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ABSTRACT:

Nowadays photogrammetry and laser scanning methods are the most wide spread surveying techniques. Laser scanning methods
usually allow to obtain more accurate results with respect to photogrammetry, but their use have some issues, e.g. related to the high
cost of the instrumentation and the typical need of high qualified personnel to acquire experimental data on the field.
Differently, photogrammetric reconstruction can be achieved by means of low cost devices and by persons without specific training.
Furthermore, the recent diffusion of smart devices (e.g. smartphones) embedded with imaging and positioning sensors (i.e. standard
camera, GNSS receiver, inertial measurement unit) is opening the possibility of integrating more information in the photogrammetric
reconstruction procedure, in order to increase its computational efficiency, its robustness and accuracy.
In accordance with the above observations, this paper examines and validates new possibilities for the integration of information
provided by the inertial measurement unit (IMU) into the photogrammetric reconstruction procedure, and, to be more specific, into the
procedure for solving the feature matching and the bundle adjustment problems.

1. INTRODUCTION

Most of the Mobile Mapping Systems (MMSs) developed in the
last twenty years consider the use of remote sensing/imaging de-
vices mounted on quite expensive terrestrial or airborne vehicles.

However, thanks to the diffusion of a large quantity of devices
embedded with several small sensors (typically based on MEMS),
the development of small and relatively cheap mobile mapping
systems have been taken in consideration in recent years. For in-
stance, smartphones have good potential in this sense thanks to
the concentration of several sensors in easily portable and widely
diffused devices. However, data acquisition by means of smart-
phones is limited by the restricted mobility of the person carrying
the device (movements are typically approximately constrained
to a 2D plane/surface). Differently, drones/unmanned aerial ve-
hicles have the advantage of allowing to acquire measurements
in a much larger area in the same time lapse, while moving on
(almost) all the free space 3D positions, if needed.

The availability of different types of surveying devices allow the
development of a wider range of mobile mapping solutions (Chi-
ang et al., 2003, Toth and Grejner-Brzezinska, 1997, Toth, 2001,
Pirotti et al., 2014, Kraus and Pfeifer, 1998, Remondino et al.,
2011), and, consequently, the availability of more spatial data
that can enable the development of even more applications, e.g.
Geographic information systems (GIS), location based services,
object recognition (El-Sheimy and Schwarz, 1998, Guarnieri et
al., 2015, Piragnolo et al., 2015, Pfeifer et al., 2004, Masiero et
al., 2015b, Facco et al., 2009, Facco et al., 2010). Thanks to the
small size, the cheap cost and the easy usability of cameras, inde-
pendently of the specific considered device in most of the cases a
standard camera is used as imaging sensor, and photogrammetry
is used in order to obtain reconstructions of the observed scenes
(Prosdocimi et al., 2015).

Photogrammetry is one of the most used techniques for 3D recon-
struction, monitoring and surveying. It is widely used in several
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applications and in different working conditions. The accuracy
of photogrammetry reconstruction methods changes depending
on the working conditions (e.g. the number of acquired images,
lighting conditions, baselines between images), and it is strictly
related to the success of the solution of the Structure from Motion
(SfM) problem (Hartley and Zisserman, 2003, Ma et al., 2003).

Despite its diffused use and the ever growing improvements to the
reconstruction technique, photogrammetry still does not reach the
same level of reliability of laser scanning surveying techniques
(which can be considered the current state of the art for 3D re-
constructions, (Remondino et al., 2005)) and the same level of
applications: more specifically, significant issues may occur in
photogrammetric reconstructions when in presence of lighting
problems or when the object of interest is not sufficiently tex-
tured. However, photogrammetry has several advantages with re-
spect to laser scanning techniques: in particular, it relies on the
use of much cheaper devices, surveying is usually faster and it
can be performed by less trained personnel with respect to terres-
trial laser scanning.

The recent development of positioning systems based on the in-
tegration of information provided by different sensors allows to
reduce the issues related to the use of GNSS as positioning ap-
proach (Lukianto and Sternberg, 2011, Masiero et al., 2014a,
Saeedi et al., 2014, Toth et al., 2015): thanks to the use of iner-
tial navigation systems, radio signals (WiFi and Bluetooth com-
munications, UWB sensors) and (if available) a priori geometric
constraints on the environment, it is possible to obtain reliable
and quite accurate estimates of the position and attitude of the
mobile mapping device, where the level of estimation accuracy
depends on the specific considered system and the working con-
ditions (e.g. the environment characteristics).

This paper considers the use of position and orientation infor-
mation (provided by the above mentioned navigation systems) in
order to improve the computational efficiency and the robustness
of the photogrammetric reconstruction algorithm. Three changes



with respect to the standard photogrammetric reconstruction al-
gorithm are considered:

• First, exploiting the device position and attitude informa-
tion, an approximate essential matrix is computed. As shown
in section 3., this allows to reduce the number of incorrect
feature matches by imposing (approximate) epipolar con-
straints.

• Then, more accurate epipolar constraints are obtained by us-
ing the RANdom SAmple Consensus (RANSAC (Fischler
and Bolles, 1981)) algorithm: the efficiency and robustness
of the latter are improved thanks to the use of a two-step
learning procedure, where a reduced complexity RANSAC
is executed first, while (similarly to the locally optimized
RANSAC (Chum et al., 2003)) the full RANSAC runs only
on the inliers of the estimated reduced complexity model
(4.). Differently from (Chum et al., 2003) the reduced com-
plexity step is enabled by the use of information provided
by the navigation system.

• Finally, in section 5. a modified bundle adjustment opti-
mization problem is considered in order to improve the re-
construction results in the panoramic–like image acquisition
procedure recently considered in (Piermattei et al., 2015).

It is worth to notice that in all the paper the imaging camera is
assumed to be calibrated (i.e. the values of the interior calibration
parameters are assumed to be known) (Heikkila and Silven, 1997,
Habib and Morgan, 2003, Remondino and Fraser, 2006, Karel
and Pfeifer, 2009, Balletti et al., 2014).

2. REVIEW OF THE 3D RECONSTRUCTION
PROCEDURE

Photogrammetry aims at reconstructing the 3D structure of a scene
by means of a certain number of photos (i.e. used as remote sens-
ing measurements) taken by different points of view. Each of
such photos can be approximately considered a prospective pro-
jection (on the corresponding image plane) of what visible from
that point of view. Then, the rationale of photogrammetric recon-
struction is as follows: given the positions of the projections (on
at least two image planes) of a 3D point q, then an estimate q̂ of
the 3D coordinates of q can be obtained by means of triangula-
tion (Masiero and Cenedese, 2012). When the camera positions
during image acquisitions are not known, then both camera po-
sitions and 3D points of the scene have to be reconstructed from
the acquired images.

A more detailed description of the reconstruction procedure can
be as follows:

• Feature extraction. A set of feature points is extracted in
each image and their corresponding descriptors are com-
puted (Lowe, 1999, Bay et al., 2008, Leutenegger et al.,
2011, Alahi et al., 2012). Such points can be considered
as the most characteristic of the images.

• Feature matching based on the appearance. Features are ini-
tially matched taking into account of their appearance simi-
larity, based on the use of the previously computed descrip-
tor. k-d tree search algorithms are typically used in order to
make this matching step fast and quite reliable (e.g. the best
bin first method (Beis and Lowe, 1997)).

• Feature matching based on the estimated geometry. Depend-
ing on the specific considered case, a certain number of the
matches computed at the previous step can be wrong (due
to several causes, e.g. the influence of sensor noise, noise
due to the atmospheric turbulence (Beghi et al., 2008), the
poor texture in the images (Piermattei et al., 2015, Masiero
and Chiuso, 2006), repetitive patterns (Morel and Yu, 2009,
Morel and Yu, 2011)). In this step wrongly matched fea-
tures are detected by taking into account of the geometry of
the scene (Hartley and Zisserman, 2003). Indeed, the pro-
jections mj1 and mj2 (expressed in homogeneous coordi-
nates) of a 3D point into two different image planes (j1 and
j2) have to obey to the epipolar constraint, that is usually
expressed by means of the fundamental matrix Fj1j2 :

m>j1Fj1j2mj2 = 0 (1)

Since also the fundamental matrix is usually estimated from
the feature matches (by means of the RANSAC (Fischler
and Bolles, 1981)) and of the eight-point algorithms (Hart-
ley, 1997, Longuet-Higgins, 1981)), then the epipolar con-
straint is usually just an approximation of the real relation
between the two projections.

• Structure from Motion. Once a set of feature matches have
been computed, such matching points are used in order to
estimate the 3D positions of the points (and the positions and
orientations of the cameras, if necessary). This is the SfM
problem, and a solution is usually computed by solving the
bundle adjustment (Triggs et al., 1999) by means of an it-
erative optimization algorithm (Agarwal et al., 2010, Byröd
and Aström, 2010). Alternatively, a solution can be obtained
by means of the Tomasi and Kanades factorization (Tomasi
and Kanade, 1992, Brand, 2002, Masiero et al., 2014b).

• Dense matching. Finally, starting from the set of 3D points
computed at the previous step, a dense point cloud is ob-
tained, typically by iterative (local) pixel matching taking
into account of the surface regularity (Furukawa and Ponce,
2010, Furukawa et al., 2010).

From the above summary, it is clear that the core of the recon-
struction procedure is given by the correct matching of corre-
sponding points in different images. As depicted above, this is
usually done by using only the information provided by the cam-
era. However, the diffusion of smart devices (embedded with
several sensors) makes realistic of use the information provided
by other sensors (e.g. the inertial navigation system (Masiero et
al., 2014c, Masiero et al., 2015a)) in order to improve the over-
all procedure, in terms of both speed and reliability, if possible.
Accordingly with this observation, this paper investigates in the
next sections the integration of the information provided by the
navigation system in certain of the steps of the feature matching
procedure and in the bundle adjustment problem.

Nowadays, several feature extractors and descriptors have been
considered in the literature. Among this large variety of choices,
in this paper the scale-invariant feature transform (SIFT, (Lowe,
1999)), which can be considered as the state of the art in the last
decade, has been used. Nevertheless, the proposed approach can
be easily adapted in order to work with all the other possible al-
ternatives.

3. APPROXIMATE EPIPOLAR CONSTRAINT

Despite the epipolar constraint (1) is expressed by using the fun-
damental matrix Fj1j2 , if the values of the camera interior pa-
rameters are known, then a similar constraint can be expressed



by means of the essential matrix:

m′>j1Ej1j2m
′
j2 = 0 (2)

where Ej1j2 stands for the essential matrix corresponding to the
j1-th and j2-th views, and m′j1 , m′j2 are the normalized homo-
geneous coordinates of the considered feature point in the two
image planes. Even if the the camera has not been calibrated a
rough estimate of the interior camera parameters can typically be
obtained from the operative system of the device (Fusiello and
Irsara, 2011). When lens distortion is not negligible, then the
normalized coordinates are assumed to have been computed in or-
der to compensate distortion as well (Heikkila and Silven, 1997,
Claus and Fitzgibbon, 2005).

For simplicity of exposition, let the coordinate system be posi-
tioned in the optical center of the camera during the acquisition
from the j2-th point of view, and let it have the same orientation
of the camera during such acquisition. Furthermore, let tj1j2 and
Rj1j2 be translation and rotation from the coordinate system of
j2 to that of j1, respectively, Then, the essential matrixEj1j2 can
be expressed as follows:

Ej1j2 = [tj1j2 ]×(−Rj1j2tj1j2) (3)

where [tj1j2 ]× is the skew-symmetric matrix corresponding to
the cross-product operator of tj1j2 i.e. [tj1j2 ]×x = tj1j2 ×x, for
all the possible values of the vector x.

In this paper the device considered for image acquisition is as-
sumed to be provided of a navigation system running during the
survey. In particular, the device is assumed to be provided of
embedded sensors in order to be able to estimate both the po-
sition and orientation changes (nowadays smartphones are typ-
ically provided of GNSS receiver, and an inertial measurement
unit (IMU), e.g. 3-axis accelerometer, gyroscope and magne-
tometer). Hence, in this paper estimates (t̂j1j2 , R̂j1j2 ) of the
translation vector and of the rotation matrix between two camera
views (j1, j2) are assumed to be provided by the navigation sys-
tem. It is worth to notice that, being the IMU measurements inde-
pendent of any other external device the estimates t̂j1j2 and R̂j1j2

are available also in challenging environments for the GNSS po-
sitioning method.

Exploiting the information provided by the navigation system an
estimate Êj1j2 of the essential matrix can be obtained by simply
substituting the values of the estimates in (3). Then, (2) (with the
estimated value of the essential matrix Êj1j2 ) can be used in order
to discard wrong matches. Since Êj1j2 has been obtained by
noisy measurements of the translation vector and of the rotation
matrix, a not so stringent threshold has to be used in on order
to discriminate wrong matches, i.e. only a subset of the wrong
matches can be detected in this way.

4. ESTIMATION OF THE ESSENTIAL MATRIX

Equation (2), with the essential matrix estimated from the matched
features, can be used in order to obtain a more robust wrong fea-
ture matching detector. In this case the estimation of the essential
matrix can be done by using the RANSAC and (for instance) the
eight point algorithm (Hartley, 1997).

More specifically, such estimation procedure can be summarized
as follows: let n be the number of couples of feature matching
candidates. Then the algorithm repeats for N iterations the fol-
lowing procedure:

• randomly sample 8 couples of feature matching candidates
among the n possible ones.

• compute an essential matrix estimate from the 8 sampled
couples by using the eight point algorithm.

• compute the fitting error (usually expressed taken into ac-
count of the inliers of the current model) of the estimated
essential matrix on the n possible couples.

• if the fitting error of the current estimate of the essential
matrix is better than the previous best fitting error, than the
current estimate is set as the best estimate of the essential
matrix and the current set of inliers is stored.

After N iterations a more robust estimate of the essential matrix
is usually obtained by recomputing it on all the set of inliers of
the best obtained estimate.

The number of iterations N is usually determined taking into ac-
count of the probability β of a couple of matching features to be
wrong (Chum et al., 2003). To be more specific, N is computed
by assuming that whenever a set of 8 correct couples is drawn,
then a good estimate of the essential matrix is obtained (e.g. the
inliers of such estimate are (most of all) the correct couples of
matching features). Unfortunately, this is typically an optimistic
assumption, and hence the RANSAC algorithm has to be iterated
for a larger number of iterations with respect to the expected one
in order to obtain a reliable estimation.

The rationale of this section is that of exploiting the estimate of
the change of orientation provided by the navigation system i or-
der to make the estimation of the essential matrix faster and pos-
sibly more robust. The RANSAC–like procedure considered here
is a two-step algorithm.

• First, the orientation information provided by the navigation
system is used in order to compute R̂j1j2 , and the RANSAC
algorithm is used to estimate only t̂j1j2 . Since t̂j1j2 can
be linearly estimated by using only 3 couples of candidate
matching features, this part of the procedure is much faster
with respect to that previously considering the eight point
algorithm.

• Similarly to the locally optimized RANSAC (Chum et al.,
2003), only when a new best model has been obtained, then
a RANSAC with the eight point algorithm is used to esti-
mate the complete essential matrix by using only the inliers
of the estimate of the previous step. Since this second step is
performed only a small number of times, and the cardinality
of the inliers used in this step is smaller with respect to n,
then the overall computational complexity of the algorithm
is usually much smaller than that of the original RANSAC.

5. BUNDLE ADJUSTMENT REVISED

A panoramic–like image acquisition procedure has been recently
considered in (Piermattei et al., 2015): in such procedure sev-
eral images are acquired in each of the considered acquisition
positions by simply changing the orientation of the camera. To
be more specific, in each considered position a sequence of im-
ages is typically acquired in to have a panoramic–like view of the
scene, as shown for instance in Fig. 1.

On the one hand, as shown in (Piermattei et al., 2015) the panoramic–
like image acquisition has the advantage of ensuring a better cov-
erage of the scene. However, on the other hand, since several



Figure 1: Panoramic–like image acquisition of the façade of Villa XXV Aprile, Mirano, Italy.

images acquired from approximately the same position, this kind
of acquisition procedure provide some information that can be
exploited in the solution of the SfM problem.

The standard bundle adjustment optimization problem used to es-
timate the parameters of interest is:

{(t̂j , R̂j), ∀j, q̂i, i = 1, . . . , n} = arg min
∑
ij

||mij − m̂ij ||2

(4)

where q̂i is the estimated 3D position of the i-th feature point,
(t̂j , R̂j) are the estimated position and orientation matrix of the
camera during the j-th image acquisition,mij are the coordinates
of the i-th feature on the image plane during the j-th image ac-
quisition, and m̂ij are the corresponding reprojected coordinates
accordingly with the current values of the estimation parameters
{(t̂j , R̂j),∀j, q̂i, i = 1, . . . , n}. In order to simplify the nota-
tion, conventionally the sum in (4) is assumed to be limited to
all (and only) the values of i and j for which a corresponding
measurement mij is available.

In the panoramic–like image acquisition it is possible to group
the image indexes accordingly to their acquisition positions: if
the j-th and j′-th images have been acquired in (approximately)
the same position then tj ≈ tj′ , hence tj = tj′ + ∆tj , where
∆tj is defined as the difference between tj and tj′ . Let σ∆t be
the uncertainty on the value of ∆tj (i.e. on the (small) translation
between tj and tj′ ), and let σpix be the feature measurement error,
then, accordingly to the prior provided by the navigation system,
(4) can be reformulated as follows:

{(t̂j , R̂j), ∀j, q̂i, i = 1, . . . , n} =

= arg min
∑
ij

||mij − m̂ij ||2

σ2
pix

+
∑ ||t̂j − t̂g(j)||

σ∆t
(5)

where g(j) is the index of the first image acquired from (approxi-
mately) the position tj , e.g. g(j) = j if the j-th image is the first
(or the only) image acquired from tj .

As shown in section 6., the prior information about camera po-
sitions introduced in the revised bundle adjustment optimization
problem (5) allows to reduce the estimation errors on the recon-
struction parameters.

6. RESULTS AND DISCUSSION

The results shown in this section have been obtained by acquir-
ing measurements (images and data provided by the IMU) with
an LG Google Nexus 5 (Fig. 2), which is provided with 3-axis
accelerometer, 3-axis gyroscope, 3-axis magnetometer, barom-
eter, GNSS and WiFi receiver, and 8 Mpixel camera. Hence,

the navigation system, similar to that in (Masiero et al., 2014a),
has been implemented in the Android environment (Android 4.4
KitKat). Nevertheless, similar results can be obtained by consid-
ering different devices and different operative systems. Further-
more, similar results are also expected if using different naviga-
tion systems (e.g. other pedestrian navigation systems (Ruiz et
al., 2012, Widyawan et al., 2012, Foxlin, 2005)).

Figure 2: LG Google Nexus 5.

As previously assumed the camera embedded in the device has
been calibrated by using the OpenCV camera calibration toolbox
(Intel Research, 2000), and hence feature point coordinates have
been expressed as normalized homogeneous coordinates.

First, the approximate epipolar constraint approach, presented in
section 3., for detecting wrong feature matches is investigate in
a case study (Villa XXV Aprile, Mirano, Italy). As shown in
Fig. 3(a) and (b), 5 wrong matches have been correctly detected.
It is worth to notice that this method can hardly detect all the
wrong feature matches: this is due to the use of a rough approxi-
mate of the essential matrix Êj1j2 , that in this approach has been
directly computed by noisy measurements of the translation vec-
tor and of the rotation matrix.

Since the approximate essential matrix Êj1j2 computed as de-
scribed in section 3. is usually a quite rough approximation of
the real one, then a more accurate estimation should be used for
obtaining a more reliable description of the epipolar geometry of
the scene, and, consequently, a more trustworthy wrong feature
matching detection. To this purpose, the procedure described in
section 4. has been applied to the same case study previously con-
sidered.

Fig. 4 compares the computational complexity of the standard



(a)

(b)

Figure 3: Wrong feature matches detected by using an approxi-
mate epipolar constraint.

RANSAC with the linear (eight point) algorithm for the estima-
tion of the essential matrix with that of the approach proposed in
section 4.. It is worth to notice that computational times depend
on the specific implementation of the algorithms, on the consid-
ered programming language and on the machine used to execute
them. The results reported in the figure have been obtained by
running the algorithms in Matlab R©, on an Intel R© CoreTM i7-
4790 (3.60 GHz).

The values of β in Fig. 4 have been chosen in order to allow
a correct estimation of the essential matrix (smaller values of β
allows to significantly reduce the computational burden, however
the value of the estimated essential matrix is frequently far from
the correct one).

Finally, the bundle adjustment formulation for panoramic–like
image acquisitions is tested in a synthetic example in order to
validate just the bundle adjustment procedure, without having to
deal with other external factors. In the simulation considered here
100 feature points randomly distributed are assumed to be visible
in the observed scene. Image measurements are assumed to be
taken from 3 different positions randomly drawn at a mean dis-
tance of 15 m, approximately, from the feature points. Then, to
simulate the panoramic–like image acquisition method, in each
position 3 images have been acquired changing the camera orien-
tation. In order to make the simulation more statistically robust,
100 Monte Carlo simulations have been considered. Fig. 5 shows
the comparison of the root mean square error (RMSE) of the stan-
dard bundle adjustment (blue dashed line) with that proposed in
section 5. (red solid line) in the 100 independent simulations. The

Figure 4: Comparison of the computational burden required by
the standard RANSAC for the linear algorithm for the estimation
of the essential matrix (blue dashed line) with that of the method
proposed in section 4. (red solid line).

proposed method allow to ensure an average 38% reduction of the
RMSE in the 100 simulations.

Figure 5: Comparison of the RMSE of the standard bundle ad-
justment (blue dashed line) with that proposed in section 5. (red
solid line). The reported RMS errors have been computed in 100
independent simulations.

In our future works the modified bundle adjustment method pro-
posed in section 5. will be stressfully validated on a large variety
of cases, including experimental data of natural environments and
human buildings/infrastructures.

Furthermore, the proposed two-step RANSAC procedure will be
compared with other recent Bayesian developments of the RANSAC
algorithm (Kang, 2015).

7. CONCLUSIONS

This paper proposed certain changes with respect to the standard
photogrammetric reconstruction procedure in order to take prop-
erly advantage of the information provided by the navigation sys-
tem, that can be included in most of the currently used smart mo-
bile devices.



Three changes have been considered: the use of an approximate
epipolar constraint (completely derived by means of the naviga-
tion system information), a computationally efficient method to
estimate the essential matrix and a slight change of the bundle
adjustment optimization function in order to exploit a priori in-
formation on camera positions when dealing with panoramic–like
image acquisitions.

The proposed methods have been validated on experimental data
and on a synthetic case (in the modified bundle adjustment case)
showing a significant performance improvement with respect to
the classical methods in terms of either error reduction or com-
putational time.

Finally, it is worth to notice that the use of the information pro-
vided by the navigation system as a prior for the estimation proce-
dure forces the solution to be relatively close to the prior, ensuring
an increase of robustness in the estimation.
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