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ABSTRACT: Toll-like receptors (TLRs) are sentinel receptors of the host innate immune 
system that recognize conserved ‘pathogen-associated molecular patterns’ of invading 
microbes, including viruses. The activation of TLRs establishes antiviral innate immune 
responses and coordinates the development of long-lasting adaptive immunity in order to 
control viral pathogenesis. However, microbe-induced damage to host tissues may release 
‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant 
inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to 
be promising targets as therapeutics for the treatment of viral infections that result in 
inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, 
we explore recent advances in TLR biology with a focus on novel drugs that target TLRs 
(agonists and antagonists) for antiviral therapy.

A significant advance in the field of immunology accompanied the identification of the two arms 
of immune responses as ‘innate’ and ‘adaptive’. Initially, innate immunity was considered to be a 
relatively nonspecific and simple part of the overall immune response, while adaptive immunity 
was believed to provide antigen-specific protection from microbial and viral infection. However, 
accumulating evidence has clearly established that innate immune responses are the first line of 
defense against invading pathogens and also coordinate the development of a pathogen-specific 
adaptive immune response (reviewed in [1,2]). Despite striking differences in terms of response tim-
ing, effector cells and recognition receptors on the cells of both of these systems, there are many 
cellular and molecular components in common that orchestrate highly specific, integrated responses 
against invasive pathogens and establish long-term immune memory.

The primary receptors of innate immunity are a diverse set of germ line-encoded ‘pattern-recog-
nition receptors’ (PRRs) that identify a broad spectrum of ‘pathogen-associated molecular patterns’ 
(PAMPs), which are diverse microbial structures of invading microorganisms, or ‘danger-associated 
molecular patterns’ (DAMPs), which are host-derived molecules released by stressed or injured 
cells (reviewed in [1]). PAMPs include diverse microbial molecules, such as lipopolysaccharides 
(LPSs), lipopeptides, peptidoglycans, mannans, flagellin, bacterial and viral nucleic acids and viral 
envelope proteins, whereas examples of DAMPs include endogenous (host) components, such as 
histones, nucleic acids, uric acid crystals, cytochrome C, ATP, oxidized 1-palmitoyl-2-arachidonoyl-
phosphaticylcholine and HMGB1, among others. In 1989, Janeway first proposed the concept of 
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PRRs that recognize the molecular structures 
of microorganisms and link innate and adaptive 
immune responses [3]. Two important discover-
ies strengthened Janeway’s concept of PRRs: the 
proof of the importance of Toll-mediated signal-
ing in the induction of antifungal peptides by 
Drosophila in response to infection [4]; and the 
positional cloning of the Lps gene (now known 
to be Tlr4). Both C3H/HeJ and C57BL/10ScCr 
mice were shown to express mutations in this 
gene that led to LPS hyporesponsiveness in these 
two strains [5,6]. The importance of this research 
resulted in the sharing of the 2011 Nobel Prize 
in Physiology or Medicine.

Among the various families of PRRs (e.g., 
Toll-like receptors [TLRs], Nod-like recep-
tors, RIG-I-like receptors [RLRs], c-type lec-
tin receptors and cytosolic DNA receptors), 
TLRs are one of the largest and best-studied 
families of PRRs. The study of TLR biology 
has provided molecular insights into how PRRs 
recognize PAMPs and DAMPs, and how this 
leads to the activation of signaling cascades that 
converge in order to induce the expression of 
proinflammatory cytokines, chemokines and 
antiviral interferons (IFNs). Moreover, the dis-
covery of TLRs has also enabled the identifica-
tion of other families of innate immune recep-
tors (reviewed in [1]). Together, the knowledge 
generated in the field of TLRs over the past 
decade has resulted in a significant paradigm 
shift in our understanding of innate immunity 
and its role in the development of a long-lasting, 
pathogen-specific adaptive immune responses 
(reviewed in [2,7]). In this article, we briefly sum-
marize current advances in the field of TLRs, 
their signaling and how we might target TLR 
signaling in order to mitigate disease or enhance 
specific immunity.

The evidence thus far points to a role for 
TLRs in immune and inflammatory diseases, 
including allergies, autoimmune disorders and 
cancer (reviewed in [8]). To date, many viruses 
have been shown to activate the innate immune 
system through TLRs, assigning to TLRs an 
important role in controlling viral infections 
(reviewed in [9]). The following sections pro-
vide examples of TLR–virus interactions and 
their outcomes, as well as recent advances in our 
understanding of the role of TLRs in antiviral 
innate immunity, with a focus on the studies 
designed for developing novel TLR-targeting 
drugs that exert antiviral activity or serve as 
adjuvants for vaccines.

Toll-like receptors
TLRs are evolutionarily conserved across a wide 
range of species; 10 human and 12 mouse TLRs 
have been identified [10]. TLRs are type I trans-
membrane proteins composed of an N-terminal 
leucine-rich repeat (LRR) domain that enables 
the recognition of a wide variety of ligands, a 
single transmembrane-spanning domain and 
a conserved cytoplasmic Toll–IL-1 receptor 
resistance (TIR) domain for downstream signal 
transduction (reviewed in [11]). Resolution of the 
crystal structure of TLR3 revealed that a horse-
shoe-shaped antigen binding core was formed 
by the LRR-containing domain and sequence 
homology analyses indicated that activation of 
all TLRs requires a common tertiary structure 
[12]. Ten functional human TLRs (TLR1–10) 
and 12 functional mouse TLRs (TLR1–9 and 
TLR11–13) can be categorized by their subcellu-
lar localization. TLR1, 2, 4–6 and 10 localize at 
the cell surface, whereas TLR3, 7–9 and 11–13 
reside in endosomes and/or the endoplasmic 
reticulum (reviewed in [13]). Most TLRs form 
homodimers after ligand binding through their 
LRRs; however, TLR2 typically forms heterodi-
mers with either TLR1, TLR6 or possibly with 
TLR10 and detects components of microbial cell 
walls and membranes, such as lipopeptides, pep-
tidoglycan, porins and mannan, while TLR11 
heterodimerizes with TLR12 in order to bind 
to the profilin protein of the parasite Toxoplasma 
gondii [14]. TLR4 recognizes LPS from Gram-
negative bacteria, the fusion (F) protein of res-
piratory syncytial virus (RSV), the mouse mam-
mary tumor virus and Ebola virus glycoprotein 
[15–17]. In addition, TLR4 also senses DAMPs, 
including oxidized 1-palmitoyl-2-arachidonoyl-
phosphaticylcholine, which is a host oxidized 
phospholipid that is produced due to oxida-
tive stress in response to acute lung injury by 
acid aspiration, infection by respiratory viruses 
or bacteria or exposure to microbial products 
[18], and HMGB1, which is a chromatin bind-
ing protein that is released upon pyroptosis [19]. 
TLR5 detects flagellin, the major protein of 
bacterial flagella, whereas the ligand for TLR10 
has not yet been identified (reviewed in [20]). 
Homodimers of mouse TLR11 recognize com-
ponents of uropathogenic Escherichia coli [21]. 
TLR3, 7, 8 and 9 sense microbial nucleic acids: 
dsRNA is sensed by TLR3 and ssRNA by TLR7 
and 8, while unmethylated CpG DNA is sensed 
by TLR9. Moreover, mouse TLR13 recognizes 
bacterial 23S ribosomal RNA [22].
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TLR4 and, to some extent, TLR2 require 
coreceptor molecules in order to recognize 
microbial ligands. A noncovalently associated 
protein, MD-2, confers LPS responsiveness to 
TLR4. MD-2 binds the lipid A region of LPS 
in a deep hydrophobic pocket and interacts with 
the TLR4 ectodomain, which suggests that the 
MD-2–LPS complex is the essential ligand for 
TLR4 [23–26]. A second coreceptor for TLR4, 
CD14, transfers LPS monomers to MD-2 and 
increases the responsiveness of cells to LPS at 
low concentrations [27,28]. The F protein of RSV 
also requires MD-2 for signaling through TLR4, 
an event that involves direct protein–protein 
interaction between MD-2 and the domain 
of the F protein that encompasses its hydro-
phobic fusion peptide [29]. In addition, it has 
been shown that CD14 also acts as a corecep-
tor in order to activate TLR2 by  mycobacterial 
 lipoarabinomannan [30].

TLR signaling & downstream gene 
expression
Pathogen-encoded ligand binding to TLR causes 
conformational changes and TLR dimeriza-
tion that lead to the recruitment of cytosolic 
TIR domain-containing adapter proteins to 
the intracellular TIR domain of the TLR. 
The main adapter proteins include MyD88, 
TIRAP (also known as MAL), TRIF (also 
known as TICAM1) and TRAM (also known 
as TICAM2). The MyD88-dependent pathway 
is activated by all TLRs except TLR3, which 
only engages TRIF. TLR4 is the only TLR that 
activates both MyD88- and TRIF-dependent 
signaling pathways. CD14-dependent TLR4 
internalization into endosomes from the plasma 
membrane facilitates induction of the TRIF 
signaling pathway [31]. TIRAP was originally 
thought to act as a bridge to recruit MyD88 to 
TLR2 and TLR4, while TRAM recruits TRIF 
to TLR4 (reviewed in [11,32]). However, recent 
work by Kagan and colleagues suggest that 
TIRAP is more promiscuous [33]. A fifth member 
of the TIR adapter group, SARM, interacts with 
TRIF and negatively regulates TLR3 and TLR4 
signaling [34]. A proposed sixth adapter is BCAP, 
which has a TIR-like domain and  modulates 
B-cell activation by TLRs [35,36].

Engagement of TLRs by ligands causes a 
conformational change and the recruitment of 
adapters through TIR–TIR interactions, leading 
to the activation of a cascade of signal transduc-
tion molecules, including IRAKs, TRAF6 and 

TAK1, among others, leading to phosphorylation 
of the inhibitor of NF-κB kinase and the release 
of NF-κB transcription factors into the nucleus, 
which induces the expression of proinflamma-
tory genes, such as TNFA and IL6 (reviewed in 
[11,32]). The MyD88-dependent pathway also 
results in the activation of MAPKs. By con-
trast, the TRIF-mediated signaling pathway 
involves the delayed activation of NF-κB and 
robust activation of IRF3, which is an important 
transcription factor for the induction of type I 
IFNs (primarily IFN-β in macrophages) and 
IFN-inducible genes. Endosomal TLRs, such as 
TLR7–9, engage the MyD88-dependent path-
way and activate NF-κB and IRF7, which leads 
to the production of high levels of type I IFN 
(reviewed in [37,38]). Taken together, activation 
of MAPKs and NF-κB is triggered by all TLRs 
from the plasma membrane and endosomes, 
whereas TLR-induced IRF3 (TLR3 and TLR4) 
and IRF7 (TLR7–9 and TLR13) activation is 
initiated only from the endosome [39]. Activation 
of TLR signaling culminates in the expression of 
many secreted cytokines, such as IFNs, TNF-
α, IL-1, IL-6, IL-10, IL-12 and chemokines, as 
well as causing cell differentiation, prolifera-
tion or apoptosis. TLR–ligand interactions are 
complex and their outcomes depend on many 
factors, such as the differential expression of 
TLRs among different cell types, cell type-spe-
cific signaling pathways and the usage of varied 
adapters by different TLRs.

TLR–virus interactions & outcomes
The discoveries of vaccinia virus proteins A46R 
and A52R as antagonists of TLR signaling and 
TLR4 as the sensor of the RSV F protein first 
prompted the idea that other viral components 
may serve as TLR ligands [15,40]. Definitely, the 
discovery that TLR3 recognizes dsRNA, a major 
component of many viruses, revealed a role for 
TLRs in antiviral responses [41]. Accumulating 
evidence suggests that many viruses activate 
innate immunity through TLRs, which leads 
to protective immunity in order to resolve viral 
infections. Endosomal TLRs (TLR3, 7, 8 and 9) 
recognize viral nucleic acids, while some TLRs 
on the plasma membrane (TLR1, 2, 4 and 6) 
detect viral proteins either on the intact organ-
ism or those that are released into the extracellu-
lar environment. However, for some viral infec-
tions, the activation of TLR pathways augments 
the severity of the disease (reviewed in [9,42]). 
Interestingly, natural viral infections stimulate 
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complex sets of PRRs, both within and outside 
of the TLR family, in order to mount an effec-
tive immune response. The cooperative, com-
plex interplay of these different receptors may 
result in complementary or synergistic effects, 
which modulate innate and adaptive immunity 
(reviewed in [43]). Since such interactions are 
beyond the scope of this article, the outcome of 
each TLR interaction with viruses is discussed 
below (see Table 1). In particular, we describe 

studies aimed at developing TLR-based thera-
pies, either in the form of agonists or antago-
nists, in order to establish antiviral responses 
or to circumvent TLR-mediated detrimental 
immunity, respectively (summarized in Table 2).

Furthermore, many viruses have evolved 
defense mechanisms in order to escape or sabo-
tage the surveillance of the innate immune 
system for their own benefit. Some of the 
most prominent examples of viral subversion 

Table 1. Examples of mouse and human Toll-like receptor–virus interactions and outcomes.

TLR Virus (relevant 
examples)

Reported outcomes; macromolecules detected Ref.

TLR2 (with TLR1 or TLR6) Measles virus Hemagglutinin protein [48]

  HCMV Glycoprotein B and H [49]

  HCV Trigger pDC apoptosis in order to establish viral persistence; core and NS3 
proteins

[50,62]

  EBV UTPase [51]

  HSV Dual reports: protective and harmful inflammatory response; glycoproteins 
gH/gL and gB

[52,58–61]

  Rotavirus nsp4 [53]

  RSV Protective [54]

  MCMV Protective [55]

TLR3 MCMV Protective [64]

  HSV-2 Protective [65,70,71]

  EMCV Protective [66]

  Coxsackievirus B4 Protective [67]

  Poliovirus Protective [68]

  Rotavirus Protective [69]

  HCV Protective [72]

  Dengue virus Protective [73]

  Hanta virus Protective [74]

  PTV Harmful inflammatory response [75]

  Influenza Harmful inflammatory response [76]

  Vaccinia Harmful inflammatory response [77]

  WNV Dual reports: harmful inflammatory response and protective [78,79]

TLR4 RSV Protective; fusion protein [15,96]

  MMTV Envelope protein [16]

  Ebola virus Glycoprotein [17]

  VSV Glycoprotein G [97]

  Influenza Harmful inflammatory response [123]

TLR7/8 SARS-CoV Protective [131]

  Pneumonia virus or mice Protective [132]

  HCV Protective [133]

  WNV Dual reports: protective and no change in susceptibility [135,136]

  HIV TLR7-mediated heightened immune activation is postulated for faster 
disease progression

[137]

TLR9 HSV-2 Protective [155]

  MCMV Protective [157]

  Pox virus Protective [159]

  HIV Polymorphism in TLR9 influences the clinical course of HIV-1 infection [160]
EMCV: Encephalomyocarditis virus; HCMV: Human CMV: MCMV: Mouse CMV; MMTV: Mouse mammary tumor virus; pDC: Plasmacytoid dendritic cell; PTV: Punta Toro virus; 
SARS-CoV: SARS coronavirus; TLR: Toll-like receptor; VSV: Vesicular stomatitis virus; WNV: West Nile virus.
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mechanisms are the vaccinia virus A46R, A52R 
and K7 proteins that target TLR signaling mol-
ecules; the TIR adapters IRAK2 and DDX3 that 

inhibit signaling; the HCV proteins NS3/4A 
protease, which cleaves TRIF, and NS5A, which 
inhibits MyD88; and the influenza and RSV NS 

Table 2. Overview of drugs targeting Toll-like receptors for viral infections.

Target Compound Company; ref. Mechanism Application; indication Status

TLR (with 
TLR6)

FSL-1 [63] Agonist Vaginal application creates antiherpetic 
environment in mice

Experimental (preclinical)

TLR3 Poly(I:C) [80–83] Agonist Shows protective immunity against influenza, 
HBV, HIV and coronaviruses

– 

  Poly(I:C12U) or 
Ampligen®

Hemispherx 
Biopharma

Agonist Being developed for the treatment of HIV, 
influenza, chronic fatigue syndrome, HBV and 
HCV

Under clinical trials

  Poly-ICLC or 
Hiltonol

Oncovir, Inc.; [89] Agonist Ongoing HIV vaccine trial; provide broad-
spectrum poly(I:C) into the cells and reduce 
poly(I:C)-induced cytokine production

Under clinical trials 
(preclinical)

TLR4 Monophosphoryl 
lipid A 

GlaxoSmithKline Agonist Vaccine against HPV (Cervarix®) and HBV 
(Fendrix®)

Approved

  Eritoran 
tetrasodium 
(E5564)

Eisai, Inc.; [124] Antagonist Decrease influenza-induced lethality in mice; 
useful for the management of inflammation 
associated with influenza

Experimental (preclinical)

TLR7/8 Imiquimod or 
Aldara™

3M Pharma TLR7 agonist Topical treatment for HPV-induced genital 
and perianal warts

Approved

  Resiquimod 3M Pharma TLR7/8 agonist Used topically for the treatment of genital 
HSV

Phase III (discontinued)

  CL097 [142,143] TLR7/8 agonist Restore defective cytokine secretion by mDCs 
of HIV-infected individuals; enhance G-CSF 
secretion by PBMCs

Experimental (preclinical)

  PF-04878691 or 
852A

Pfizer; [144] TLR7 agonist Developed for treatment against HCV Phase I (early termination 
of the study)

  ANA975, oral 
prodrug of 
isatoribine

Anadys Pharma; 
[146]

TLR7 agonist Developed for treatment against HCV Phase I (suspended)

  ANA773, oral 
prodrug of 
isatoribine

Anadys Pharma; 
[147]

TLR7 agonist Developed for treatment against HCV Under Phase IIa trial

  SM-276001 [149] TLR7 agonist Identified as orally active IFN inducer in mice 
and monkeys

Experimental (preclinical)

  GS9620 Gilead Sciences; 
[151]

TLR7 agonist Developed for the treatment of HBV and HCV Phase II (recruiting)

  2’-O-methyl-
modified RNA

[152,153] TLR7 
antagonist

Reduce IFN and cytokine production in TLR7 
agonist-treated cells and in mice

Experimental (preclinical)

TLR7/8 
and TLR9

Oligonucleotide-
based antagonists

[154] TLR7, 8 and 9 
antagonists

Inhibition of TLR7-, 8- and 9-mediated 
signaling pathways and the induction of 
a broad range of cytokines in murine and 
human cell-based assays and in vivo in mice 
and nonhuman primates

Experimental (preclinical)

TLR9 CPG10101 or 
Actilon™

Coley Pharma 
and Pfizer; 
[163,164]

TLR9 agonist Treatment of chronic HCV infection Phase II completed

  IMO-2125 Idera Pharma TLR9 agonist Treatment of HCV infection Phase I completed
  SD-101 Dynavax 

Technologies 
Co.

TLR9 agonist Treatment of chronic HCV infection Phase I completed

IFN: Interferon; mDC: Myeloid dendritic cell; PBMC: Peripheral blood mononuclear cell; Poly(I:C): Polyriboinosinic:polyribocytidylic acid; TLR: Toll-like receptor. 
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proteins, which block the production of IFN by 
preventing the activation of IRF3. Additional 
examples are reviewed elsewhere [44,45]. VIPER, 
a peptide derived from vaccinia protein A46, 
showed potent inhibition of the TLR4 pathway 
by targeting MAL and TRAM adapter mole-
cules [46]. Similarly, strategies that target recep-
tor–adapter interactions by designing protein 
domain, peptide and peptidomimetic inhibi-
tors represent potential approaches to inhibit the 
downstream assembly of the functional signal-
ing complex in order to control inflammatory 
diseases and sepsis (reviewed in [47]).

TLR2
TLR2 typically functions as a heterodimer 
with TLR1 or TLR6 and has been shown to 
recognize viral proteins, such as measles virus 
hemagglutinin protein, human CMV glycopro-
teins B and H, HCV core and NS3 proteins, 
EBV UTPase, HSV glycoproteins gH/gL and 
gB and rotavirus nsp4 [48–53]. Using knockout 
mice, it was shown that activation of the TLR2/
TLR6 pathway in leukocytes was important for 
the induction of the cytokine response against 
RSV and for controlling viral replication in vivo. 
Moreover, neutrophil migration and dendritic 
cell (DC) activation in the lung of RSV-infected 
animals were dependent on TLR2/TLR6 acti-
vation [54]. TLR2-/- mice showed a higher viral 
load of mouse CMV (MCMV) and reduced NK 
cell recruitment in the spleen and liver, but a 
decrease in type I IFN secretion compared with 
wild-type mice [55]. A study showing the role for 
TLR2 in sensing vaccinia virus infection dem-
onstrated that the production of proinflamma-
tory cytokines was mediated by TLR2, whereas 
the secretion of IFN was TLR2 independent [56]. 
Contrary to the role of TLR2 in the induction 
of proinflammatory cytokines and chemokines, 
a provocative study reported that TLR2 senses 
MCMV and vaccinia virus particles on spe-
cialized inflammatory monocytes and induces 
IRF3/IRF7-dependent type I IFN, which 
requires TLR2 internalization and MyD88-
dependent pathway activation [57]. The role of 
TLR2 in HSV infection is less clear because of 
conflicting reports showing either a protective 
role of TLR2, along with TLR9, against brain 
infection of HSV-1 and HSV-2, or reports of 
TLR2-mediated inflammatory responses caus-
ing lethal encephalitis [58–61]. In patients with 
chronic HCV infection, it was shown that the 
HCV core protein induces IL-10 and TNF-α in 

monocytes via TLR2, which causes decreased 
IFN-α release from plasmacytoid DCs (pDCs) 
and triggers pDC apoptosis, providing a possible 
basis for viral persistence [62]. A synthetic lipopro-
tein derived from Mycoplasma salivarium, FSL-1, 
is recognized by TLR2 and TLR6. Vaginally 
applied FSL-1 was shown to create an antiher-
petic environment to a 25-fold higher HSV-2 
challenge dose in mice. FSL-1 also induced sig-
nificant resistance to HSV-2  infection in human 
vaginal epithelial cell cultures [63].

TLR3
TLR3 is characterized as a nucleic acid-sensing 
TLR and it recognizes infections by dsRNA, 
ssRNA and DNA viruses (reviewed in [42,45]). 
Activation of TLR3 leads to TRIF-mediated 
induction of proinf lammatory cytokines, 
chemokines and type I IFNs by activating 
transcription factors such as NF-κB and IRF3. 
Various in vivo and in vitro studies have estab-
lished a protective role of TLR3 against many 
viral infections. TLR3 deficiency renders mice 
hypersusceptible to infection by DNA viruses, 
such as MCMV and HSV-2. Mice lacking TLR3 
showed higher viral loads and decreased produc-
tion of type I IFN compared with wild-type mice 
[64,65]. Similar findings have been reported in 
TLR3-/- mice infected with various RNA viruses, 
including encephalomyocarditis virus, cox-
sackievirus B4, poliovirus and rotavirus [66–69]. 
Accumulating evidence shows a predisposition 
for HSV-2-induced encephalitis in children born 
with deficiencies in the TLR3 signaling pathway 
[70,71]. TLR3 was shown to be required for IFN 
responses against HCV and Dengue virus that 
limit the replication of these viruses in vitro [72,73]. 
Furthermore, Hanta virus infection in A549 cells 
resulted in TLR3-mediated expression of anti-
viral genes, whereas TLR3  knockdown led to 
increased viral  replication [74].

In contrast to the protective role of TLR3 
against viruses, certain viral infections elicit 
TLR3-mediated immunity that is harmful 
to the host. For example, TLR3-/- mice were 
refractory to infection and exhibited reduced 
pathology caused by viruses such as Punta 
Toro virus, influenza and vaccinia virus com-
pared with wild-type mice. Data indicate that 
TLR3-mediated increases in the production of 
inflammatory responses cause more damage in 
wild-type mice compared with TLR3-deficient 
mice [75–77]. For West Nile virus (WNV), stud-
ies into the role of TLR3 have been inconsistent: 
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in one study, TLR3 mediated WNV lethality 
[78], while in another, TLR3 activation was pro-
tective against WNV [79]. Therefore, TLR3 ago-
nists or antagonists may act as effective antiviral 
therapies depending on the context, which we 
discuss in the section below.

●● TLR3 agonists
TLR3 signaling is activated by a synthetic 
dsRNA agonist, polyriboinosinic:polyribocyti
dylic acid (poly[I:C]), a potent immune stimu-
lant [41] that has been shown to induce protective 
immunity against influenza, HBV, a few HIV 
strains and coronaviruses [80–83]. Intranasal 
treatment with poly(I:C) showed improved 
survival and diminished viral load in aged mice 
infected with a lethal dose of SARS coronavi-
rus [84]. In addition, poly(I:C) activates multi-
ple elements of innate and adaptive immunity, 
including the induction of IFNs, proinflamma-
tory cytokines and chemokines, the maturation 
of DCs, NK cell cytotoxicity and virus-specific 
T-cell responses, through TLR3 and cytoplasmic 
RLR sensors (MDA5 and RIG-I) [85–87]. Thus, 
poly(I:C) shows potential as an adjuvant for 
DC-targeted vaccines designed to induce T-cell-
mediated immunity. For further clinical devel-
opment, poly(I:C

12
U) (Ampligen®; Hemispherx 

Biopharma, PA, USA) was developed by substi-
tuting an uridylic acid at a molar ratio of 12:1 
in the synthesis of the polycytidylic acid strand. 
Poly(I:C

12
U) has a superior safety profile and 

maintains the beneficial activity of the parental 
poly(I:C) in terms of inducing innate immune 
responses. Unlike poly(I:C), poly(I:C

12
U) 

therapy failed to protect TLR3-/- mice against 
lethal Punta Toro virus infection and also failed 
to produce IFN and IL-6, which indicates that 
poly(I:C

12
U) signals only through TLR3 [88]. 

Poly(I:C
12

U) is being further developed for 
the treatment of HIV, inf luenza (FluMist®, 
MedImmune LLC, MD, USA; clinical trial no. 
NCT01591473), chronic fatigue syndrome and 
HBV and HCV infection.

Poly(I:C) stabilized with poly-l-lysine and 
carboxymethylcellulose is known as poly-ICLC 
(Hiltonol®; Oncovir, Inc., Washington, DC, 
USA). Studies in mice suggest that poly-ICLC 
and liposome-encapsulated poly-ICLC are safe 
and provide broad-spectrum protection against 
seasonal and highly pathogenic avian influenza 
A viruses, as well as RSV and SARS virus [89]. 
However, in a cotton rat model of RSV and 
influenza infection, intranasal administration 

of antiviral doses of poly-ICLC induced lung 
inflammation [90]. Comparative transcriptional 
analysis upon subcutaneous administration 
of poly-ICLC indicated that it induces innate 
immune responses of similar magnitude to a live 
viral vaccine in humans [91]. Various ongoing or 
completed clinical trials using poly-ICLC alone 
or in vaccines have demonstrated its safety and 
efficacy, and an HIV vaccine trial is ongoing 
(Oncovir, Inc. and Dalton Pharma Services, ON, 
Canada). PIKA (NewBiomed PIKA Pte Ltd, 
Singapore), another chemically stabilized analog 
of poly(I:C), was demonstrated to be a potent 
adjuvant that enhances both cellular and humoral 
immune responses to the hepatitis B antigen [92]. 
In addition, PIKA was shown to reduce viral loads 
significantly in the lungs of mice infected with 
variety of influenza viruses [93].

●● TLR3 antagonists
Hyperactive responses in certain viral infec-
tions triggered by TLR3 sensing can lead to 
adverse effects [75–77]. Thus, strategies to prevent 
TLR3-mediated pathology using TLR3 antago-
nists have been reported. ssDNA oligonucleo-
tides (ODNs) efficiently blocked the uptake of 
poly(I:C) into the cells and reduced poly(I:C)-
induced cytokines in human epithelial cells, 
peripheral blood mononuclear cells (PBMCs) 
and DCs [94,95]. Intranasal administration of 
ssDNA ODNs inhibited poly(I:C)-induced 
cytokine release in the nasal secretions of cyn-
omolgus macaques [95]. These findings provide 
support for these novel modalities for the preven-
tion or management of inflammatory conditions 
aggravated by TLR3 activation.

TLR4
TLR4 was first identified as the LPS receptor. 
TLR4 was also the first TLR to be shown to 
detect viral PAMPs. In 2000, Kurt-Jones and 
colleagues showed that TLR4 senses RSV mem-
brane-bound F protein, leading to cytokine pro-
duction [15]. Subsequently, it was demonstrated 
that TLR4-/- mice challenged with RSV have 
impaired NK cell function, IL-12 expression and 
viral clearance compared with wild-type mice 
[96]. A number of viral proteins, such as mouse 
mammary tumor virus envelope protein, Ebola 
virus glycoprotein and vesicular stomatitis virus 
glycoprotein G, have been reported to activate 
the TLR4 signaling pathway [16,17,97].

In humans, two TLR4 polymorphisms, 
Asp299Gly and Thr399Ile, have been associated 
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with increased risk of severe RSV bronchiolitis 
and symptomatic RSV infection in high-risk 
infants and young children [98,99]. The RSV F 
protein was shown to interact with the TLR4 
coreceptor, MD-2, through its N-terminal 
domain. TLR4 antagonists, Rhodobacter 
sphaeroides LPS and synthetic E5564 (eritoran; 
Eisai, Inc., NJ, USA) showed significant reduc-
tions of RSV F protein-mediated TLR4 activity 
in HEK293T transfectants expressing TLR4–
CD14–MD-2 in a dose-dependent manner [29]. 
Eritoran has been shown to inhibit the TLR4 
signaling pathway by binding to a hydrophobic 
pocket in MD-2 and precluding the interaction 
of MD-2 with the activating ligand, LPS [25,26].

●● TLR4 agonists
Advances in the design of safe and efficacious vac-
cines continue to be a prime goal in global pub-
lic health. The majority of vaccine preparations 
are composed of the antigen of interest and an 
adjuvant, which together generate faster, stronger 
and long-lasting immune responses than immu-
nization with the antigen alone. For more than 
70 years, aluminum hydroxide (alum) has been 
the only vaccine adjuvant approved and licensed 
for human use worldwide due to safety and a 
lack of side effects. Alum is effective in boosting 
antibody responses; however, repeated admin-
istration of the vaccine is required. Moreover, 
alum tends to generate antiparasitic Th2-biased 
responses, rather than antiviral and antibacte-
rial Th1 responses (reviewed in [100]). Currently, 
much effort is still being dedicated to the devel-
opment of new adjuvants that can establish 
protective immunity with fewer vaccinations by 
generating durable antibody and Th1 cytotoxic 
T-cell responses. As a consequence, TLR4 ago-
nists are being developed as immunomodulators 
and adjuvants. Monophosphoryl lipid A (MPL), 
a chemically modified derivative of Salmonella 
minnesota LPS, has been approved for use because 
it generates good adjuvant activity [101,102] and 
approximately 0.1% of the inflammatory toxicity 
induced by the parent molecule LPS [103,104]. The 
basis of MPL’s adjuvant activity is not entirely 
understood. It is a relatively weak TLR4 agonist 
[105] that has been suggested to exhibit a ‘TRIF 
bias’ [106]; however, this latter attribute has been 
controversial and has yet to be confirmed as 
underlying its adjuvant properties. An adjuvant 
composed of MPL and alum, known as AS04 
(GlaxoSmithKline, UK), has been licensed for 
use in a vaccine against HPV (Cervarix®) and 

HBV (Fendrix®) [107]. Combinations of MPL 
with other classes of adjuvants, such as emul-
sions, saponins and liposomes, have been already 
tested in humans, but are not yet licensed for 
use (reviewed in [108]). In addition, many novel 
adjuvants targeting TLR2, TLR7 and TLR9 
are in the advanced developmental stages, either 
alone or in combination with other adjuvants 
(reviewed in [109]). MPL was shown to modulate 
innate immune responses directly in order to 
improve the magnitude and duration of adap-
tive immune responses to vaccine antigens [110]. 
MPL has been coadministered with different 
RSV vaccine preparations in animal models in 
order to generate safe immune responses upon 
subsequent RSV infection. In early human clini-
cal trials, a formalin-inactivated RSV (FI-RSV) 
vaccine caused exacerbated disease upon natu-
ral infection of vaccinees, including two deaths. 
Subsequently, several RSV subunit vaccines and 
live-attenuated RSV vaccines have been pro-
posed. Most of the subunit RSV vaccines prime 
for excess Th2-type responses and development 
of vaccine-enhanced disease upon natural RSV 
infection, while attenuated vaccines often show 
residual virulence, poor immunogenicity or 
genetic instability (reviewed in [111,112]). Using 
the identical Lot 100 FI-RSV from the failed vac-
cine trial of the mid-1960s, the cotton rat model 
was shown to faithfully recapitulate the pathol-
ogy induced by RSV infection in Lot 100-immu-
nized children [113,114]. Upon subsequent RSV 
challenge, cotton rats immunized with FI-RSV 
combined with MPL showed a dramatic decrease 
in lung pathology compared with FI-RSV alone, 
with no change in lung viral replication, despite 
slight increases in neutralizing antibody titers 
[115]. Furthermore, immunization of cotton rats 
with FI-RSV plus MPL showed strong inhibi-
tion in the expression of Th1 and Th2 cytokine 
and chemokine genes in response to subsequent 
RSV challenge [116]. Thus, the inclusion of MPL 
in the FI-RSV vaccine diminishes the expres-
sion of aberrant cytokine storm, which is the 
hallmark of vaccine-enhanced disease upon 
RSV infection. Similarly, the addition of MPL 
to reconstituted nucleocapsid-depleted RSV 
membranes (virosomes) was demonstrated to 
generate Th1-skewed immune responses with-
out priming for enhanced respiratory disease. 
Furthermore, the mucosal (intranasal) admin-
istration of RSV-MPL virosomes was shown to 
be safe and protective against live virus challenge 
in mice and cotton rats [117]. A vaccine based on 
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recombinant purified, anchorless RSV F protein 
formulated with MPL, administered in a het-
erologous prime–boost strategy (intranasal fol-
lowed by intradermal boost), showed enhanced 
protection against RSV without aberrant lung 
 histopathology or induction of the cytokine 
storm [118].

●● TLR4 antagonists
LPS from Gram-negative bacteria is a potent 
TLR4 agonist. Soluble or membrane-associated 
CD14 and a nonmembrane-spanning protein, 
MD-2, are required as coreceptors for optimal 
LPS-induced TLR4 pathway activation [23,25–27]. 
Lipid A, the toxic moiety of LPS, is highly con-
served among endotoxins and is an ideal target 
for drug development. The first-generation lipid 
A antagonist, E5531, was derived from the struc-
ture of Rhodobacter capsulatus endotoxin by the 
Eisai Research Institute of Boston (MA, USA). 
E5531 demonstrated protection in experimental 
models of endotoxemia and lethal infection with 
E. coli [119]. A second-generation LPS antago-
nist, eritoran tetrasodium (E5564), also devel-
oped by Eisai, Inc., is a synthetic lipid A analog 
of R. sphaeroides, first shown by Qureshi and 
colleagues to block LPS-induced lethality [120]. 
E5564 was developed for the treatment of Gram-
negative sepsis. E5564 inhibited LPS-induced 
cytokines in vitro and in experimental animal 
models [121]. Crystallographic structural analy-
sis of the TLR4–MD-2 complex with E5564 
showed that the four acyl chains of E5564 occupy 
nearly 90% of the solvent–accessible volume of a 
deep hydrophobic pocket in MD-2, preventing 
the binding of toxic lipid A to MD-2, a prereq-
uisite for LPS-mediated TLR4 activation [25]. 
E5564 advanced to a Phase III clinical trial called 
ACCESS; however, E5564 did not show signifi-
cant benefits for severely septic patients [122].

The stimulation of TLRs by certain viral 
pathogens has been shown to result in detri-
mental immunity to the host, as demonstrated 
by TLR3- and TLR4-mediated harmful inflam-
matory responses to influenza virus infection 
[18,76,123]. The generation of host-derived, oxi-
dized phospholipids by reactive oxygen species 
due to chemical or microbial insults was shown 
to stimulate potent TLR4-dependent inflam-
mation, leading to the development of acute 
lung injury [18]. Furthermore, TLR4-/- mice are 
highly resistant to influenza-induced lethality 
[123]. On basis of these data, Shirey et al. pro-
posed that blocking TLR4 signaling with the 

TLR4 antagonist eritoran would protect against 
influenza infection [124]. Eritoran was found to 
decrease influenza-induced lethality significantly 
in mice, even when administered 6 days post-
virus infection. Improvements in lung pathol-
ogy and clinical symptoms and decreased lung 
viral titers and influenza-induced cytokine and 
oxidized phospholipid expression were observed 
in eritoran-treated mice and cotton rats com-
pared with a placebo-treated group [124]. These 
findings raise the possibility of utilizing TLR4 
antagonists in order to manage the inflamma-
tion associated with influenza, and possibly 
other viral infections. Eritoran was also effec-
tive in cotton rats challenged with nonadapted 
human influenza virus [124].

A recent study showed that θ-defensins 
blocked LPS- and E. coli-induced lethality in 
mice, suggesting that θ-defensins may target 
TLR4-mediated signaling [125]. θ-defensins are 
cyclic, antimicrobial peptides expressed in non-
human primates (reviewed in [126]). Each peptide 
is an 18-residue chimera formed by the head-to-
tail splicing of nonapeptides derived from two 
separate precursors [127]. In humans, stop codons 
preclude the expression of θ-defensins, but the 
pseudogenes of θ-defensins have been reverse 
engineered, synthesized and named ‘retrocyc-
lins’ [128]. Both θ-defensins and retrocyclins have 
potent antimicrobial and antitoxin properties 
against a broad spectrum of bacteria, fungi and 
viruses, including influenza A, HIV and HSV 
(reviewed in [126]). Interestingly, θ-defensins 
have anti-inflammatory properties. Recently, 
we confirmed that the retrocyclin RC101 blocks 
the LPS-induced activation of signaling inter-
mediates and gene expression (data not shown), 
implying that retrocyclins may also interfere 
with virus- or DAMP-induced TLR4 signaling 
as their mechanism of action, opening up new 
possibilities for treatment against multipathogen 
infections.

TLR7/8
TLR7 and TLR8 are related functionally and 
detect GU-rich and AU-rich ssRNA sequences 
from the viral genomes of influenza, HIV-1, 
vesicular stomatitis virus, coxsackie B virus, 
coronavirus and flaviviruses (HCV and WNV; 
reviewed in [45]). TLR7 is primarily expressed 
in pDCs and, to some extent, in B cells, mono-
cytes and macrophages, whereas TLR8 is mostly 
expressed in monocytes, macrophages and mye-
loid DCs. Mouse TLR8 was mostly reported to 
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be nonfunctional; however, a few papers have 
shown that murine TLR8 is activated by the 
combination of imidazoquinoline and poly-T 
oligodeoxynucleotides and vaccinia virus DNA 
[129,130]. TLR7 activation in pDCs is responsible 
for the production of high levels of type I IFN, 
which is considered to be the major antiviral 
mechanism against human SARS coronavirus, 
pneumonia virus of mice and HCV [131–133]. 
However, in the case of mouse retrovirus infec-
tion, TLR7-mediated sensing of the virus upon 
cellular entry stimulated virus-neutralizing anti-
bodies, which are crucial for viral clearance [134]. 
Studies reporting the role of TLR7 in WNV 
infections differ significantly; one study showed 
a protective role of TLR7 against intraperitoneal 
WNV infection in TLR7-/- mice [135], whereas 
another study demonstrated no change in sus-
ceptibility to intradermal virus infection in wild-
type and knockout mice [136]. These findings 
indicate that factors such as virus dose, passage 
history and route of administration are likely to 
be crucial in defining role of TLRs in experimen-
tal viral infection. A recent study presented evi-
dence that women who were chronically infected 
with HIV showed heightened levels of IFN-α in 
response to TLR7-mediated activation in pDCs 
and activated CD8+ T cells compared with the 
levels seen in men. This increased HIV immune 
activation was postulated to be one of the reasons 
for faster disease progression in women, and it 
was further hypothesized that modulating TLR7 
activation in pDCs may offer a novel mechanism 
for the reduction of AIDS progression [137].

●● TLR7/8 agonists
TLR7 and TLR8 are activated by imidazoqui-
nolines, a family of synthetic, low-molecular-
weight compounds with strong antiviral activity, 
such as imiquimod and resiquimod [138]. These 
synthetic molecules differentially modulate the 
TLR7 and TLR8 pathways in terms of their 
target cell selectivities and cytokine induction 
profiles. For example, in human PBMCs, TLR7-
specific agonists were shown to be more effec-
tive at inducing type I IFN and IFN-regulated 
chemokines, while TLR8-specific agonists were 
more effective at inducing proinflammatory 
cytokines and chemokines, such as TNF-α 
and IL-12 [139]. Imiquimod (Aldara®), origi-
nally developed by 3M Pharmaceuticals (MN, 
USA), was introduced as a topical treatment 
for genital and perianal warts caused by HPV 
infection. Initially, imiquimod was shown to 

be an immune response modifier by producing 
type I IFN and other cytokines, which was later 
reported to be due to activation of TLR7 [138]. 
Imiquimod is approved as therapeutic treat-
ment for external genital warts, precancerous 
actinic keratosis and basal cell carcinomas, and 
was shown to have mixed efficacy in the treat-
ment of HSV infection [140]. In clinical studies, 
resiquimod, a mixed TLR7/8 agonist, was used 
topically for the treatment of genital HSV and 
orally for HCV infection. However, the results 
showed a lack of adequate efficacy and severe 
side effects at higher doses [140]. Resiquimod 
treatment suppressed HIV replication in cul-
tured human monocytes [141]. Another TLR7/8 
agonist, CL097, was reported to restore defec-
tive cytokine secretion by myeloid DCs of 
HIV-infected pregnant women and newborns 
[142]. CL097 treatment significantly enhanced 
G-CSF secretion by PBMCs, suggesting a pos-
sible therapeutic role of CL097 in the treatment 
of IFN-α-induced neutropenia in chronic HCV 
patients [143]. Various TLR7/8 agonists, such as 
PF-4878691, isatoribine, ANA975, ANA773 
and GS9620, were advanced to clinical studies.

PF-04878691, formerly known as 852A, 
is a potent TLR7 agonist. In order to develop 
a treatment against HCV, Pfizer (NY, USA) 
conducted a study to evaluate safety and tol-
erability of PF-04878691 in healthy volun-
teers. PF-04878691 induced biomarkers of the 
immune and type I IFN responses in a dose-
dependent manner. However, two subjects who 
received a higher dose experienced influenza-like 
symptoms, hypotension and lymphopenia, and 
the study was terminated early [144]. Modeling 
and simulation techniques were used to predict 
the efficacy and safety of PF-04878691 in HCV 
patients. PF-04878691 did not achieve proof-
of-concept study criteria in model simulations 
and it was suggested that this compound be 
 discontinued for HCV treatment [145].

Selective TLR7 agonists and guanosine ana-
logs (i.e., isatoribine and its derivatives) have 
been developed by Anadys Pharmaceuticals (CA, 
USA). Intravenous treatment of HCV patients 
with isatoribine resulted in a significant reduc-
tion of plasma HCV RNA. The oral prodrug, 
ANA975, was further developed in order to avoid 
some of the side effects of isatoribine, especially 
in the GI tract. Preliminary results showed that 
ANA975 was well tolerated and oral adminis-
tration of ANA975 increased plasma levels of 
isatoribine, effectively reducing HCV RNA in 
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the plasma of infected patients [146]. However, 
due to the toxicity observed in preclinical animal 
studies, trials with ANA975 were suspended. A 
subsequent oral prodrug of isatoribine, ANA773, 
showed efficient induction of type I IFN and 
proved to be safe and well tolerated in preclini-
cal studies. In a double-blind, placebo-controlled 
study of patients infected chronically with HCV, 
ANA773 showed a dose-dependent increase in 
IFN responses and a decrease in serum HCV 
RNA [147]. Repeated administration of ANA773 
to chronic HCV patients resulted in a transient 
reduction in blood myeloid DC and pDC num-
bers and increased serum levels of IFN-α and 
IP-10 only in patients, who showed reduced 
serum HCV RNA upon drug treatment [148]. 
A series of 8-hydroxyadenine derivatives, the 
structures of which are related to isatoribine, 
were reported to be novel IFN inducers. Among 
these derivatives, SM-276001, or 9-substituted-
8-hydroxyadenine, was identified as an orally 
active IFN inducer in mice and monkeys, with 
a potency superior to that of resiquimod [149].

GS9620 (Gilead Sciences, CA, USA), a 
potent and selective orally active TLR7 agonist, 
showed strong reductions in serum and liver 
HBV DNA, along with IFN-induced innate 
responses in HBV-infected chimpanzees [150]. 
In a double-blind, placebo-controlled study in 
healthy volunteers, GS9620 was shown to be well 
absorbed and well tolerated, and the induction 
of cytokine-, chemokine- and IFN-stimulated 
genes was achieved at a dose of approximately 
2 mg, which is well below the dose that is known 
to cause adverse clinical events [151]. Due to 
these encouraging findings, efforts are in pro-
gress in order to develop GS9620 further for the 
 treatment of HBV and HCV.

●● TLR7/8 antagonists
TLR7 and TLR8 play key roles in sensing viral 
RNAs and generating antiviral immunity; how-
ever, excessive TLR activation by viral infection 
or by the recognition of self-RNA may gener-
ate detrimental immune responses to the host. 
Therefore, efforts to generate TLR7/8 antago-
nists are of prime importance. To this end, it 
was reported that 2’-O-methyl-modified RNA 
significantly reduced IFN-α and IL-6 production 
in TLR7 agonist-treated murine DCs, human 
PBMCs and in mice, and is thus considered to be 
a potent TLR7 antagonist [152,153]. Recently, the 
synthesis and evaluation of ODN-based antago-
nists of TLR7, 8 and 9 that contain a 7-deaza-dG 

or anabino-G modification in the immunostim-
ulatory motif and 2’-O-methyl-ribonuclotides 
as the immunoregulatory motif were reported. 
These antagonistic compounds showed inhibi-
tion of TLR7-, 8- and 9-mediated signaling path-
ways and induction of broad range of cytokines in 
murine and human cell-based assays and in vivo 
in mice and nonhuman primates, indicating a 
novel possibility for using these antagonist against 
inflammatory and autoimmune diseases [154].

TLR9
TLR9 recognizes unmethylated CpG ODNs 
present in microbial DNA, which are absent 
in vertebrate genomes. TLR9 is constitutively 
expressed in pDCs and B cells, where TLR9 
activation in pDCs produces large amounts of 
type I IFNs, which control viral replication and 
eradicate infected cells. TLR9-mediated antivi-
ral immunity has been reported to be generated 
in response to infection such as HSV, MCMV, 
adenovirus and poxvirus [155–159]. In HIV infec-
tion, single-nucleotide polymorphisms in TLR9 
were associated with the rapid progression of 
HIV-1 infection [160].

●● TLR9 agonists
TLR9 agonists are synthetic CpG ODNs, such 
as CPG10101, IMO-2125, SD-101 and CpG 
7909. The natural CpG ODNs are susceptible to 
serum and cellular nucleases due to their phos-
phodiester backbone. However, CpG-containing 
phosphorothioate ODNs are nuclease-resistant 
and have been widely exploited for clinical use. 
CpG ODNs via TLR9 activation primarily stim-
ulates Th1-type immune responses. Thus, CpG 
ODNs are strong immunostimulants and have 
been widely tested as effective vaccine adjuvants 
for influenza, HIV and for a variety of malignan-
cies (reviewed in [161]). In HIV-infected patients, 
TLR9 is reduced in B cells, causing impaired 
B-cell responses, whereas CpG ODNs enhance 
the proliferative and effector responses of B cells 
in HIV patients [162]. CPG10101 (Actilon™; 
Coley Pharmaceuticals, MA, USA) is promising 
and is in the developmental stages for the treat-
ment of chronic viral infections, such as HCV. 
Subcutaneous administration of CPG10101 
in healthy volunteers was well tolerated and 
showed immunostimulatory characteristics 
with low adverse effects [163]. In a multicenter, 
Phase Ib trial with HCV-positive patients, 
CPG10101 induced a dose-dependent increase in 
immune activation and diminished HCV RNA 
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levels, supporting the use of CPG10101 for the 
 treatment of chronic HCV [164].

Immunomodulatory ODNs (IMOs®; Idera 
Pharmaceuticals, MA, USA) are synthetic DNA 
structures, called ‘immunomers’, containing the 
dinucleotide immunostimulatory motifs, CpR 
or RpG, where ‘R’ is a synthetic analog of natu-
ral bases [165,166]. IMOs have greater metabolic 
stability and induce different cytokine profiles 
depending on the structure and sequence of 
the immunomer. IMO-2125 showed a high 
and sustained level of IFN responses in non-
human primates and promising antiviral effects 
in a Phase I clinical trial of HCV patients 
(Idera Pharmaceuticals). SD-101, another sec-
ond-generation TLR9 agonist, was shown to 
stimulate 20-fold higher levels of both IFN-α 
and IFN-λ in human PBMCs than the first-
generation TLR9 agonists. A Phase Ib study 
in HCV patients reported that SD-101 is safe, 
well tolerated and produces significant antiviral 
activity based on dose-dependent IFN response 
(Dynavax Technologies Co., CA, USA).

Conclusion & future perspective
Since the discovery of TLR3 as the first recep-
tor to recognize dsRNA, significant progress 
has been made in understanding TLR-mediated 
immune responses following different viral infec-
tions. The knowledge of virus-induced TLR 
signaling pathways has led to the development 
of novel therapeutics targeting TLRs as antiviral 
and anti-inflammatory therapies. This is a very 
dynamic field and has been growing rapidly in 
recent years. Approved use of the TLR7 agonist 
imiquimod for therapy against HPV-induced 
genital warts and the TLR4 agonist MPL as an 
adjuvant for vaccines against HPV and HBV 
are some of the successful examples of transla-
tional efforts. In addition, TLR3 and TLR7–9 
agonists are showing very promising results 
for the treatment of viral infections. However, 
many challenges exist for the development of 
new TLR-based antiviral targets. Importantly, 
the interactions between virus and TLR signal-
ing components are complex and the outcomes 
depend on the TLR, virus or the host species. 
In the case of vaccinia virus infection, TLR3-
dependent responses were harmful, while TLR4-
mediated immune responses proved to be pro-
tective in mice [77,167]. Moreover, a single ligand 
can be sensed by different TLRs depending on 
the localization of the antigen, and this may 
generate overlapping, redundant responses. In 

the case of MCMV infection, TLR7 and TLR9 
impart redundant functions for IFN, IL-12 p40 
and TNF-α production by pDCs in vivo [168]. 
In this case, redundancy of ligand sensing by 
TLRs should be taken into account in order to 
develop a single TLR-targeted treatment strat-
egy. Some of the infections are resolved by the 
cooperation of multiple TLRs with each other 
or TLRs cooperating with other classes of PRRs. 
For example, TLR2 and TLR9 are both required 
for immunity against HSV-2 [58], and TLR7 
and TLR9 overlap to generate responses against 
MCMV [168]. Both TLR4-/- mice and PAR2-/- 
mice are highly refractory to influenza infection 
[123]. Furthermore, the coordinated recognition 
of rhinovirus, initially via TLR3 and later by 
RIG-I and MDA5, is required in order to induce 
antiviral responses within the bronchial epithe-
lium [169]. HSV infection is sensed by both TLR9 
and RLRs, which synergize to induce type I IFN 
production [170]. These observations indicate 
that complex cross-talk between different TLRs 
and between TLRs and other families of PRRs 
exists in order to resolve or mediate certain viral 
infections. It is of utmost importance for us to 
understand, characterize and take into account 
all of the possible interactions between TLRs or 
other families of PRRs in order to design and 
apply novel targets against TLR for efficacious 
treatment application.

Animal models provide primary valu-
able information about the safety, efficacy and 
molecular mechanisms of the selected drug tar-
gets. However, some of the TLR targets show 
important species-specific variations in the 
effects of certain drugs. RSV-infected BALB/c 
mice treated with poly-ICLC showed signifi-
cantly reduced inflammation and clinical scores 
for the disease [171]. However, in contrast to the 
murine model, poly-ICLC treatment resulted in 
increased pathology during RSV infection in 
cotton rats [90]. In addition, due to important 
differences in the TLR signaling pathways in 
animal models and humans, many drugs tested 
with encouraging results in animal models failed 
to show much effect in human studies. In the 
natural condition, TLR-based immune responses 
to pathogen exposure are diversified on the basis 
of differences in cellular distributions at vari-
ous anatomical sites and differential patterns of 
TLR expression among subsets of DCs and other 
antigen-presenting cells. Thus, TLR agonists can 
produce different responses on basis of the route 
of administration (e.g., contrary to intravenous 



823

Novel drugs targeting Toll-like receptors for antiviral therapy REviEW

future science group www.futuremedicine.com

administration), as subcutaneous CPG 7909 
induced a Th1-like innate immune response [172]. 
The differences in the response to TLR ligands 
administered by different routes pose chal-
lenges and opportunities for the  development of 
 TLR-based drugs and vaccines.

TLRs are fundamental sensors of the innate 
immune system. Thus, the activation or inhi-
bition of TLR pathways by therapeutic TLR 
agonists or antagonists may cause potent 

harmful immune activation or unwanted 
immunosuppression. Moreover, it is difficult 
to predict efficacy and off-target effects in a 
large human population. To this end, Phase I 
safety trials of therapeutic TLR targets must 
be assessed for both their short- and long-term 
effects. Alternative dosing regimens or differ-
ential routes of administration may alter both 
the efficacy and safety of the drug in question. 
In addition, targeting therapeutic drugs to the 

EXECUTivE SUMMARY

Background  

 ●  Toll-like receptors (TLRs) are one of the largest and best-studied families of pattern-recognition receptors of the innate 
immune system.

 ●  TLRs recognize pathogen- and danger-associated molecular patterns and activate downstream signaling cascades 
in order to induce proinflammatory cytokines and antiviral type I interferon by NF-κB and IRF3 or IRF7 transcription 
factors, respectively.

 ●  TLR-mediated responses orchestrate the development of long-lasting, pathogen-specific adaptive immune response.

Recognition of viral ligands by TLRs, downstream signaling & outcomes

 ●  TLRs on the plasma membrane (TLR1, 2, 4 and 6) detect viral proteins, which are released in the extracellular 
environment, while endosomal TLRs (TLR3 and 7–9) recognize viral nucleic acids.

 ●  Activation of NF-κB is triggered by all TLRs from the plasma membrane and endosome, whereas TLR-induced IRF3 
(TLR3 and TLR4) and IRF7 (TLR7–9) activation is initiated only from the endosome.

 ●  Activation of TLR signaling by viral ligands establishes primarily antiviral responses. However, certain viral infections 
develop TLR-mediated detrimental immunity to the host.

 ●  Many viruses have evolved defense mechanisms to escape the surveillance of the TLR-mediated innate immune 
system.

TLR-targeted therapeutics for viral infections

 ●  Drugs targeting TLRs offer novel opportunities for the prevention of or intervention against virus-induced infectious 
diseases, either directly or by improving vaccine efficacy.

 ●  An adjuvant composed of the TLR4 agonist monophosphoryl lipid A has been licensed for use in a vaccine against HPV 
and HBV.

 ●  Vaccines against RSV formulated with monophosphoryl lipid A enhanced protection against RSV without aberrant 
lung histopathology in animal studies.

 ●  The TLR7 agonist imiquimod has been approved for the treatment of genital warts caused by HPV.

 ●  TLR3 and TLR7–9 agonists showed promising results for the treatment of viral infections, such as HIV, influenza, HBV 
and HCV.

 ●  Efforts to develop TLR antagonists for the treatment of virus-induced harmful inflammatory responses are still in early 
development stages.

 ●  The TLR4 antagonist eritoran, a drug that was originally developed for the treatment of sepsis, showed encouraging 
results with regards to the prevention of influenza-induced inflammation in an animal study.

 ●  Targeting TLRs with drugs may cause potent harmful immune activation or unwanted immunosuppression.

 ●  The development of many compounds was terminated due to safety concerns and off-target effects in early clinical 
studies.
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