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Abstract. In the setting of the sub-Riemannian Heisenberg group H”, we introduce and
study the classes of ¢- and intrinsic graphs of bounded variation. For both notions we
prove the existence of non-parametric area-minimizing surfaces, i.e., of graphs with the
least possible area among those with the same boundary. For minimal graphs we also
prove a local boundedness result which is sharp at least in the case of 7-graphs in H!.
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1 Introduction and statement of the main results

In this paper we deal with the problem of existence and regularity for generalized
non-parametric minimal hypersurfaces in the setting of the Heisenberg group H”",
endowed with its sub-Riemannian (or Carnot—Carathéodory) metric structure. The
classes of 7- and intrinsic graphs of bounded variation will be introduced and stud-
ied. We prove existence and local boundedness results for those graphs locally
minimizing the sub-Riemannian area (precisely: the H-perimeter measure). Mini-
mal graphs are typically named non-parametric minimal surfaces in order to dis-
tinguish them from the more general parametric ones (see, for instance, [39]).
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410 F. Serra Cassano and D.Vittone

Let us recall some preliminary facts about the Heisenberg group; we refer to the
book [12] for a more complete introduction. We denote the points of H* = R2"+1
by

P=(x,y.t), x,yeR" reR.
For P = (x,y,1), Q@ = (x/,y',t’) € H", the group operation reads as
P-Q:=(x+xy+y. e+ =2(xy)+2(x".y))

where (-, -) denotes the standard scalar product of R”. The group identity is the
origin 0 and (x, y,#)~! = (—x, —y, —t). In H" there is a one-parameter group of
non-isotropic dilations 8, (x, y,t) := (rx, ry, rzt), r > 0. The Lie algebra b, of
left invariant vector fields is linearly generated by
X 0 +2 9 Y 9 2 9 =1 T 9

= 5 R j = T — 2Xj—, =1,...,n, = 7

T g T Y Ty, T e o1
and the only nonvanishing commutation relationships between these generators
are

[X;,Yj]=—4T, j=1,...,n.
We also use the notation X; :==Y; , forj =n+1,...,2n.
The group H” can be endowed with the homogeneous norm

| Plloo := max{|(x, y)|g2n, [t]'/?}

and with the left-invariant and homogeneous distance

doo(P. Q) :=|P7" QO cc.

It is well known that d is equivalent to the standard Carnot—Carathéodory (CC)
distance that will be denoted by d.. The Hausdorff dimension of (H", d) is
Q = 2n + 2, whereas its topological dimension is 2xn + 1.

Let Q C H" beanopensetand ¢ = (¢1,...,¢p2,) € CL(Q2;R?"). The Heisen-

berg divergence of ¢ is
2n

divirg == Y Xjg;. (1.1)
j=1
Following the classical theory of sets with finite perimeter a la De Giorgi, the
H-perimeter in £ of a measurable set £ C H” was introduced in [11] as

|0F |m(R) := sup{/ divig o d 22" 1 9 € CLQ,R?™), |g| < 1} (1.2)
E

where £2"*1 denotes the Lebesgue measure on H” = R?**1, which is also the
Haar measure of the group. It is well known that, for smooth sets, the H-perimeter
coincides with (a multiple of) the (Q — 1)-spherical Hausdorff measure, associ-
ated with d, of the boundary, see also Proposition 2.10.
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Bounded variation and local boundedness of minimal graphs in H" 411

We want to study those graphs of bounded variation that are boundaries of sets
minimizing the H-perimeter measure. A set £ C H” is said to be a (local) mini-
mizer of the H-perimeter in an open set 2 C H" if it has locally finite H-perimeter
in Q and for any open subset Q' € Q

|0E |1 (2') < [0F |u(R) (1.3)
for any measurable F C H” such that E A F € Q’; we hereafter denote by
EAF:=(E\F)U(F\E)

the symmetric difference between E and F'.

There is a huge variety of results concerning minimal-surfaces type problems
(isoperimetric problem, existence and regularity of H-perimeter minimizing sets,
Bernstein problem, etc.). A general account of the many facets and contributions
in this direction is far beyond the aim of this introduction and we refer to [9, 10,
21,23,25,40,41,45,48,49,57-59].

We can now introduce the classes of - and intrinsic graphs of bounded variation
in H”. A set § C H” is called t-graph in H" if it is a graph with respect to the
non horizontal vector field T, i.e., if there exists a function u# : U — R such that

S ={(x,y,u(x,y)) e H" : (x,y) € U}.

Hereafter, by U we will denote a fixed open and bounded subset of the 2n-dimen-
sional plane

IT :=exp(span{X; : j = 1,...,2n}) = {(x,y,t) € H" : t = 0}.

When clear from the context we will canonically identify IT with R?”*, and ac-
cordingly we will write (x, y) instead of (x, y,0). By U x R we will mean the
t-cylinder

UxR:={(x,y,1) e H" : (x,y) € U, t € R}.

The t-subgraph E!, of u : U — R is defined as
El :={(x.y.) eH" : (x.y) € U. 1 <u(x,y)}. (1.4)

For maps u with Sobolev regularity the area functional .«7; : W11(U) — R reads
as

oy (u) = |3E;|H(UXR) :/ |Vu+X*|d§C2” (1.5)
u
where, following the notation in [17], X * : R2" — R2" is defined by

X*(x,y) = 2(=y,x)
(see Section 3). Formula (1.5) was proved in [11] for u € C1(U).
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412 F. Serra Cassano and D.Vittone

Definition 1.1. We say that u € L!(U) belongs to the space BV, (U) of maps with
bounded 7-variation if [E] |ir(U x R) < +o0.

We say that u € BV; joc(U) if EL has finite H-perimeter in U’ x R for any
openset U € U.

In Section 3 we will first study the structure of the space BV,(U) and several
different notions of “area” for boundaries dE, N (U x R) of z-subgraphs of func-
tions u € L'(U). We will prove that these notions (among them: the perimeter
|0EL (U x R) and the relaxed functional o, of ;) agree on L'(U): see Theo-
rem 3.2. We introduce the notation

/u |Du + X*| = [0EL g (U x R) = o (), ue L (W).

It turns out that BV, (U), which is the finiteness domain of these functionals, coin-
cides with the classical space BV (U) of functions with bounded variation in U. In
particular, BV (U) provides the appropriate framework, chosen for example in [14]
and [55], for the study of area minimization problems for 7-graphs.

Theorem 1.2. Let U C R?" be a bounded open set. Then BV;(U) = BV(U).

In particular, each function in BV;(U) can be approximated with respect to
the “strict” metric (see [2, pages 125-126]) by a sequence of C°° regular func-
tions: see Corollary 3.3. Moreover, the space BV, (U) can be compactly embedded
in L'(U) and the classical notion of trace ujgy on U is well defined provided U
is bounded with Lipschitz regular boundary: see Theorem 3.4 and [39, Chapter 2].

In the second part of Section 3 we deal with the existence of 7-minimizers.

Definition 1.3. Let U C II be a bounded open set with Lipschitz regular bound-
ary. We say that u € BV(U) is a ¢-minimizer of the area functional (briefly: ¢-min-

imizer) if
/ﬂDu+Xﬂs/ﬁDv+Xﬂ
u u

for any v € BV(U) such that vjgqy = ujyy.
Given a generic open set U C I1, we say that u € BVo.(U) is a local t-mini-
mizer if

/ wu+Xﬂs/ |Dv + X *|
’ U/

for any U’ € U and any v € L} (U) with {u # v} € U’ Equivalently (see Re-

loc
mark 3.12), if u is a z-minimizer on any open set U’ € U with Lipschitz regular

boundary.
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Bounded variation and local boundedness of minimal graphs in H" 413

A t-minimizer is also a local f-minimizer (see Remark 3.11). Moreover, it is
easily seen that a z-subgraph E], that is locally H-perimeter minimizing in U x R
must be associated with a local z-minimizer ¥ € BV(U). Conversely, we will
prove in Corollary 3.16 that a local ¢-minimizer ¥ € BV(U) induces a ¢-sub-
graph E!, that is a local minimizer of the H-perimeter in U x R.

Local £-minimizers have widely been studied assuming u € W1-1(U), the clas-
sical Sobolev space which is strictly contained in BV(U). The functional (1.5)
has good variational properties such as convexity and lower semicontinuity with
respect to the L1 topology. On the other hand, it is not coercive and differentiable
due to the presence of the so-called characteristic points, i.e., the points on the
graph of u where the tangent hyperplane to the graph coincides with the horizon-
tal plane. Equivalently, the set whose projection on IT is

Char(u) := {(x,y) € U : Vu(x,y) + X*(x,y) = 0}. (1.6)

Notice that, if u € W1 (U), the set Char(u) must be understood up to a £>"*-neg-
ligible set.

Nevertheless, the existence of solutions to the Dirichlet problem with regular
boundary conditions was obtained in [53] and [17], by means of an elliptic ap-
proximation argument, for U satisfying suitable convexity assumptions. The lack
of coercivity for the functional (1.5) does not allow a first variation near the set
Char(u). This and related questions have been studied in [13, 15, 38, 53, 59, 61]
for C? minimizers of <7, and in [16, 18] for C! regular ones, also in connec-
tion with the Bernstein problem for z-graphs. A suitable minimal surface equation
for ¢-graphs (see (3.1)) has been obtained in these papers; its solutions are called
H-minimal surfaces. In particular, in [15] a deep analysis of Char(u) was carried
out for local minimizers u € C?(U) together with other regularity properties like
comparison principles and uniqueness for the associated Dirichlet problem. The
study of the characteristic set has been performed in [16] for C! surfaces in H!
satisfying a constant mean curvature equation in a weak sense. The much more
delicate case of minimizers u € W11(U) was attacked in [17]. Several exam-
ples of #-minimizers with at most Lipschitz regularity have been provided in H!
(see [17,54,56]). Therefore, at least in the H! setting, the problem of regularity
for #-minimizers is very different from the Euclidean case, where minimal graphs
of codimension one are analytic regular (see [39, Theorem 14.13]).

In the spirit of the previous results, we are able to establish an existence result
for the Dirichlet minimum problem for the functional (1.5) on the class of 7-graphs
of bounded variation.

Theorem 1.4 (Existence of minimizers for a penalized functional). Let U C R?"
be a bounded open set with Lipschitz regular boundary. Then, for any given func-

Brought to you by | UZH Hauptbibliothek / Zentralbibliothek Zirich
Authenticated
Download Date | 11/10/16 12:51 PM



414 F. Serra Cassano and D.Vittone

tion ¢ € LY(0U) the functional
BV(U) > u > / |Du + X *| +/ lujgy — @l d F2"! (1.7)
Uu ou
attains its minimum and

inf{/ |Du+ X*|:u € BV(U), upy = (p}
u

:min{/ |Du+X*|+/ lujgy — @l dH* 1 u eBV(‘L()}.
Uu ou

We remark that the last integral in (1.7) equals both the Euclidean and sub-
Riemannian areas of that part of the cylinder dU x R between the graphs of u
and ¢, hence it can be seen as a penalization for not taking the boundary values ¢
on dU. See also Proposition 3.7 and Remark 3.8.

Theorem 1.4 extends the existence results contained in [53] and [17] in the
sense that formulation (1.7) allows to consider more general domains U. We point
out that a minimizer of the penalized functional (1.7) might not take the prescribed
boundary value ¢: we illustrate this situation by explicitly constructing an example
where 7-minimizers do not exist, see Example 3.6. In particular, the existence of
solutions for the Dirichlet minimum problem for .¢7; is not guaranteed even when
the boundary dU and the datum ¢ are very regular: in this sense, Theorem 1.4
does not extend the results in [53] and [17].

An existence result for continuous BV f-minimizers, taking the prescribed
boundary datum, has been obtained by J.-H. Cheng and J.-F. Hwang [14] for con-
tinuous boundary data on smooth parabolically convex domains. In the forthcom-
ing paper [55] existence, uniqueness and Lipschitz regularity of #-minimizers (as-
suming the prescribed boundary datum) is proved under the assumption that the
boundary datum ¢ satisfies the so-called Bounded Slope Condition: this result, in
particular, extends Theorem 1.4 as well as some related results in [53] and [17].

In the third part of Section 3 we study the boundedness of local #-minimizer;
our main result is the following.

Theorem 1.5 (Local boundedness of minimal ¢-graphs). Let u € BVo.(U) be a

local t-minimizer. Then u € L7 (U).

As a consequence, we obtain a local boundedness result for weak solutions of
the minimal surface equation, see Theorem 3.17.

Theorem 1.5 is sharp at least in the first Heisenberg group H!. Indeed, we are
able to provide a minimal 7-graph induced by a function u € L2 (U) \ Co(U):
see Section 3.4. It is an open problem whether a similar example can be con-
structed also in H”?, n > 2.
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Bounded variation and local boundedness of minimal graphs in H" 415

We want to stress also the following consequence of Theorem 1.2; we refer to
Section 2 for the definition of H-regular hypersurface.

Corollary 1.6. Let S be an H-regular hypersurface that is not (Euclidean) count-
ably J?"-rectifiable. Then S is not a t-graph.

We are now going to introduce the notion of intrinsic graphs, i.e., graphs with
respect to one of the horizontal vector fields X;. This is not a pointless generaliza-
tion: without entering into motivations, we recall only that any H-regular hyper-
surface is locally an intrinsic graph. For further details we refer to [34]. Without
loss of generality, we will always consider X;-graphs, i.e., intrinsic graphs along
the X;-direction.

Let us introduce some preliminary notation. If n > 2, we identify the maximal
subgroup

W :=exp(span{X2,..., Xn, Y1,...,Yn, T} = {(x,y,1) € H" : x; = 0}

with R%” by writing
(X2, X0y Y1y ooy Vs t)
instead of
0,%2, ..., Xn, V1se ooy Vn>t);
similarly W := exp(span{Y;,T}) = {(0,y,t) e H' : y,t e R} = Ri, ifn = 1.
Let w denote a fixed open bounded subset of W; the intrinsic cylinder w - R is

defined by
o R:={A-seH":Acw,s eR}

where, for A € W and s € R we write 4 -s to denote the Heisenberg product
A-(s5,0,...,0). Inthisway I-J = {A-s: Ael,s e J}foranyl C W,J CR.
Similarly, we will write s - A to denote (s,0,...,0) - A.
Given a function ¢ : @ — R, we denote by ® : @ — H" the corresponding
X1-graph map
d(4):=A-¢(4), Aco. (1.8)

Aset S C H” is called Xy-graph of ¢ : @ — R if
S =P(w)={4-¢(A) : A € w}.
The X1-subgraph and the X1-epigraph of ¢ are defined, respectively, as
Ep ={A-s:Acw,s <p(A)}, (1.9)

and
E? ={A-s:Acw, s> ¢(A)). (1.10)
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416 F. Serra Cassano and D.Vittone

Let Lip(w) be the classical space of Lipschitz functions on @ C W = R?". The
area functional <7y : Lip(w) — R reads as

(@) = Egln@-B) = [ 1+ |VogPaz®

where V®¢ is the non-linear intrinsic gradient for X-graphs

¢ .
Vg {(X2¢>,...,X,,¢>,W B Yopo Vo) i =2, 0
wWee ifn=1,
where
WP = Yi$p —2T($%) = dy, ¢ —20,(¢°). (1.13)

We agree that, when ¢ is not regular, the differential operators appearing in (1.12)
will be understood in the sense of distributions. The intrinsic gradient V¢ was
introduced and studied in [3], see also [8, 19].

Definition 1.7. We say that ¢ € L' (w) belongs to the class BVyy (w) of functions
with intrinsic bounded variation if |0E¢ | (w - R) < 4-o00.

We say that ¢ belongs to BVyy joc(w) if Eg is a set with finite H-perimeter
in ' - R for any open set 0’ € w.

The class BV (w) is deeply different from BV (w): for instance, it is not even
a vector space (see Remark 4.2). In spite of these differences, BV (w) shares
with BV (w) several properties:

* the functional ¢ — |0Eg|m(w - R) coincides with the relaxed one of w of oty
on L1 (w), see Theorem 4.7;

e each function in BVyy (@) can be approximated by a sequence of C* regular
functions (¢;); such that

¢; > ¢inL'(w) and [0Eg, |m(w-R) — |0Eg|m(w - R),

see Theorem 4.9;

e when w has Lipschitz regular boundary, a trace in generalized sense exists at
least for some large subclass of BVwy (w) (see Proposition 4.15). This notion
of trace is related to the possibility of extending the set E out of w - R without
“creating” perimeter on the boundary dw - R: see Definition 4.11. We conjec-
ture that any ¢ in BVyy does have a trace in this sense. However, as shown in
Remark 4.10, any meaningful notion of trace in BV cannot possess all the
features of classical traces;
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Bounded variation and local boundedness of minimal graphs in H" 417

* any sequence (¢;); C BVw (w) bounded in the || - ||gvy, “norm” (see (4.43))
and such that

sup(|0Eg, [ (H) + [0E? [ (H™)) < +o00 (1.14)
J

is compact with respect to the L\ (w - R)-convergence of its subgraphs (Eg i )j

(see Proposition 4.18), where we have set

HY = {(x,y,t) e H" : x; = 0},
H” = {(x,y,1) € H" : x; < 0}.
Condition (1.14) is equivalent to

sup(|0Eg, i (3w - RT) + [dEY [ (dw - R7)) < 400
J

where RT := [0, +00), R™ := (—00,0].

In Section 4 we also attack the problem of the existence and regularity of mini-
mal X1-intrinsic graphs. In the literature, the regularity problem has been studied
assuming ¢ € Lip(w) (see [9,10]) or ¢ € W&;l(a)) (see [51]), a suitable class of
intrinsic graphs with Sobolev regularity introduced in [51] (see Definition 2.8).

The area functional .7y is lower semicontinuous with respect to the L! topol-
ogy, but it is not convex (see [24] and Proposition 4.1). Furthermore, it is dif-
ferentiable and its first variation yields the minimal surface equation (4.4) for
X1-graphs. A study of the C2? minimizers of oy was carried out in [22], [7],
[21] and [24] also in connection with the Bernstein problem for intrinsic graphs.
First and second variations for minimizers in W&;l(a)) have been studied in [51].
The regularity of Lipschitz continuous vanishing viscosity solutions of the mini-
mal surface equation for intrinsic graphs has been studied in [9, 10]. We have to
mention that, in the first Heisenberg group H!, there are minimizers of </ whose
regularity is not better than %—Hélder: see [51, Theorem 1.5].

We shall prove an existence result for minimal X-graphs on @ with prescribed
“boundary datum”. Let wg 3 w be a bounded open set and 6 € BV (wg) be such
that

|0Eg|m(dwo - RT) + |8E9|H(3a)0 -R7) <00, |0Eglp(dw-R) =0. (1.16)
We consider the problem

inf {|0Ey |m(@-R) : ¥ € BVw(wo). ¥ = 0 on wp \ o}. (1.17)

(1.15)

When ¢ € BV (w) has a trace in generalized sense, then it possesses an exten-
sion 6 € BVyy(wp), on a suitable wy 3 w, satisfying (1.16): if this is the case,
problem (1.17) can be viewed as that of minimizing area with boundary datum

given by ¢.
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418 F. Serra Cassano and D.Vittone

Theorem 1.8 (Existence of minimal X-graphs). Problem (1.17) attains a min-
imum in BVwyy (wg).

Theorem 1.8 is proved in Section 4.2; in the subsequent Section 4.3 we obtain
a local boundedness result for minimal X;-graphs.

Theorem 1.9 (Local boundedness of minimal X-graphs). Let ¢ € L2 (w) be

loc

such that E is a local minimizer of the H-perimeter in @ - R. Then ¢ € L{ (w).

This result is not the exact counterpart of Theorem 1.5 for minimal #-graphs.
We do not know whether the additional (2n 4 1)-summability is only a technical
problem or if there exist minimal X-graphs ¢ ¢ L’ (w). Moreover, in Theo-
rem 1.5 we prove the local boundedness of #-minimizers using the fact that their
associated subgraphs are also H-perimeter minimizing sets. In Theorem 1.9 we in-
stead require the subgraph Ey to be IH-perimeter minimizing: as far as we know,
there is no geometric rearrangement, similar to the one for z-graphs given by
Theorem 3.15, ensuring that the subgraph of a minimal intrinsic graph is also
H-perimeter minimizing. At any rate, the problem of further regularity for area
minimizing intrinsic graphs is completely open.

Finally, we have to point out that our techniques have been strongly inspired
from the important work [47]; we also refer to [39,46].

2 Preliminaries

By #2822 we denote, respectively, the m-dimensional Hausdorff and spherical
Hausdorff measures associated with the distance doo, while J™, 8™ refer to the
corresponding Euclidean measures. Recall that (see [6])

8271 <« H2". 2.1)

By U(P,r) and U.(P,r) we mean the open balls of center P and radius r,
respectively, with respect to the do, and the CC metric d.; when centered at the
origin, balls will be denoted by U, and U, .

Euclidean open balls in R will be denoted by B(P, r) and B;. The symbol | - |
is reserved for the norm of elements of R™, while the Euclidean distance between
two points A, B € R™ is denoted by dist(A, B). For E C R™ we write y g for the
characteristic function of £ and | E| for its Lebesgue measure £ (E) (of course,
no confusion with the norm of a vector will arise). The identification H” = R2"+1
is understood when the previous symbols involve elements or subsets of H".

A real measurable function f defined on an open set & C H” is said to be of
class Cﬁ(Q) if £ € C%(Q) and the distributional horizontal gradient

Vaf =& f.... Xn 0o Y0 f)
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Bounded variation and local boundedness of minimal graphs in H" 419

is represented by a continuous function. The function f is said to be of class
Lipg(R2) if f : (2, dso) — R is Lipschitz continuous. Each function f that be-
longs to Lipyy (€2) also admits a distributional horizontal gradient

Vaf = Xifo..  Xn Y1 S Yu f) € (L®(Q)*"

(see, for instance, [30, Proposition 2.9]).
Given a function f € L1(2) we define

Dif1(Q) = sup{[gfdiVerw e ClQ). o] < 1}.

We say (see [11]) that f belongs to the space of functions with bounded H-var-
iation BV () if | Dy f1(2) < 4o00. In this case | Dy f| defines a Radon mea-
sure that coincides with the total variation of the distributional horizontal deriva-
tives Vg f. Note that a measurable set has finite H-perimeter in €2 if and only if
xE € BV (Q2); moreover, |0E | = |Dmxg|. A norm in BVyy is defined by

If IBvez@) = If L1 @) + |PESI(S2).

The inclusion
BV (Uc(P,r)) C LY (U.(P,r))

is compact (see [37, Theorem 1.28]).
Let us recall the following coarea formula (see [50, Theorem 4.2]).

Theorem 2.1. Let f € Lipy (H") and u € L'(H"). Then

+o0
/ u|Vy f|d £ t! =/ / udp, dt
H” —oo  J{f=t}

where iy = |0{f < t}|m.

We say that a sequence of measurable subsets (£;); of H" converges in LY(Q)
(respectively in L (2)) to a measurable set E C H", and we will write E; — E
in L1(Q) (respectively in LIIOC(Q)), if one has yg, — yE in LY(Q) (respectively
in Llloc(Q)). An immediate consequence of definition (1.2) is the LIIOC(Q)-lower
semicontinuity of the H-perimeter:

Proposition 2.2. Let @ C H" be an open set and let (E); be a sequence of mea-
surable subsets of H" converging in L} () to E C H". Then

loc

|0E |1 (Q) < liminf |0E; |5 ().
Jj—00
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420 F. Serra Cassano and D.Vittone

We also recall the following properties of the H-perimeter measure: they can
be proved as in the classical case (see, for instance, [2, Proposition 3.38]).

Proposition 2.3. Ler Q C H” be an open set and let E and F be measurable
subsets of H". Then:

(1) spt|0E|m C 0E, where spt|0E | denotes the support of the measure |0E |y,
(i) [0E[m(2) = [0(H" \ E)|m (),
(iii) (locality of H-perimeter measure) [0E | (2) = [0(E N Q) |m(2),
(iv) [0(E U F)[u(2) 4+ [0(E N F)|u(2) < [0E]m () + |0F g (£2).

By [37, Theorem 1.18], an isoperimetric inequality holds in the Heisenberg
group.

Theorem 2.4. There is a positive constant cy > 0 such that for any set E with
finite H-perimeter, for all x € H" and r > 0

min{|E 0 Ue(x. 7)]. |Ue(r. 1)\ E[} @ < e/ E|a(Ue(x.r))  (22)

and
min{|E|, [H" \ E|}“C" < ¢/ |0E|g (H"). 2.3)

By Riesz’ representation theorem, if £ has finite H-perimeter in €2, then |0E |
is a Radon measure on €2 for which there exists a unique |0E |g-measurable func-
tion vg : 2 — R2" such that

veg| =1 |0E |pr-a.e. in 2,

(2.4)
/ divig pd £*" 1 = —/ (p.vE)d|dE|g forall p € CL(Q,R?").
E Q

We call vg the horizontal inward normal to E (see [29]); the distributional deriva-
tives Vg y g are represented by the vector measure vg |0E |g.

It is well known that the H-perimeter measure of a set £ C H” does not change
under modifications of E on sets of null 2n + 1-dimensional Lebesgue measure.
Let us define the interior, exterior and boundary (in measure) of E, respectively,
by

int,, E :={P € H" : 30 > O with |[E N U(P, 0)| = |U(P, 0)|},
extyp E = {P € H" : 30 > 0 with |E N U(P, 0)| = 0},
OomE ={P eH":0<|ENU(P,0)| <|UP,0)| Yo > 0}.
It is easily seen that int,, E, ext,, E and d,, E are stable under replacing the met-

ric doo With an equivalent one. In particular, we can equivalently define them by
means of CC balls.
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Bounded variation and local boundedness of minimal graphs in H" 421

Proposition 2.5. Let E C H" be a Borel set and define
E := (EUinty E) \ exty E. (2.5)

Then E is a Borel set with |E A E| = 0 and its topological boundary dE coin-
cides with 0y, E. In particular, |0E |g = |0E |m.

The proof of Proposition 2.5 is perfectly analogous to that of the corresponding
Euclidean result, see [39, Proposition 3.1]. Without loss of generality, in the fol-
lowing we will always suppose that E coincide with the associated set E in (2.9).

At this point we have to summarize some of the results of [31]. For a set E with
finite H-perimeter it is possible to introduce the reduced boundary dg; E as the set
of those points P such that

e |0E|m(U(P,r)) > 0 forany r > 0,

.. d|0E . . .
o the limit lim,_q %% exists and is a unit vector.

It turns out that
0E|g = ca 82 'L OGE (2.6)

where ¢, is a positive constant depending on n. The blow-up properties of E at
points of the reduced boundary (see [31]) ensure that 8ﬁE C EY2, where for
given o € [0, 1] we set E% to be the set of points with density «,

ENU(P,
E% = PeH”:limM:a
r—0  [U(P,r)|

The measure theoretic boundary 0, £ was introduced in [31, Definition 7.4];
it coincides with H” \ (E' U EO).
The following result is implicitly contained in [31]:
Theorem 2.6. Let E be a set with locally finite H-perimeter. Then
8271 (m" \ (E' UE° U E'Y?)) = 0.

Moreover, |0E g = cn/So%_1 LEYV2 = cn80%_1 Lds«uE.

Proof. Since 0, g E = H" \ (E' U E%), one has
ST H" \ (E'UE U EV?) = 827 (. mE \ EV/?)
<8271 @umE \ HE) =0,

the last equality following from [31, Lemma 7.5]. The second part of the statement
follows from (2.6) and

S2V LG E<S8L LEV?2 <82 L g mE =82 1LOKE. O
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422 F. Serra Cassano and D.Vittone

We say that S C H” is an H-regular hypersurface if for every P € S there
exist a neighbourhood € of P and a function f € Cﬁ{ (2) such that Vg f # 0
and SN Q ={0 € Q: f(Q) = 0}. The horizontal normal to S at P is

_ Vu/f(P)
Ve f(P)

An H-regular hypersurface can be highly irregular from the Euclidean viewpoint
as it can be a fractal set [43]. This not being restrictive, we will deal only with
hypersurfaces S that are level sets of functions f € C]h with Xy f # 0. The im-
portance of H-regular hypersurfaces is clear in the theory of rectifiability in H”.
The reduced boundary of a set with finite H-perimeter is H-rectifiable (see [31]),
i.e., it is contained, up to 80%_1-negligible sets, in a countable union of H-regular
hypersurfaces.
The equalities

vs(P) :=

|Eg N H"| =/¢+d§£2”, |H” \ Eg| =/¢—d1i2",

|Eg AH"| = / 1l de>",
@ (2.7)

|Egy A Eg| =[H Xy, — XEy, | d 22! =/ 61 — gal d 22",
n )

By, A By, =/ xEy, — xEg, 1AL =[ uy —uz| d 2",
H” ! 2 Uu

hold for any measurable functions ¢, ¢1,¢2 : w = R, uy,us : U — R, where
H’—li— and H” are the half-spaces of H” introduced in (1.15) and
¢ = max{¢p,0}, ¢ := max{—¢,O0}. (2.8)
The first three equalities in (2.7) can be easily proved because the smooth map
o xR — H" = R?>"H1,
(A,s) > A-s
has Jacobian determinant equal to 1.

Given ¢ : @ — R, the associated graph map ® : w — H”" was defined in (1.8).
Similarly, we agree to denote ®, ®;, etc. the graph maps associated with ¢, ¢;,
etc.

The projection 7y : H" — W is defined by

Ty (x,y,t) == (x,y,1) - (—x1,0,...,0)
2.9)
- (Oﬁxz""9-xnyylv""yn?t _2x1y1)
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Bounded variation and local boundedness of minimal graphs in H" 423

so that (x, y,t) = mw (x, y,1) - x1. Observe that ®~! = 7y |®(w) and that
aw (P -s) = aw(P), nw(s-P)=s-mw(P)-(—s) VP eH" VseR.

It is easily seen that the map yy is open and there exists a constant ¢ = ¢(n) > 0
such that 7w (P)|oo < ¢||P|co for any P € H" (see [35, Proposition 3.2 and
Remark 4.2]).

An H-regular hypersurface S with v}s. < 0 is locally an X;-graph, see [31];
a characterization of the functions ¢ such that ®(w) is an H-regular hypersurface
was given in [3] (see also [19]). We define

Ciy () == {¢ € C®(w) : P(w) is H-regular and v(lb(w)(fb(A)) <0VA e w).

Functions in the class C%W have been characterized in [8] improving some previous
results obtained in [3, 19]. Moreover, for such functions an area-type formula was
obtained in [3]. We summarize these results in the following

Theorem 2.7. A function ¢ : v — R belongs to C%;V(a)) if and only if ¢ € C%(w)
and the distributional derivatives V®¢ are represented by continuous functions.
Moreover

|8E¢|H(w-R)=cn80%_1(d>(a))):/ V1 +|Vep12d e, (2.10)

The area-type formula (2.10) has been extended to the more general class of
intrinsic Sobolev graphs.

Definition 2.8. A function ¢ € L?(w) belongs to the class W‘}V’l (w) if there exist
a sequence (¢;); C C!(w) and a vector-valued map w € L' (w; R?"~1) such that,
as j — 4o0,

¢ —>¢. ¢7 —>¢> and V¥%¢; >w inL'(w). @2.11)

We say that a function ¢ € L12OC (w) belongs to the class W&,’ll oc (@) if there exist

(¢j); C Cl(w)and w € Llloc(a); R2%~1) such that all the convergences in (2.11)
hold in L] ().

For a function ¢ € W‘%;lIOC (w), the distributional derivative V?¢ is represented
by a vector-valued map w € LllOc (w, R2"~1) and namely by the function in (2.11).
It was proved in [51] that

OE (a)-R):/ 1+ |Vep|2d "
10Eg |1 w\/ [Veg|

forany ¢ € W&;l(a)).
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424 F. Serra Cassano and D.Vittone

Remark 2.9. As proved in Remark 4. 2 the classes C and WW are not vector
spaces. By definition, the inclusion W Ycr? holds as well as the inclusions of
the corresponding local classes. We also have

Cly C Wyl Lip C Wyg'
see [51, Remark 3.2 and Proposition 3.6]. An example of a function in C%,V \ w1

loc
is given in [43].

It is well known that a set £ C R2”*! with locally finite Euclidean perimeter
has also locally finite Hl-perimeter (see for instance [31, Remark 2.13]). For such
a set one can represent 1ts H-perimeter measure with respect to the Hausdorff
measures F2" and 8 . This representation is already well known when 0F
is regular (see [11] and [31]). We denote by 0*E and ng (P), respectively, the
classical reduced boundary of £ and the generalized Euclidean inward normal
to E at P € 0*E (see e.g. [39]).

Proposition 2.10. Let E be a set with locally finite Euclidean perimeter. Then E
has locally finite H-perimeter and

|0E|g = [n2|H?" L O*E = ¢, 827 L O*E (2.12)
where nff := ((X1.ng).....(X2n.ng)) € R?"
Proof. 1t is well known that
XixE = (X;,ng)|0E| = (X;,ng)H*" L O*E

holds in the sense of distributions for any j = 1,...,2n, |0E| being the Euclidean
perimeter of E. The first equality in (2.12) immediately follows. Moreover

In2 1 H2" L *E = |0E|g = ca82 L OKE (2.13)
and thus the second equality in (2.12) will follow if we show that
827V OHE AY*E) = 0. (2.14)
Notice that, by (2.13), we have
S2TVOHEN\I*E) =0

and (2.14) follows provided we show that 80%_1 (0*E\ 0y E) = 0.
To this end, notice that from (2.13) we obtain

nl =0 H*-ae.ond*E\IE. (2.15)

Brought to you by | UZH Hauptbibliothek / Zentralbibliothek Zirich
Authenticated
Download Date | 11/10/16 12:51 PM



Bounded variation and local boundedness of minimal graphs in H" 425

Since 0*E is locally 2n-rectifiable in the Euclidean sense, there exists a family
(Sj)jen of (Euchdean) C! surfaces in H” such that #2"(3*E \ UJ —095)=0
(whence also 800 (8*E \ UJ —o Sj) = 0 because of (2.1)) and

ng =ng; H2"-ae. on*ENS;, (2.16)

ns; being the Euclidean unit normal to S;. The well-known result by Z. Balogh [5]
ensures that for any j

SZTH (P € Sj ¢ ns;(P). X1(P)) = -+ = (ns;(P). X2n(P)) = 0}) = 0.

Taking into account the fact that (2.16) holds also 80%_1—21.6. on d*E N S; (re-
call (2.1)), we deduce that

827 1((Pp e 3*EnS; :nl(P)=0}) =
for any j,i.e., 80%_1({P € 0*E : nf}(P) = 0}) = 0. The desired equality
SEVO*E\OE) =0
follows from the fact that (2.15) holds also 80%_1—a.e. on 0*E \ I E. o

Remark 2.11. An immediate consequence of Proposition 2.10 is the negligibility
of the characteristic points of 0* E

8271 ({P € 3*E :n(P) = 0}) = 0. (2.17)
The following relationships hold between 80%_1 and H2".
Lemma 2.12. Let U C TT = R?" and o C W = R?" be open sets.
(1) If U is bounded, there exists a constant C = C(U) > 0 such that
S271 L (UxR) < CHP L (UXR).
(i) Foreach s € R one has
cn&%_l L(w-s)=H"L(w-s).

Proof. (i) It has been proved in [6] that for any r > 0 there exists ¢ = c¢(r,n) > 0
such that
S27L LU, r) < eHP LU, 7).

In particular, there exists a C = C(U) > 0 such that

827N (U [-1,1]) < CHP L (U x [-1,1)).
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426 F. Serra Cassano and D.Vittone

Since vertical translations are isometries in H", we have also
SENL (UXh=1Lh+1) SCHPL(Ux[h—1,h+1])

for any /2 € R. Our claim easily follows.
(i1) Let ¢ : @ — R be the constant function taking value s; by Proposition 2.10

n8&T L (0-5) = [dEglmL (0 - R) = n, [#>" L (@-5).

The statement easily follows noticing that ng, = (1,0,...,0),i.e.,
ng, | = 1. o

The following localization estimates for the H-perimeter measure have been
proved in [1, Lemma 3.5] and [32, Lemma 2.21].

Lemma 2.13. Let E be a set with locally finite H-perimeter; for given P € H"
andr > 0setmg(P,r):=|ENU.(P,r)|. Then fora.e.r >0

|0(E \ Ue(P.r)[m(@Uc(P.r)) < mg(P.r) (2.18)
and
|0(E N Ue(P,r)m(H") < [0E[q(Uc(P, 1)) +mg (P, r). (2.19)

Let us recall once more our assumption that £ coincides with the set E in (2.5).
In particular |E N U(P,r)| > Oforall P € E and r > 0.

Proposition 2.14. Let E C H" be H-perimeter minimizing in an open set Q C H".
Then there exists a constant C = C(n) > 0 such that

IENUP.r)|2Cr@ foranyP e ENQ,0<r <do(P.0Q). (2.20)

Proof. By the equivalence of doo and d., it will be sufficient to prove that there
exists a C = C(n) > 0 such that

|ENU(P,r)|=Cr2 forany0 < r < d.(P,0%). (2.21)

Up to a left translation we can suppose that P coincides with the identity 0. Since
E is H-perimeter minimizing, we have

|0E[r (§2) < [0(E \ Ue,r)|m(£2)
and so, by subtracting [0E | (2 \ Ue,r) = [0(E \ Ue,)I(2\ Uer),
|3E|H(Uc,r) < |8(E \ Uc,r)l]HI(aUc,r)-
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Bounded variation and local boundedness of minimal graphs in H" 427

For a.e. r > 0 one has [0E|g (U, ) = 0 because |0E |pr is a Radon measure. By
(2.18) we achieve for such r

|8E|H(Uc,r) < mlE (r) (2.22)

where mpg(r) := |E N U, |. Taking into account (2.22), (2.19) and the isoperi-
metric inequality (2.2), we obtain

o—1 o—1
mg(r) ¢ = |E N Uc,r| 2 < Clla(E N Uc,r)lH(Q) < 2¢y m/E(r)

Since mg (r) > 0 for any r > 0, we have
1-0 1
me(r) e mg(r) = (m}lE/Q)/(r) z 5 fora.e.r >0
Cr
and (2.21) follows by integration because m g is locally Lipschitz continuous

mE(r1) = mg (r2)| < [Uey \ Uers| = clr —r2|. :

We will need in the sequel the well-known notion of convolution between func-
tions in the Heisenberg group (see [28]): for given g € L1 (H"), f € L?(H") we
set g x f € LP(H") as the function defined by

(e NP)i= [ w0 7@1d0 = [ 5007 Pag. 223

The symbol * will be instead used to denote the classical Euclidean convolution
g * f between f and g. Recall that in general f x g # g x f; moreover

V(g * f) =g+ (Vuf) # (Vug) » f

whenever f,g € WL1(H"). We will often consider a fixed mollification kernel
0 € C(Uy) such that

/n 0dE* =1, 0=0 and o(P)=o(P Y (2.24)

and write gy (P) := a‘QQ((Sl/a(P)) for any a > 0. For any f € L?(H") the
mollified functions gy * f € C*°(H") converge to f in L?(H") as « — 0. No-
tice that the convolution gy x f is well-defined and smooth also for f € LlloC (H™).
Moreover

spt(0a * f) C Uqg - spt f (2.25)
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428 F. Serra Cassano and D.Vittone

and
/ (0o * f)gdg>"H! :/ (/ 0a(P - Q_l)f(Q)dQ)g(P)dP
H H” H”
:/ (/H 0a(Q- P_l)g(P)dP)f(Q)dQ (2.26)

- / F(0a * 8) 22"
Hn

forany f € LP(H") and g € L? (H") with s+ =1L
Finally, we recall the following calibration result proved in [7, Theorem 2.1] in
the setting of CC spaces.

Theorem 2.15. Let Q C H” be an open set and let E be a set with locally finite
H-perimeter in Q2. Suppose there are two sequences (), and (vy,)y, such that
() @ isopen, Q, € Qut1, Upe1 Qn = 2,
(i) vy € CHQ;R?™), |vp(x)| < 1 forallx € Q, heN,
(iii) divg vy = 0 in Qy, for each h,
@iv) vp(x) > vE(x) |0E|-a.e. x € Q.

Then E is a minimizer for the H-perimeter in 2.

3 Existence and local boundedness of minimal 7-graphs

3.1 Bounded variation for #-graphs

When u is a function in the Sobolev space W 1 (U), it is possible to write
(1) = / L(z,Vu(z))d£>"(z)
Uu

where .Z : R?" x R?" — [0, +00) is defined by .Z((x, ). £) = | + X *(x, y)|.
The functional .27 is convex since the function .Z(z,-) : R?” — R is convex;
L(z,-) : R?" — R is not strictly convex.

When u € CZ(U) is a local minimizer of <7, a first variation of the functional
yields the minimal surface equation for #-graphs

div(Nu)) =0 in Upe(u). 3.1
We have defined v x*
u—+
N(u) = m on ‘L{nc(u) (32)
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Bounded variation and local boundedness of minimal graphs in H" 429

where Uy (1) := U \ Char(u) and Char(u) is the set of characteristic points of u
defined in (1.6). The solutions of (3.1) are called H-minimal. One is not allowed
to deduce that (3.1) is satisfied on U in the sense of distributions even when
&£2"(Char(u)) = 0; moreover, the size of the set Char(x) may be large even for
u € WH1(U) (see [5]). These problems have been studied with details in [17] and
a suitable minimal surface equation was obtained.

We are going to study the relaxed functional <7 : L' (U) — [0, +00] of %
with respect to the L!-topology and to give a representation formula on its domain.
We therefore introduce

oy (u) = inf{liminf/ [Vur+X*dE?" cup e WHY(W), ug — uin Ll(w}.
k—oo Ju

In the sequel we will consider also the following [0, +oc]-valued functionals on
the space L!(U):

I (u) = inf{liminff |Vug + X*|d £ :up € CH(U), ux — uin LI(U)},
k—o0 Ju

Si(u) := sup{/u(—u divg + (X*, g))d£*" : g € CHU;R?"), |g| < 1}.

Routine arguments ensure the L-lower semicontinuity of o, I, and S; and that
they coincide on C'(U) or W1 (U). Moreover, if u € C'(U) or W11(U), then

|0E, lm(U x R) = /u [Vu + X*[dL>" = o (u) = I;(u) = S (u),
the first equality following from [11].

Remark 3.1. It follows from the definition that the functional S; is the total varia-
tion of Du 4+ X *£2" where Du is the gradient of u in the sense of distributions:
it is sufficient to apply Riesz’ theorems (see e.g. [2, Teorema 1.54]).

The following is one of the crucial results of this section.

Theorem 3.2. Let U C R?" be a bounded open set. The equalities

0E, |1 (U X R) = . (u) = I, (u) = S¢(w). (3.3)
hold for any u € L' (U).
Proof. For the reader’s convenience, we divide the proof into several steps.

Step 1: o7;(u) < I;(u). We may suppose that I; (1) < +oc. By definition, there
exists a sequence (ux)x C C1(U) N L1(U) such that

lim uy =uin LY(U) and lim / |Vug + X*|d £ = I,(u).
k—o0 JU

k—o00
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430 F. Serra Cassano and D.Vittone

Since
/|Vuk|dx2"s/ |Vuk+X*|d:£2"+/ |X*|d£2",
Uu U U

the sequence (uy ) is definitely in W 1(‘1,() because U is bounded.
Step 2: </ (u) = I;(u). We can suppose .7 (1) < +oc. By definition there ex-
ists a sequence (ug)x C WH1(U) such that

urp — uin LY(U) and /|Vuk+X*|d$2"—>E(u).
u

By the density of smooth functions in Sobolev spaces, for each given k there exists
a function vy € C®(U) N W1 (U) such that |ug — vy lwia@uy < 1/k. On the
other hand

/ |Vvk+x*|d:£2"s/ |Vuk+X*|d:62”+/ |V (vg — ug)| d £
U U U

1
< / |Vug + X*|d 2" + —
U

for all k, which allows to conclude because vy — u in L.
Step 3: Sy(u) < I;(u). We may assume /;(u) < oo. By definition, for any
€ > 0 there exists a sequence (uy ) of C! functions such that

ugp — uin LY(U) and liminff [Vup + X*| < I;(u) + €.
k—oo JU
Let g € CL(U,R?"), |g| < 1, be fixed; then

/[—udivg—i— ,g)]de* = 11m /[—ukdlvg—|—( * g)de"
Uu

= lim | (Vup +X*, g)d&*"
k—o0 JU

k—>o0

< liminf/ |Vug + X*|d£"
Uu
< It(u) + €.

By taking the supremum on g we immediately conclude.
Step 4: 1;(u) < S¢(u). We closely follow a classical argument by Anzellotti—
Giaquinta (see [39, Theorem 1.17]). As before, we can suppose Sy (1) < oo. Fix
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Bounded variation and local boundedness of minimal graphs in H" 431

€ > 0 and consider a sequence of open sets (U;); with U; € U; 41 and U; T U.

We additionally require that

sup{/ _ [~udivg + (X*, g)]d¥*" : g e Ci(‘u \ Ui, R?™), |g] < 1} <e€;
U

\ Uy
(3.4)
this is possible thanks to the boundedness of S; (1), i.e., the fact that Du + X * £2"
is a Radon vector-valued measure on U (see Remark 3.1). Set

A1:=Uy and A; := Uiy \ Uj—q fori =2,
and consider a partition of the unity in U subordinate to the covering #4A;, i.e.,
a family of functions (v;); such that

o0
Yi €CP(A)., 0<y; <1 and > yi=1.

Let o be a standard smooth mollifier with support in B(0,1) C T = R?", and
define

0a(X) :=a 2"o(a?"x) fora > 0.
It is possible to fix numbers «; > 0 such that spt(oq; * (u;)) C #4; and
/u |0a; * (i) —uypi| dL>" < 277e, (3.5)
Oa; * (U i)—Uu i < '6, .
cx VY —uVy | d e <27 (3.6)

Uu

l0a; * (Vi X*) — Y X*|d " <27 3.7)
u 1

Finally, we set
[e.°]
Ue =Y Qa; * (V)
i=1
condition (3.5) ensures that u, — u in L1(U) as € — 0.
Fix g € CL(U,R?"), |g| < 1;itis a matter of computations that

[ —ucdivgd £*" :/ —u div(¥1 (0g, * g)) d£>"
u u

—u div(¥; (0g; dE*
+§[u u div(¥i (0a; * £))

3 [ {500+ 90—V a2

i=1
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432 F. Serra Cassano and D.Vittone

Thus

/ [—ucdivg + (X*, g)]d 2"
U

- [u [ div(P(Qay * £)) + (X ™. Y1 (0ay * £))] 4 L7

+3 [ Fudiv s, * € + (X ¥iles, + 1A L
=2/ U

- Z/‘uﬂg,@ai s V) —uV;)d £

i=1

+ Z[uuf*,%(g — 0q; ¥ 8))dL*"

i=1
= I+ 1,4+ I3+ I4.
Notice that |; (0e; * g)| < 1, whence I1 < S;(u). Moreover
N N
L= lm u[—u diV(; Vi(Qa; * g)) + <X*,l;1m (0a; * g)ﬂ dg*"
< 2e;

this follows from (3.4) and the fact that

N
> Vi(0a * 8)

=2

$27

which in turn is justified by |0q, * g| < 1 and A; N A; =@ for [i — j| = 2.
Estimate (3.6) yields /3 < €. Finally, using (3.7) we obtain

(o]
I = Z/uwix*,g—gai v g) A"

i=1

=3 [ (X"~ < (X g ax <

i=1

On taking the supremum among g € CL(U, R?") we obtain
/ [Vue + X*|d 2" < S;(u) + 4e
Uu
and the desired inequality follows.
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Bounded variation and local boundedness of minimal graphs in H" 433

Step 5: |0E! |m(U x R) < I;(u). Fix a sequence (ug)x C C1(U) withuy — u
in L' and
I;(u) = liminf/ [Vugp + X*|d£".
k—oo Ju

By (2.7) we have yg; — Xgy, in L' (U x R) and thus

[0E} (U x R) < liminf [DE], |m(U x K)

—llmlnf/ |Vug + X*|d £ = I;(u)

by the semicontinuity of the H-perimeter.
Step 6: St (u) < [0EL|m(U x R). It is enough to prove that, for any fixed func-
tion g € CL(U,R?"), |g| < 1, there holds

|aE;|H(uXR)>/ [—udivg + (X*, g)]d£?". (3.8)
u

For fixed M > 01let hipy € C2°(R) be such that

hy =1 on[-M,M], spt:hy C[-M—1,M + 1],

3.9
0<hy <1, |hhy] <2

We may assume that

-M M+1
J :=/ hp(t)dt =/M hp (t) dt

-M-1

and that J does not depend on M it is sufficient to fix a suitable “profile” that
h must assume on [-M — 1,—M] and [M, M + 1]. We explicitly compute the
following integrals: if z := (x, y), then

u(z)

/ hy()ydt =J +u(z)+ M if [u(z)| < M,
—00
u(z) u(z)

/ hy () dt =J +2M —|—/ hy () de ifu(z) > M,
oo M
u(z) u(z)

/ hy(t)dt = [ ha (t) dt ifu(z) < —M,
—00 -M-1
u(z)

/ Iy () dt =1 iflu(z)|] <M
—0o0
u(z)

/ hﬁw(t) dt = hpy(u(2)) if lu(z)| > M.
—00
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434 F. Serra Cassano and D.Vittone

Define gps € CL(U x R, R?™) by ¢pr(x, y,t) := —hpr(t)g(2); it follows that

|aE;|H(uXR)>/ divyg g d 22711
E},

n u(z)
:/ Z/ [—ha (1)dx, g (2) — 2y hpr (1)) (2)
ujzl —00
— hag (13, 8 (2) + 22 Hyg (gt (2)] dit dz

= /u[—(J +u(z) + M) divg(z) + (X*(2). g(2))] dz

u(z)
+/ [—(J +2M +/ ha () dt
{u>M} M

—J —u(z)— M) divg(z)

(X2, g(2)) (g () — 1)} dz

+ /{K_M}[—(/_j(:l ha (t) dt

—J —u(z) — M) div g(z)

+(X°C). ) e )~ 1)
=Ry +Su+Tu.
Since g is compactly supported,

Ry =/ [—udivg + (X*, g)]d £>";
u

inequality (3.8) will follow if we prove that limys 00 Spr = limps—00 Tpr = 0.
Let us rewrite Sz as

u(z)
Sy = |:—(M +/ ha(t) dt —u(z)) divg(z)
{u>M} M

+(X™(2). 8(2)) (hpr (u(2)) — 1)} dz.

We point out the implication

u(z)

u(z) > M = 'M +/ hpy@)dt —u@)| < |ju(z)—M|+1<|u(z)| +1,
M

Brought to you by | UZH Hauptbibliothek / Zentralbibliothek Zirich
Authenticated
Download Date | 11/10/16 12:51 PM



Bounded variation and local boundedness of minimal graphs in H" 435

which gives the existence of a positive constant ¢ = ¢(U, g) such that
|SM|sc/ (Ju| + 1)d £2".
{u>M}

Since u € L1(U), it follows

lim Sy = 0.
Minoo M

A similar argument gives limps o 737 = 0 and the proof is accomplished. O

From now on, for any u € BV;(U) we will use the notation

[ |Du + X*|
Uu

to denote any of the quantities 7, (u), S; (1), % and [0E! | (U x R).
The following result has been obtained along the proof of Theorem 3.2.

Corollary 3.3. Let U C R?" be a bounded open set. Let u € BV (U). Then there
exists a sequence (uy)r C C*®(U) converging to u in LY (U) and such that

/|Du+X*|= lim / |Vug + X*|d£?".
U k—o00 JU

Other important consequences of Theorem 3.2 are Theorem 1.2 and the compact
embedding of BV, (U) in L' (U).

Proof of Theorem 1.2. It will be sufficient to show that BV;(U) = BV(U). Re-
calling that an equivalent definition for the Euclidean variation of a given map
u:U—Ris

| Du|(U) := sup{[uudivgdéﬁzn g € CL(U,R?™), |g| < 1},

the result will immediately follow from Theorem 3.2, the definition of the func-
tional S; and the fact that U is bounded. O

Proof of Corollary 1.6. Reasoning by contradiction we will prove that, if S is an
H-regular hypersurface that coincides with the #-graph of a map u : U — R de-
fined on some open bounded set U, then S is (Euclidean) countably J¢2"-recti-
fiable.

Let us prove that u is continuous. For any z € U there exists a neighbourhood
Qof P=(z,u(z))eSand f € C%H[(SZ) such that S N Q = {f = 0}. We may
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436 F. Serra Cassano and D.Vittone

assume that Q2 = U’ x (a, b) for some a < u(z) < b and some open set U’ C U
with z € U'; in this way we have

SNQ={f=00NQ ={z u)) :z €U}
Possibly replacing f with — f, the continuity of f gives
f(z,t) >0 Vte(u(z),b) and f(z,t) <0 Vit e (a,u(z)).

Again by the continuity of f, it follows that for any € > 0 there exists an open set
U c U, ze U, such that

f(Zu(iz)+€)>0 and f(z,u(z)—e) <0 Vz eU,

ie., u(z) —e <u(z’) <u(z)+ € for any z’ € U”. This proves that u is con-
tinuous and, in particular, that EJ, is open. By Theorem 1.2, u is a continuous
function belonging to BV(U). Thus, it is enough to prove that, for any function
u € Co%(U) NBV(U), its graph S = {(z,u(z)) : z € U} is countably F2"-recti-
fiable.

First, assume there exists a sequence (Uy,);, of bounded open sets in R2” satis-
fying the following properties:

(1) U, € Uforall hand U = | Jj2, Up,
(2) each Uy, is finitely, rectilinearly, triangulable according to [26],
(3) [9EL|(0Uy x R) = 0 for all A,

|0E| denoting the Euclidean perimeter of a set £ C R?*T1 Then, by the first
assumption in (1), (3) and [47, Theorems 1.3 and 1.8], we obtain

Lon(Sp) = [9EL|(Up x R) < oo, (3.10)

for each i, where Sy, := {(z,u(z)) : z € Uy} and Ly, denotes the 2n-dimensional
Lebesgue area. On the other hand, by (2), (3.10) and [26], it follows that, for
each £, Sy, is countably # 2n_rectifiable. Because of the second assumption in (1),
we also obtain that S = | ;2 ; Si. Thus, S is countably J¢>"-rectifiable.

Finally, we have to prove the existence of a sequence (Uy)y satisfying (1),
(2) and (3). For each z € R?", r > 0, let Q(z, r) denote the (open) cube in R?"
centered at z with sides of length 2r. Such a cube is trivially a finitely, rectilinearly,
triangulable set in R%”. For any z € U let r(z) > 0 be such that Q(z,r(z)) C U.
Since |0EL|(U x R) < oo, without loss of generality we can choose r(z) so that

|0EL|(0Q(z,7(2)) x R) = 0.

By standard arguments, there exists a sequence of cubes Uy, := Q(zp,r(zp)) C U
such that (1), (2) and (3) hold. O
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Bounded variation and local boundedness of minimal graphs in H" 437

Theorem 3.4. Let U C R?" be a bounded open set with Lipschitz regular bound-
ary. Then the inclusion BV;(U) — LY(U) is compact.

Proof. Let the sequence (u;); be bounded in BV,. Since
Dujlw < [ 10wy + X7+ [ x7azen
u u

the sequence is bounded in BV too. The result follows from the compact inclusion
of BVin L. o

Finally, an explicit representation of the z-area functional is available on its
finiteness domain. Recall that for any u € BV one can decompose the distribu-
tional derivatives Du as Vu £2* + (Du)s, where Vu € L'(U) is the approxi-
mate gradient of u and (Du); is the singular part of the R?”-valued Radon mea-
sure Du with respect to £2".

Theorem 3.5. For any u € BV(U)
/ |Du + X*| =/ [Vu + X*|d£>" + |(Du)s|(U). (3.11)
Uu u

Proof. By Remark 3.1, f‘u |Du + X ™| coincides with the total variation of
Du + X*£*" = (Vu + X*)£2" + (Du);.

Since (Vu 4+ X*)&£2" and (Du), are mutually singular, the total variation of their
sum coincides with the sum of their total variations, and (3.11) follows. O

3.2 Ecxistence of minimal 7-graphs

The open set U is henceforth supposed to be open, bounded and with Lipschitz
regular boundary. In particular, the notion of trace u g of u € BV(U) on dU is
well defined (see e.g. [39, Chapter 2]). If U € Up and u € BV(Uyp), we denote
by U and “ﬁ’;‘u’ respectively, the inner and outer traces of u on dU defined
according to [39, Remark 2.13].

As the following Example 3.6 shows, the existence of minimizers with given
boundary datum is a delicate matter even for smooth data. In particular, the exis-
tence of minimizers is not guaranteed for the functional (1.5). This example was
inspired by similar Euclidean ones that can be found e.g. in [27, 42], see also
[39, Example 12.15].
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438 F. Serra Cassano and D.Vittone

Example 3.6. Letn = land U := {z = (x,y) € [T : 1 < [(x, y)| < 2}; consider
the Dirichlet problem of minimizing the ¢-area functional [y, |Du + X*| among
those functions u € BV(U) with boundary datum

oo =2,
Z =
v M oif)z] = 1.

We will show that this problem admits no minimizer when M is large enough.
We begin by proving that, if a minimizer exists, then there exists a rotationally
invariant one. To this end, it is enough to prove that for any u € BV(U) we have

/|D’L7+X*|s/ |Du + X*| (3.12)
Uu Uu

where, after setting Ry to be the rotation in IT = R? of an angle 6, we define the
rotationally symmetric function % : U — R by

2n 2m
u(z) = (uo Ry)(z)dO = ][ u(|z| cos 8, |z|sinB) do.
0 0

Indeed, when u € C! (U), one has
V(o Rg) =R_go(Vu)oRy and X* =R_goX*oRy,
for any 6 € [0, 2], the second equality following from
X*(2) = 2Ry )2(2).

Therefore

2
/ |W+X*|di2=/ ‘][ V(uoRg)dd + X*|d£?
U UlJo

“Ju

2w
s][ / |R_go(Vu + X*)o Ry|d£?*db
0 u

2
][ R_go(Vu+ X*)o Ry d@’ d&?
0

= / |Vu + X*|d£?
u

and (3.12) is proved for u of class C!. When u € BV(U) \ C'(U), it is sufficient
to consider a sequence (uy )k as in Corollary 3.3 and to observe that 17, — %in L!,
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Bounded variation and local boundedness of minimal graphs in H" 439

whence

/|D'17+X*|$liminf/ |Duy + X*|
u

<11m1nf/ |Duy + X* |—[ |Du + X*|.

Moreover, it is not difficult to show that %39, = ¢ for any function u € BV(U)
with u |39, = ¢. Indeed, let us extend u and ¥ to take value M on {z : |z] < 1}
and O on {z : 2 < |z| < 3}; set

Ac:={z:1l—e<|z]|<l4e€or2—e < |z|] <2+ €}

Reasoning as before we can prove the inequality

/|D'17|$/ |Du| Ve e (0,1)
Ae Ac

first in case u is of class C'(B(0, 3)) and then, by an approximation argument, for
any u € BV(U). This implies that | D1|(dU) = 0 and, in particular, that w39, = ¢.

We are now going to exclude the existence of rotationally invariant minimizers.
Let u(z) = u(x,y) = v(y/x2 + y2) be fixed and consider g € C!(U, R?) with
|g| < 1. Let us decompose g in its radial and angular components g,, gg by

(—=y,x)
|z| lz|

Let g, (r,0) := g, (rcos@,rsinf) and ggy(r, 0) := gg(r cos 6, r sin 0). Using po-
lar coordinates, according to which div g = d,g, + %(89 go + gr), we obtain

¢ = 5. ()= +26(2)
/[—udivg—i—(X*,g)]afot“i2
U
2 27 1 1
-] r[—v(r)(argr(r,ew—aeg9<r,9)+—gr(r, 9))
1 Jo r r

+ 2rgo(r, 9)} dodr

2 21
= /1 /O [—v(r)0,(rg,)(r.0) + 2r?gq(r.0)] dO dr.

In particular, u € BV(U) if and only if v € BV(1, 2). Integration by parts gives

/[—udlvg+( g)]de?
Uu

2 2 2
= / |:/ r[v/(r)g,(r, 0) + 2rgo(r, 9)] dr + / rgy(r, Q)d(Dv)s(r)} do
0 1 1
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440 F. Serra Cassano and D.Vittone

On passing to the supremum among functions g € CL(U) with |(g,,gg)| < 1, we
obtain

2
/|Du+X*|=2n/ ryv'(r)?> +4r2dr + 2x|r(Dv)s|(1,2) =: L(v)
Uu 1

where, for a given measure p on (1,2), we denote by ru the measure

ru(l) = /, rdu(r).

Notice, in particular, that a rotationally symmetric function u(z) = v(|z|) belongs
to BV(U) if and only if the associated function v belongs to BV (1, 2).

We are going to show that for |M| > 1 the functional L does not admit min-
imizers in the class of functions in BV(1,2) with trace M at 1 and trace 0 at
2. We start by proving that any possible minimizer should belong to W 1-1(1,2).
More precisely, for any v € BV \ W1 with that boundary datum we can con-
struct a function w € BV with the same trace and L(w) < L(v). Recall that

Dv=1v'd®' 4+ (Dv)s, v eL'(1,2) and (Du)sLE'.
By hypothesis there exists a § > 1 such that |[(Dv)s|(§,2) > 0; we can assume that

[(Dv)s|({8}) = 0 (i.e., § is not a jump point of v). Define w € BV(1,2) by

r 2
w=uv in(1,8), w(r) :/ v'(s)ds = —/ v'(s)ds ifr e (8,2).
2 r
By construction, the trace of w is M at 1 and 0 at 2 and
Dw =v'2' + (Dw)s,
(Dw)sL (1,8) = (Dv)sL(1,6), (Dw)sL (8,2) =0,
(Dw)s({3}) = (Dv)s(8.2).
In particular
lr(Dw)s|(1,2) = [r(Dw)s|(1,8) + 8[(Dw)s({5})]
< [r(Dw)s|(1,8) + 8|(Dv)s[(8,2)

< |r(Dw)s|(1.8) + [r(Dv)s[(8,2)
= [r(Dv)s[(1.2)

and this gives that L (w) < L(v).
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Bounded variation and local boundedness of minimal graphs in H" 441

Suppose now that v is a minimizer in W11(1,2); the Euler equation for the

functional L gives
rv'(r)

Varz +v'(r)?
for a suitable C € R. In particular for a.e. r € [1, 2]
rv'(r)

and so |C| < 1. From (3.13) and taking into account that sgnv’ = sgn C, we ob-
tain

=C (3.13)

< |r

ICI=‘

r

V(r) =20 —.
) e

Since v(2) = 0, the solution is given by

v(r) =2C(Vr2 — C2— V4 -C?),

and thus

M| =[v()] < sup ’2C(\/1—C2—\/4—C2)‘<oo.
Ce[-1,1]

This proves that a solution cannot exist for large enough | M |.

Our approach to the existence of 7-minimizers follows the one outlined in
[39, Chapter 14].

Proposition 3.7. Let ¢ € L'(dU) and consider an open set Uy U and a func-
tion ug € BV(Ug) with ”Oré‘u = ”0|_3‘u = @. Then

inf{/ |[Du+ X*|:u € BV(U), upy = (p}

u

= inf{/ |Du + X*| +/ lujpy —@ld H*" 1 iu e BV(‘U)}
Uu ou

= inf{|8E,’4|H(ﬂ xR) :u € BV(Up), u = ugon Up \ ‘M}

= inf{/ |Du+ X*|+ [0((EL, AE,, ) N (UXR))|[g(OUXR) :u € BV(‘U)}.
U
(3.14)

Proof. The proof of the first equality verbatim follows the one of [39, Proposi-
tion 14.3]. The second one follows because, for any u € BV(Ug) with u = uyp
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442 F. Serra Cassano and D.Vittone

on Up \ U, one has
|0EL g (U x R) = /au|u|—au—¢|d,}€2"—1. (3.15)

This is in turn due to the fact that E, is a set with locally finite Euclidean perimeter
on Uy x R and by Proposition 2.10

|0E! (U x R) = / In®, | d 32",
9* ELN(OUXR)

Since
ngi = nyyxr = (ngy.0) H>"-ae. ond*E; N(OUxR),

one has |nlgt| =1 J2"-ae.on d*EL, N d(U x R). Therefore

0EL [ (0U x R) = #2"(3* EL N (30U x R)) = /au Uige, — ¢l d H>",

the last equality following e.g. from [39, Remark 2.13].

Let us prove the equality between the second and fourth term in (3.14). Notice
that F := (E}, A E}, ) N (U x R) is a set with locally finite Euclidean perimeter.
Reasoning as before we have

nrp = (nyy.0) H*-ae.ond*F N OUxR)

and by Proposition 2.10
OF (U xR = 2 (3* F 1 (U x R)) = / i — ol d 1.
U

This concludes the proof. o

Remark 3.8. We point out that the penalization term [5q, [u — ¢|d H 2n=1 jg “nat-
ural” from the viewpoint of the geometry of H”, its geometric meaning being
given by (3.15).

Remark 3.9. For any ¢ € L!(dU), there exist an open set U and a function ug
as in the statement of Proposition 3.7. Moreover, it is possible (see [36]) to choose
Up bounded with Lipschitz regular boundary and u¢ so that

1,1 97 _
uoluo\ﬂ ew (uO \ U) and UolgUy = 0.
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Bounded variation and local boundedness of minimal graphs in H" 443

With such a choice, in analogy with the terminology that will be introduced in
Definition 4.11, we can consider U yo\T A8 A trace in generalized sense for any
u € BV(U) with u |39y = ¢. We observe (compare with (4.47), (4.48), (4.49)) that

|0E, [ (0U x R) = [0E] [m(dUo x R™T)
= 10((Uo x R) \ Ey,)[m(9Uo x R7) = 0.

We are now in a position to prove Theorem 1.4; the latter, thanks to Proposi-
tion 3.7, has to be understood as an existence result for minimal #-graphs.

Proof of Theorem 1.4. As in Remark 3.9, let us fix Uy with Lipschitz boundary
and ug € BV(Up) such that

+ —
Uolpu, = 0 and U0 |pq = U0jgy = ¥-

For u € BV(U) define v, € BV(Up) by vy 1= u on U, vy, := ug on Uy \ U;
it was proved in Proposition 3.7 that

10E] |m(Uo x R) = |0E] |m(U x R) + [0E] |m(dU x R)
+ [0E,, [((Uo \ U) X R)

=/ |Du+X*|+/ ujgy — ¢l d g2t (3.16)
Uu ou

+/ _ |Dug + X*|.
Uo\ U

Consider the family
F :={veBV(Up) : v=upin Up \ U};
by (3.16), the functional (1.7) and
F 3 v [0EL |m(Uo x R) (3.17)

share the same minimizers and it is sufficient to prove that (3.17) attains its mini-
mum in F .

Let (vg)n C F be a minimizing sequence for the functional (3.17). The proof
will be accomplished if we show that (vy,); is bounded in BV(Uy), since in this
case (up to a subsequence) v, — v in L. In particular, v would belong to ¥ and
the semicontinuity of (3.17) would allow to conclude.

For any & we have

/ |Dvh|s|aEf,h|H(u0xR)+/ |X*|d£2" (3.18)
uO uO
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444 F. Serra Cassano and D.Vittone

while by [39, Theorem 1.28 and Remark 2.14]

n—1
(/ |vh|dé£2") $c(/ |Dvh|+/ |vh|dJ€2"_1) =c/ |Dvy,|
Uo Uo Uo Uo

and the boundedness of (v);, in BV(Up) follows. |

Remark 3.10. It is a routine task to prove that any minimizer u of the func-
tional (1.7) is a #-minimizer according to Definition 1.3.

We owe the reader two remarks concerning the definitions of #-minimizers and
local ¢-minimizers.

Remark 3.11. Let us prove that, if ¥ € BV(U) is a #-minimizer, then it is also
a local 7-minimizer. Let W' € U and v € L] (U) with {v # u} € U’ be fixed.
Then vjyy = u)py and thus

|0E! |m(U x R) < |0EL|m(U x R). (3.19)

Since u = v in a neighbourhood of U \ U’, we have E!, = E! in a neighbourhood
of (U\ U') x R and thus

0Ey [l (U N\ U) x R) = [JEG[m((U\ U) x R)
which, together with (3.19), gives |0EL | (U x R) < |0EL|m (U xR), as desired.
Remark 3.12. Let U be a fixed (not necessarily bounded) open set; let us prove
that u € BV, (U) is a local #-minimizer if and only if u is a z-minimizer on any

compact subset of U with Lipschitz regular boundary. Namely, that the following
two conditions are equivalent:

(a) Forany U’ € U and any function v € L1 (U) with {u # v} € U’ there holds

loc

[0EL (U x R) < [0EL|m(U x R). (3.20)

(b) Forany U” € U with Lipschitz boundary and any function w € BV(U") with
Wipyr = u‘_au,, there holds

|0EL | (U” x R) < |0EL | (U” x R). 3.21)

Let us prove that (a) = (b). Let U”, w be as in (b); we choose U’ such that
U’ € U € U and define v € BV}, (U) by

vi=wonU’, vi=uonU\U"
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Bounded variation and local boundedness of minimal graphs in H" 445

Since

[0EL g (QU” x R) = /

o |u|‘5u,, — Uy d#*" 1 = |0EL|g(0U” x R)

where the second equality can be proved similarly to (3.15), from (3.20) we obtain
that

|0EL |m(U” x R) + |0EL |m(dU” x R) + |0EL|m((W \ U”) x R)
< JOE! | g(U” x R) + [0EL|m(dU” x R) + [0E! g (U \ U”) x R)
= [0EL lm(U” x R) + |0EL|m(dU” x R) + [0EL|lm(W \ U”) x R)

and (3.21) follows.

Let us prove that (b) = (a). Let U’, v be as in (a) and choose U with Lipschitz
regular boundary and such that {u # v} € U € U'. If vjy» ¢ BV(U") we have
|0E] | (U’ xR) = 400 and (3.20) follows; otherwise, set w := vjq;» € BV(U").
Notice that w)gq» = U gqurs thus by (3.21) we obtain

|0E,, [l (U x R) + [0E; lm (U"\ U") x R)
< [0EL [ (U x R) + |0EL (W \ U”) x R)
= [0Ey[m(U” x R) + [IEylm (U \ U") x R)

where the last equality is due to the locality of the H-perimeter and the fact that
u = v in a neighbourhood of U’ \ U”. This gives (3.20).

3.3 Local boundedness of minimal 7-graphs

We start with the following lemma, which will be used in the sequel in the partic-
ular case of 7-subgraphs.

Lemma 3.13. Ler U C I1 be a bounded open set and let F C U x R be a mea-

surable set. Assume that
|[FA(UXxR7)| <00 (3.22)

and, for any positive real number k, set
Fr := (F U (U x (=00, —k))) \ (U x [k, +00)).
Then there exists a sequence (kj); such that k; — +o00 and

lim [3F, [m(U x R) = [9F (U x R). (3.23)
J—>+oo
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446 F. Serra Cassano and D.Vittone

Proof. If |0F |p (U x R) = +o00, we immediately conclude by noticing that
[0F |l (U x R) = |0F; |m(U x (—k, k)) = |0F |m(U x (—k,k)) — +o0.

We assume from now on that |0F | (U x R) < +00; in particular, by Proposi-
tion 2.3 any of the sets Fj has finite H-perimeter. Since

|0Fk (U x (R \ [k, k])) =0,
we have

|0Fk [ (UXR) = [0F |g(Ux(—k, k)) +]0F [ (Ux{k}) +[0F [ (Ux{—k}):
— |0F | (UXR) as k—o00

in particular, it will be enough to show that

. lim |8ij|H(u X {k',—kj}) =0
Jj—>+o00

for some sequence k; — +o00. By Theorem 2.6, this is equivalent to find (k;); so
that
Jim $27N(FY2 0 U x {kj, —k;}) = 0 (3.24)
Jj—>+o0 4

From the inclusion F, N (U x RT) C F we infer, for any k > 0, the implication

[Fnue.nl 1

PeF’*n lim inf >
€ RNk = liminf s =

while the inclusion F N (U x R™) C Fj gives

. FNUP.r)| 1
PeFY>’nUx{-k) = limsu QUi 1
k o U(P.l 2

Recalling that 80%_1(]}]1” \ (FOU F1/2y F1)) = 0, we obtain that the implica-
tions

PeFPnUxik) = Pe(FY2UFY)NUx ik},
PeFPnUx{-k}) = Pe(FY2UF%nUx{-k)
hold for any k > 0 and |0Fy |gr-a.e. P € (U x {k,—k}). In particular
SN EZ U x {k, —k}) < 827 (F' 0 (U x {k}))
+ 827V (FY2 0 (U x {k,—k}))
+ 8271 (F° n (U x {—k}))
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Bounded variation and local boundedness of minimal graphs in H" 447

and, recalling (3.24), it will suffice to find (k;); so that

lim 8271 (FY2 0 (U x {kj, —k;})) =0,

Jj—>+o0
jETm SV F N (U x {k;})) = 0, (3.25)
lim SSTUFO 0 (U (—ky) = 0.

Since |0F | = cnSOQo_l L F1/2 is a finite measure and
(U x k,—k) N (U k', —k"}) =0
for any k # k', we obtain that

lim 827'(F'2n (U x k. —k})) = 0;

k——+o00

in particular, the first statement in (3.25) holds for any sequence k; — oo.
Let us find a sequence (k;); satisfying the second and third equalities in (3.25).
By Lemma 2.12 there exists a C(U) > 0 such that

S27VL (U x {k,—k}) < C(UH" L (U x {k, —k}) (3.26)
and thus it is enough to find a sequence (k;); so that

lim (H2"(F' 0 (U x (k1) + H(FO N (U x {—k;}) =0.  (3.27)

Jj—00

By Fubini’s theorem and assumption (3.22) there holds

/ TR E 0 QU k) + M (FO 0 (U x (k)] dk
0

=|FINUXRY|+|F'n(UxR7)|
=[F\(UxRT)[+[(UxRT)\ F|
=|FA(UXxR7)| <o

and the existence of (k;);, k; — 400, satisfying (3.27) easily follows. |

Remark 3.14. A result analogous to Lemma 3.13 holds for intrinsic graphs: see
Lemma 4.6. The proofs of the two results are completely analogous: it is sufficient
to replace the symbols “x” and “U”, respectively, by “” and “w”, so that any
t-product U x (a, b) becomes an intrinsic one w - (a, ). None of the arguments
change except (3.26) where, according to Lemma 2.12, the constant C(U) has to
be replaced by 1/cj,.
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448 F. Serra Cassano and D.Vittone

The following result provides a geometric rearrangement for sets in H” which
decreases their H-perimeter. An analogous rearrangement exists in the Euclidean
setting, see e.g. [47].

Theorem 3.15. Let F be a set with finite H-perimeter in U x R satisfying
(1) lim¢s oo xr(z,t) =0andlimy_o yr(z,t) = 1 forae z € U,
@) |[FA(UxR™)

Then the function

< oQ.

k
w(z) = klgr;o(/k xr(z,t)dt —k) (3.28)

belongs to BV(U) and
|0EL |m(U x R) < [3F |g(U x R). (3.29)

Proof. We preliminarily observe that w is well defined almost everywhere on U.
In fact,

k
we@)i= [ arGandi—k
—k
coincides with wy(z) for large enough k, k’: more precisely, whenever

k.k'=t(z):=inf{t >0: yp(z,5) =0Vs>1t, yr(z,s) =1Vs <—t}. (3.30)

In particular
(z)
w(z) = / xF(z,t)dt —t(z) foranyz e U. (3.31)
—1(2)

First, let us assume that there exists an M € R™ such that
U X (—00,—M) C F C Ux(—o0, M). (3.32)

This assumption corresponds to the map t being uniformly bounded by M ; notice
also that w = wjs. We are going to closely follow the approach and computations
in the proof of Theorem 3.2, step 6: let us fix 7 € CL(R) which satisfies (3.9).
By (3.32)

f xF(z,O)h()dt = J +w(z) + M and / xF(z, DR (t)dt =1
R R
for a.e. z € U, where

-M
J = /_M_lh(t) dt.
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Bounded variation and local boundedness of minimal graphs in H" 449

For fixed g € CL(U, R?"), with |g| < 1, set p(z, 1) := —h(t)g(z). Computations
analogous to those in Theorem 3.2, step 6, yield

|aF|H(‘uxR)>/FdiVH¢
_ / / xF (2, 0[—h(t) divg () + B (1)(X*z, g(2))] di dz
U JR
Zﬂﬁ4j+w+MNWg+wﬁmM2

:/ [~wdivg + (X*, g)]dz.
u

Recalling that |0EY | (U x R) = S;(w), inequality (3.29) follows by taking the
supremum on g in the previous inequality.
If (3.32) does not hold, we consider the sets (F,); given by Lemma 3.13,

Fr :=F U (U x (=00, —k)) \ (U x [k, +00)).

Notice that

k
wk(x,y):/k)(pk(x,y,t)dt—k for any k > 0.

We will prove later that wy — w in L1(U): assuming this to hold, by semiconti-
nuity we obtain

|0EL | (U x R) =/ |Dw + X ™| slilminf/‘ |Dwy, + X
U j—=oo Ju
<liminf|9Fy, [ (U x R) = [0F [s2(U x R).
Jj—00

We have used Lemma 3.13 and the fact that any set ij satisfies (3.32). This would
conclude the proof of the theorem.

We prove that wy — w in L!(U) by the Dominated Convergence Theorem,
where we already know that the convergence holds pointwise almost everywhere.
Since

k 0
Wi (2) =/0 mz,wdr—/kmn\F(z,t)dz,

it follows that
wi(z2) 20 = 0<wi(z) < L'({t €[0,k]: (z.1) € F})
<E'({reR:(z,0) e F\(UxRM})
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450 F. Serra Cassano and D.Vittone

and
wr(2) <0 =  0<—wp(z) < L'({t € [k,0]: (z,1) ¢ F})
<L'({teR:(z,0) e (UxRT)\ F}).

Therefore
lw(2)| < L' ({t eR: (z,1) € FA(UXRT)})

and then the sequence (wy)x is dominated in L!(U) by Fubini’s theorem and
hypothesis (ii). |

Corollary 3.16. Let u € BV oc(U) be a local t-minimizer of the area functional.
Then E! is a local minimizer of the H-perimeter in U x R.

Proof. Without loss of generality, we may assume u € BV(U). Let F C U x R
be such that F A E!, @ U x R; in particular F A E!, C U’ x R for some U’ € U.
It is clear that F satisfies hypothesis (i) of Theorem 3.15. Hypothesis (ii) is also
verified because

|[FA(UXRT)| <|FAEL+|EL A(UxR)|

= |FAE. +/ lu|d£*" < +o0.
Uu

Defining 7 and w as in (3.30) and (3.28), one has t(z) = |u(z)|forany z € U\ U’:
this is due to the fact that F = E!, in (U \ U’) x R. By (3.31) we get w = u on
U\ U and

|OEL |m(U” x R) < |0EL |[m(U” x R) < |0F |g(U” x R)
for any U” such that U € U” € U. This is sufficient to conclude. O

Proof of Theorem 1.5. By Corollary 3.16, E! is a local minimizer of the H-peri-
meter. Suppose by contradiction that there exists a compact set K C U such that
lu] oo (k) = +oo. Without loss of generality we may assume that

£*"(KN{u>M})>0 forany M > 0.
Given M > 0 we can find z(M) € K such that u(z(M)) > M and
L(VNKN{u>M})>0 (3.33)

for any neighbourhood V C U of z(M). For instance, it is sufficient to consider
a Lebesgue point for the set K N {u > M }.
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Bounded variation and local boundedness of minimal graphs in H" 451

Fix a sequence (M;); C R increasing to +oo rapidly enough, so that the balls
U((zj, Mj), R) are pairwise disjoint, where z; := z(M;) and

R :=ds(K xR,0U x R) = dist(K, dU) > 0. (3.34)
By condition (3.33), the point (z;, M;) € EJ, is such that
|E; NUW(zj,M;),r)| >0 foranyr > 0.
Proposition 2.14 ensures that for any j
|EL, N U((zj. Mj). R)| = cR?

whence
[ a2 = 1B n xR = 4o

which gives a contradiction. o

We stress the importance of (3.34) and mention that, on the contrary, the dis-
tance doo(w’ - R, dw - R) between “intrinsic cylinders” is in general null for any
' € w with ® bounded. See Proposition 4.20.

As a consequence of Theorem 1.5 we obtain a local boundedness result for
weak solutions of (3.1).

Theorem 3.17. Let u € W' (U) and define N(u) : U — R2" by extending the

loc

vector defined in (3.2) so that N(u) = 0 on Char(u). Assume that the equation
div(Nu)) =0 inU (3.35)

holds in the sense of distributions. Then E!, is locally H-perimeter minimizing
inUXRandu € LX(U).

loc

Proof. The subgraph E := E!, has locally finite Euclidean perimeter in U x R
and

(=Vu(z),1)
V14 |Vu(z)?

In particular, by Proposition 2.10

ng(z, 1) = for #2"-ae. (z,1) € 3*E N (U x R).

Vu+ X*

V1+|Vul?

|0E|m L (U x R) = omm| KL (O*EN(UxR)) (3.36)
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452 F. Serra Cassano and D.Vittone

where 717 : H” — I1 is defined by 7p1(z, ¢) := z. It follows that
|0E | (Char(u) x R) = 0
and
vE(z.1) = N(u)(z) for |0E|g-ae. (z,1) € 0*E N (U x R). (3.37)

Define N : R?” — R?" by N := N(u) in U and N := 0 in R?" \ U. Let o, be
a standard family of mollifiers in R?” with support in B(0, €) and define

NE(th) = (QG * N)(Z) = (QE * le CEC 7QE * NZn)(Z)7 z € Rzn'
It follows that
divig(Ne) =0 in{(z,¢) : dist(z, 0U) < €}. (3.38)

We claim that E is a local minimizer for the H-perimeter; we are going to use
Theorem 2.15. Fix a sequence (£2j)j, of open sets such that 25, € Q541 T U x R.
By (3.38) there exists a sequence €; — 0 such that the functions

vt UXR = R, vy(z,1) i= Ne,(z,1)

satisfy the assumptions of Theorem 2.15. Only hypothesis (iv) therein is not im-
mediate; to this aim, notice that for £?"-a.e. z € U the property

vu(z,t) > N(u)(z) foranyt e R

holds. Taking into account (3.37) and the fact that |dE | < 8221 < H?", our
claim easily follows. o

3.4 A discontinuous minimal -graph in H!

We are able to provide an example of a local #-minimizer in H! that is not con-
tinuous, thus proving that the regularity result of Theorem 1.5 cannot be improved
at least in the case n = 1. Let us consider U := {(x,y) € RZ: y > 0} and the
discontinuous function

u:U—R,

—2xy—1 ifx =0,

X,V) —
(x.) {O if x <O.

We are going to prove that E := E! is a local minimizer for the H-perimeter
in U x R, which implies that u is a local #-minimizer.
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Bounded variation and local boundedness of minimal graphs in H" 453

The open set E is a piecewise C*° domain, its Euclidean inward unit normal
being

(0,0,-1) if (x, y,t) € 0E N{x < 0},
ng(x,y,t)= (—1,0,0) if (x,y,t) € 0E N{x = 0},
_\/% if (x, y,1) € 9E N {x > 0},

for J#2-a.e. (x,y,t) € OE. It follows that the horizontal normal to E at a point
(x,y,t)is
.y [(10) if x >0,

VE(XJ’J):—_ y x .
I (x. y.0)] (_\/x2+y2’\/x2+y2) ifx <0,

where nI;:H is defined as in Proposition 2.10; in particular, vg is continuous on JE.
Defining

(-1,0) if (x,y,1) e UxRN{x =0},

U(X,y,[) = .
(_\/x;—f—yz’\/x;—i-yz) if (x,y,1) € U xRN {x <0},

and taking into account Theorem 2.15, it will be sufficient to prove that

divg v =0

in the sense of distributions in U x R, i.e. that

/u R(v,ngo)dx3 =0 (3.39)

for any ¢ = (¢1,¢2) € Cg (U x R, R?). We have
sptop CR:={(x,y, 1) €EQR:—a<x<a,—a<t<aandl/a<y<a}
for a suitable @ > 0. Let R := R \ {(x,y,1) € U xR : |x| < €}. Writing
v(x, y.1) = (v1(x, ), v2(x,)),

by the Gauss—Green formula

/V1X¢1dé£3 / a(pld$3 / Q1vy dH* — 8V1¢1d$€3
R. ox R e 0x

//a/_a (p1(e. y.t)vi(e, y, 1)

—@1(—€, y.Dvi(—€, y,1)) dt dy
8\)1 3
_[ D’
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454 F. Serra Cassano and D.Vittone

Since v is continuous and smooth in U x R \ {x = 0}, we get

/ V1X(p1 dis’
UxR

/le(pld:li —hm v1X¢1d$3
Re

elg%[/l/a /_a p1(e, y,t)vi(e, y, 1)
—p1(—€.y, 0)vi(—€, y.1)] dt dy

_/ o1 21 g3 } (3.40)

ox

(‘uxR)\{x=0} Vox

(pIX\)l dcf?’

- /;UXR)\{x=0}

Analogously we obtain

/ v Yo dE3 = —/ 02 Yo d £3. (3.41)
UxR (UXR)\{x=0}

Equation (3.39) follows from (3.40), (3.41) and the fact that
divgv =0 in (U xR) \ {x = 0}.

Remark 3.18. The set £ coincides with the intrinsic subgraph Ey of the map
¢ :{(y,t) e W:y >0} - R defined by

1+t
_W if t S—l,
¢(y.1) := 70 if —1<7<0,

ift = 0.

t
2y
Since the horizontal normal vg can be extended continuously to U xR, the bound-
ary 0F is an H-regular hypersurface (see [52]) and ¢ is of class C%}V.

4 Existence and local boundedness of minimal intrinsic graphs

4.1 Bounded variation for intrinsic graphs

Here and in the following, w will denote a fixed bounded open subset of W. We
will denote by oy : W\}x;1 (w) — R the area functional for X1-graphs introduced

in (1.11)
oy (P) :=/ V14 |Vep12d e, 4.1
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Bounded variation and local boundedness of minimal graphs in H" 455

When ¢ is Lipschitz continuous, we can write
Ay (p) = / Ly (A, §(A), V(A) d L2"(A)
0]

where Zyy : W x R x R?" — [0, +-00) is defined by

2n

Lo (A, §.8) = (1+<Xn+1(A)—4¢ TA).E2+
j';/é;z-l

1/2
(X;(4). s>2) (4.2)

if n = 2, while

2\1/2
Ly (A,9.8) = (1+ (Y1(A) — 49 T(A),£)?) (4.3)
if n = 1. The vector fields X; (j =2....,n).Y; (j =1,....n) and T are tan-
gent to W = R?” and therefore can be viewed as elements of R?”. The scalar

products in (4.2) and (4.3) are the usual ones between vectors in R2",
When ¢ € C?(w) is a local minimizer of the functional o7y, the first varia-
tion of the functional oy gives the minimal surface equation for X1-graphs (see

e.g. [51]
v¢-(L¢)—o inw (4.4)
VI+[VoP ' '

It was pointed out in [24] that #yy is not convex for n = 1. Indeed, for any

o > 0 the function
ayt

1+ 2ay?

satisfies (4.4) on R?, while (see [22]) ¢ is not a local minimizer for the functional

gy : Lip(w) — R on a suitable bounded open set @ C R2. In particular, .oy

cannot be convex on Lip(w) because the stationary point ¢ is not a minimum.
The presence of stationary points that are not minimizers for <7y is an in-

teresting open question in the case n > 2. Nevertheless, the nonconvexity of the

functional oy : Lip(w) — R can occur also in the higher dimensional case.

¢y, 1) = —

Proposition 4.1. For any n > 2 there exists a bounded open set @ C R*" for
which the functional ofyy : Lip(w) — R is not convex.

Proof. For A = (x2,...,Xn,Y1,---,Vn,t) € W we set
?(A) = 2(=Y2, . =Vn, X2, ..., Xp) € RZ72,
Define

— 2
W= {AGW:|X*(A)| <1l,y1>0, |t <1, (y1—|—1)2<1}
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and ¢, ¢s : ® - R by

t
P(A) = —m, ¢s ;= s¢p, seR.
Letting
__IXF@)P o
T S T

g(s: 4) =1+ g1(A)s* + g2(A)s*(1 —5)*

it is easy to verify that
é 1/2
[1 +1X* |2( S) + (W¢S¢s)2} de?"
w

= [ Vet Az
w
For our purposes, it will be sufficient to show that
£s) =+ / 2¢"(s:4) g(s: 4) — g'(s: 4)°
4o g(s; A)3/2

for s belonging to some interval / C R. In turn, it is enough to prove that

g (s: A) = 2(6g2(A)s*> — 6g2(A)s + g1(A) + g2(4)) <0 Vsel, A€ w.
4.6)

£5) = A (s) = /

d&*(4) <0 (4.5)

Since g2 > 0 on w, inequality (4.6) holds for

1 1 2g1(4)) 1 1 2g1(4)
Se(z(l‘ a3 z—zgzm))- @

The open interval in (4.7) contains 7 := (3 (1 — =), (1 - %)) because

2 /32
A 1)2
&>0 and su p g1(4) = su {|X (A)|2M}<—
g2 Acow 82(A) 4 4
and (4.5) follows. O

Following Section 3.1, we define the relaxed functional
Ay LY () — [0, +00]
as

(@) = int{liminf A (97) : g5 € W' (). ¢ — ¢ in L' @)}

Brought to you by | UZH Hauptbibliothek / Zentralbibliothek Zirich
Authenticated
Download Date | 11/10/16 12:51 PM



Bounded variation and local boundedness of minimal graphs in H" 457

and Iy : L' (w) — [0, +00] as
I'w (¢) = inf{li.minf/ S (¢;) : ¢; € Cl(w), p; — ¢ in Ll(a))}.
J—>00 w
It is known (see [3]) that for any ¢ € C%’V ()

A (@) = Ty () =1w(¢)=/ U+ V002422 = |0Eylu( - R).

The same equalities hold also for ¢ € Wé&l(w): the only non-immediate one is
that between Iy (¢) and the others functionals. However, by definition one has
I'w (¢) = afy (¢); for the reverse inequality it is sufficient to consider the se-
quence (¢;); C C'(w) given by (2.11).

We will prove later (see Theorem 4.7) that BVyy (w) is the finiteness domain of
the functionals <7y and Iy and that oAy (¢) = Iw(¢) = |0Eg|H (@ - R) for any
¢ € BVw (w). Taking this into account, some remarks on BVyy are in order. We
start by noticing that C%?V C W&;’lloc and Wév’l C BVwy.

Remark 4.2. The class BV is not a vector space. To verify this, consider a func-
tion ¢ € C%)V(W) whose subgraph Ey has not locally finite Euclidean perimeter:
such a function can be easily found taking into account the results in [43]. Con-
sider the set I := Eg41 = Eg - (1,0,...,0). It is not difficult to show that the
distributional derivative Y7 y F satisfies

(Yixr.¢) =(Y1xE, —4TxE4 ¢ © R 0,..0))

for any ¢ € CL(H"). Here, (-,-) denotes the duality between C} functions and
first-order distributions, while R(q ... o) is the right translation by the element
(1,0,...,0). Since Ty, is not a Radon measure (otherwise Ey would have lo-
cally finite Euclidean perimeter), Y1 y p cannot be a Radon measure, i.e., F' has
not locally finite H-perimeter. In particular, ¢ + 1 ¢ BVw (w) for any w € W,
while ¢, 1 € BVw (w). This same example allows to conclude that neither C%W
nor Wyy" are vector spaces.

Remark 4.3. The inclusion BV(w) C BVw (@) does not hold. Consider in fact
the function ¢ (A4) := 1/]|A|%, n — % < o < 2n — 1, defined on the Euclidean unit

ball B(0,1) C W = R?". One has ¢ € BV(B(0, 1)) while

0E4|m(B(0,1)-R z/ 14 |V8p|12d £
[0E¢|m(B(0,1)-R) B(O’l)\/ [Vep|

a/ |[WPp|d£>" = 400
B(0,1)
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458 F. Serra Cassano and D.Vittone

because (see (1.13))

ynoo 1
|A|a+2 |A|2a+2’

Wep(A) = A= (x2,....,yn.1) € B0, 1).

In particular, ¢ does not belong to BVyy (B(0, 1)).

Remark 4.4. The inclusion BV(w) N L*°(w) C BV (w) holds for any bounded
domain w. In fact, for each function ¢ € BV(w) N L°°(w) the reduced boundary
0*Eg Nw - R is contained in some bounded subset K of w - R. This, together
with Proposition 2.10, allows to conclude that [0Eg|gL o - R < c|dEg|L o - R
for some ¢ = ¢(K). In particular, ¢ € BV (w).

Remark 4.5. Following Section 3.1, one could introduce the functional
Sw : LY (w) — [0, 00]
defined by

Sw(p) := Sup{/ |:g1 + (¢ Yignt1 — 20> Tgns1)
w
n
S e+ ngnﬂ-)}d:@" :
j=2
g=1(g1.....82n) € Cl(w.R?), |g| < 1}
ifn > 2,and

Sw(p) := Sup{fw [gl + (p Vg2 —2¢° ng)]diz :

¢ = (g1.82) € Cl(0. B?), Jg| < 1}

if n = 1. It is natural to ask whether Sy coincides with oy and Iy on L(w).
. . 1,1, . . . .
This occurs in Wyy ' in fact, an integration by parts gives

n
/ [81 + (¢ Y18nt1 —2¢° Tgnt1) + Z¢(ngj + Yﬂﬂﬂ')} dL?"
w j=2
= / ((1,-V?¢), g)d £*"
w
for any g € Cl(w, R?") with |g| < 1. Defining b € L% (w, R?") by
VI+[Vog?
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Bounded variation and local boundedness of minimal graphs in H" 459

it will be sufficient to construct a sequence (g;); C Cl(w,R?") such that |g| <
and g; X bin L>®(w,R?") weak* o(L%°, L1). This can be done with classwal
tools.

Since Syy is lower semicontinuous and coincides with </yy = Iy on Wl’l, the
inequality

Sw(¢) < w () (4.8)

can be easily proved. However, inequality (4.8) can in general be strict, as the
following example shows. Consider @ := (0, 1)?", n > 2 (but this example works
also for n = 1) and the function

1 ifreli D),

4.9
—1 ifr € (0,3). )

¢(x2,...,yn,t) = {

The maps ¢ belongs to BVyy (w) because of Remark 4.4. We have
Yi¢ —2T¢* =

in the sense of distributions and so

n
/ [gl + (P Yignt1 — 207 Tgn1) + Y _ (X8 + ngn+/')i| dL?"
w

Jj=2

n
- / |:g1 —4Z(yj gj(xz,...,yn,%)—xj- gj(xz,...,yn,%)):| dE*".
w

J=2

By taking the supremum among g = (g1, ...,82n) € Cl(w,R?"), |g| < 1, we
obtain

Sw($) = £2"(w) + 4 / 1X*|d g2l (4.10)
wN{r=1/2}

where we have set

X*(X2, 0 Xn V2o Vnst) 1= (—V2u oo, —Vn. X2, ... Xp) € R?"2,

It is quite easy to see that Eg is an open set whose piecewise smooth bound-
ary 0Eg N - R can be written, up to 8 1—neghglble sets, as a (disjoint) union
S1 U S, U S35, where

Sp = @((0. D> x (3. 1)),
S> = @((0. D" x (0, 3)).
Sy ={(x,y.1): =l <x1 <1, (x2,....9n) € (0. D" 1 =1 +2x1y}.
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460 F. Serra Cassano and D.Vittone

‘We have
a2 (S1U $2) = [0Eg|m((w \ {r = 1/2}) - R)

4.11
=/ V14 |V992d 2" = £2"(w). 10
o\{r=1}

In order to compute the measure of 3, it is convenient to see it as the 7-graph of
the map u(x, y) := % + 2x1y; defined on the open set

U= {(x) €R¥ i =1 < x1 < L (xzeeeoym) € (D),

In this way

c,,so%—l(sg)=[u|w+x*|d$2"

:[uZ’(O,—yz,...,—yn,2x1,x2,...,xn)|d£€2”
1

>[ / 2\(0,—y2,...,—yn,O,xz,...,xn)\dxldcfz”_l(xz,...,yn)
(0’1)211—1 —1

:4/ [(=y2. o =Yn. X2, Xn) | d 22"
(0,1)2;’171

- 4/ IX*|dg21, (4.12)
wn{t=1/2}

Using (4.10), (4.11) and (4.12), we finally obtain
0Eg|m (0 R) = ¢, 8271(S1 U $2) + cn8271(S3) > Sw ().

as claimed.

The following lemma will be used in the proof of Theorem 4.7; its statement is
perfectly analogous to that of Lemma 3.13 for ¢-graphs.

Lemma 4.6. Let © C W be a bounded open set and let F C w - R be a measur-
able set. Assume that
|FA(@-R7)| <o0 (4.13)

and, for any positive real number k, set
Fi = (F U (0 (=00, —k))) \ (@ - [k, +0)).

Then there exists a sequence (kj); such that k; — +o0 and

lim |0F, [g(w - R) = [0F [m(w - R). (4.14)
J—>+o0
Proof. See Remark 3.14. o
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Bounded variation and local boundedness of minimal graphs in H" 461

We can now prove one of the main results of this section.
Theorem 4.7. Let ¢ € L' (w). Then

0|1 (@ - R) = Ay (9) = Iw(9). (4.15)

Proof. The equality between <7y and [y is rather immediate. We have by defini-
tion oy (¢) < Iy (¢); the reverse inequality follows by considering a sequence
(¢j); C W&;l(a)) such that

¢; > ¢ inL'(®) and oAy (d;) — Fw(9)

and another sequence (/j); C C!(w) such that
1 1
lpj — Vil < 7 and | Aw (¢;) — dw (Y))] < 7

This gives Ty () < 1im) .00 oy (9)) = Ty ($).
Also the proof of the inequality [0Eg|m(w - R) < Iw(¢) is not difficult. We
know that there exists a sequence (¢;); C C!(w) such that ¢; — ¢ in L' (») and

Iw(¢) = lim / 1+ |V¢-/¢j|2 = lim |8E¢j|H(a)-R). 4.16)
J70 Jw J—00

By (2.7) and the fact that ¢; — ¢ in L!(w) we deduce that
Eg,

J

— Eg inL'(w-R).
From the semicontinuity of the perimeter

|0E |1 (@ - R) < liminf [0, |51 ( - R)
J—>00 X

which, together with (4.16), gives the desired inequality.

We divide the proof of the remaining inequality [0Eg|m(w - R) = I'w(¢) into
several steps.

Step 0. We claim that it is sufficient to prove the inequality

[0Eg|m(w - R) = Tw(¢)

for ¢ bounded. Once this has been done, by Lemma 4.6 we would get for a
generic ¢
|0Eg|m(w - R) = lim |0(Eg)k; [m(w - R)
Jj—00

where k; — oo is the sequence given as in Lemma 4.6 (with F = Eg) and

(Eg)k, := (Ep U (@ - (00, —kj))) \ (@ - [k;. +00)).
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462 F. Serra Cassano and D.Vittone

It is easily seen that (Eg)x; = Eg; where ¢; := max{min{¢, k; }, —k;} and thus
we would have

|0Eg|m(w - R) =j1_i)Igo Iw (¢x;) = Tw (),

as desired. We also used the lower semicontinuity of /yy and the fact that ¢; — ¢
in L (w).

Step 1. Without loss of generality we may assume that ¢ is bounded and that
|0Eg|m (@ - R) < 4-00. Let us fix a smooth function 2 : R — (0, 1) such that

0
h >0, lim h(x)=0, lim h(x)=1 and / h(x)dx < oo,
X—>—00 X—>—+00 —00

and set ff;(x, y,t) := h(xy). For § > 0 consider yg5 := (1 — 8}7)XE¢- We are going
to prove that

X6 — XE, > 0 inL'(@-R) and [Dpys|(w-R) — [0Eg|m(w-R) (4.17)

as § — 0. One has

IxEs — xsler = 8/ hxg, d2?+!
R
< 5/ F],Td$2n+1 +8/ |XE¢|d°f2n+1
R~ o R+t

0
= §F2" h(t)dt + 6 d£? = 0(5).
() /_ h) /w oo l® 6)

Moreover, for any ¢ € Cl(w - R, R?") with |¢| < 1 one has

/ (XE, — xs) divig o d £2"H1
w-R

thv)(Ed) divyg ¢ d £2" 11

R

/ 1, diveg(hp) d 22+ — / 2, (Vish, g) d 201
w-R w-R

=90

<6|oEg|m(w-R) +6 /R)(E,b(x,y,t)wl(x,y,t)h'(m)dxdydt
-

$8|8E¢|H(a)-R)+5/ | (x1)| dx dy dt

R
= §|0Eg|m(w - R) + §£2" (w). (4.18)

This proves that s — yg, — 0 in BVg(w - R) as § — 0 and, in particular, that
(4.17) holds.
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Bounded variation and local boundedness of minimal graphs in H" 463

We also observe the following. If M > 0 is such that [¢| < M on w, then
w-(—00,—M)C Ey and EpNw-(M,+00) =9,
whence
10Eg |m(w - (=00, =M)) = |0Eg|m(w - (M, +00)) = 0. (4.19)

By (4.18), on taking the supremum over ¢ € Cé (w - (=00, —M ), R?™) (resp. on
¢ € Cl(w - (M, +00), R?")) we get

| Dr sl (e - (—00, —M)) < §(10Ep|m(w - R) + £2" ().

(4.20)

|Dpxsl(@ - (M, +00)) < 8(|0Eg|m(@ - R) + £2" ().

Step 2. From now on we fix € > 0 and § = §(¢) < 1/2 such that
IxEs — xsler <€ and  |Du(xe, — xs)l(@-R) <e. 4.21)

Thanks to (4.20) we may also require that
[ D ysl(w - (—o0,—M)) <€ and |Dygysl(w-(M,+00)) <e. (4.22)

Fix open sets w;, j = 0,1,2,..., such that w; € w;+1 and w; 1 w; we may
suppose that
|Drxs|((@\ ws) -R) <e. (4.23)

For j € N define A¢ = ws and 4A; := w;4+5 \ w; if j = 1. We fix a partition of
the unity (;); subordinate to (+;);, i.e., a family of functions such that

o0
ijCSo(eAsj), 0<vy; <1, ZlﬂjZI on w.
j=0
Without loss of generality, we may construct ¥/; so that
1
onwg and VY; = - onwjta \wjtr1.J =1,2,.... (4.24)

5

Indeed, it is enough to consider functions §; € C2°(+4;, [0, 1]) such that {; =1
on wj 44 \ wjt1, and to set {:=} ;{;. Since 1 < ¢ <5 on w, the functions
Y = {; /¢ provide a partition of the unity satisfying (4.24).

Finally, define a partition of the unity on w - R by setting

Yo =

W | —

Yy (xoyt) =y (rw (v, p.0)) = Y (v 1 = 2x1 1),

SO thatwj(fbs) =vyj(A)forany A € w, s € R.
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464 F. Serra Cassano and D.Vittone

Fix a smooth mollifier o € C2°(U)) satisfying (2.24). Inspired by the classical
proof by Anzellotti-Giaquinta (see [39, Theorem 1.17]) we fix numbers a; > 0
and define the functions

Ue,j(P) = Qa; * fb’,j(P) = Oa,; (P - Q_l)fs,j(Q)difz’H_l(Q)
H"

= [ ox (@07 Py Q)

where f5 ; : H" — R is the function defined by f5 ; := x5 WJ onw-(—4M,4M)
and fs ; = 0 outside. Several conditions are to be imposed on the numbers «;:
they will be listed along the proof, in order to clarify the role played by each of
them. Observe that f5 ; € L°(H") N L1 (H") and

spt f5.; C (spty) - [-4M, M] € w - (—o0, —2M).

If aj > 0 is so small that Uy; - P C @ - (—00,2M) for each P € spt f; ;, then
ue,j € C°(H") and, by (2.25),

sptue,j C Uy, - spt fs, ; C @« (—00,2M). (4.25)
The implication
0 € (@44 \@j31) - (—00,—M), j =1

— ~ — 1-§ 1
= 25(Q);(Q) = A =8h(@NV;(Q) = —— = {5

holds by (4.24). Similarly, we have

— 1
Q€ws-(—00,-M) = ys5(Q)¥o(Q) = 10

This implies that, for sufficiently small ¢;;, one has

1 .
ue,j(P) = 1— VP e (a)j+3 \a)j+2)-(—3M,—2M], j=12,...,

10 (4.26)
ue,o(P) = 10 VP € w3-(—3M,-2M].
On the other hand, by (4.25),
ue,j(P)=0 VP ew-[2M,3M), Vj € N, 4.27)

By the uniform continuity of Ej we may assume that forall P € A; - (=3M,3M)
and for all Q € U(0, o),

fS,j(Q_l - P) < Jj(Q_l -P) < Wj(P) +e27/1
whence
ue,j(P)<Y;(P)+e27/™' VP ew- (-3M.3M). (4.28)
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Bounded variation and local boundedness of minimal graphs in H" 465

Let us define u, € C®(w - (—3M,3M)) by
o0
Ue i= Zue,j.
j=0

One has 0 < ue < 1+¢€ because of (4.28) and the fact that Z}?io Jj = lonw-R.
Moreover, by (4.26) and (4.27)

1
Ue = 10 onw-(—3M,-2M], ue=0 onw-[2M,3M). (4.29)

If «; is chosen so that
lue,j — X6V llL1A;-(—30300)) < €277,

then

Y (e —xsV;)

J=1

lue = x5l L1 (@-(-3M,3M)) = €. (4.30)

LY (w-(—=3M,3M))
We claim that

/ ViU d 22" < | Duysl(w - (—2M,2M)) + 9¢.  (4.31)
w(—2M,2M)

By (2.26), for any ¢ € Cl(w - (=2M,2M)) with |p| < 1 we have
f ue divyg ¢ d £ 1
w-(—2M,2M)

-

(Qaj * fg’j)diVH(pdifzn—i_l
(—2M2M)

o0

= / Qaj * f5.7) d1V]HI(pah,¢“32”+1

3

= / fs,j(0a; * (divi @) d £+

If we choose o; < M for any j, we have
spt fs,; (0a; * (divig @) Cspt f5,; N Uy, -spte C A; - (—=3M,3M)
and thus, setting Q := w - (=3M,3M),

[e.°]
: 2 1 T 2 1
/ ue divg @ d £2"F =Z/ 1V divig(0a; * @) d L ntl
w-(—2M,2M) i—oY %
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466 F. Serra Cassano and D.Vittone

In particular

/ ue divig ¢ d 22711
w-(—2M,2M)

o0
= > [ s v 0u, + o) a2
j=0"¢
m —
- Z/ (xsVEv ;. 0a; * ¢)d >+
j=0"%
Q

= ;)/ X8 leH(W] (QOlj * ) dg>" ! (4.32)

o0

_ 0u; * —J_ ’ 2n+1
> | few, * (sVs¥).g) a2+
j=0

0o
J=0

/Q 25 Vi (T (0a, * 9)) d 2271

- Z/ (Qaj * (XBVHE]') - (XBVHEJ')M/J)d:ﬁz”‘H
j=0"¢

where we used the equality > j VHJJ- =0 on w-R. If a; is sufficiently small,
we have

loa, * (xs Vv ;) — xsVEv Il @) < €27

whence

< €. (4.33)

Z /Q (00, * (xsVEY ;) — (XsVEY ). @) d £>"+!
Jj=0

It is a good point to notice that the choice of the numbers «; is independent of the
particular function ¢. Since ¥/ ; (0a; *¢) € Cg (Aj-(=3M,3M)), |V (0a; *xp)| < 1
and A; - (—3M,3M) C 2, one has

o0 o0

> [ s divi(Fjon, ) dE ] < 3 IDasslids - R)

/=1 /=1 (4.34)
< 61D s((@ \ ws) - R)
< 6¢
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Bounded variation and local boundedness of minimal graphs in H" 467

where we used (4.23) and the fact that the intersection of more than any six of the
sets #; is empty. By (4.32), (4.33) and (4.34) we obtain

f ue divyg ¢ d £ 11
w(—2M,2M)

(4.35)
< / 15 diver (T (ap * ©)) d 2" + 7e.
Q

Since sptgp C W - (—2M,2M) and o9 < M, we have
spt(Qag * ) C W - (=3M,3M),

thus spt /¢ (0u, * ¢) C @ - (—=3M,3M) = Q. In particular, (4.35) becomes

/ ucdivig ¢ d 2" < | Duysl(w - (—=3M,3M)) + Te
w-(—2M,2M)
< |Duys|(w - (—2M,2M)) + 9¢

i.e., (4.31); in the last inequality we used assumption (4.22).
Step 3. For any P, Q € w - R and s > 0 one has

XE¢(Q_1 -P.s) < )(E¢(Q_1 - P), whence y5(Q~'-P-s5) < xs(Q" L. P),
V(@7 Pes)=9,;(07"-P) =0.

This implies that u¢ ;j (P -5) < ue j(P) forany P € - (—2M,2M) and s > 0
such that P -5 € w - (—2M,2M); in particular it is u¢ (P - s) < ue(P) and

<0 VP ecw-(—2M,2M). (4.36)

Ps)—uc(P
Xiue(P) = tim MelZ9) Zue(P)
s—>0t N

The monotonicity in (4.36) can be improved: we claim in fact that the implication
Pew- - (—2M,2M), uc(P)>0 = Xju(P)<0 4.37)

holds. By definition, if u¢(P) > 0, there exists an index k such that
Uek(P) = /U oo 0 (@107 PO P AL (0) > 0
SO

Let ¢ = ¢(P) > 0 be such that
X1h(Q™V - P-s)=c VYO e€U© ), Vs €0, 1].
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468 F. Serra Cassano and D.Vittone

For any s € [0, 1] one has the implication
OQ'-PEE, = Q7' -P-s)=ys(Q71-P)=0
while Q71 - P ¢ E4 implies
16(Q 71 Ps) = yg, (Q7' - P-s)(1=8h(Q7" - P9))
< xE, (07 - PY(1=8(h(Q" - P) + cs))
= xs(Q7" - P) = 8csyE,(Q71 - P)
<(1- Scs))(,g(Q_1 - P).
We then have
(P-s) = e.j(P-5)+ o -1.p.
ue(P -5) #Zku o+ [ o, Q@507 P )
XY@~ P-s5)d£> 1 (0)
< ci(P 1 — 8¢5)0a, “l.p
< ;u s+ o (06900, (@150 P)
x Y (@~ P)yd£* 1 (Q)
=ue(P)—8csuck(P)

whence X1ue(P) < —cuer(P) <O0.
Step 4. By (4.21) and (4.30) one has

lue = XEH L1 (0-(—2M200)) < 26

this inequality yields [ue |71 (-(—2mr,20)) < C for small €. Set ve := ue/(1 + €);
then ve € C°(w - (—3M,3M)) and 0 < ve < 1. By Minkovski’s inequality

[ve = XEy | L1 (@-(—2m201)) < Ve —tellpt + [ue — xE4 1 < (C +2)e; (4.38)

in particular

|0Eg|m(w - (—2M,2M)) < liminf / |VHVe| d 2T (4.39)
w(—2M,2M)

€—0
From (4.19) and (4.21) it follows that
|Drysl(@ - (=2M,2M)) < [0Ep|r(w - (=2M,2M)) + €
which, together with (4.31), gives

/ |Vaue| d £ < |0Ep|m(0 - (—2M,2M)) + 10€.
w-(—2M,2M)
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Bounded variation and local boundedness of minimal graphs in H" 469

Therefore
/ |Vive| d 22"+ < / |Viue| d £2"+1
w-(—2M,2M) w-(—2M,2M)
< |0Eg|m(w - (—2M,2M)) + 10€
and recalling (4.39)
lim |Vive| d £2" T = |0Eg|m(w - (—2M,2M)). (4.40)

€0 Jop.(—2M,2M)
For any ¢ € (0, 1) define
Ece:={ve > ¢} N(w-(-2M.2M)) and E;M := EsNw - (-2M.2M);
we have
Ve — XE4 > C onEesc\EquM, XE, —Ve = 1—c¢ onEq%M\Ee,C.

From (4.38)

€ +2e> | [ve — 1,1 d 22+
w-(—2M,2M)

Z ¢ |Eec \ E()25M| +(1— C)lqusM \ Ee.cl

> min{c, 1 — c}|E(§M A Ec .l

In other words, for any ¢ € (0, 1) one has E¢ . — Eg4 in L' (0 - (—2M,2M)) as
€ — 0. In particular

|0Eg|m (@ - (—2M,2M)) < lim igf|8E€,c|H(a) - (—2M,2M)). (4.41)
€—>

By Fatou’s lemma, the coarea formula of [29, Theorem 2.3.5] and (4.39)

1
[0Eg|m(w - (—2M,2M)) $/ limi(1)1f|8E€,C|H(w-(—2M,2M))dc
0 €—>

1
< liminf/ [0E¢ clm(w - (—2M,2M)) dc
e—0 0

e—>0

- liminf/ |VHve| d &2 !
w-(—2M,2M)
= |0Eg|m(w - (—2M,2M)).
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470 F. Serra Cassano and D.Vittone

Using again (4.41) we obtain that for £'-a.e. ¢ € (0, 1)

lim inf [0Ee ¢ [s1(w - (~2M.2M)) = |9Eg s (@ - (~2M.2M)).
€e—

In particular there exists a ¢ € (0, 1/10) and a sequence €, — 0 such that, setting
Ek = EGk,E’
lim £2"*(Ex A (Eg Nw - (—2M.2M))) = 0,
k—o0
(4.42)
klim |0Ek |m(w - (=2M,2M)) = [0Eg|H(w - (—2M,2M)).
— 00

We have Xjve, <0 on w-(—2M,2M); recalling (4.29), for large enough k
one has
1

Ve, = m >c¢ onw-(=3M,2M], vg(P)=0 onw-[2M,3M).

By the following Lemma 4.8, the boundary dE} is the X1-graph of a smooth func-
tion ¢y : @ — (—2M,2M). One has ¢y — ¢ in L!(w) because of (4.42), (2.7)
and the fact that

Ep\ (@ (=2M.2M)) = Eg \ (0 (~2M.2M)),
Eg, N (- (—2M,2M)) = Ex N (o - (—2M,2M)).

Therefore

[0Eg|H(w - R) = [0E¢|H(w - (—2M,2M))
= lim |0Ek|m(e - (—=2M,2M))
k—o00

= lim | 1+ Vg2 d£2" = Iy (),
k—o0 Jo
as requested. o

Lemma 4.8. Suppose thata,b € R,c > 0and v € Cﬁ(a) (a,b))NC%w-[a,b])
are such that X1v < 0 and

v(A-a)>c, v(A-b)<0 VAew.

Assume also that X1v(P) < 0 whenever v(P) = c. Then there exists a function
¢ :w — (a,b) such that ¢ € C%V(w) and{v > c}Nw-(a,b) = Ey Nw-(a,b).
Moreover, if v belongs also to C*°(w - (a, b)), then ¢ is C*°(w).
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Bounded variation and local boundedness of minimal graphs in H" 471

Proof. Define V: w x [a,b] — R by U(4,s) := v(A-s). By construction, v is
continuous and
V(A,a) >c¢, V(A,b)<0.

In particular, for any A € w there exists an s4 € (a,b) such that T(A4,s4) = c.
Since

v v

a—(A,s) = Xjv(A-5) <0 and B—(A,SA) = X1v(4-54) <0,

s s
54 is unique and {s € (a,b) : v(A-s) > ¢} = (a, s4). Define ¢ (A) := s4; then
{fv>clNw-(a,b)=EsNw-(a,b).

Moreover, ¢ is of class C%W because ®(w) = {v = c} is an H-regular surface with

X1U

1 _
Vo (w) = Vaol < 0.

If vis C*°(w - (a, b)), also v is smooth; the classical Implicit Function Theorem
allows to conclude that also ¢ is C*°(w). ]

In the following, for any ¢ € L!(w) we will use the notation

[ 1+ D9 = 0Es s1(0 - R) = T (8) = Iw (@).

We also introduce the quantity

1 lver @) = 16111 ) + / J1+D2gp2. 4.43)

[0

With abuse of terminology, we refer to ||¢ |y (w) as the BVw norm of ¢: recall
that BV is not even a vector space, thus | - |gyy, is far from being subadditive
or homogeneous.

We single out the following result, which was obtained along the proof of The-
orem 4.7.

Theorem 4.9. Let ¢ € BVyy (w). Then there exists a sequence of smooth functions
¢j : @ — R converging to ¢ in L' (w) and such that

/,/1+|D¢¢|2= lim / V1+ (Vg 12de?.
1) J—=0 Jw
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472 F. Serra Cassano and D.Vittone

4.2 Existence of minimal X{-graphs

We want to deal with the problem of minimizing the area functional among intrin-
sic graphs with prescribed boundary datum. In order to attack this problem, one of
the main difficulties comes from the absence of a trace notion in BVyy, which is
also due to the fact that the theory of traces for BV functions in H” is only at an
early stage, see [20,60,62]. We will introduce (see Definition 4.11) a generalized
notion of trace which makes sense, at least, for a large subclass of BVyy functions
(see Proposition 4.15).

The following Remark 4.10, while showing another peculiar difference between
BVw and the classical BV space, underlines one more time the difficulty of defin-
ing a trace for BV functions.

Remark 4.10. It is well known that a given function ¥ € BV(U) admits a trace
@ € LY(0U) when U c RY has compact and Lipschitz regular boundary. More-
over, we have [¢| 1159y < c(W|ulgy(w for some ¢ = c¢(U) > 0. A geometric
interpretation of |¢]| ;1 is given by the equality (see [39])

lelztou = fa‘u ol dFN 1 =106, (0U X RY) + (960U x R7).
Here, &, &* C RN *1 are, respectively, the Euclidean subgraph and epigraph of u
in U x R:

E={x,t):xeU t <ulx)), & :={x.1):xeU t>ux))}

while |0 &, |d &*| stand for their Euclidean perimeter measures. We have there-
fore
06,1 (0U x RT) + 198" [(0U x R7) < ¢ (W) |ulpv(w)- (4.44)

We are going to show that (4.44) admits no counterpart in BV (@) and more
precisely that in general there is no positive ¢ such that

|0Ep|m (9w - RY) + |0E? | (00 - R7) < |9 lBvyy @) (4.45)

Consider @ := (0,1)%" (but the domain could be easily made smooth) and the
functions, which were suggested to us by G. P. Leonardi [44],

k
Or (X2, ..  Xpy V1seos Ynnt) 1= e 4 Zt ifn =2,

k
dr(y. 1) i= ek + o =1L

Easy computations give

k
e
ilsvw = [ 16c1d2™ + [ 1+ [vogae? = & + 06
w w
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Bounded variation and local boundedness of minimal graphs in H" 473

For n = 2 we have instead
|0 gyl (9 - RY)
> 827 ({(x,y, ) e H 1 y1 = 1, 0 < x1 < g (rwy (x, y,1))})
= H2"({(x.y.0) € H" : y1 =1, 0 < x1 < e (rw (x. y.1))})

:/ ¢k(-x2""7-xna15y2a---,yn,t)d$2n_1_
on{y1=1}

The first of the two equalities follows from
s Lin=1=0"L{n=1

(see also Lemma 2.12). Similar computations can be carried out also for n = 1;
in both cases we obtain
10Eg, | (0w - RT) > &

and our claim follows.

We are now ready to introduce our generalized notion of trace. From now on,
w is supposed to have Lipschitz regular boundary.

Definition 4.11. Let wo be an open bounded set such that € wg. We will say that
¢0 € BVw (wo \ @) is a trace in generalized sense (briefly: TGS) of ¢ € BV (w)
if, after defining 6 : w9 — R as

§ = {¢ one, (4.46)
$o onwo\w,

then
|0Eg|m (dw - R) = 0, (4.47)
|0Eg|m (0w - RT) = [0Eq|m(H™ \ (wp - R)) < +o00, (4.48)
10E | (0wo - R7) = [0E? [ (H™ \ (wo - R)) < +o0. (4.49)

Roughly speaking, ¢ (or, which is the same, 6) gives the trace of ¢ on dw - R
because of (4.47), which says that y g, takes on dw - R the same “boundary value”
both from the “outside” (wo \ @) - R and from the “inside” w - R, where it coin-
cides with yg,. In some sense, g, € BVg(wo - R) can be thought of as a sort
of “tracing extension” of y g, € BVg(w - R). See also [4] for the problem of the
extension of BV functions in metric spaces.
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474 F. Serra Cassano and D.Vittone

Remark 4.12. The function 6 is not defined on the £2"-negligible set dw and so
it is well defined in L (wp). It follows from (4.47) that 8 € BVyy (wo).

We will prove later the following

Proposition 4.13. Let ¢pg € BVyy (wo \ @) be a TGS for both ¢, € BVw(w)
and suppose that ¢1 € BV (w1 \ o) is another TGS for ¢, where w1 C W is open
and bounded and ® € w1. Then ¢1 is a TGS also for .

The previous result allows to introduce an equivalence relation among traces in
generalized sense as follows. If ¢g € BV (wo \ @) and ¢; € BVw (w1 \ @), we
set ¢po ~ ¢ if for any ¢ € BV (w)

¢poisaTGS for¢p <= ¢ isa TGS for ¢.

Equivalence classes are denoted by [¢o]: if ¢o is a TGS of ¢ we write @5, = [¢o]
to underline the fact that, rather than by ¢, the trace of ¢ is given by the equiva-
lence class [¢o].

Remark 4.14. In the classical case, when U has Lipschitz regular boundary, any
function v € BV(U) admits a (Euclidean) TGS. Namely, there exist Uy © U and
0 € BV(Uyp) such that

1065 (AU X R) = 0, |9&5](3Uo x RT) + [9&°|(9Uo x R7) < +00.

In fact it is sufficient to consider a smooth compact domain Uy U and to ex-
tend u to 6 € BV(Uop) with 639;, = 0 and the inner and outer traces of ¢ on U
are the same: Ql—g‘u = 9|5u. See [36].

We conjecture that, when dw is compact and Lipschitz continuous, any func-
tion in BV (w) admits a TGS. We are able to prove this result for quite large
subclasses of BVyy (w). Let us recall that the class Lipyy (w) of intrinsic Lipschitz
functions in the Heisenberg group was introduced in [33] in terms of comparison
with suitable intrinsic cones in H"; see also [35] and [62].

Proposition 4.15. Suppose that w has Lipschitz regular boundary and ¢ belongs
to one of the following classes: W12(w), BV(w) N L>®(w) or Lipyy (w). Then ¢
admits a trace in generalized sense.

Proof. When ¢ € W12 (w) (respectively ¢ € BV(w)NL>®(w)), we fix a bounded
open set wyp D w with smooth boundary. As in [36], it is possible to consider
do € Wh2(wg \ @) (resp. ¢pg € WH(wg \ @) N L>®(wp \ ®)) such that

Pojow = Plow and  Pojaw, = 0: (4.50)
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Bounded variation and local boundedness of minimal graphs in H" 475

here the traces are the classical ones. Define 0 as in (4.46). The first equality
in (4.50) implies that the Euclidean perimeter |0Eg|(dw-R) is zero, whence (4.47).
The second equality in (4.50) gives

|0Eg|(dwo - RT) = [dE?|(dwp - R™) = 0,

whence (4.48) and (4.49) by Proposition 2.10. Notice that ¢ € BV (wp \ @)
because W12 (wg \ @) C W&;l(wo \ ) (respectively, because of Remark 4.4).

Finally, if ¢ € Lipy (w), then we can fix wg as before and extend the function ¢
to 6 € Lipyy (wo); see [35]. In the latter work it is also proved that

(rw)#(|0Eg|m L (wo - R)) < c£?" L wo

for a suitable ¢ = c(6) > 0. From this, (4.47) follows because £2"(dw) = 0.
Moreover, 6 is bounded in wq (see [35]) and we have

EgNi{x; >cy=E%N{x; <—c}=0.
In particular
10Eq |1 (dwo - RT) + [E? |11 (dwo - R™) < ca 8L (dwg - [—c. ¢]) < 00
and also (4.48) and (4.49) are satisfied. O

Let us consider the minimization problem (1.17): fix wp 3 w and a function
6 € BV (wo). Assume that ¢ satisfies (4.47)—(4.49); then ¢ := 6|y,\5 is a TGS
for ¢ := 0|,. In other words, 6 is an extension of ¢ which determines its “trace”
®|3w- We are going to show that the infimum in the minimization problem (1.17)
does not depend on 6 but only on the “boundary behaviour” ¢, of ¢, i.e, on [¢o].

Proposition 4.16. Suppose that 6 € BV (wo) satisfies (4.47), (4.48) and (4.49);
set ¢o := Oipo\@- Then the infimum in (1.17) depends only on the equivalence

class [¢o].

Proof. Suppose that ¢g € BVyy (wo \ @) and ¢; € BVw (w1 \ ®) are both TGS
of ¢ € BVyy (w). Let ¥ € L' (w) and set

Vo = Y onw, . Y onw, @51)
g0 onwo\@, VT ¢ onwn\@. '

It will be enough to prove that [0Ey, g (@ - R) = |0Ey, |m(@ - R); equivalently,
by the locality of H-perimeter (see Proposition 2.3), that

[0Eyo|lH(0w - R) = [0Ey, |H(dw - R). (4.52)
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476 F. Serra Cassano and D.Vittone

Let 6y, 61 be defined by

6o := {¢ one. 6y ;= {¢ one, (4.53)

$o onwg\w, ¢1 onwp \ .

By (4.47), for any € > 0 we can find an open neighbourhood ve C wg N w1 of dw
such that

<e,

/ divig ¢ d £2" 11
EQO

< € V(p S Cé(UE 'R’Rzn)a |(p| S 1

/ divig g d 27!
E@l

It is not restrictive to suppose that ve | dw as € — 0. From the previous inequali-
ties, for any ¢ € Cz, (ve - R, R?™) we obtain

/ R(XEU,O — xE,,) divir g d £2"+!
Ve+

<z2}’l‘|—l

= (XEg, — XE4, ) divig @ d
‘/(ve\w)-R o AT

= / (XEe, — XEp,) diver 9 d£7"+1] < 2¢.
ve R
In particular
10E o |1 (ve - R) — [8Ey, [m(ve - R)| < 2€
and (4.52) follows as € — 0. O

We owe the reader the proof of Proposition 4.13.

Proof of Proposition 4.13. Define Vg, ¥1, 0y, 01 as in (4.51) and (4.53). Our aim
is to prove that (4.47), (4.48), (4.49) are fulfilled with 6 = ; notice that the
last two of them are satisfied by assumption. It is possible to follow the proof of
Proposition 4.16 to obtain (4.52); in particular

[0Ey, [H(0w - R) = |0Ey,|H(0w -R) =0
which is (4.47). O

In the spirit of Proposition 3.7, another natural formulation of the minimal area
problem for X{-graphs could be

inf{|0Ey |m(w - R) + [0(Ey A Eg)la(dw - R) : ¢ € BVyy ()} (4.54)
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Bounded variation and local boundedness of minimal graphs in H" 477

for a fixed “boundary datum” ¢ € BVyy (w). It will be precisely the possibility of
extending ¢ by means of a generalized “trace” that will provide semicontinuity for
this functional (see (4.76) in the proof of Theorem 1.8).

Problem (4.54) is equivalent to our formulation (1.17) at least when ¢ admits
a trace in generalized sense and dw is Lipschitz regular.

Proposition 4.17. Let w, w9 C W be bounded open sets with @ € wo and 0w
Lipschitz regular. Let ¢ € BV (w) and assume that 0 € BV (wo) with 0|, = ¢
is an extension of ¢ such that ¢o := 0|4\ is a TGS for ¢. Then

inf {|0Ey |m(w - R) + |[0(Ey A E¢)lu(dw - R) : ¥ € BVw(w)}
= inf{|0Ey|a(@-R) : ¥ € BVyw(wo), ¥ =0 onwo \ @}.
Proof. Given ¢ € BV () define ;0/ two — Ras
~ on w,
V= {Z on wp \ w.
It will suffice to prove that
10EG (@ - R) = |[0Ey [g(@ - R) + [0(Ey A Eg)|lm(de - R)
or, equivalently, that
|8E$|H(8a)-R) =[0(Ey A Eg)|lm(dw - R). (4.55)

Notice that w - R has locally finite Euclidean perimeter; thus it has also locally
finite H-perimeter and 80%_1 (0w -R A 9y (w - R)) = 0. By Theorem 2.6 one has
10(Ey A Eg)lm(d -R) = ¢, 827 (30 - R N (Ey A E4)/?)
1 1/2 1/2 (4.56)
=827 (0 - R)Y2 N (Ey A Eg)'V?).

Let us define (whenever they exist) the inner and outer density ®;(E, P) and
Oo,(E, P) of aset E at P € H" with respect to the intrinsic cylinder @ - R re-
spectively by

ENUP,r)Nw-R
0;(E.P) = lim | (P.no-Rj
r—»o+ |UP,r)Nw-R|
[ENUP,r)\ w-R|
im
r—o+ |UP,r)\ w-R|
Since £y, Ey C w - R, itis easy to observe that

Ou(E, P) :=

Pe(w-R)V2N(Ey A Eg)'/?
(4.57)
— Pec(@-R)Y? and O;(Ey AEg P)=1

Brought to you by | UZH Hauptbibliothek / Zentralbibliothek Zirich
Authenticated
Download Date | 11/10/16 12:51 PM



478 F. Serra Cassano and D.Vittone

and that
(- R)V2NE) =(0-R)/ZNE) =0.

Similarly, we have
Egy CH"\ (0 R)

and, noticing that (o - R)Y/2 = (H" \ » - R)/2, we get
1/2 1 _
(w-R)“NE, =0.
In particular, by Theorem 2.6,
$27 (@ -R)V2\(EJU E}?) = 827 (0 R)V2\ (ES U E)/?)
= 827 ((@-R)V2\ (E9, U E}/?)) (4.58)

Notice also that

< if P € (w-R)/2 N EY, then ©;(Ey, P) =0,

«if P € (0-R)Y? N Ey then ©;(Eg. P) = 1,

«if Pe(w-R)Y/2N E{, then ©; (Ey, P) =0,

«if P e (@ -R)V2N E)/ then ©;(Ey. P) = 1,
whence for SOQO_I-a.e. P e (w-R)Y/2

©;(Eg, P) €{0,1} and O;(Ey,P)c{0,1}. (4.59)

We also point out the implications

@i(Eq},P):@i(Ew,P)E{O,]} — @l‘(Ed,AEw,P):O,

{8i(Ey, P),0;(Ey, P)} =1{0,1} == ©;j(Ey AEy,P)=1. (460
Therefore, by (4.56), (4.57), (4.59) and (4.60) we obtain
|0(Ey A Eg)|lm(d0 - R)
= cn 827 ({P € (w-R)Y2: 0;(Ey A Eg, P) = 1))
= cn 827N ({P € (w-R)2: ©;(Ey, P) €{0,1}, ©;(Ey, P) €{0,1} wo

and ©;(Ey A Eg, P) = 1})
=cn 827 ({P € (w-R)?: [0;(Ey, P) = 1 and ©;(Ey, P) = 0] or
[©i(Ey. P) =0and ©;(Ey, P) = 1]}).
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Bounded variation and local boundedness of minimal graphs in H" 479

We now use the fact that [0Eg|m((w - R)Y/2) = |0Eg|m(dw - R) = 0, which
implies (see Theorem 2.6) that

PeEJUE] for82lae Pe(w-R)V2 (4.62)
This in turn implies that for 80%_1—21.6. P e (w-R)Y/2

Indeed, the first and third equalities in (4.63) are clear. The second one can be
obtained noticing that, if P € (@ - R)/2, then

|[Eg NU(P,r)| . |[Eg NUP,r)Nw-R| |EgNU(P,r)\w-R|

li =
r20 |U(P, )| 30 \U(P, 7)| \U(P, 1)
. |[Eg NUP,r)Nw-R| |EgNU(P,r)\w-R|
= lim
r—>0 2|U(P,r)Nw-R| 21U(P,r)\ w-R|
1

By (4.62), the left hand side in formula (4.64) must be either O or 1 for 80%_1—a.e.
P € (w-R)'/2, thus

1
5(©i(P.r) + ©(P.1)) €{0.1} for 82 ae P e(w-R)V2

This is possible only if ®;(Eg, P) and ®,(Eg, P) are both 0 or both 1, which
gives the second equality (as well as the last inclusion) in (4.63) for 80%_1—3.6.
P e (w-R)Y/2

Combining (4.61) and (4.63) one gets

10(Ey A Eg)lm(dow - R)
= cn8271({P € (w-R)V2: (©i(Eg, P) = 1and ©y(Eg, P) = 0) or
(©i(Egz, P) = 0and ©y(Eg. P) = 1)})
48,827 ({P e (@-R)/2:P e EJ%)
= [0Egz|lm(dw - R)

and (4.55) follows. O
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480 F. Serra Cassano and D.Vittone

Proposition 4.18. Let o C W be a bounded open set and let (¢;); be a bounded
sequence in BVyy (w),; assume that

sup{|0E¢, [m (H",) + |0E? | (H")} < +o0. (4.65)
J
Then there exists a ¢ € BVwy (w) such that, up to a subsequence,
¢; > ¢ £*-aeonw and Eg, — Eg¢ inL} (0 R). (4.66)
In particular
|0Eg|a(w - R) < liminf |0Ey, [g(w - R). (4.67)
j—>00 :

Proof. Since
0(Eg; N H") g (H") + [3(E® 1 H™)|gr (H")
< [0Eg, I (HY) + 0E? | (H”) + 2¢, 827" (@),
we have

sup [0(Eg, N HY) [ (H") < 400,
J

(4.68)
sup |0(E® N H") | (H") < +o0.
J
Moreover, by (2.7),
sup{|Eg, NH"| + |E® NH"|} < ¢ (4.69)
J

because [|¢; |11 () is bounded uniformly in ;.

For any i € N let r; > 0 be such that w - [—i,i] C U.(0, r;). Using (4.68),
(4.69) and the compact inclusion BV (U (0, 7)) < LY (U.(0, r;)), for any fixed
index i there exists a subsequence (¢;,); and aset E; C Uz(0,7;) N (@ - RT) such
that

Eg;,, N HY — E; in LY(U:(0,r;)) as £ — oo.

Using a diagonal argument we can actually suppose that there isan ET C o - R™
such that (up to a subsequence which we do not relabel)

Ey; NHY - Et inL} (0-R7). (4.70)

Notice that ET = E¢+ N H’jr for a suitable ¢+ ‘@ — R7T.Indeed, leti € N
be fixed; since Ey, — E *in LY(w - (0,7)), by Fubini’s theorem we obtain that,
for £%"-ae. A € w, the sequence

(s = XE,, nur (4 -5));
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Bounded variation and local boundedness of minimal graphs in H" 481

converges to s > y g+ (A -s)in L1(0, 7). In particular, for £2"-ae. A €
(s — XE,, NH", (A-5s)); convergestos = yg+(A-s)in LIIOC(R+). 4.71)
Since
XE,, NH", (A-s) = X0, ¢+(A))(s) Vs e RT

where ¢>+ is the function defined in (2.8), the convergence in (4.71) holds (for
a fixed A € w) if and only if s > y g+ (A -s) is (£!-a.e. equivalent to) a charac-
teristic function xpg 4+ (4)) for some ¢ (A) = 0 such that

lim ¢:F(4) = 9™ (4).
J—00

In particular, E* = E4+ N H’, (up to negligible sets) and ¢>j+ — ¢t £2ae
on w. By (4.70) we have also

Eg, NHY — Eg+ NHY  in Li (0 -RT). 4.72)
Since for any i € N one has
|[ET N U0, r;)] = lim |Ey, NH N U0, r7)],
j—o00
we have
/ ptde* = |ET| < 11m1nf|E¢ NH"| = hmmf/ ¢ dL>"
w

< sup [[¢ L1 (w) < o0,
J

ie,¢pT e L1 (w).

With similar considerations, involving E%/ N H” and ¢ in place of, respec-
tively, Ey, N H" and ¢ , one can prove that (possibly after a further subse-
quence) there exist

E-Cw-R™ and ¢ €LY (w) ¢~
such that E~ = EC¢7) N H”" and
E% NH" - E~ inLl.(w-R7) and ¢ —> ¢~ £*"-ae. onw.
Therefore we have also
Ey, NH" = (w-R7)\ E¥ .
— (@ -R)\E  =E_sgNH" inLi (0 -R7),
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482 F. Serra Cassano and D.Vittone

where the equalities have to be understood up to negligible sets. Setting
¢ :=¢" —¢7in Ll (w),

by (4.72) and (4.73) we obtain (4.66). The map ¢ belongs to BV yy (@) because of
the lower semicontinuity of [0Eg|m(w - R) with respect to the LllOc convergence
of sets (see Proposition 2.2), which gives also (4.67). O

Proof of Theorem 1.8. Let (y;); C BVyy (wo) be a minimizing sequence for prob-
lem (1.17). We claim that

sup [0(Ey,; NHY)m(H") < +oo,
! (4.74)

sup [0(EY/ N H™)|g(H") < +oo0.
J

We have in fact, by Proposition 2.3, Theorem 2.6 and Lemma 2.12,
|9(Ey, N H)|ex (H")
= |0(Ey; N H) 0w - RY) + |3(Ey, NH)|m(wo - RT)
= |0Eg|m(Bwo - RT) + |0Ey,; [m(wo - (0, +00))
+ [9(Ey, NH) (W)
< |0Eglm(dwo - RY) + [3Eg|m((wo \ @) - (0, +00))
+10Ey, ln@ - R) + ca 827 (o),

whence [0(Ey,; N H'})|m(H") can be bounded uniformly in j. Similar computa-
tions can be carried out also for |d(EY/ N H™)|g (H"), and (4.74) follows.
By the isoperimetric inequality (2.3) we obtain the bound

sup{|Ey; NHY| + [EV/ NH.|} < ¢ (4.75)
J

for some ¢ = 0. Using (2.7)
/ |wj|d£€2” =|Ey, AHL| = |Ey, NH}| + |EY/ NH"| < c.
wo

Therefore, the sequence (v/;); is bounded in BV (wo); moreover we have
|0y, [ (HY) + [0EY [ (HZ)
< |0(Ey, NHY) (") + [0(EY N H) [ (H") + 2¢, 82~ (o)

and thus (4.65) holds because of (4.74). We can now apply Proposition 4.18 and get
the existence of ¥ € BVyy (wp) such that, up to subsequences, ¥; — ¥ £2"-a.e.
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onw and Ey, — Ey in L} (wo - R); in particular, ¥ = 6 on wg \ @. By (4.67)
we obtain

|0Ey [m(@ - R) = |0Ey [H(wo - R) — [0Eg|m((wo \ @) - R)

< liminf{|3Ey, liz(@o - B) = [9Egli(w0 \ @) -R)} 0

= liminf |0Ey, |g(®@ - R),
j—o0

i.e., ¥ is a minimum for the problem (1.17). o

We single out the following result, implicitly obtained along the proof of Theo-
rem 1.8. The assumptions on wg given in Definition 4.11 are understood.

Proposition 4.19. Let the sequence (¢;)j=1 C BVyy (w) be bounded in the BV w
norm; assume that, for any j, ¢;jae = o] for a fixed TGS ¢o : wo \ @ — R.
Then there exists a ¢ € BVyy (w) such that, up to subsequences, ¢; — ¢ £ -q.e.
onw and Ey, — E¢ in Llloc(a) -R). Moreover, the function 6 : w9 — R defined

by 0 := ¢ onw, 0 := ¢y onwy\ w belongs to BVwy(wp).
Proof. For any j > 1 define 6; € BV (wo) by
0j :=¢; onw, 0;:=¢o onwg\ ®.

We have

|0Eg, lm(H}) < [0Eg, [ (@ - RT) + [0Eg, |m((wo \ @) - R™)

+ [0E gyl (d00 - RT) + cn 827 (w9)

and, since similar computations can be carried out in order to bound [0E % |y (H™),
we get (4.65). The boundedness of (6;); in BV (wp) can be easily achieved and
Proposition 4.18 provides a function 6 € BV (wp) such that, up to subsequences,

0, — 0 £2"-a.e. on wy. Notice that § = ¢ on wo \ @. The function ¢ := O is
the desired one. O

4.3 Local boundedness of minimal X -graphs

In the proof of Theorem 1.5 (see (3.34)) we used the fact that for any K € U one
has
R =dso(K xR,0U x R) > 0. 4.77)

In general the inequality in (4.77) is not strict for intrinsic cylinders. This is stated
in the following Proposition 4.20, where the open set @ C W is not necessarily
bounded.
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484 F. Serra Cassano and D.Vittone

Proposition 4.20. Let w, ' be two open subsets of R?>" with o' € w. Then the
following conditions are equivalent:

(i) doo(@' - R, 3w -R) > 0.

(ii) The Euclidean distance between dw C W = R?"* and the open strip
Yi={(x2,...,Vn.t) € W:3r € Rsuchthat (x3,...,yn.1) €0’} CW
is not zero.

Proof. The implication (ii) = (i) follows immediately by observing that

doo((xh, oo yn 05" (xau o yna ) -8) = (x5 — X2, ...y — n)
> dist(Z, dw)

forany (x5,...,y,.t") € @', (x2,...,yn.t) € dw, 5,5 € R.

Concerning the reverse implication, we will provide the proof only for n = 2,
the case n = 1 being analogous. By contradiction, we assume that for any € > 0
there exist A = (x2,...,yn.t) € 0w and A" = (x5,...,y;.1’) € ' such that

! !/ . .
|x; —xi| <€ and |y;—yj|<e i=2,....n,j=1....n
. /. . _r ,
Since w' is open, it is not restrictive to suppose y; # y;. Choose

_ = =230 — i)

s
4(y1 —»1)

and consider the points
P:=A-scdo-R, Q:=A4-sco  R.
It is a matter of fact that
0= Po(O,xé—xz,...,x;, — Xny Y1 = Visenos U —yn,o),

whence doo (P, Q) < +/2n —le and deo (@’ - R, dw - R) < 4/2n — 1 €. By the ar-

bitrariness of €, this contradicts assumption (i). O

It is easy to see that, when the open set @ is bounded, there is no nonempty
subset @’ C w for which condition (ii) in Proposition 4.20 is satisfied. In particular,
the distance doo (@’ - R, dw - R) is always zero: the two intrinsic cylinders @’ - R
and dw - R get closer and closer at infinity. The following Lemma 4.21 allows to
control how fast these cylinders get close at infinity.
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Lemma 4.21. Let w C W be a bounded open set. Then there exists ac = c(w) > 0
such that

dist(A4, dw)

doo(A-5,0w-R) = ¢ 5]
s

VAew, Vs eR, |s| = 1.

Proof. We accomplish the proof only for n > 2. Let A € w, s € R, |s| = 1 be
fixed; set P := A-5s € w-R and d := dist(4, dw). We have to prove that, for a
suitable ¢ > 0 that will be determined later, U(P, ¢ d/|s|) C @ - R. Namely, that

P-(x,y,t) ew-R forany (x,y,t) € U,cd/|s|)

or, equivalently, that wy (P - (x,y,t)) € w for any such (x, y,t). Therefore, it
will be sufficient that

dist(4, 7w (P - (x.y.1))) <d forany (x,y,r) € U(0,cd/|s|).
Setting A = (0, X2, ..., Vu, 1), by (2.9), one has
mw (P - (x, 1))

=(0,%2,.... 90, 0)-5-(x,y,1) - —(s + x1)

n
= (0,;22 HX2eee s T Yna = dsy = 201y 42 (x5 —yj??j))-
i=2

Setting M := supy¢,, |A| and using d < 2M, we have

dist(A, rw (P - (x.y.1)))

n
< ol 4 |yl + [t —dsyr = 20101 +2) (x5 — ;%))

j=2
n —1)cd z B} 3
< T + ]+ dslyal + 2xyn] + 2D (x5 + %)
j=2
2d2 292 d
<@n—Ded + S8 facd +254 fam—-nm<l
52 52 s

Scd(2n—1+2cM +4+4cM +4(n—1)M)

where we also used that |s| = 1. It is then sufficient to choose ¢ > 0 so small that
c2n+3+6cM+4(n—-1)M) <1/2. O

We also need to recall the following result, which extends [35, Lemma 4.3].
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486 F. Serra Cassano and D.Vittone

Lemma 4.22. Suppose that P € H",a > 0,r > 0 and E C H" are such that
|ENUP,r)| = ar?
Then £2™ (ww (E NU(P,1))) = s re-1,
Proof. Forany A € W = R?" we define
I(A):=2£'({seR:A-s€ ENUP,1)});

let us prove that

2"TYENUP, ) = / 1(A) d £2"(A). (4.78)
aw (ENU(P,r))

Then the thesis easily follows being /(A) < 2r. Let us introduce a change of vari-
ables in order to apply the classical Fubini Theorem for the splitting H” = W - R.
Let U : R?*T1 5 " = R?"*+1 be defined by

V1, ..., 62n+1) = (0,82,... . 62n+1) - £1.

It is easy to see that W satisfies the following properties:

(1) W is a diffeomorphism and det ¥ 85 =1,
(2) if Wo := Wg¢, =0}, then Yo : R?" — W = R?" is the identity map,

where %‘;’ denotes the J acobian matrix of W.
If F C H", denote F := W~!(F). By (1)

L2V E AU, 1)) = L2 TYE N UP, 1)) (4.79)
Set w := myw (E N U(P,r)) and notice that ® = w. For a fixed A € R?" define
Li:={seR:(s,4) e W"(ENUP,r)=ENUTP.r)).
From (1), (2) and the Fubini Theorem
L2 ENUP, 1) = /Aiil(LA) d£2"(4) = / [(A)d£2"(A).  (4.80)
@ w

Equalities (4.79) and (4.80) give (4.78). O

We have now all the tools to prove our local boundedness result for minimal
intrinsic graphs.
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Proof of Theorem 1.9. Up to a localization argument, it is not restrictive to assume
thatp € L 2-1(w). We reason by contradiction: assume that there exists a compact
set K € w such that |¢| 70 (x) = +00. Without loss of generality we assume that
E£2"(KN{¢p > M}) >0 forany M > 0. Given M > 0 we can find A(M) €
such that ¢(A(M)) > M and

L2(VNKN{p>M})>0 (4.81)

for any neighbourhood V of A(M). For instance, it is sufficient to consider a
Lebesgue point A(M) for the set K N {¢p > M }.

For j € N consider the sequence A; := A(2/) € K. By inequality (4.81) the
point P; := A; -2/ is such that |E4 N U(Pj,r)| > 0 forany r > 0. Lemma 4.21
ensures that U(P;,c27/d) C - R, where ¢ = ¢(w) and d := dist(K, dw). By
Proposition 2.14 one has |Ey N U(Pj,c277d)| = B2772 for some B > 0. By
Lemma 4.22

£ (mw (Eg N U(P;, 277 d))) = k27/@7D  for some k > 0.

In particular, for large j (precisely: for those such that 2/ —c27/d > 2/71) we
will have 7wy (Eg N U(Pj,c277d)) C {¢ > 277!} and so

22 ({¢ > 2771)) = w2727,

where k¥ > 0 depends only on n, K and w. This implies that

/ |¢|Q—1 diZn > 21—QK
wn{p>2/-1}

for any large j and contradicts the hypothesis ¢ € L2 (w). o

Theorem 1.9 is not the exact counterpart of Theorem 1.5 or of the classical
Euclidean one (see for instance [39, Theorem 14.10]). We are presently not aware
whether the additional Lgc_l summability is only a technical problem, or if it can
be relaxed into the weaker LllOC assumption.
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