key rôle of the C/O ratio

Figure 11 illustrates the abrupt change in the chemical equilib-
ria when the C/O ratio passes from below to above unity, in a
gas with log(T ) = 3.3 and log(R) = −3 (log(ρ) = −11.1). From
a more careful inspection of Fig. 11 we see that the abundance
curves of the O-bearing molecules (top panel) and the C-bearing
molecules (bottom panel) follow mirror trends, exhibiting two
sudden changes of values at C/O≈ 0.93 and C/O≈ 1.0. We may
say that these two C/O values bracket the transition region be-
tween the O-dominated and the C-dominated chemistry. As dis-
cussed by Ferrarotti & Gail (2002) the abrupt changes in the
chemical equilibria at C/O ≈ 0.93 and C/O ≈ 1.0 respectively
correspond to the critical values of the carbon abundance

εcrit,1
C = εO − εSi −→

(
C
O

)
crit,1

=
εcrit,1

C

εO
= 1 − εSi

εO
(35)

εcrit,2
C = εO −→

(
C
O

)
crit,2

=
εcrit,2

C

εO
= 1.

The existence of εcrit,1
C and εcrit,2

C can be understood consider-
ing the extraordinary high bond energies of the two monoxide

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=11


P. Marigo and B. Aringer: ÆSOPUS, a computational tool for low-temperature gas opacity 1555

Fig. 12. The same as in Fig. 4, but for gas mixtures with C/O= 0.97 (upper panels) and C/O= 1.30 (bottom panels) and log(T ) = 3.3. Note that in
the spectral range relevant for the RM opacity, the total monochromatic coefficient is affected by heterogeneous sources (e.g. TiO, ZrO, CO, H2O,
CN, Thomson e− scattering) for C/O= 0.97, while absorption by C-bearing molecules dominate for C/O= 1.30.

molecules CO and SiO, i.e. EB(CO) = 11.16 eV and EB(SiO) =
8.29 eV, as well as the usually large concentrations of the in-
volved species, i.e. C, O, and to a less extent Si. Following
Ferrarotti & Gail (2002) for temperatures T <∼ 1500 K, at which
dust is expected to condensate, one must also consider the con-
tribution of another strongly-bound molecule, SiS (EB(SiS) =
6.46 eV), so that the first critical carbon abundance should be
redefined as εcrit,1

C = εO − εSi + εS. Since this study deals with
the gas chemistry for log(T ) ≥ 3.2 (i.e. without dust formation)
in the following we limit our discussion to the case described by
Eq. (35).

In most cases the bond strength of CO mostly determines
the chemical equilibria: as long as εC < ε

crit,1
C , the excess of oxy-

gen atoms, εO − εC, is available for the formation of O-bearing
molecules – such as SiO, H2O, TiO, VO, YO, etc. –, while as
soon as εC > ε

crit,2
C , i.e. C/O> 1, the situation is reversed and

the excess of of carbon atoms, εC − εO, takes part in C-bearing
molecules such as CN, HCN, C2, C2H2 , SiC, etc. This also ex-
plains why, unlike the others, the abundances of the molecules
involving the carbon monoxide, like CO itself and HCO, show a
flat behaviour with the C/O ratio.

The situation is somewhat different in the transition interval,
εcrit,1

C
<∼ εC <∼ εcrit,2

C , where the molecular pattern is controlled
also by SiO, in addition to CO. The C, O, and Si atoms are
now almost completely absorbed in the CO and SiO monoxides,
which are the most abundant molecules, as shown in Fig. 11. In
other words, the excess of oxygen atoms over carbon is trapped
in the molecular bond with silicon, which accounts for the first
abundance drop of the other O-bearing molecules at C/O 0.93.

It is clear from Eq. (35) that the value of (C/O)crit,1 depends
on the assumed oxygen and silicon abundances. In principle
any change in the ratio Si/O would correspond to a different
(C/O)crit,1. As a reference case, it is instructive to compare the
results for different choices of the solar abundances. They are
listed in Table 3. Passing from the AG89 to the most recent
GAS07 compilation, the C/Ocrit,1 decreases from0.96 to 0.93,
implying that the transition from the O- to the C-dominated
chemistry takes place over a wider range of the C/O ratio, i.e.
∼0.93−1 for GAS07 in place of ∼0.96−1.00 for AG89. As we
will see later in this section, the knowledge of this critical ratio
is of crucial importance since it defines the onset of the transi-
tion between two chemical regimes, with consequent dramatic
effects on the corresponding RM opacities of the gas (see for
instance Figs. 15 and 16).

4.2.2. Opacity sources at increasing C/O ratio

The extreme sensitiveness of the molecular chemistry – for
log(T ) <∼ 3.5−3.6 depending on the density – to the C/O pa-
rameter has striking consequences on the low-temperature gas
opacities, as shown in Fig. 12, relative to log(T ) = 3.3 and three
values of the R parameter. This figure can be interestingly com-
pared with the bottom panels of Fig. 4, describing the case of
an oxygen-rich scaled-solar chemistry. For instance, we see that
at log(T ) = 3.3 and log(R) = −3 (bottom-mid panel of Fig. 12)
the total monochromatic coefficient κ(ν) for C/O= 1.3 is mostly
determined by the absorption bands of molecules such as HCN
and CN, while in a gas with the same thermodynamic conditions

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=12
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Fig. 13. The same as in Fig. 5 but for gas mixtures with C/O= 0.97 (upper panels) and C/O= 1.3 (bottom panels), and zoomed into the molecule-
dominated temperature region. Note the various opacity bumps of the C-bearing molecules in the C/O= 1.30 case, while comparable contributions
from both O-rich and C-rich molecules are present in the C/O= 0.97 case.

and solar C/O  0.5, the dominating species are H2O, TiO, and
VO (see bottom-mid panel of Fig. 4).

At the same temperature and density, and for C/O= 0.97
(upper-mid panel of Fig. 12) the total coefficient κ(ν) is, on aver-
age, lower than in the other two cases, being mostly affected by
the absorption bands of CO, while the gaps in between are pop-
ulated by the weaker molecular bands of H2O, SiO, ZrO, TiO,
etc. At lower densities (log(R) = −8; upper-left panel of Fig. 12)
Rayleigh scattering from neutral H and Thomson scattering from
free electrons fill the spectral intervals between the CO absorp-
tion bands, while at higher densities (log(R) = 1; upper-right
panel of Fig. 12) the total monochromatic coefficient is com-
pletely dominated by molecular absorption, with a sizable con-
tribution by CIA(H2/H2) at λ  2 μm, just in correspondence of
the maximum λmax of the weighting function of the Rosseland
mean (see Eq. (28)).

The sharp changes in the chemistry and monochromatic co-
efficient κ(ν) as a function of C/O impact as much strongly on
the integrated RM opacity κR, which is evident in Figs. 13–16.

For the same two C/O values considered above, Fig. 13
shows the contributions of different opacity sources to the
RM opacity as a function of the temperature (and assuming
log(R) = −8, −3, 1). An instructive comparison with the results
for a scaled-solar chemistry can be done with the help of Fig. 5.
In the case with C/O= 0.97 (upper panels of Fig. 13) Rayleigh
scattering from hydrogen and Thomson scattering from free
electrons dominate for log(R) = −8, becoming comparable with
the molecular sources for log(R) = −3. Moreover, we notice

that at this C/O value, representing the transition between dif-
ferent chemistry regimes, the opacity pattern is quite heteroge-
neous as it includes the contributions from both O-bearing and
C-bearing molecules. For instance, we see that H2O is impor-
tant at lower temperatures, CN shows up at larger temperatures,
while CO contributes over a larger temperature interval.

In the case with C/O= 1.3 (bottom panels of Fig. 13) the
most noticeable features at different densities are the following.
At log(R) = −8 and log(T ) <∼ 3.3 the largest contribution come
from C3 (and CN, C2), while at larger temperatures the elec-
tron scattering dominates. At log(R) = −3 the high and broad
opacity bump of CN that dominates the RM opacity over a wide
temperature interval, 3.30 <∼ log(T ) <∼ 3.55, while the C2H2 con-
tribution is prominent for log(T ) <∼ 3.30. In addition, other C-
bearing molecules (C2, C3, HCN, CO) provide non-negligible
contributions to the RM opacity. Finally, at log(R) = 1 the poly-
atomic molecule C2H2 is the most efficient contributor to κR for
log(T ) ≤ 3.4, while the hydrogen anion becomes prominent at
higher temperatures.

The complex behaviour of the RM opacities as a function
of the C/O ratio is exemplified with the aid of Fig. 14 for
3.2 <∼ log(T ) <∼ 3.6, the temperature range in which molecules
become the most efficient radiation absorbers. It turns out that
while the C/O ratio increases from 0.1 to 0.9 the opacity bump
peaking at (log(T )  3.3 for log(R) = 3) – mostly due
to H2O – becomes more and more depressed because of the
smaller availability of O atoms. Then, passing from C/O= 0.9
down to C/O= 0.95 the H2O feature actually disappears and κR

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=13
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Fig. 14. Rosseland mean opacity as a function of temperature, assuming
log(R) = −3, and at increasing C/O, from 0.1 up to 2.0. The reference
composition is defined by (Zref = 0.02, X = 0.7) and assuming the
metal abundances scaled-solar to the GAS07 mixture. The abundance
of carbon is made vary (hence the actual Z), while keeping unchanged
that of oxygen.
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Fig. 15. Rosseland mean opacity as a function of the temperature and
increasing C/O. adopting the GAS07 solar mixture, and assuming Zref =
0.02, X = 0.7, and log(R) = −3. The abundance of carbon is made vary
accordingly to the current C/O ratio (so that the actual metallicity varies
as well), while that of oxygen is kept fixed at its scaled-solar value.

drastically drops by more than two orders of magnitude. In fact,
at this C/O value the chemistry enters the transition region al-
ready discussed (see Fig. 11), so that most of both O and C
atoms are trapped in the CO molecule at the expense of the
other molecular species, belonging to both the O- and C-bearing
groups. At C/O= 1 the RM opacity increases at the lowest tem-
peratures, log(T ) <∼ 3.3 , while a sudden upturn is expected as
soon as C/O slightly exceeds unity, as displayed by the curve
for C/O= 1.05 in Fig. 14. This fact reflects the drastic change in
the molecular equilibria from the O- to the C-dominated regime.
Then, at increasing C/O (1.1, 1.2, 1.5, and 2.0) the opacity curves
move upward following a more gradual trend, which is related
with the strengthening of the C-bearing molecular absorption
bands.

An enlightening picture of the dependence of the RM opacity
on the C/O ratio is provided by Fig. 15, which displays the map
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Fig. 16. The same as in Fig. 15, but zoomed into a narrower interval
around C/O = 1. The reference solar compositions are AG89 (top panel)
and GAS07 (bottom panel).

of log(κR) at varying temperature and C/O, for fixed log(R) =
−3. In this diagram the drop in opacity marking the transition
region between the O-rich and C-dominated opacity is neatly
visible as a narrow vertical strip of width 0.95 <∼ C/O <∼ 1.00
(assuming GS98 as reference solar mixture) for temperatures
3.2 ≤ log(T ) <∼ 3.35. This C/O range exactly coincides with
the transition interval, (C/O)crit,1 <∼C/O<∼ (C/O)crit,2, between the
O- and C-dominated chemistry. As already mentioned, the lower
limit C/Ocrit,1 is particularly sensitive to the abundance of sil-
icon relative to oxygen. In respect to this, Fig. 16 shows an
enlargement of the opacity map over a narrow interval around
C/O= 1, for two choices of the reference solar composition, i.e.
AG89 and GAS07. It is evident that the opacity dip affects a
larger C/O range in the case of GAS07 as it corresponds to a
higher ratio, (Si/O)� = 7.079 × 10−2, compared to AG89 with
(Si/O)� = 4.168 × 10−2. Once chosen the reference solar mix-
ture, one should take this feature into account when computing
RM opacity tables at varying C/O ratio, in order to have a good
sampling of the critical region, and avoid inaccurate interpola-
tions between grid points belonging to different regimes.

Going back to Fig. 15 we also notice that in the 3.4 <
log(T ) <∼ 3.6 the RM opacity increases with C/O. This fact is
due to the increasing contribution from the CN molecule, which
is one of the relevant opacity sources in this temperature interval
(see bottom-middle panel of Fig. 5 for C/O= 0.54, and Fig. 13
for C/O= 0.95 and C/O= 1.3). It is worth remarking that the ef-
fect on the H− opacity due to the increased carbon abundance is
quite modest and only affects the opacity for log(T ) > 3.6, when
ionised carbon is expected to provide some fraction of the avail-
able free electrons (see Fig. 22). A more exhaustive considera-
tion of this point is given in Sect. 4.3, when discussing the case
of α-enhanced mixtures. For larger temperatures the differences
in opacity at increasing C/O progressively reduce and practically
vanish for log(T ) > 3.7, when the opacity is controlled by the
hydrogen bound-free and free-free transitions.
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Fig. 17. Rosseland mean opacity as a function of the temperature in a
gas with Zref = 0.02, X = 0.7, and log R = −3. The adopted chem-
ical composition is characterised by C/O= 1.3, for various compila-
tions of the reference solar mixture, namely: GN93, GS98, H01, L03,
GAS07,and C09. In each case the actual metallicity Z > Zref because of
the increase in C abundance.

Let us now briefly comment the sensitiveness of the results
to the reference solar mixture. To this aim Fig. 17 illustrates
the trend of RM opacity as a function of the temperature in a
carbon-rich gas (C/O= 1.3) with the same Zref = 0.02, but dif-
ferent choices of the solar composition. The differences show
up for log(T ) <∼ 3.65 and in most cases are modest, thus con-
firming the key rôle of the C/O ratio in determining the basic
features of the molecular opacities. Another point which de-
serves some attention is the behaviour of the RM opacity in
the 3.55 <∼ log(T ) <∼ 3.65 interval, which is affected mainly by
the CN molecular bands and the negative hydrogen ion H−. A
detailed discussion of this point has been already developed in
Sect. 4.1.

4.2.3. Practical hints on interpolation

At given metallicity Z and partitions of the metal species Xi/Z,
interpolation between pre-computed opacity tables is usually
performed as a function of the state variables (e.g. T and R) and
the hydrogen abundance X.

When dealing with chemical mixtures with changing ele-
mental abundances, as in the case of the atmospheres of TP-
AGB stars, one has to introduce additional independent parame-
ters, in principle as many as the varying chemical species.

Let us consider here the most interesting application, that is
the case of TP-AGB stars which experience significant changes
in the surface abundances of CNO elements, hence in the C/O ra-
tio. Suppose, for simplicity, to have a chemical mixture with
C/O> 1. Correct interpolation requires that not only the car-
bon abundance XC is adopted as independent parameter, but
also the C/O ratio given its crucial rôle in the molecular chem-
istry and opacity (see Figs. 11 and 14). In addition, one should
pay attention to the drastic changes in κR in the proximity of
C/O= 1. The narrow opacity dip, delimited by the boundaries
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Fig. 18. Comparison between our RM opacities and the data from
Lederer & Aringer (2009), in terms of log(κauthor

R ) − log(κSOPUS
R ). A few

Contour lines are plotted with the corresponding values (in dex). The
chemical mixture is defined by Zref = 0.02, X = 0.7, and C/O  1.49.
The reference solar composition is L03.

C/Ocrit,1 = 1 − εSi/εO and C/Ocrit,2 = 1 (see Figs. 15, 16), should
be sampled with at least 1 or 2 opacity tables, to avoid substantial
mistakes in the interpolated values.

A useful example of an interpolation scheme suitable to treat
the complex chemical evolution predicted at the surface of TP-
AGB stars undergoing both the third dredge-up and hot-bottom
burning can be found in Ventura & Marigo (2009), where the
grid of pre-computed opacity tables covers wide ranges of C-N-
O abundances (and C/O ratio). Following the formalism intro-
duced in Sect. 3, the adopted independent parameters (besides T ,
R and X) are the variation factors fC, fC/O, and fN (defined by
Eq. (31)), which are assigned values both >1 (i.e. enhancement)
and <1 (i.e. depletion) to account for the composite effect on the
surface composition produced by the third dredge-up and hot-
bottom burning. In fact, the C/O ratio may initially increase due
to the the third dredge-up and then decrease when hot-bottom
burning consumes carbon in favour of nitrogen.

Finally it should be remarked that, when dealing with C-rich
mixtures, adopting both fC and fC/O (rather than either fC or
fC/O) as independent parameters allows more robust results,
since the interpolation is piloted by both the actual carbon abun-
dance (mainly affecting the strength of the opacity curves) and
the actual C/O ratio (mainly influencing the morphology of the
opacity curves; see Fig. 14).

4.2.4. Comparison with other authors

Finally, we close our discussion on the RM opacities for C-rich
mixtures by comparing our results with the data calculated by
Lederer & Aringer (2009. Figure 18 shows an example for a gas
mixture characterised by Zref = 0.02, X = 0.7, and C/O= 1.49.
In general, the agreement between the two calculations is rea-
sonably good, but worse than that for scaled-solar mixtures (see
Fig. 7, panel b). The largest differences show up at the lower tem-
peratures, where the RM opacity is dominated by the CN, C2H2,
C2, HCN, C3 molecular bands. This migth appear a bit odd since
both sets of calculations adopt basically the same molecular data
(see Table 2).

In the range 3.2 <∼ log(T ) <∼ 3.4, compared to Lederer &
Aringer (2009), ÆSOPUS predicts larger RM opacities (up to
0.1/0.2 dex) across a strip with −7 <∼ log(R) <∼ 3, and lower
values (up to 0.3 dex) for log(R) > −3.
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One likely motivation of the former difference is that the
scaling introduced by LA09 to the original g f values in the
C2 line list (Querci et al. 1974) is not included in our calcula-
tions. As discussed by LA09 (see their Fig. 10) not applying
this correction to the line strengths of C2 causes an increase
of log(κR) up to 0.1 dex, which is just what we get in terms
of log(κLA09

R ) − log(κSOPUS
R ) in that particular region of the di-

agram. On the other hand, more recently Aringer et al. (2009)
have shown that omitting this scaling modification to the origi-
nal C2 line list improves the comparison between synthetic and
observed colours of carbon stars (see their Fig. 15).

The latter discrepancy between LA09 and ÆSOPUS at larger
densities has not a clear reason at present. We note that in this
region of the log(T ) − log(R) diagram, the dominant contribu-
tion to the RM opacity is provided by C2H2 (see bottom pan-
els of Fig. 12). We are currently investigating possible differ-
ences among the partition function and/or dissociation energy
of this molecule, adopted in the EOS calculations by LA09 and
ÆSOPUS.

4.3. α-enhanced mixtures

We will analyse a few important aspects related to RM opacities
of α-enhanced mixtures, i.e. characterised by having [α/Fe] > 0,
according to the notation (in dex):

[α/Fe] = log

(
Xα
XFe

)
− log

(
Xα,�
XFe,�

)
(36)

where Xα,� and XFe,� are the total mass fractions of the α-
elements and Fe-group elements, respectively. In the following
we allocate O, Ne, Mg, Si, S, Ca, and Ti in the α-group, while V,
Cr, Mn, Fe, Co, Ni, Cu, and Zn are assigned to the Fe-group.
It should be noticed that, since Fe is by far the most abundant
element of its group, the ratio [α/Fe] calculated with Eq. (36)
coincides with the ratio computed using the abundances in num-
ber fraction:

[α/Fe] = log

(
εα
εFe

)
− log

(
εα,�
εFe,�

)
· (37)

For simplicity in our discussion we take as selected elements all
α-elements which are given the same [α/Fe] > 0. However, it
should be remarked that any other prescription, concerning both
the selected elements and the corresponding [Xi/Fe] (i.e. positive
or negative), can be set by the user via the ÆSOPUS interactive
web page.

First of all, we call attention to the fact that a given value
of the ratio [α/Fe] is not sufficient to specify the chemical mix-
ture unambiguously. The same degree of α-enhancement may
correspond to quite different situations, as exemplified in the
following.

Adopting the formalism introduced in Sect. 3 and introduc-
ing the quantity fZ = Z/Zref (gZ = εZ/εZref ), we define three
different α-enhanced compositions that, in our opinion, may de-
scribe possibly frequent applications. They are characterised as
follows (considering the metal abundances expressed in mass
fractions):

– Mixture A: Z = Zref hence fZ = 1; fi > 0 for α-elements
(enhanced group); fi < 0 for any other element (depressed
group). In this case the fixed group (with fi = 0) is empty.

– Mixture B: Z = Zref hence fZ = 1; fi > 0 for α-elements (en-
hanced group); fi < 0 for the Fe-group elements (depressed
group); fi = 0 for any other element (fixed group).

Fig. 19. Relation between the total metallicity Z = fZ Zref , the C/O ratio
and the degree of α-enhancement [α/Fe], for the three chemical mix-
tures A, B, and C defined in Sect. 4.3, and adopting Zref = 0.02. The
reference solar mixture is GS98.

– Mixture C: Z > Zref hence fZ > 1; fi > 0 for α-elements
(enhanced group); fi < 0 for any other element (depressed
group). In this case the fixed group (with fi = 0) is empty, as
for mixture A.

For each of the three mixtures considered here, Table 4 lists the
variation factors, fi and gi, of the most relevant elements, i.e.
C, N, O, Fe-group elements, and the metallicity parameter, fZ
and gZ , as a function of a few selected [α/Fe] values. The gen-
eral analytical derivation of the abundance variation factors as a
function of the selected [Xi/Fe] for the three kinds of mixtures is
detailed in Appendix C. Figure 19 displays the expected trends
of C/O and fZ at increasing [α/Fe] assuming Zref = 0.02 and the
GS98 solar composition.

For a given [α/Fe] value, the three mixtures have distinc-
tive abundance features when compared to the reference com-
position, i.e. with Z = Zref and scaled-solar partitions of metals.
In particular, for their relevance to the resulting RM opacity, it
is worth considering the changes in the CNO abundances, and
mostly in the C/O ratio.

– Mixture A is depleted both in the iron-group elements as well
as in carbon and nitrogen. For instance, at [α/Fe] = 0.4, the
abundances of the Fe-group elements are almost halved and
the same applies to C and N, while O is augmented by∼23%.
As a consequence the C/O ratio decreases significantly, pass-
ing from (C/O)� ∼ 0.49 down to (C/O)� ∼ 0.19. In general,
the ratio C/O lowers considerably at increasing [α/Fe].

– Mixture B is depleted in the iron-group elements, while C
and N are left unchanged. At [α/Fe] = 0.4, the abundances
of the Fe-group elements are depressed by ∼43%, while O is
increased by only ∼6%. In this case the C/O ratio is just little
affected, changing from (C/O)� ∼ 0.49 to (C/O)� ∼ 0.46. In
general, the ratio C/O slightly decreases at increasing [α/Fe].

– Mixture C has the same characteristics of mixture A in terms
of metal partitions, i.e. (Xi/Zref )A = (Xi/Z)C , but with a

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=19


1560 P. Marigo and B. Aringer: ÆSOPUS, a computational tool for low-temperature gas opacity

Fig. 20. Rosseland mean opacity as a function of temperature and assuming log R = −3, for a gas with (Zref = 0.02, X = 0.7) and various choices of
the ratio [α/Fe], as indicated. The reference solar mixture is GS98. Results are shown for three choices of the chemical composition, corresponding
to mixtures A, B, C described in the text.

Fig. 21. The same as in Fig. 20, but for Zref = 0.0001.

different metallicity. It follows that the C case shares with A
the same elemental ratios, so that the C/O declines signif-
icantly at increasing [α/Fe], while the total metallicity in-
creases. For instance, at [α/Fe] = 0.4 mixture C corresponds
to a metallicity Z  2 Zref (see Table 4 and Fig. 19).

The aforementioned differences in the chemistry among the mix-
tures A, B, and C affect the resulting RM opacities, as dis-
played by Fig. 20 for Zref = 0.02 and Fig. 21 for Z = 0.0001,
both assuming X = 0.7 and log(R) = −3. Let us first dis-
cuss the results of the A and B cases with Zref = 0.02.
With respect to mixture A (left panel of Fig. 20), we see that
at increasing α-enhancement, the opacity variations show up
with opposite trends in two temperature intervals, namely: at
intermediate temperatures, 3.50 <∼ log(T ) <∼ 3.65, and at lower
temperatures, 3.2 <∼ log(T ) <∼ 3.4. Specifically, the opacity knee
at log(T )  3.55 slightly smooths, while the opacity bump at
log(T )  3.3 becomes more prominent with increasing [α/Fe].

As already discussed in Sect. 4.1, in the 3.5 <∼ log(T ) <∼ 3.6
interval the most effective opacity source is the negative hydro-
gen ion (see lower middle panel of Fig. 5), which positively
correlates with the electron density, ne. Figure 22 shows that in
this temperature range the principal electron donors are elements
with relatively low-ionisation potentials, mainly Mg, Si, Fe, Al,
Ca, and Na, which involve both the enhanced group and the de-
pressed group. For this reason, it turns out that in the α-enhanced

mixture of type A the decreased number of electrons contributed
by Fe (together with C, Na, Al, Cr, Ni) is practically counter-
balanced by the increased number of electrons removed from
the α-atoms such as Mg, Si, and S. The net effect is just a very
little reduction in the electron density. In the case exemplified in
Fig. 22 even a large α-enhancement [α/Fe] = 0.6 corresponds
to a reduction of ne by just ∼6% at log(T ) = 3.55. In turn,
this small variation in ne produces a minor reduction of the H−
opacity. From a careful inspections of the results we find that
the depression of the opacity knee at log(T )  3.55 should be
rather ascribed to the weakening of the CN molecular absorp-
tion bands, which reflects the depression of both carbon and ni-
trogen abundances in mixture A. In fact, at these temperatures
and log(R = −3) the CN contribution to the RM opacity is not
negligible (see lower middle panel of Fig. 5).

With respect to mixture B, we note that in the same temper-
ature range, i.e. 3.50 <∼ log(T ) <∼ 3.65, the variations of the RM
opacity at increasing [α/Fe] are smaller than for mixture A, al-
most negligible. In fact, in mixture B the carbon and nitrogen
abundances are left unchanged so that the opacity contribution
from CN is not expected to vary as well. Furthermore, the same
arguments on the electron density, discussed for mixture A, hold
also in this case, and the H− opacity contribution is predicted to
change just slightly.

Let us now consider the temperature interval 3.2 <∼ log(T ) <∼
3.4, which is characterised by the opacity bump due to the
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Fig. 22. Contributions of free electrons ζi = ne,i/ne, normalised to the
total electron density ne, provided by different ions as a function of
temperature, in two gas mixtures with (Z = Zref = 0.02, X = 0.7,
log(R) = −3) and different partitions of the α-elements, namely:
[α/Fe] = 0.0 (scaled-solar abundances; solid lines), and [α/Fe] = +0.6
(α-enhanced mixture of type A; dashed lines). The arrows indicate
the increasing/decreasing trends when passing from [α/Fe] = 0.0 to
[α/Fe] = +0.6. The highest curve (in red) displays the ratio ne,α/ne,0,
i.e. the electron density of the α-enhanced composition relative to the
scaled-solar case. The reference solar mixture is GS98.

molecular absorption bands of H2O, TiO, and ZrO. We see from
Fig. 19 (bottom panel) that the opacity peak grows at increasing
[α/Fe], reflecting the decrease of the C/O ratio. In fact, the con-
comitant enhancement of oxygen and the depression of carbon
favour the chemistry of the O-bearing molecules, thus strength-
ening the opacity contributions of H2O, TiO, and ZrO at those
temperature. The reader should refer to Sect. 4.2 for a broad
analysis of the dependence of the low-temperature opacity on
the C/O ratio. For the same reasons, in the case of mixture B
the opacity bump is practically insensitive to changes in [α/Fe],
since the decrease of C/O ratio is just marginal, as shown in
Fig. 19.

Figure 23 shows the differences in terms of Δ log(κR) ex-
pected when the chemical composition of the gas is enhanced in
α-elements, according to mixture A. The same comments already
spent for Fig. 20 (left panel) hold here. At increasing [α/Fe] neg-
ative deviations mostly take place in the region dominated by
the absorption of H−, while positive variations show up at lower
temperatures, over a well-defined region in the log(T ) − log(R)
diagram, the boundaries of which are determined by the ther-
modynamic conditions required to form H2O efficiently (see top
panels of Fig. 5), thus becoming narrower at decreasing R.

The case of mixture C deserves different remarks. At increas-
ing [α/Fe] the RM opacity is predicted to be larger all over the
temperature range 3.2 <∼ log(T ) <∼ 3.75, and the variations are
always larger than for the other two mixtures. This fact can be
explained simply as a metallicity effect, since the global metal
content increases with the [α/Fe] as indicated by the fZ param-
eter (see Fig. 19). Therefore, mixture C shares with mixture A
the same partition of metals (i.e. the same variation factors fi;
see Table 4), but their abundances are all higher, including those
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Fig. 23. Differences in RM opacities between α-enhanced mixtures,
with [α/Fe] = +0.4 (top panel) and [α/Fe] = +0.8 (bottom panel),
and a scaled-solar composition according to GS98. The α-enhanced
mixtures are constructed according to the A scheme. In all case we as-
sume (Zref = 0.02, X = 0.7). Contour lines, with an incremental step of
0.05 dex, are over-plotted to guide the comparison.

Fig. 24. Rosseland mean opacity as a function of temperature and as-
suming log R = −3, for a gas with (Zref = 0.001, X = 0.7). The reference
solar mixture is GS98. Results are shown for three chemical mixtures,
namely: i) scaled-solar abundances of metals; enhanced abundances of
α-elements with [α/Fe] = +0.4 (according to mixture A; see Sect. 4.3);
peculiar chemical pattern characterised by additional C-N-O-Na-Mg-Al
abundance variations superimposed to the α-enhanced mixture. See the
text for details.
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Fig. 25. Concentrations of a few atomic and molecular species as a function of the temperature in a gas with primordial composition, adopting
Zref = 0, X = 0.7521, and a lithium abundance of εLi/εH = 4.15 × 10−10, and assuming log(R) = −3. The fraction of free electrons, ne is depicted
by a dashed black line.

belonging to the depressed group. The net effect is systematic
increase of the RM opacity with [α/Fe].

Finally, a cautionary comment is worth being made. It should
be noticed that the while the α-elements are the same for the
three mixtures here considered, the differences deal with i)
which elements are assigned to the depressed group and to the
fixed group; and ii) the total metallicity. The results discussed
above show clearly that this an important point which impacts
on the resulting RM opacities. Therefore, when using RM opac-
ity tables one should be always aware of how the underly-
ing α-enhanced mixture has been constructed, since his/her re-
sults may be importantly affected. This aspect has been recently
discussed by Dotter et al. (2007). To our knowledge available
RM opacity tables adopt α-enhanced mixtures similar to our A
scheme (e.g. Ferguson et al. 2005, and related website of the
Wichita State University group).

4.4. Other peculiar mixtures: C-N-O-Na-Mg-Al abundance
anti-correlations

Another relevant case is suggested by the peculiar chemical
patterns observed in stars of Galactic globular clusters (GGC),
being characterised by striking abundance anti-correlations be-
tween C-N and O-Na, and Mg-Al, which are in turn superim-
posed on a typical α-enhanced mixture (e.g. Gratton et al. 2001).
Stellar evolution models including low-temperature RM opaci-
ties suitable for these particular compositions have been recently
calculated (Salaris et al. 2006; Pietrinferni et al. 2009).

Figure 24 shows an example of RM opacities computed with
ÆSOPUS for a gas mixture which would represent the pattern
of extreme C-N-O-Na-Mg-Al anti-correlations, as measured in
GGC stars (Carretta et al. 2005). The adopted abundance scheme
is the following. We start with our reference scaled-solar mix-
ture, characterised by Zref = 0.001, X = 0.7 and GS98 so-
lar composition. Then we construct a second composition with
[α/Fe] = +0.4 following the prescriptions for mixture A (see
Sect. 4.3). The C/O decreases from (C/O)�  0.49 to 0.19,
while the total metallicity is preserved. This fact explains the
growth of the opacity peak due to H2O at log(T ) <∼ 3.4 in the
α-enhanced mixture. The reader should go back to Sect. 4.3 for
an extensive discussion on the differences between the two RM
opacity curves.

Finally we perturb the second mixture and add the C-N-O-
Na-Mg-Al anti-correlation pattern assuming the following abun-
dance variations in dex (see Salaris et al. 2006): log( fC) = −0.6;
log( fN) = +1.8; log( fO) = −0.8; log( fNa) = +0.8; log( fMg) =
−0.4; and log( fAl) = +1.0. By doing so the total metallicity al-
most doubles, Z = 1.97 × 10−3, while the ratio [Fe/H]  −1.5
remains the same as in the genuine α-enhanced mixture.

The increase in metallicity is mainly due to the augmented
N abundance, while those of C and O both drop considerably.
The resulting C/O ratio is now 0.31, and the total ε(C) + ε(O) is
decreased by 83%. This fact explains that, despite of the over-
all increase in Z, the opacity curve of the peculiar mixture lies
systematically lower than the others in the temperature region
dominated by the H2O bump.

In the temperature interval 3.4 <∼ log(T ) <∼ 3.6 the differ-
ences in RM opacity among the three curves in Fig. 24 are quite
small and should be mainly ascribed to differences in the abun-
dances of electron donors, which in turn affect the strength of
the H− opacity.

4.5. Metal-free mixtures

The last important application we discuss here deals with RM
opacities suitable for zero-metallicity gas with a primordial
composition. Following the standard Big Bang nucleosynthe-
sis (SBBN), the most abundant elements to be synthesised first
were H, He, with small quantities of D and Li, and tiny (and
negligible) traces of Be and B. In this work we assume a pri-
mordial mixture made up of X = 0.7521, εLi/εH = 4.15 × 10−10

(ratio of abundances by number), and Y = 1 − X−Li (hence
Z = 0), these values being predicted by the SSBN in accordance
with the baryon-to-photon ratio as derived by the Wilkinson
Microwave Anisotropy Probe (WMAP, Coc et al. 2004). The
abundances of B ad Be are reasonably neglected, since εBe/εH
and εB/εH < 10−17 according to models of primordial nucle-
osynthesis (Thomas et al. 1993, 1994).

Figure 25 shows the predicted chemistry of a primordial gas
as a function of the temperature and three selected values of the
R parameter, and correspondingly Fig. 26 illustrates the relative
contributions of the most important opacity sources to the total
RM opacity. It is worth noticing the following points.

At lower densities (e.g. left panels with log(R) = −8) the
abundance of the negative hydrogen ion H− grows very little,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=25


P. Marigo and B. Aringer: ÆSOPUS, a computational tool for low-temperature gas opacity 1563

Fig. 26. The same as in Fig. 5 but for a primordial composition with Zref = 0 and X = 0.7521 and assuming three of the R parameter, as indicated.
Note the prominent bump of the CIA sources, mainly due to H2 − H2 collisions, at lower temperatures in the case for log(R) = 1.

the H2 molecule does not form efficiently even at the lowest
temperatures, and the concentration of H+3 is negligible (reach-
ing a maximum value log(n/ntot) ∼ −20.8 at log(T ) ∼ 3.35).
The total RM opacity is completely dominated by scattering
processes, namely Thomson scattering from free electrons at
higher temperatures, and scattering from hydrogen atoms at
lower temperatures.

At increasing densities (e.g. going from log(R) = −3 to
log(R) = 1) the abundances of most relevant species like H2 , H−,
H+3 grow higher and higher. At intermediate densities (i.e. middle
panel of Fig. 26) we may distinguish three different temperature
ranges, namely: 3.2 <∼ log(T ) <∼ 3.6 dominated by scattering
from H atoms, 3.6 < log(T ) <∼ 3.85 characterised by the contri-
bution of H−, and 3.85 <∼ log(T ) <∼ 4.5 controlled by the contin-
uous absorption of H (bound-free and free-free transitions). Free
electrons are provided by H+ and Li+ as in the previous case.

Finally, at the highest densities (i.e. right panel of Fig. 26)
we notice that the RM opacity in the low-temperature region
3.2 <∼ log(T ) <∼ 3.5 is determined by collision-induced absorp-
tions (mainly CIA due to H2-H2 collisions); the H− opacity bump
is prominent in the range 3.2 < log(T ) <∼ 4.0; and continuous and
discrete processes due to H are dominant at higher temperatures.

It should be remarked that Thomson scattering as well as ab-
sorption by negative ions (i.e. H−, H−2 , He−) crucially depend on
the amount of available free electrons. By looking at the curve
of the electron concentration (dashed line) in Fig. 25 we see
that, among the positive ions, three are the main electron donors
in a primordial gas, i.e. H+, Li+, and H+3 . Ionisation of hydro-
gen atoms accounts for ne at the higher temperatures down to
log(T ) ∼ 3.6−3.3 depending on the density, ionised lithium prac-
tically provides all free electrons at lower temperatures, while
H+3 contributes free electrons only over an intermediate temper-
ature range depending on the gas density.

Let us first consider the case of H+3 . The importance of this
ion for the electron budget of a primordial gas has been ex-
tensively discussed by Lenzuni et al. (1991) and Harris et al.
(2004, hereafter also H04). In this latter paper the authors have
pointed out that the inclusion of H+3 , with the most recent par-
tition function of Neale & Tennyson (1995), may increase the
RM opacity mostly via an indirect effect on the chemistry, i.e.
by favouring larger concentrations of H− and, to a less ex-
tent, via the direct absorption by H+3 . The authors have also
analysed possible effects on the evolution of very low-mass
stars of zero-metallicity. In ÆSOPUS we have included the H+3
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Fig. 27. Difference Δ log(κR) = log(κR)− log(κi,offR ) between the full RM
opacity of our assumed primordial composition and the reduced opacity
obtained either leaving out the chemistry of H+3 (left panel), or assuming
a Li-free mixture (right panel). A few contour lines, labelled with the
corresponding values (in dex), are superimposed to guide the eye.

chemistry, its free-free opacity, while neglecting the H+3 line
opacity. However, as shown by H04, this latter provides a small
contribution (few %) to the RM opacity in most cases, with a
peak of 15% at certain temperatures and densities. Figure 27 (left
panel) displays the region in the log(T ) − log(R) plane which is
affected by the H+3 via its inclusion/omission in the gas chem-
istry. The differences in log(κR) are always negative along a di-
agonal strip in the log(T )− log(R) diagram, meaning that the ne-
glecting H+3 would lead to underestimate the gas opacity because
we omit its contribution to ne (hence weakening the H− opacity
and the Thomson electron scattering), as well as its contribution
as a true absorber (the free-free continuum in our computations).
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Fig. 28. The same as in Fig. 4 but for a primordial composition with Zref = 0 and X = 0.7521, and assuming log(R) = −8 and log(T ) = 3.3. The
arrows bracket the spectral range across which the weighting function of the RM decays by a factor 1/100. The left panel shows the results for a
lithium-free mixture, whereas the right panel illustrates the case for a primordial lithium abundance, as predicted by the SBBN in accordance with
WMAP (Coc et al. 2004).
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Fig. 29. Comparison in terms of log(κH04
R ) − log(κSOPUS

R ) between our opacity results and the tabulated values by Harris (2004) for a metal-free
mixture with (Z = 0, X = 0.7). A few contour lines, labelled with the corresponding values (in dex), are superimposed to help the comparison.
Note how much the differences become significant at lower temperatures when assuming εLi/εH = 4.15 × 10−10 in our calculations (left panel),
while they drastically reduce adopting εLi/εH = 0 (right panel).

The case of Li is perhaps more interesting since the pri-
mordial abundance of this element is predicted by the SBBN
and accurately constrained by WMAP. An extensive analysis
on the importance of Li for the opacity of the primordial gas
has been carried out by Mayer & Duschl (2005), to whom the
reader should refer for a detailed discussion. Our computations
essentially agree with the findings of Mayer & Duschl (2005).
From the inspection of the right panel of Fig. 27 one can see that
even a low concentration of Li notably impacts on the resulting
RM opacity, the effect being more pronounced at lower temper-
atures and lower densities. For log(T ) = 3.2 and log(R) = −8
the difference in opacity is sizable, reaching a value as high as
Δ log(κR)  1.6! Figure 28 helps to get a better insight of the
rôle of Li: when including it in the primordial chemistry the to-
tal monochromatic absorption coefficient rises for λ > 15 μm
due to the increased contribution of the Thomson electron scat-
tering. In fact, a larger amount of free electrons is provided by
the first ionisation of lithium, as shown in Fig. 25 (left panel).

Finally, in Figs. 29–31 we present a few comparisons with
recently published RM opacity data for zero-metallicity gas,

namely: Harris et al. (2004), Mayer & Duschl (2005), and
Ferguson et al. (2005). In general the agreement is relatively
good, mostly comprised within ±0.2 dex, except for the large
differences (up to −1.2−1.4 dex) that arise in the comparison
with H04 and F05 at lower temperatures and densities. These
discrepancies should be likely ascribed to their neglecting of Li
in the chemical mixture, since they drastically reduce when we
omit Li from the equation of state. We are not able to find clear
reasons to the remaining deviations for log(T ) < 3.5, temper-
atures at which Rayleigh scattering from H and H2, Thomson
scattering from electrons, and CIA are the dominant opacity con-
tributors at varying density. In general, differences in the ther-
modynamic data and input physics adopted to describe the pro-
cesses listed in Table 1 might provide a reasonable explanation.

5. Final remarks

We have developed a new tool, ÆSOPUS, for computing
Rosseland mean opacities of an ideal gas in the low-temperature
regime, 3.2 ≤ log(T ) ≤ 4.5. The access to ÆSOPUS is made
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Fig. 30. The same as in Fig. 29, but in terms of log(κF05
R ) − log(κSOPUS

R ) between our opacity results and the tabulated values by Ferguson et al.
(2005) for a metal-free mixture with (Z = 0, X = 0.7).
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Fig. 31. The same as in Fig. 29 in terms of log(κM05
R ) − log(κSOPUS

R )
between our opacity results and the tabulated values by Mayer et al.
(2005) for a metal-free mixture with Z = 0, X = 0.7521, and εLi/εH =
4.15 × 10−10.

public via an interactive web-interface (http://stev.oapd.
inaf.it/aesopus), which enables the user to specify with
large freedom the input parameters, i.e. the grid of the state vari-
ables T and R, the reference solar composition, the total metal-
licity, and the abundance enhancement/depletion of all chemical
elements, from H to U.

The Rosseland mean gas opacities, produced with a good ac-
curacy (comparable to that of other opacity codes), are delivered
in a tabular form within a reasonably short time. At present, the
typical computation time for one table at fixed chemical com-
position, arranged with the default T − R grid, i.e. containing
NT × NR = 67 × 19 = 1273 opacity values, is less than 50 s
with a 2.0 GHz processor. Such a fast performance is attained
thanks to the optimised use of the opacity sampling method
to describe molecular line absorption, and the adoption of pre-
tabulated absorption cross-sections for metals (from the Opacity
Project database). In this way the line-opacity data is suitably ar-
ranged prior to the opacity computations, a process that, if oth-
erwise performed on-the-fly, is in principle more accurate but at
the cost of extremely long computing times (e.g. Ferguson et al.
2005).

On the other hand, several tests illustrated in the paper have
proved that our procedure, besides being fast, is as well suitable
to produce fairly accurate Rosseland mean opacities, to which
the very fine spectral details are not critical as they are washed
out, by construction, in the harmonic average of the monochro-
matic coefficient.

First applications of ÆSOPUS opacity tables in stellar evo-
lutionary calculations performed with the Padova code for both
scaled-solar (Bertelli et al. 2009), and α-enhanced mixtures
(Bressan et al., in prep.), and with the ATON code for C-N-O
varying mixtures along the AGB (Ventura & Marigo 2009) have
yielded promising results. In particular, we find that the differ-
ences in the effective temperature of giant (RGB and AGB) mod-
els brought about by the adoption of different opacity data for
the same chemical composition (e.g. ÆSOPUS, Ferguson et al.
2005; Lederer & Aringer 2009) amount to a few tens of degrees,
in most cases lower than (or comparable to) the typical uncer-
tainty of the semi-empirical Teff-scale of red giants.

We wish all interested researchers may benefit from an easy
access to the low-temperature opacity data. Feedback and sug-
gestions are welcome.
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Appendix A: EOS under ICE conditions: numerical
details

The ÆSOPUS code solves the equation of state assuming in-
stantaneous chemical equilibrium by means of the Newtwon-
Raphson technique. We consider theNel + 2 conservation equa-
tions (see Sect. 2.1.2) formulated in the generic form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1[nα, (α = 1, · · ·Nel), Na, ne] = 0
f2[nα, (α = 1, · · ·Nel), Na, ne] = 0

...
fNel [nα, (α = 1, · · ·Nel), Na, ne] = 0

fe[nα, (α = 1, · · ·Nel), Na, ne] = 0
ftot[nα, (α = 1, · · ·Nel), Na, ne] = 0,

which depend on the Nel + 2 unknowns, namely: the number
density of each neutral atom nalpha, α = 1, . . .Nel; the total num-
ber density of atoms Na; and the electron density ne. Then we

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=30
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=31
http://stev.oapd.inaf.it/aesopus
http://stev.oapd.inaf.it/aesopus
http://sourceforge.net/projects/ssynth/
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calculate the jacobian matrix J of the functions f ’s with respect
to each unknown,

Ji j =
∂ fi
∂n j
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂n1

. . .
∂ f1
∂nNel

∂ f1
∂Na

∂ f1
∂ne

...
. . .

...
...

...
∂ fNel

∂n1
. . .
∂ fNel

∂nNel

∂ fNel

∂Na

∂ fNel

∂ne
∂ fe
∂n1

. . .
∂ fe
∂nNel

∂ fe
∂Na

∂ fe
∂ne

∂ ftot

∂n1
. . .
∂ ftot

∂nNel

∂ ftot

∂Na

∂ ftot

∂ne

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In practice, because the unknown quantities are all inherently
non-negative functions, their logarithmic forms are adopted.
This prevents physically unrealistic estimates from occurring
during the iteration process.

For each chemical element α, the abundance conservation
equation (Eq. (15)) is conveniently written in the form:

fα = ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ntot∑
A=1

nAνA,α

Naεα

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0 , (A.1)

where nA is the number density of particle A which ranges over
all species, i.e. atoms, ions, and molecules; νA,α are stoichio-
metric coefficients that keep track of how many times species
of type A contributes to the conservation equation of type α. In
other words νA,α represents the number of atoms of the α element
contained in species A.

The charge neutrality equation (Eq. (16)) is expressed in the
form:

fe = ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ntot∑
i=1

pz∑
r=1

r nA+r
i

ne

1 +
Ntot∑
j=1

nA−j

ne

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0. (A.2)

Finally, the conservation equation of the total number density
(Eq. (17)) is rearranged in the form:

ftot = ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nel∑
α=1

Nmol∑
A=1

νA,α(nA + nA+ + nA−)

ΔNmol
a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0 , (A.3)

where
∑

A nAνA,α is extended over all molecules and quantifies
their contribution to the conservation equation of any given ele-
ment α; ΔNmol

a = Na − (ntot − ne) corresponds to the excess in Na
due to molecular formation.

In summary, after providing a first guess to the number den-
sities, ÆSOPUS sets them into the system and the jacobian ma-
trix. In general, the guess will be inaccurate so that the functions
fi have finite values. Denoting with F and n the entire vectors of
the values of fi and n j, we deal with the matrix equation

f (n+ δn) = f (n) + J δn = 0, (A.4)

which corresponds to a set of Nel + 2 linear equations for
the first-order corrections δn. The matrix equation is solved with
the LU decomposition method. The corrections are then added
to the solution vector of the number densities, nnew = nold + δn,
and the process is iterated until the maximum relative change in
the densities becomes lower than a given accuracy δn, i.e. typi-
cally 10−5 in our computations.

Fig. B.1. The histogram of the sampling frequency distribution with
ntot = 34 902 sampling points, selected following the scheme proposed
by Helling & Jørgensen (1998). This represents the reference distribu-
tion whence smaller frequency samples are extracted. See the text for
more explanation.

Appendix B: The frequency distribution

Computing the RM opacity with Eq. (2) requires that the to-
tal monochromatic absorption coefficient is evaluated at a finite
number of frequency points. In principle the more the points, the
more accurate the results should be. However, since we are deal-
ing with a mean quantity one can obtain still good results using
a relatively low number of frequency points, with the advantage
of speeding up the computations.

In respect to this some discussion can be found in Ferguson
et al. (2005) who integrate over 24 000 points, and Lederer &
Aringer (2009) who adopt 5645 points. For the present work we
have performed further tests to get useful indications on the rela-
tionship between the size of the frequency distribution and qual-
ity of the results, in terms of accuracy (reliability) and precision
(reproducibility) of the results.

For this purpose we proceed as follows. First, we determine a
seed frequency distribution by adopting the scheme proposed by
Helling & Jørgensen (1998), originally designed to optimize the
selection of frequency points in the OS method. In few words, a
frequency distribution produces a correct spectral sampling if it
obeys the condition Eν̃(T )Δν̃ = const., i.e. expressing the con-
stancy of the normalized energy density of the Planckian, Eν̃(T ),
over any arbitrary interval Δν̃, where ν̃ [cm−1] is the wave-
number. Then, the seeked optimal distribution corresponds to the
upper envelope the entire sample of Planckian distributions eval-
uated at different temperatures, so that we take the maximum of
the normalized energy density Eν̃(T ) at each ν̃. The final distri-
bution, shown in Fig. B.1, is sharply peaked at lower frequencies
and declines exponentially at longer frequencies.

Once the seed distribution is constructed, any other fre-
quency grid of given size is extracted from it by using a
Monte-Carlo technique. In our work we tested a few cases adopt-
ing 5488, 1799, 944, 510, and 149 points. Each grid is used to

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912598&pdf_id=32
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Fig. B.2. Differences in opacities between the reference frequency grid with ntot = 5488 points, and other test cases with ntot = 1799, 944, 510,
and 149 points. The adopted chemical composition is characterized by X = 0.7, Zref = 0.02, and scaled-solar abundances according to GS98.

log κ5488 - log κ1799

 3.2  3.4  3.6  3.8  4  4.2  4.4

log(T)

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

lo
g(

R
)

-0.25
-0.2
-0.15
-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25

0

0
0

0

0
0

0

0
0

0

-0.05

-0.05

-0.05

-0.1

log κ5488 - log κ944

 3.2  3.4  3.6  3.8  4  4.2  4.4

log(T)

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

lo
g(

R
)

-0.25
-0.2
-0.15
-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25

0
0

0

0

0

00

00
0

0

0

-0.05
-0.05

-0.1

log κ5488 - log κ510

 3.2  3.4  3.6  3.8  4  4.2  4.4

log(T)

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

lo
g(

R
)

-0.25
-0.2
-0.15
-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25

0.05

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

-0.05

-0.15

-0.1

-0.05

-0.2

log κ5488 - log κ144

 3.2  3.4  3.6  3.8  4  4.2  4.4

log(T)

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

lo
g(

R
)

-0.25
-0.2
-0.15
-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25

0.15

0.15

0.15

0.1

0.1

0.1

0.05

0.050.05

0
0

0

00

0

0

0

0

0

0

-0.05

-0.05

-0.05

Fig. B.3. The same as in Fig. B.2, but for the adopted chemical composition which is defined by X = 0.7, Zref = 0.02, Z = 0.026, and C/O= 1.5.
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compute RM opacities for two chemical compositions charac-
terized by: I) X = 0.7, Z = Zref = 0.020 and scaled-solar abun-
dances of metals, and II) a carbon-rich mixture with X = 0.7,
Zref = 0.02, Z = 0.026 and C/O = 1.5. In the latter case carbon
is made increase relative to its scaled-solar value, producing a
net increment of the actual metallicity.

Then, adopting as reference opacities those obtained with the
densest frequency grid, i.e. ntot = 5488, we evaluate the differ-
ences, log(κ4588) − log(κnj ), for each opacity subset computed
with a lower frequency grid (i.e. n j = 1799, 944, 510, and 149
points. The results are shown in Fig. B.2 for mixture I and
Fig. B.3 for mixture II.

We see that in most cases the differences remain small,
within ±0.05 dex, over most of the log(T ) − log(R) space, and
even with the smallest frequency set the loss in accuracy, though
larger, is not dramatic. As expected, the biggest deviations take
place at lower temperatures where the opacity contribution from
molecular bands is more sensitive to the frequency sampling.

In any case, it is worth noticing that the uncertainties brought
about by the adopted frequency distribution are comparable, if
not lower, with the typical differences in RM opacities computed
with different codes (see, for instance, Figs. 7 and 18).

Appendix C: Chemical mixtures with non-solar
[Xi /Fe] ratios: a general scheme

Let us first consider non-scaled-solar mixtures in which the ref-
erence metallicity is preserved, i.e. Z = Zref . Basing on the for-
malism introduced in Sects. 3.2 and 4.3 we conveniently divide
the metal species (with Zi ≥ 3) into three groups, namely:

– the selected elements with given γi = [Xs
i /XFe] according to

the input specification, with abundances Xs
i = f s

i Xs
i,ref ;

– the fixed elements with abundances X f
i = X f

i,ref ;
– the balancing elements, including all the other metals, with

abundances Xb
i = fb Xb

i,ref .

We recall that the ratios [Xs
i /XFe] can be freely chosen to be ei-

ther positive or negative. According to the adopted scheme, in
order to preserve the metallicity the abundance variation of the
selected elements should be compensated by the total abundance
variation of the balancing elements. It follows that, by construc-
tion, all balancing elements share the same variation factor f b.

Therefore, from the condition Z = Zref , and the definition
of [Xs

i /XFe] for each of the Nsel selected elements, we set up a
system ofNsel + 1 equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Zref =
∑

i

Xs
i +

∑
j

X f
j +

∑
k

Xb
k

[
Xs

i

XFe

]
= log

(
Xs

i

XFe

)
− log

( Xs
i,�

XFe,�

)
∀ i = 1, . . .Nsel,

which can be re-formulated with the aid of Eqs. (31) and (34):
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z� =
∑

i

f s
i Xs

i,� +
∑

j

X f
j,� + f b

∑
k

Xb
k,�

10γi =
f s
i

f b
∀ i = 1, . . .Nsel

for the unknowns f s
i and f b. Let us denote with

ξi,� =
Xi,�
Z�

(C.1)

the partitions of metals in the solar mixture. Eventually, from
simple analytical passages we obtain the general solution:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f b =

∑
i

ξs
i,� +

∑
k

ξbk,�
∑

i

10γiξs
i,� +

∑
k

ξbk,�

f s
i = f b 10γi ∀ i = 1, . . .Nsel

(C.2)

which only depends on the specified ratios [Xs
i /XFe] of the se-

lected elements, and the metal partitions in the reference solar
composition. It is useful to particularize Eq. (C.2) for the cases
of mixtures A and B introduced in Sect. 4.3, and finally derive
the results for mixture C.
Mixture A
Since the fixed group is empty, we have

∑
i ξ

s
i,� +

∑
k xibk,� = 1,

hence:

f b =
1

1 +
∑

i

(10γi − 1) ξs
i,�
· (C.3)

Mixture B
Since the balancing elements are those belonging to the Fe-
group, i.e.

∑
k Xb

k,� = XFe,�, we get:

f b =

∑
i

ξs
i,� + ξFe,�

∑
i

10γiξs
i,� + ξFe,�

· (C.4)

Mixture C
Finally, we consider the case of mixture C, in which the reference
metallicity Zref should not be preserved, as the actual metallicity,
Z = fZZref , follows the total abundance variation of the selected
elements. In this case we consider the system of equations
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z = fZ Zref =
∑

i

Xs
i +

∑
j

Xnon−s
j

[
Xs

i

XFe

]
= log

(
Xs

i

XFe

)
− log

( Xs
i,�

XFe,�

)
∀ i = 1, . . .Nsel,

where we only distinguish between selected and non-selected el-
ements. From the definitions of the abundance variation factors,
recalling that

∑
j Xnon−s

j,� = Z� −∑
i Xs

i,�, and after some manipu-
lation, we obtain the equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Z� =

∑
i

f s
i Xs

i,� +
∑

j

Xnon−s
j,�

10γi =
f s
i

f non−s
∀ i = 1, . . .Nsel

for the unknowns f s
i and f non−s. We notice that formally we deal

with exactly the same equations as those for mixture A, once the
non-selected elements are considered in place of the balancing
elements. Hence, the seeked solution is given by Eq. (C.3) where
one substitutes f b with f non−s. In other words, mixture A and
mixture C share the same non-solar metal partitions (Xi/Zref)A =
(Xi/Z)C , but their metallicity is different by a factor fZ .

References

Alexander, D. R. 1975, ApJS, 29, 363
Alexander D. R., & Ferguson, J. W. 1994, ApJ, 437, 879
Alvarez, R., & Plod, B. 1998, A&A, 330, 110



P. Marigo and B. Aringer: ÆSOPUS, a computational tool for low-temperature gas opacity 1569

Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Annibali, F., Bressan, A., Rampazzo, R., Zeilinger, W. W., & Danese, L. 2007,

A&A, 463, 455
Aringer, B. 2000, Ph.D. Thesis, University of Vienna
Aringer, B., Girardi, L., Nowotny, W., Marigo, P., & Lederer, M. T. 2009

[arXiv:0905.4415]
Asensio Ramos, A., & Socas-Navarro, H. 2005, A&A, 438, 1021
Barber, R. J., Tennyson, J., Harris, G. J., & Tolchenov, R. N. 2006, MNRAS,

368, 1087
Bauschlicher, C. W., J., Ram, R. S., Bernath, P. F., Parsons, C. G., & Galehouse,

D. 2001, J. Chem. Phys., 115, 1312
Beers, T. C., & Christlieb, N. 2005, ARA&A, 43, 531
Bertelli, G., Nasi, E., Girardi, L., & Marigo, P. 2009, A&A, submitted
Boothroyd, A. I., & Sackmann, I.-J. 1988, ApJ, 328, 641
Borysow, A., Jørgensen, U. G., & Fu, Y. 2001, J. Quant. Spec. Radiat. Transf.,

68, 235
Borysow, A., Jørgensen, U. G., & Zheng, C. 1997, A&A, 324, 185
Caffau, E., Ludwig, H.-G., Steffen, M., et al. 2008, A&A, 488, 1031
Caffau, E., Maiorca, E., Bonifacio, P., et al. 2009, A&A, 498, 877
Carbon, D., Gingerich, O. J., & Latham, D. W. 1969, Low-Luminosity Stars, 435
Carretta, E., Gratton, R. G., Lucatello, S., Bragaglia, A., & Bonifacio, P. 2005,

A&A, 433, 597
Clemens, M. S., Bressan, A., Nikolic, B., et al. 2006, MNRAS, 370, 702
Clemens, M. S., Bressan, A., Nikolic, B., & Rampazzo, R. 2009, MNRAS, 392,

L35
Coc, A., Vangioni-Flam, E., Descouvemont, P., Adahchour, A., & Angulo, C.

2004, ApJ, 600, 544
Cowley, C. R., & Barisciano, L. P., Jr. 1994, The Observatory, 114, 308
Cristallo, S., Straniero, O., Lederer, M. T., & Aringer, B. 2007, ApJ, 667, 489
Dalgarno, A. 1962, Spectral Reflectivity of the Earth Atmosphere III; The

Scattering of light by Atomic Systems. Geophys. Corp. of America, GCA
Tech Rep., 62–28-A

Dalgarno, A., & Williams, D. A. 1962, ApJ, 136, 690
Dotter, A., Chaboyer, B., Ferguson, J. W., et al. 2007, ApJ, 666, 403
Dulick, M., Bauschlicher, C. W. Jr, Burrows, A., et al. 2003, ApJ, 594, 651
Eddington, A. S. 1922, MNRAS, 83, 32
Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, ApJ, 623, 585
Ferrarotti, A. S., & Gail, H.-P. 2002, A&A, 382, 256
Gingerich, O. 1964, SAO Spec. Rep., 167, 17
Gingerich, O. 1969, Theory and Observation of Normal Stellar Atmospheres
Goorvitch, D., & Chackerian, Jr., C. 1994, ApJS, 91, 483
Gratton, R. G., Bonifacio, P., Bragaglia, A., et al. 2001, A&A, 369, 87
Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385
Grevesse, N., & Noels, A. 1993,
Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161
Grevesse, N., Asplund, M., & Sauval, A. J. 2007, Space Sci. Rev., 130, 105

Origin and Evolution of the Elements, 14
Harris, G. J., Lynas-Gray, A. E., Miller S., & Tennyson, J. 2004, ApJ, 600, 1025
Harris, G. J., Tennyson, J., Kaminsky, B. M., Pavlenko, Y. V., & Jones, H. R. A.

2006, MNRAS, 367, 400
Helling, C., & Jørgensen, U. G. 1998, A&A, 337, 477
Helling, C., & Lucas, W. 2009 [arXiv:0906.0296]
Helling, C., Winters, J. M., & Sedlmayr, E. 2000, A&A, 358, 651
Holweger, H. 2001, Joint SOHO/ACE workshop Solar and Galactic

Composition, 598, 23
Houdashelt, M. L., Bell, R. A., & Sweigart, A. V. 2000, AJ, 119, 1448
Hunger, K., & van Blerkom, D. 1967, ZAp, 66, 185
Iglesias C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Irwin, A. W. 1981, ApJS, 45, 621
Irwin, A. W. 1988, A&AS, 74, 145
John, T. L. 1988, A&A, 193, 189
John, T. L. 1975, MNRAS, 172, 305

Jørgensen, U. G. 1997, in Molecules in Astrophysics: Probes and Processes, ed.
E. F. van Dishoeck (Kluwer), IAU Symp., 178, 441

Jørgensen, U. G., Almlof, J., & Siegbahn, P. E. M. 1989, ApJ, 343, 554
Jørgensen, U. G., Hammer, D., Borysow, A., & Falkesgaard, J. 2000, A&A, 361,

283
Karzas, W. J., & Latter, R. 1961, ApJS, 6, 167
Keeley, D. A. 1970, ApJ, 161, 643
Kurucz, R. L. 1970, SAO Spec. Rep., 309
Kurucz, R. L. 1993a, Atomic data for opacity calculations, Kurucz CD-ROM, 1
Kurucz, R. L. 1993b, Opacities for Stellar Atmospheres: Abundance Sampler,

Kurucz CD-ROM, 14
Kurucz, R. L. 1993c, Diatomic molecular data for opacity calculations, Kurucz

CD-ROM, 15
Langhoff, S. R., & Bauschlicher, C. W. 1993, Chem. Phys. Lett., 211, 305
Lattanzio, J. C., & Wood, P. P. 2003, A&A Library, in Asymptotic Giant Branch

Stars, ed. H. J. Habing, & Hans Olofsson, Chap. 2
Lebedev, V. S., Presnyakov, L. P., & Sobelḿan, I. I. 2003, Physics-Uspekhi, 46,
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