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The concept of wave-particle duality is one of the cornerstones of quantum mechanics. As such, the
most commonly utilized particle- or fragment-based models for describing van der Waals (vdW) dis-
persion interactions—forces which are ubiquitous in nature and quantum mechanical in origin—are
incomplete by construction. This observation is exemplified by recent experimental investigations of
non-covalent forces at the nanoscale, which have challenged the basic assumptions of such particle-
based models and await an accurate and physically sound theoretical explanation. In this work,
we demonstrate that a qualitatively correct description of vdW interactions between polarizable
nanostructures over a wide range of finite distances can only be attained by accounting for the de-
localized wavelike nature of electron density fluctuations. By considering a diverse set of nanoscale
and biological systems with markedly different underlying dimensionalities, topologies, and polar-
izabilities, we find a visible enhancement in the non-locality of the charge density response on the
range of 10–20 nm; furthermore, it is these collective wavelike fluctuations that are responsible for
the emergence of non-trivial interaction power laws. The wavelike nature of vdW interactions pro-
vides a hitherto unexplored avenue towards understanding the structure and assembly of complex
polarizable nanostructures.

The assembly of complex nanostructures and biologi-
cal systems from simpler building blocks is often driven
by non-covalent van der Waals (vdW) or dispersion inter-
actions, quantum mechanical phenomena that are ubiq-
uitous in nature and arise from electrodynamic correla-
tions between instantaneous charge fluctuations in mat-
ter [1]. In fact, it has become increasingly more ap-
parent that vdW forces have an influence which extends
well beyond binding energies, and encompasses the struc-
tural [2, 3], mechanical [4, 5], spectroscopic [6], and even
electronic [7] signatures of condensed matter. As such,
even a slight variation in the power laws that govern
the magnitude of these ubiquitous interactions as a func-
tion of the separation between two or more objects (e.g.,
atoms, molecules, nanostructures, surfaces, or solids) can
have a profound impact on their observed properties and
therefore demands an accurate, physically sound theoret-
ical description.

Thus far, both our conceptual understanding of vdW
interactions and the quantitative models widely em-
ployed for describing these quantum mechanical phe-
nomena are primarily rooted in low-order intermolecular
perturbation theory (IPT), wherein vdW binding origi-
nates from the interactions between transient local multi-
poles [8]. While such theories have had enormous success
in describing vdW binding in (small) gas-phase molec-
ular systems, recent advanced experimental techniques
have produced several findings that are challenging the
basic assumptions of IPT for nanostructured materials
and are strongly indicative that even our qualitative un-
derstanding of vdW interactions is incomplete and needs
to be substantially revised [9]. Examples of such exper-
imental observations include: (i) ultra long-range vdW
interactions extending up to tens of nm into heteroge-

neous dielectric interfaces [10, 11], (ii) complete screen-
ing of the vdW interaction between an atomic force mi-
croscope (AFM) tip and a SiO2 surface by the presence
of a single (or a few) layer(s) of graphene adsorbed on
the surface [12], (iii) super-linear sticking power laws
for the self-assembly of metallic clusters on carbon nan-
otubes with increasing surface area [13], and (iv) non-
linear increases in the vdW attraction between homolo-
gous molecules and an Au(111) surface as a function of
the molecular size [14]. Satisfactory theoretical expla-
nations for these experimental findings require either ad
hoc modifications to IPT [(iii) and (iv)] or are inherently
outside the domain of applicability of IPT [(i) and (ii)].

To address these issues, we first note that the spa-
tial extent of the instantaneous charge density fluctu-
ations responsible for vdW interactions depends rather
sensitively on the nature and character of the occupied–
to–virtual transitions of the valence electrons in a given
molecule or material. In this regard, it is well-known
that the inherent delocalization characteristic of low-
dimensional metallic systems leads to a remarkably slow
decay in the interaction energies between metallic chains
and layers as a function of their separation [15], a mod-
ification of the “conventional” asymptotic behavior of
the vdW interaction energy which dominates the bind-
ing at very large distances (e.g., beyond 10–20 nm in bi-
layer graphene) [16]. Moreover, Misquitta et al. [17, 18]
demonstrated that upon closure of the band gap, semi-
conducting nanowires may also exhibit unconventional
power laws as a function of the interwire distance D,
namely ∼D−2 at intermediate separations, followed by
asymptotic convergence to the pairwise-additive D−5

limit for large interwire separations.

Here we significantly revise and extend these seminal
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FIG. 1. (a) Energy eigenvalue spectrum corresponding to the 3N collective eigenmodes of the many-body dispersion (MBD)
model [19, 20] (plotted in ascending order) for 1D carbyne-like atomic wires comprised of N = 2000 C atoms (subject to periodic
boundary conditions) and several values of the interatomic C–C distance, dC−C, ranging from 1.2 Å (the C–C bond length in
acetylene) to 3.0 Å. For reference, the independent atom value of ωC = 0.43 Ha is provided by the dotted line. A more detailed
view of the low-energy portion of the spectrum is provided in the inset (with the same units). (b) Schematic illustration of
several representative low-energy (L), transverse (T), and high-energy (H) collective MBD eigenmodes, as indicated in (a).
The colored spheres represent charge displacements with respect to the equilibrium atomic positions (depicted in gray). (c)
Longitudinal dipole displacements of several illustrative low-energy collective MBD eigenmodes (in arbitrary units) with respect
to the wire coordinate for dC−C = 1.2 Å. Due to the inversion symmetry of this system, every eigenmode is doubly-degenerate
except the lowest-energy longitudinal mode (depicted in red). Consistent with a normal mode analysis of a dipolar-coupled
system with this underlying topology, the number of nodes present in a given MBD eigenmode is directly correlated with its
relative location in the energy eigenvalue spectrum.

asymptotic results to the finite distance regime between
nanostructures, motivated by the fact that interactions
at such distances (as opposed to asymptotic separations)
determine the structural, mechanical, spectroscopic, and
(opto)electronic properties at the nanoscale. By consid-
ering a series of relevant zero-, one- and two-dimensional
systems, including proteins, carbyne-like wires and nan-
otubes, graphenic layers, and MoS2, we demonstrate that
the vdW interactions between non-metallic nanostruc-
tures exhibit a wavelike nature that extends well beyond
the low-order particle- or fragment-based IPT paradigm.
In doing so, we provide further insight into the roles
played by dimensionality, topology, and polarizability in
determining the magnitude of these fundamental inter-
actions at the nanoscale.

In systems where electrons are well-described by a lo-
calized representation of the occupied space (e.g., sys-
tems with finite band gaps), collective charge density
fluctuations stem from the dynamically correlated mo-
tions of local dipolar excitations. Accordingly, we project
the valence electronic response in a given nucleoelec-
tronic system onto a set of N interacting atomic re-
sponse functions, as outlined by the many-body disper-

sion (MBD) scheme [19]. This approach has been applied
with great success to the computation of polarizabili-
ties [21] and dispersion interactions in weakly bound sys-
tems [22, 23], and has recently been extended to arbitrary
non-metallic molecules, solids, and nanostructures by uti-
lizing spatially-distributed polarizabilities [19, 20]. The
advantage of the MBD method resides in an efficient and
accurate quantum mechanical parameterization of the va-
lence electronic response in terms of coupled atomic dipo-
lar fluctuations [24, 25], allowing for a chemically accu-
rate treatment of molecules and extended systems when
utilized in conjunction with state-of-the-art exchange-
correlation (XC) functionals in density-functional the-
ory [2, 3, 6, 20, 26–29].

Within the MBD model, the long-range correlation en-
ergy, ELR

vdW, is computed via the adiabatic connection
fluctuation-dissipation theorem (ACFDT) [24, 30] as

ELR
vdW = − 1

2π

∫ ∞
0

dω

∫ 1

0

dλTr[(χλ − χ0)v] , (1)

in which χ0 is the bare response function for a system
of non-interacting atoms and χλ is the interacting re-
sponse function “dressed” by the rescaled and range-
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separated [19] Coulomb interaction, λv (the convention
me = ~ = q = 1/(4πε0) = 1 is adopted throughout the
manuscript). Within the dipole approximation, Eq. (1)
can be computed exactly and is equivalent to diagonal-
ization of the following coupled dipolar Hamiltonian [24],

Ĥ = −1

2

N∑
p=1

∇2
µp

+
1

2

N∑
p=1

ω2
pµ

2
p+

N∑
p>q

ωpωq

√
α0
pα

0
qµpTpqµq ,

(2)
in which each atom p is characterized by a static dipole
polarizability, α0

p, and a characteristic excitation fre-
quency, ωp, and µp represents the mass-weighted dis-
placement of atom p from its equilibrium position, Rp.
The first two terms in this Hamiltonian correspond to
the single-particle kinetic and potential energies, respec-
tively, while the last term describes the coupling be-
tween atoms p and q via the dipole-dipole interaction
tensor, Tpq = ∇Rp ⊗ ∇Rqv(Rpq), wherein v(Rpq) is the
Coulomb interaction at the interatomic distance Rpq =
|Rp−Rq| [24]. The long-range correlation energy is then
computed as the energetic difference between the eigen-
frequencies of the collective modes of the fully interacting
system, ωi, and the characteristic excitation frequencies
of the isolated atoms, ωp.

We begin our investigation into the nature of vdW in-
teractions at the nanoscale with a detailed analysis of
the collective density fluctuations sustained in a linear
(1D) carbyne-like atomic wire comprised of 2000 atoms
subject to periodic boundary conditions. From Fig. 1(a),
we first observe that such finite atomic wires are charac-
terized by a set of very low-energy collective eigenmodes
(albeit with non-zero energy eigenvalues). The minimum
energy (gap) of such modes approaches the independent
atom value (ωC = 0.43 Ha) at large C–C distances, dC−C,
but decreases to approximately 1/20th of this value at
dC−C = 1.2 Å, the C–C bond length in acetylene. Due
to charge conservation, the quantity α0

i ω
2
i (with α0

i and
ω2
i denoting the static dipole polarizability and resonant

frequency of the ith eigenmode, respectively) must be
equivalent for every MBD eigenmode, as initially set by
the independent atomic value of α0

Cω
2
C. The lowest en-

ergy eigenmode is therefore characterized by a very high
static dipole polarizability (i.e., up to ∼ 400 times that
of a single C atom), which is strongly indicative of a
marked delocalization of the charge density fluctuations
over the entire wire. In this case, the low dimensionality
and particular topology of this nanostructure is crucial
for sustaining coherent delocalized fluctuations along the
length of the wire. As depicted in Fig. 1(b)–(c), these
charge density fluctuations result from strongly enhanced
(head-to-tail) dipole-dipole coupling along the longitudi-
nal axis of the atomic wire, which leads to significant
anisotropy in the associated polarizability tensor [31].

To further expand on these observations, we now an-
alyze the low-energy spectrum of the collective MBD
eigenmodes characteristic of this low-dimensional nanos-

tructure. As illustrated in Fig. 1(b)–(c), these low-
energy modes correspond to coherent dipolar fluctuations
aligned along the entire wire, having negligible compo-
nents orthogonal to the longitudinal axis. Consistent
with a normal mode analysis of a dipolar-coupled system
with this underlying topology, higher-energy modes cor-
respond to polarization waves with an increasing number
of nodes. At the highest energies (i.e., beyond the shoul-
der in the spectrum of Fig. 1(a)), the collective MBD
eigenmodes have sizable transverse components and con-
tribute negligibly to the coherent dipolar fluctuations
aligned along the wire.

Upon compression of the carbyne wire (i.e., by vary-
ing dC−C from 3.0 Å to 1.2 Å), the gap in the eigenvalue
spectrum becomes visibly reduced and is accompanied
by a corresponding increase in the slope of the disper-
sion curves. A gapless metallic dispersion [15] is thus
approached, but never reached in the MBD model, a fact
attributed to the intrinsic charge confinement of the va-
lence atomic responses. We note here that a flat dis-
persion (approached only as dC−C →∞) would indicate
a localization of the system response; with every eigen-
mode degenerate in energy, single-atom dipolar fluctua-
tions would occur along the wire and result in a decorre-
lation of the atomic susceptibilities. Conversely, we ob-
serve from Fig. 1(a) that intrawire interactions can also
induce non-trivial dispersion in the eigenvalue spectrum
despite the absence of explicitly delocalized electrons, im-
plying a marked non-locality in the collective dipolar re-
sponse within the MBD model. This collective behavior
stems from a subtle balance between the kinetic and po-
tential energy operators in Eq. (2). Upon compression
of the carbyne wire, the kinetic energy term increases
in comparison to the potential energy, leading to large
amplitude oscillator motions induced by many-body ki-
netic energy contributions. In addition, an analysis of
the exact two-atom MBD solution reveals an underlying
dependence of the long-range correlation energy on the
quantity αCd

−3
C−C; as such, the effect of varying the inter-

atomic distance is expected to be qualitatively equivalent
to an inversely proportional modification of the polariz-
ability.

The analysis presented above already provides strong
evidence of the wavelike nature of vdW interactions in
low-dimensional non-metallic nanostructures. To inves-
tigate this aspect further, we now consider the case of
two mutually interacting parallel carbyne-like wires. In
Fig. 2, the resulting interwire interaction energy power
laws are plotted as a function of the interwire separation,
D (and for several values of dC−C), and exhibit strong
deviations from the D−5 behavior predicted by widely
employed vdW approaches based on pairwise additivity.
This macroscopic effect goes beyond a simple renormal-
ization of Hamaker constants and results from a theo-
retical account of both intra- and inter -wire many-body
vdW interactions on an equal footing. As clearly seen
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FIG. 2. Difference of the many-body dispersion (MBD)
model [19, 20] interwire interaction energy power laws from
the pairwise-additive asymptotic prediction for two parallel
1D carbyne-like atomic wires as a function of the interwire
separation D and several values of the interatomic C–C dis-
tance, dC−C (ranging from 1.2 Å to 2.0 Å). Over a range
of relevant nanoscale distances, there are strong deviations
from the well-known interwire interaction energy power law
of D−5, as predicted by widely employed pairwise-additive
vdW models.

in Fig. 2, these interaction energy power law modifica-
tions become even more pronounced upon compression
of the carbyne wire, reaching ∼D−3 for interwire sepa-
rations between 1–3 nm (with dC−C = 1.2 Å), while still
not converging to the pairwise-additive asymptote at in-
terwire separations exceeding 20 nm. Such interaction
energy power law modifications are particularly relevant
at the nanoscale and can be understood as resulting from
long-range electrodynamic coupling between the collec-
tive longitudinal modes (dipole waves) delocalized along
the entirety of each carbyne-like wire. These wavelike
interactions are simply absent in localized particle- or
fragment-based models for vdW interactions, despite the
fact that their inclusion is crucial for an accurate the-
oretical description of these fundamental interactions in
low-dimensional non-metallic nanostructures. We note
here that these findings resemble the results obtained
with approximate many-body models of metallic chains
that explicitly account for the delocalized wavelike nature
of metallic electrons [4, 15, 17, 32], which implies that a
collective dipolar response with markedly non-local char-
acter can also be utilized to predict the emergence of
wavelike dynamical electron correlation in non-metallic
systems.

To further understand the wavelike nature of the vdW
interaction between carbyne wires, let us now consider
an analytic model for this interaction in more detail.
At sufficiently large D, the interwire Coulomb interac-
tion in the continuum approximation is given by w12 =

2K0(qD), in which K0 is a modified Bessel function and
q is the magnitude of the wave vector parallel to the
longitudinal wire axes [15]. Within the random-phase
approximation (RPA), one can account for the inter-
wire coupling on the response function of a single wire,
χ1, via χ2

1w
2
12 = 1, which predicts a splitting of ω(q)

into eigenfrequencies that correspond to coupled dipo-
lar fluctuations that are either aligned (ω+) or anti-
aligned (ω−) with respect to the two parallel wires (i.e.,

ω±(q) = ω(q)
√

1± α0(q)T (q), wherein T (q) is the in-
terwire dipole-dipole interaction derived from w12). Ne-
glecting the higher-energy transverse eigenmodes which
provide smaller contributions to the interwire interac-
tion, the interaction energy between carbyne-like wires
of length L can then be computed in the non-retarded
regime as

ELR
vdW,12 =

L

4π

∫
dq (ω+(q) + ω−(q)− 2ω(q)) , (3)

which in turn can be expanded to second order in the
interaction at large D, yielding:

E
LR(2)
vdW,12 = −

(
α0
Cω

2
C

)2
L

16πd2C−C

∫
dq
K2

0 (qD)q4

ω3(q)
. (4)

A q-space decomposition of the integrand in Eq.(4) is
provided in Fig. 3 and clearly illustrates that the power
law governing the interwire interaction energy has a non-
trivial dependence on D that originates from a summa-
tion over individual reciprocal-space contributions, each
of which corresponds to a normal mode of the system
with a different characteristic decay rate. This observa-
tion is in stark contrast to the determination of the in-
terwire interaction energy from approximate particle- or
fragment-based pairwise approaches, in which each con-
tribution has the same D−5 power law decay. As such,
this analysis is also strongly indicative that the com-
plex interwire interaction energy power laws displayed in
Fig. 2 can only be correctly described by models which
allow for delocalized wavelike fluctuations of the charge
density. In this regard, even state-of-the-art non-local
XC functionals [33, 34], which describe long-range elec-
tron correlation effects in a pairwise-additive fashion,
would completely miss the interaction energy profile in
Fig. 2.

To gain a more detailed understanding of the power
laws displayed in Fig. 2, we note that the asymptotic be-
havior of the interwire interaction energy is largely influ-
enced by ω(q), the single wire dispersion appearing in the
integrand of Eq. (4). In fact, a first estimate of the decay

rate of E
LR(2)
vdW,12 can be obtained by fitting the dispersion

law with a single exponent, i.e., as ω(q) ∝ qδ, which di-

rectly leads to the finding that E
LR(2)
vdW,12 ∝ D5−3δ upon

variable substitution of q′ = q/D. Physically speaking,
the quantity K0(qD) governs the interwire interaction
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FIG. 3. Reciprocal-space decomposition analysis of the inte-
grand required for computing the second-order interwire in-
teraction energy in Eq.(4). Assuming linear dispersion, the
decay rate of the integrand with respect to the interwire sep-
aration, D, exhibits a non-trivial dependence on the momen-
tum, q, which is responsible for the observed power law decay

of the interwire interaction energy, E
LR(2)
vdW,12. At large D, only

small q contributions significantly influence E
LR(2)
vdW,12, so that

D effectively determines the scale of relevant momenta. In
this plot, the integrand has been rescaled by a constant fac-
tor of ω(0)3 and is given in a.u.

by introducing a momentum cutoff at q ∼ 1/D and the
resultant integration over the infinitesimal contributions
q4/ω3(q) up to the momentum cutoff controls the scal-

ing of E
LR(2)
vdW,12 with respect to D. In particular, while a

linear plasmon dispersion leads (up to logarithmic correc-
tions) to a D−2 decay [15] in metallic wires, the slightly
sublinear dispersion observed here for dC−C = 1.2 Å (see
the inset in Fig. 1(a) after the initial energetic gap) is
consistent with a ∼D−2.8 power law and is in qualita-
tive agreement with the numerical evidence provided by
the MBD model in Fig. 2. We note in passing that de-
spite this initial deviation from D−5, the power law at
large distances again tends toward the pairwise-additive
asymptote, although deviations still persist at interwire
separations exceeding 20 nm. A direct account of this
phenomenon follows from Fig. 3: due to the decay of
K0(qD) with respect to the quantity qD, only very small
values of q will contribute to the interwire interaction en-
ergy at large D (cf. Eq. (4)). In fact, only those wave
vectors close to the gap (in which ω(q) ∼ const.) will be of
relevance in recovering the asymptotic D−5 limit. Hence,
the pairwise-additive limit can only be approached in the
presence of a flat dispersion, wherein the localization of
the system response to single-atom dipolar fluctuations
occurring along the individual wires would actually vali-
date the fundamental particle-based assumption that the
vdW interaction energy can be described as a summation
over induced atomic dipole—induced atomic dipole con-
tributions.

Interestingly, the results of the above analysis are quite

FIG. 4. Difference of the tight-binding (TB) model [17] inter-
wire interaction energy power laws from the pairwise-additive
asymptotic prediction for two parallel 1D carbyne-like atomic
wires as a function of the interwire separation D. With the in-
teratomic C–C distance set to dC−C = 2.0 Å, the two limiting
cases of insulating (with β2/β1 = 0) and metallic (β2/β1 = 1)
nanowires were considered, along with an intermediate case
(β2/β1 = 0.96). As found above with the qualitatively differ-
ent MBD model, there are strong deviations from the well-
known interwire interaction energy power law of D−5, as
predicted by widely employed pairwise-additive vdW mod-
els, over a range of relevant nanoscale distances. For a more
detailed discussion of the TB model utilized herein, see the
accompanying Supplementary Material.

general and are not simply intrinsic properties of the
MBD coupled dipolar Hamiltonian (see Eq. (2)). In
this regard, the same wavelike character of vdW inter-
actions at the nanoscale are observed when the qualita-
tively different tight binding (TB) model [17] is utilized
for the single nanowire response. Within this approach,
the individual atomic wires are described by a two-site
nearest-neighbor interaction that can be tuned (by ma-
nipulating the β1 and β2 free-parameter space) to re-
produce both the metallic (symmetric interactions via
β2/β1 = 1) and insulating (asymmetric/single-sided in-
teractions via β2/β1 = 0) limits. A second-order pertur-
bative treatment of the interwire interaction energy leads
to power laws that describe these two respective limits,
i.e., ∼D−2 for metallic nanowires and ∼D−5 for insu-
lating nanowires with flat energy bands, as depicted in
Fig. 4. In analogy with the MBD model, the TB response
becomes markedly non-local in the metallic limit, the
regime in which the largest deviations from the pairwise-
additive ∼D−5 power law are expected. Conversely, a
substantial localization of the response is recovered in
the insulating limit, in which the pairwise approximation
becomes asymptotically valid. Comparisons of the inter-
wire interaction energy power laws provided in Figs. 2
and 4 clearly demonstrate semi-quantitative agreement
between the qualitatively different MBD and TB models
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FIG. 5. Difference of the many-body dispersion (MBD)
model [19, 20] interlayer interaction energy power laws from
the pairwise-additive asymptotic prediction for two parallel
2D graphenic layers and MoS2 as a function of the inter-
layer separation D. To investigate these power law devi-
ations in highly polarizable 2D materials, several values of
the static atomic dipole polarizability, α0

C, were considered
for the graphenic layers, ranging from 12 bohr3 (the static
atomic dipole polarizability in graphene) to 50 bohr3. As
found above for the case of interacting parallel 1D nanowires,
there are significant deviations from the well-known interlayer
interaction energy power law of D−4, as predicted by widely
employed pairwise-additive vdW models, over a range of rel-
evant nanoscale distances.

and is strongly indicative of the universality of the wave-
like nature of vdW interactions between nanostructures.

While the results above were obtained for model 1D
carbyne-like wires, our calculations suggest that collec-
tive charge density fluctuations will also strongly influ-
ence the behavior of strained hydrocarbon polymers and
inorganic wires comprised of polarizable elements such
as phosphorus, silicon, or germanium. To further eluci-
date the roles of dimensionality and topology on deter-
mining interaction power laws across distances relevant
at the nanoscale, we carried out a study of layered 2D
materials, including graphenic sheets of varying polar-
izability, as well as bilayer MoS2. Although a smaller
power law reduction is expected in bilayer graphene due
to its higher dimensionality, a D−3.5 decay is found for
interlayer distances of 0.8–1.5 nm, with convergence to
the conventional D−4 power law only achieved for in-
terlayer distances larger than 5 nm (see Fig. 5). Over-
all, the interlayer interaction power laws were found to
be intermediate between D−3 and the pairwise-additive
D−4 asymptote, which are induced by gapless π states
and expected to be valid in the case of finite-gap doped
graphene [35, 36]. Increasing the polarization response
of the graphenic sheets to effectively model highly po-
larizable 2D materials leads to significant delocalization
in the system response; for α0

C = 50 bohr3, the inter-

FIG. 6. Difference of the many-body dispersion (MBD)
model [19, 20] interlayer interaction energy power laws from
the pairwise-additive asymptotic prediction for two parallel
(3,3) nanotubes and a protein (1MC5) interacting with a
monoatomic wire as a function of the mutual center-of-mass
separation D. The ratio between MBD and pairwise energies
EMBD/E

(2) is indicated for 1MC5-wire system for various sep-
arations. This ratio grows with increasing separation between
objects.

action power law exhibits an extended plateau of ∼D−3
at interlayer separations in the range of 1.5–4.0 nm—
distances which are again quite relevant to interactions
at the nanoscale.

As the last example, we extend our observations
on the crucial importance of many-body interac-
tions to biological systems and nanotubes. As Fig-
ure 6 demonstrates, for a protein 1MC5 (Human
glutathione-dependent formaldehyde dehydrogenase) in-
teracting with a nanowire, the decay of the MBD energy
is pronouncedly slower when compared to the widely used
pairwise approximation. In addition, the energy ratio
EMBD/E

(2) is large and grows as a function of the sepa-
ration between the protein and the wire, demonstrating a
non-trivial coupling between delocalized fluctuations on
the protein and the wire.

The analysis presented herein demonstrates the re-
markable ability one has in engineering the interaction
energy power laws in low-dimensional nanosystems by
modifying their underlying dimensionality, topology, and
response properties. Moreover, the present findings sug-
gest that complex power laws could also play an impor-
tant role in numerous biologically relevant systems that
are characterized by low dimensionality, including phos-
pholipid aggregates and bilayers [37], or even the sub-
nanometer spatula-shaped structures determining the pe-
culiar pedal adhesion in the gecko [38]. In summary,
this study provides strong evidence that the ubiqui-
tous vdW forces between polarizable non-metallic nanos-
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tructures can be more completely understood in terms
of collective interactions between wavelike charge den-
sity fluctuations, rather than simply a summation over
pairwise interactions between instantaneous particle-like
dipolar fluctuations. In analogy with metallic systems,
the marked non-locality of the valence electronic response
in low-dimensional polarizable nanostructures is reflected
in the emergence of collective modes that span the entire
system. It is these delocalized wavelike charge density
fluctuations that are responsible for the non-trivial inter-
action energy power laws observed herein, which signifi-
cantly deviate from the predictions of standard pairwise-
additive vdW approximations. As such, wavelike fluc-
tuations govern the magnitude of these ubiquitous in-
teractions at large, but finite, distances of relevance at
the nanoscale. These findings reveal a smooth transi-
tion from a system comprised of independent atoms to
the collective fully interacting limit, thereby providing a
potential pathway for the tuning of the fundamental non-
covalent vdW interactions responsible for the assembly of
complex polarizable nanostructures.
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hauser, P. Hyldgaard, and B. I. Lundqvist, Rep. Prog.
Phys. 78, 066501 (2015).

[35] J. Dai, J. Yuan, and P. Giannozzi, Appl. Phys. Lett. 95,
232105 (2009).

[36] P. A. Denis, Chem. Phys. Lett. 508, 95 (2011).
[37] L. Lis, M. McAlister, N. Fuller, R. Rand, and

V. Parsegian, Biophys. J. 37, 657 (1982).
[38] K. Autumn, Y. Liang, S. Hsieh, W. Zesch, W. Chan,

T. Kenny, R. Fearing, and R. Full, Nature 405, 681
(2000).


