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NONEXISTENCE OF NONCONSTANT SOLUTIONS OF SOME DEGENERATE
BELLMAN EQUATIONS AND APPLICATIONS TO STOCHASTIC CONTROL ∗
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Abstract. For a class of Bellman equations in bounded domains we prove that sub- and supersolutions
whose growth at the boundary is suitably controlled must be constant. The ellipticity of the operator
is assumed to degenerate at the boundary and a condition involving also the drift is further imposed.
We apply this result to stochastic control problems, in particular to an exit problem and to the small
discount limit related with ergodic control with state constraints. In this context, our condition on the
behavior of the operator near the boundary ensures some invariance property of the domain for the
associated controlled diffusion process.
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1. Introduction

We consider the fully nonlinear elliptic operator

F [u] := sup
α∈A

(
−b(x,α) · Du(x) − tr

(
a(x,α)D2u(x)

))
, (1.1)

which is usually called Hamilton−Jacobi−Bellman (briefly, HJB). Here “tr” denotes the trace of a matrix. Our
first main result is in some sense a counterpart for a bounded domain Ω ⊆ Rn of results of Liouville type in the
whole space. We assume that F degenerates at the boundary of Ω, at least in the normal direction to ∂Ω, for
some α ∈ A, and that the quantity b(x,α) · Dd(x) + tr(a(x,α)D2d(x)) is positive near ∂Ω, where d(x) is the
distance of x from ∂Ω. This is related with the viability, or weak invariance, of Ω for the controlled diffusion
process associated with the operator F . We show that any viscosity subsolution u of F [u] = 0 in Ω such that

u(x) = o(− log(d(x))) as x → ∂Ω, (1.2)
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must be constant. A similar result holds for supersolutions under a stronger condition on the coefficients near
the boundary related to the invariance of the associated diffusion process for all controls.

Results of nonexistence of nonconstant solutions in unbounded domains for elliptic equations are usually
called Liouville-type theorems. For fully nonlinear equations they have been studied in the last ten years by
several authors, see, e.g., [18,20], and the references therein. They are very different from our result for various
reasons. In particular, in our case the drift term compensates the degenerate ellipticity of F at the boundary,
whereas in the unbounded case with uniformly elliptic F the drift term represents a difficulty.

The main application of our Liouville-type results concerns the well-posedness of the so-called ergodic
Hamilton−Jacobi−Bellman equation

sup
α∈A

(
−b(x,α) · Dχ(x) − tr(a(x,α)D2χ(x)) − l(x,α)

)
= c, x ∈ Ω. (1.3)

The unknowns here are (c,χ) ∈ R × C(Ω). Under mild continuity and boundedness assumptions on the data
and the non-degeneracy condition in the interior of Ω

a(x,α) > 0 for every x ∈ Ω and α ∈ A, (1.4)

we prove that this problem has a solution, the additive eigenvalue c is unique, and the viscosity solution χ is
unique up to the addition of constants among functions u satisfying the boundary condition (1.2).

There are several motivations for the above mentioned results, especially from stochastic optimal control.
Here we give two applications, in Sections 5 and 6.2, respectively. The first concerns an exit time problem for
the controlled diffusion {

dXα·
t = b(Xα·

t ,αt)dt +
√

2σ(Xα·
t ,αt)dWt

Xα·
0 = x ∈ Ω,

(1.5)

where α· ∈ A is the control. There is a well-known link between the associated value function v and the HJB
operator F given by (1.1) with a := 2σσT (see, e.g., [23]). Using our Liouville-type result we show that v is a
constant that, under suitable conditions, we can explicitly compute.

The second application concerns the so-called small discount limit. Letting (vλ)λ>0 be the infinite-horizon
discounted value functions:

vλ(x) := inf
α·∈A

E
[∫ ∞

0
e−λtl(Xα·

t ,αt)dt

]
, x ∈ Ω,

where Xα·
t solves (1.5) and l is bounded, we prove that λvλ(x) → c and vλ(x) − vλ(x̃) → χ(x) as λ→ 0 locally

uniformly, where (c,χ) solves the ergodic HJB equation (1.3) and x̃ is any point in Ω. This is related with the
ergodic control problem for stochastic processes, where c is the optimal cost in the minimisation of the limit
of T−1E

[ ∫ T
0 l(Xα·

t ,αt)dt
]

as T → +∞, and Dχ allows to synthesise an optimal feedback (at least in principle,
under further assumptions). There is a large literature on this topic, see [12, 14, 16, 28] for diffusions reflected
at the boundary and Neumann boundary conditions in (1.3), [1, 3] for periodic boundary conditions, and the
recent monograph [2], as well as the references therein. Some of the cited papers deal with the model problem

−∆u + |Du|p − f(x) = c, in Ω,

for p > 1, which is a special case of (1.3) with unbounded drift b and running cost l, see, e.g., [28]. Lasry and
Lions [26] showed that, in the case 1 < p ≤ 2, the problem is uniquely solvable, up to constants, under the
boundary condition

u(x) → +∞ as x → ∂Ω.

They use the small discount approximation (see also [30]), and show the connection of the singular boundary
condition with stochastic control under state constraints.
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A related result on the small discount approximation for linear operators with singular drift was obtained
in [27], where it is considered in particular the following problem

λu(x) − b(x)
d(x)

· Du(x) − a∆u − f(x) = 0, in Ω,

under the assumptions λ > 0, b(x) · Dd(x) > a > 0 and b(x) · τ(x) = 0 for every x ∈ ∂Ω and every τ(x)
tangential vector to ∂Ω at x. The authors prove the existence of a C2(Ω)∩W 1,∞(Ω) solution of such problem,
which is the unique C2(Ω) solution such that (1.2) is satisfied (see [27], Thm. 6).

Here, differently from [26–28], we make the assumption that b(x,α) is bounded, so F [u] grows at most linearly
in Du and is not necessarily coercive. On the other hand we make assumptions on the coefficients b and a at
the boundary that imply an invariance property of the domain such that the control problems of reflected
diffusion and state constraint are essentially equivalent. Our weaker boundary condition (1.2) fits this context.
Our assumptions on b and a near ∂Ω are related to the characteristic boundary points for linear operators [22]
and to the irrelevant points for the generalized Dirichlet problem [10,11]. They also arise in the recent work [15]
on the generalized principal eigenvalue and the Maximum Principle for degenerate operators such as F .

Let us mention two additional sources of interest for the ergodic PDE (1.3) that we do not develop here.
The first is the theory of homogenisation and singular perturbations for fully nonlinear equations. In that
context (1.3) is called the cell problem, the constant c allows to define an effective Hamiltonian for the limit
PDE, and χ is called the corrector and is a fundamental tool for proving the convergence, see, e.g., [1] and the
references therein. The second is the asymptotic behavior as t → +∞ of solutions of the evolution equation

ut + sup
α∈A

(
−b(x,α) · Du − tr(a(x,α)D2u) − l(x,α)

)
= 0, x ∈ Ω, t > 0,

with initial datum u(x, 0) = u0(x). In several cases, such as periodic boundary conditions, it is known that
u(x, t)/t → c as t → +∞, where c is the constant solving (1.3), a fact also related to ergodic stochastic control,
see, e.g., [1, 3]. In some cases it can be proved, more precisely, that u(x, t) − ct → χ(x), see, e.g., [13]. The
validity of these results with the boundary condition (1.2) will be the subject of further investigations.

The paper is organized as follows. In Section 2 we list the precise assumptions and state the two main results
of the paper. Section 3 is devoted to the construction of a strict supersolution to F [u] = 0 with suitable boundary
behavior, that plays the role of a Lyapunov function, first when ∂Ω is of class C2 and then when it is nonsmooth
under further assumptions on F . In Section 4 we prove the non existence of non trivial sub and supersolutions
to F [u] = 0 for ∂Ω smooth and nonsmooth. Section 5 deals with the stochastic control problem with exit times.
In Section 6 we first prove the well posedness of the ergodic HJB equation (1.3) and then interpret the result
within stochastic control theory as a vanishing discount limit.

2. Main results

Throughout the paper we will assume, if not otherwise stated, that Ω be a bounded connected open set in
Rn with C2 boundary. Let d(x) be the signed distance function from ∂Ω, i.e.

d(x) := dist(x, Rn\Ω) − dist(x,Ω). (2.1)

We know, from e.g. ([24], Lem. 14.16), that d is of class C2 in some neighborhood Ωδ of the boundary, where,
here and in the sequel,

Ωδ := {x ∈ Ω | d(x) < δ}. (2.2)

We consider the fully nonlinear elliptic operator (1.1), with A ⊆ Rm closed and

b : Ω × A → Rn, a : Ω × A → Mn×n
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bounded and continuous, Mn×n being the space of n × n real matrices. We further assume that a(x,α) is
symmetric and nonnegative definite for all x,α. This implies that a ≡ σσT for some σ : Ω × A → Mn×r,
r ≥ 1. Notice that we could take σ ∈ Mn×n and symmetric, but we use this notation since in the following, for
application to stochastic control problems, the matrix a will be obtained from a non symmetric σ.

In the interior of Ω the diffusion is assumed to be non-degenerate. For some results, this will be required in
the weak sense that the Strong Maximum Principle holds:

if u ∈ USC(Ω) is a viscosity subsolution to F [u] = 0 in Ω and there exists x0 ∈ Ω such that u(x0) = maxΩ u,
then u is constant.

For a detailed analysis of this property for the HJB operator F see [6]. It is satisfied if for any x ∈ Ω there
exists αx ∈ A such that the corresponding linear operator − tr(a(x,αx)D2u) satisfies Hörmander hypoellipticity
condition. In particular, it holds if a(x,αx) > 0 in the sense of matrices.

The main regularity assumptions on the coefficients with respect to x will be the following. There exists a
modulus of continuity ω such that

∀x, y ∈ Ω, α ∈ A, |b(x,α) − b(y,α)| ≤ ω(|x − y|). (2.3)

A modulus of continuity ω is a nonnegative function, continuous at 0 with ω(0) = 0. Moreover, we assume that
the square root σ of the matrix a is Hölder or Lipschitz continuous uniformly in α, with sufficiently large Hölder
exponent, i.e.

∃β ∈ (1/2, 1] , B > 0, ∀x, y ∈ Ω,α ∈ A, |σ(x,α) − σ(y,α)| ≤ B|x − y|β , (2.4)

where, even for matrices, | · | stands for the standard Euclidean norm.

Remark 2.1. Note that we are not assuming Lipschitz continuity of the coefficients of the operator F , but
just uniform continuity of the drift and Hölder continuity of the matrix σ, which in particular assure that
the operator F is continuous. We will strengthen these assumptions to Hölder continuity in Section 6 and to
Lipschitz continuity in applications to stochastic control problems.

The regularity assumption (2.4) is given directly on the matrix σ as it is natural for applications to stochastic
control problems. In any case, we recall some sufficient conditions that can be imposed on the matrix a in
order to get that (2.4) holds on the symmetric square root σ. Assume that a(·,α) ∈ W 2,p(Ω) for every α ∈ A
with p > 1 and that ∥a(·,α)∥W 2,p ≤ C for C independent of α ∈ A. Then it is proved in ([29], Thm. 1) that
σ(·,α) ∈ W 1,2p(Ω), and moreover it can be observed that the W 1,2p norm of σ is independent of α. Using
Morrey’s inequality we have that if p = ∞, then (2.4) is satisfied with β = 1, and if p > 2n, then (2.4) is
satisfied with β = 1 − n

p .

We will make different kind of assumptions about the behavior of F at ∂Ω. The first and weaker one is the
following.

∃δ, k > 0, γ < 2β − 1, such that, for all x ∈ ∂Ω, there is α ∈ A for which{
σT (x,α)Dd(x) = 0,

∀x ∈ Ω ∩ Bδ(x), b(x,α) · Dd(x) + tr(a(x,α)D2d(x)) ≥ k dγ(x),
(2.5)

where β is the exponent in (2.4). The first condition in (2.5) means that at any boundary point, the normal
is a direction of degeneracy for F , at least for some α. The second condition is ensured if at the boundary the
normal component of the drift points inward and is sufficiently large. We will see that (2.5) ensures the existence
of an appropriate Lyapunov function for the system, playing the same role as the already mentioned condition
in [27]. Notice however that condition (2.5) does not prevent the function b(·,α) ·Dd(·) + tr(a(·,α)D2d(·)) from
vanishing at x, even though, in such case, it cannot be Lipschitz continuous because γ < 1.

Remark 2.2. A sufficient condition for (2.5) to hold (with γ = 0) is the following: there exists k > 0 such that
for all x ∈ ∂Ω there is α ∈ A such that the first condition in (2.5) holds and

b(x,α) · Dd(x) + tr(a(x,α)D2d(x)) > k. (2.6)
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Indeed, from (2.6), using the hypotheses (2.3), (2.4) together with the C2 regularity of d in a neighborhood of
the compact set ∂Ω, we deduce the existence of δ > 0 independent of x such that the second condition in (2.5)
holds with γ = 0 and k replaced by k/2. Notice that this argument does not work with k = 0, even though ∂Ω
is compact, because of the first condition in (2.5). We exhibit a counter-example in Remark 3.3 below, where
we do not know if the Liouville property holds.

Our first main theorem is the following result on nonexistence of nonconstant subsolutions.

Theorem 2.3. Let (2.3)−(2.5) hold and let F satisfy the Strong Maximum Principle in Ω. If u ∈ USC(Ω) is
a viscosity subsolution to F [u] = 0 satisfying

lim sup
x→∂Ω

u(x)
− log d(x)

≤ 0, (2.7)

then u is constant.

Remark 2.4. Observe that Theorem 2.3 does not hold without imposing some growth condition at the bound-
ary. Indeed one can check that, in Ω = (−1, 1), if a(x) ≥ dℓ(x) for some ℓ > 0 and d(x) small enough, then the
function

u(x) =
∣∣∣∣
∫ x

0
ed−ℓ(s)ds

∣∣∣∣

is a subsolution to F [u] = 0 in Ωδ, for δ small enough. Setting u(x) = u(1 − δ) outside Ω \ Ωδ, one gets a
subsolution to F [u] = 0.

On the other hand, we point out that the growth condition (2.7) in Theorem 2.3 can be weakened to the
following: there exists κ > 0 such that

lim sup
x→∂Ω

u(x)d(x)κ ≤ 0.

For more details we refer to Remark 4.3. We decided to work with the more restrictive growth condition (2.7)
because this provides us with a more detailed information on the boundary behavior of the solution of the
ergodic problem, c.f. Theorem 2.5.

The analogous result for supersolutions to F [u] = 0 can be obtained under stronger assumptions. In particular
we have to strengthen condition (2.5) to hold for every α ∈ A, in the following sense.

∃δ, k > 0, γ < 2β − 1, such that, for all x ∈ ∂Ω and for all α ∈ A,{
σT (x,α)Dd(x) = 0,

∀x ∈ Ωδ, b(x,α) · Dd(x) + tr(a(x,α)D2d(x)) ≥ k dγ(x).
(2.8)

Moreover, we assume that the operator F [u] satisfies the Strong Minimum Principle, that is, the operator
−F [−u] satisfies the Strong Maximum Principle. This property for our HJB operator F was studied in [8]. A
sufficient condition for it to hold true is that

a(x,α) > 0 for every x ∈ Ω and α ∈ A. (2.9)

Next, we use the results on nonexistence of nontrivial solutions to derive the unique solvability of the ergodic
problem (1.3) under the boundary condition (1.2). We strengthen the continuity assumption on the drift b of
the operator (1.1) and require the same hypothesis on the source term l:

∃γ ∈ (0, 1], ∀x, y ∈ Ω, α ∈ A, |b(x,α) − b(y,α)|, |l(x,α) − l(y,α)| ≤ B|x − y|γ . (2.10)
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Theorem 2.5. Under the assumptions (2.4), (2.8)−(2.10), there exists a unique c ∈ R such that the equa-
tion (1.3) admits a viscosity solution χ satisfying

lim
x→∂Ω

χ(x)
− log d(x)

= 0. (2.11)

Moreover χ ∈ C2(Ω) and is unique up to addition of constants among all solutions to (1.3) which satisfy (2.11).

Actually we prove a stronger uniqueness result for c and χ, see Proposition 6.3.

3. Lyapunov functions

3.1. The case of smooth boundary

Proposition 3.1. Under assumptions (2.4) and (2.5), for every M ≥ 0, there exists δ > 0 such that

F [− log(d(x))] > M, x ∈ Ωδ,

where Ωδ is defined in (2.2).

Proof. Take δ, k, γ from (2.5). Up to reducing δ if needed, we can suppose that d ∈ C2(Ωδ). In particular, for
given x ∈ Ωδ, we can consider its unique projection on ∂Ω, i.e., the point x ∈ ∂Ω satisfying |x− x| = d(x) < δ.
Let α be such that (2.5) is verified. The first condition in (2.5) and property (2.4) yield

|σT (x,α)Dd(x)| = |σT (x,α)Dd(x)| ≤ |σ(x,α) − σ(x,α)| ≤ Bdβ(x).

Therefore we get

F [− log d(x)] = sup
α∈A

(
b(x,α) · Dd(x)

d(x)
+ tr

(
a(x,α)

D2d(x)
d(x)

)
− 1

d2(x)
|σT (x,α)Dd(x)|2

)

≥ 1
d(x)

(
b(x,α) · Dd(x) + tr(a(x,α)D2d(x)

)
− 1

d2(x)
|σT (x,α)Dd(x)|2

≥ kdγ−1(x) − B2d2β−2(x).

Since γ − 1 < 2β − 2, we can further reduce δ, independently of x, in such a way that kdγ−1 − B2d2β−2 > M
in Ωδ, concluding the proof of the proposition. !

If we replace (2.5) with (2.8), then the following stronger version of Proposition 3.1 holds.

Proposition 3.2. Let (2.4) and (2.8) hold. Then for every M ≥ 0 there exists δ > 0 such that

F [log d(x)] < −M, x ∈ Ωδ. (3.1)

Proof. By explicit computation,

F [log d(x)] = − inf
α∈A

(
b(x,α) · Dd(x)

d(x)
+ tr

(
a(x,α)

D2d(x)
d(x)

)
− 1

d2(x)
|σT (x,α)Dd(x)|2

)
.

The conclusion then follows from a straightforward adaptation of the argument in the proof of Proposi-
tion 3.1. !

We conclude this section with two comments about the optimality of condition (2.5) for the construction of
the Lyapunov function.
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Remark 3.3. The function − log d(x) might not be a Lyapunov function if (2.5) is relaxed to the following:
for all x ∈ ∂Ω there is α ∈ A for which

σT (x,α)Dd(x) = 0, b(x,α) · Dd(x) + tr(a(x,α)D2d(x)) > 0. (3.2)

Let us show this with an example. Let Ω be a domain in R2 coinciding, in a neighborhood of (0, 0) ∈ ∂Ω, with
the half-plane {(x, y), x ∈ R, y > 0}. Take A = {1, 2},

b(x, y, 1) = (0, 1), σ(x, y, 1) =
(

1 0
0 x2 + y

)
,

b(x, y, 2) = (0, x4 − y), σ(x, y, 2) =
(

y 0
0 y

)
,

and a = σσT . Note that in a neighborhood of (0, 0), d(x, y) = y, whence Dd(x, y) = (0, 1) and D2d(x, y) = 0.
One can readily check that (3.2) holds at the points (x, 0), with α = 1 if x = 0 and α = 2 otherwise, whereas the
second condition in (2.5) is not verified at x = (0, 0) by neither α = 1 nor α = 2. Let us check that − log d(x)
is not a supersolution of F = 0 in a neighborhood of (0, 0). For (x, y) ∈ Ω close to (0, 0), we have that

F [− log d(x)] = max
α∈{0,1}

(
b(x,α) · Dd(x)

d(x)
+ tr

(
a(x,α)

D2d(x)
d(x)

)
− 1

d2(x)
|σT (x,α)Dd(x)|2

)

= max
{

1
y
− (x2 + y)2

y2
,
x4

y
− 2

}
·

Now, if y = x4, then
x4

y
− 2 = −1 < 0,

1
y
− (x2 + y)2

y2
=

1
y
−

(√y + y)2

y2
< 0.

This shows that F [− log d(x)] < 0 at some points arbitrarily close to (0, 0).

Remark 3.4. Note that γ in (2.5) satisfies γ < 1, because β ≤ 1. If we allow γ = 1, then we are only able
to obtain a “weak” Lyapunov function, that is a strict supersolution to the equation in a neighborhood of the
boundary, but not exploding at the boundary. Indeed if we assume that the second condition in (2.5) holds with
γ = 1, then for every η > 0, there exists δ > 0 such that

F [− log(d(x) + η)] > 0, x ∈ Ωδ.

This follows from the same arguments as in the proof of Proposition 3.1, the final step being now the choice of
δ > 0 such that

∀x ∈ Ωδ,
kd(x)

d(x) + η
− B2 d2β(x)

(d(x) + η)2
> 0.

3.2. Case of non-smooth boundary

When the domain Ω is not assumed to be C2, a partial result in the direction of Proposition 3.1 is obtained
under the following assumption: for all x ∈ ∂Ω, there exist α ∈ A, a neighborhood U of x and a constant k > 0
such that

−b(x,α) · Dd(x) − tr a(x,α)D2d(x) ≤ −k, x ∈ Ω ∩ U (3.3)

in viscosity sense, and
∀z ∈ ∂Ω ∩ U, ∀ν ∈ N(z), σT (z,α) ν = 0, (3.4)

where N(z) is the interior normal cone to Ω at z, or, equivalently, the set of generalized exterior normals to
Ωc as defined in ([4], p. 48). Namely, a unit vector ν belongs to N(z), z ∈ ∂Ω, if there exists x ∈ Ω such that
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x = z + d(x)ν. Due to the possible lack of regularity of d, condition (3.3) has to be understood in the following
sense:

∀x ∈ Ω ∩ U, ∀(p, Y ) ∈ J2,+d(x), −b(x,α) · p − tr a(x,α)Y ≤ −k, (3.5)

where

J2,+d(x) :=

{
(p, Y ) ∈ Rn × Sn | lim sup

Ω∋y→x

d(y) − d(x) − p · (y − x) − 1
2 (y − x)Y · (y − x)

|y − x|2 ≤ 0

}
·

If the boundary is smooth, (3.3) is equivalent to (2.6) whereas (3.4) is slightly stronger than the first condition
in (2.5), so, combined, they imply condition (2.5) (see Rem. 2.2).

The normal cone N(z) and the set of projections

P (x) := {z ∈ ∂Ω : |x − z| = d(x)}

allow us to give the following representation.

Lemma 3.5. For x ∈ Ω, let (p, Y ) ∈ J2,+d(x). Then p = limj pj where for all j there exist λi ≥ 0, i = 1, . . . , N ,∑N
i=1 λi = 1, and zi ∈ P (x) such that

pj =
N∑

i=1

λiνi, νi ∈ N(zi).

Proof. The condition (p, Y ) ∈ J2,+d(x) yields

p ∈ D+d(x) :=

{
q ∈ Rn | lim sup

Ω∋y→x

d(y) − d(x) − q · (y − x)
|y − x| ≤ 0

}
.

Proposition II.2.14 in [4] states that the set D+d(x) coincides with the closure of the convex hull of the set
{

x − z

|x − z| : z ∈ P (x)
}

.

On the other hand, z ∈ P (x) implies x = z + d(x) x−z
|x−z| and therefore x−z

|x−z| ∈ N(z). !

Proposition 3.6. Let (2.3), (2.4), (3.3), (3.4) hold. Then, for any M ≥ 0, there exists δ > 0 such that
− log(d(x)) satisfies in viscosity sense

F [− log(d(x)] > M, x ∈ Ωδ.

Proof. Note that (2.3), (2.4) assure that the operator F [u] is continuous. For a fixed x ∈ ∂Ω take α ∈ A and
the neighborhood U such that (3.3) and (3.4) hold. For x ∈ Ω ∩ U consider (p, Y ) ∈ J2,+d(x). Take pj → p as
in Lemma 3.5. The orthogonality condition (3.4) yields

σT (x,α)pj =
N∑

i=1

λiσ
T (x,α)νi =

N∑

i=1

λi(σT (x,α) − σT (zi,α))νi.

Then, by (2.4),

|σT (x,α)pj | ≤
N∑

i=1

λiB|x − zi|β = Bdβ(x),
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from which, letting j → ∞,
|σT (x,α)p| ≤ Bdβ(x).

Now we want to prove that F [− log d(x)] > 0 in viscosity sense. Note that if (q, Z) ∈ J2,−(− log d(x)) then
there exist (p, Y ) ∈ J2,+d(x) such that q = − p

d(x) and Z = − Y
d(x) + p⊗p

d2(x) . Using (3.5) we derive

F (x, p, Y ) = sup
α∈A

(
b(x,α) · p

d(x)
+ tr a(x,α)

Y

d(x)
− 1

d2(x)
|σT (x,α)p|2

)

≥ 1
d(x)

(b(x,α) · p + tr(a(x,α)Y ) − 1
d2(x)

|σT (x,α)p|2

≥ 1
d(x)

(
k − B2d2β−1(x)

)
.

So, for given M > 0, δ̃ > 0 can be chosen sufficiently small, depending on x (because k does) but independent
of x, p, Y , in such a way that

F [− log d(x)] > M, x ∈ Ωδ̃ ∩ U

in viscosity sense. This means that there is a neighborhood W of ∂Ω such that

F [− log d(x)] > M, x ∈ Ω ∩ W,

and thus the conclusion of the proposition holds for some δ > 0 by the compactness of ∂Ω. !

Remark 3.7. If we assume in Proposition 3.6 that conditions (3.3) and (3.4) hold for every α ∈ A, then we
obtain that for any M ≥ 0, there exists δ > 0 such that − log(d(x)) satisfies in viscosity sense

inf
α∈A

(
−b(x,α) · D(− log d(x)) − tr

(
a(x,α)D2(− log d(x))

))
> M, x ∈ Ωδ.

4. Nonexistence of nonconstant solutions

Using the Lyapunov functions constructed in the previous section we now prove that F [u] = 0 has only trivial
sub and supersolutions.

Proof of Theorem 2.3. Let δ be from Proposition 3.1 corresponding to M = 0. We can assume without loss of
generality that δ < 1. Define Ωδ as in (2.2) and

Kδ := max
Ω\Ωδ

u.

For ε > 0 the function u(x) − (Kδ − ε log d(x)) is negative when d(x) = δ and, by (2.7), it goes to −∞ as
x → ∂Ω. Suppose by contradiction that it is positive somewhere in Ωδ. Then there exists x0 ∈ Ωδ such that

u(x0) − (Kδ − ε log d(x0)) = max
x∈Ωδ

[u(x) − (Kδ − ε log d(x))].

Since u is a subsolution to F [u] = 0, this implies that

εF [− log d(x0)] ≤ 0,

which is impossible by Proposition 3.1. We have therefore shown that

∀x ∈ Ωδ, u(x) ≤ Kδ − ε log d(x),

whence, letting ε → 0, u ≤ Kδ in Ωδ. This means that u achieves its maximum Kδ inside Ω and then it is
constant since F satisfies the Strong Maximum Principle in Ω. !
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In the case of nonsmooth boundary, the same result holds true, under stronger regularity assumptions on the
coefficients.

Proposition 4.1. Instead of ∂Ω of class C2 assume that any x ∈ ∂Ω has a a neighborhood U such that (3.3)
and (3.4) hold for some α ∈ A and k > 0. Suppose also that b,σ are Lipschitz continuous, i.e., the continuity
modulus in (2.3) is ω(r) = Br for some B > 0 and β = 1 in (2.4), and F satisfies the Strong Maximum
Principle in Ω. If u ∈ USC(Ω) is a viscosity subsolution to F [u] = 0 satisfying (2.7) then u is constant.

Proof. We use the same notation as in Theorem 2.3. Now, owing to Proposition 3.6, 0 < δ < 1 is chosen in such
a way that − log d(x) satisfies in viscosity sense F [− log d(x)] > 1 in Ωδ. Using the doubling variables method
we define, for η > 0 and x, y ∈ Ωδ,

Φ(x, y) := u(x) − Kδ + ε log d(y) − |x − y|2

2η
·

Observe that, due to (2.7), sup(Ωδ)2 Φ < +∞. Take (xη, yη) small such that Φ(xη, yη) = supΩ2
δ
Φ. By ([21],

Lem. 3.1), |xη−yη|2
η → 0 as η → 0, and up to subsequences, xη, yη → x ∈ Ωδ such that u(x) − Kδ + ε log d(x) =

supΩδ
u − Kδ + ε log d.

If Φ(xη, yη) ≤ 0 then Φ(x, x) ≤ 0 for x ∈ Ωδ, from which, arguing as in the proof of Theorem 2.3, we infer
that u achieves a maximum in Ω and then it is constant.

Suppose then that Φ(xη, yη) > 0 for all η > 0. By classical argument (see [21], Thm. 3.2), we get that there
exist X, Y ∈ Sn such that

(
xη−yη

η , X
)
∈ J2,+u(xη),

(
xη−yη

η , Y
)
∈ J2,−(−ε log d(yη)) and

pX · p − qY · q ≤ 1
η
|p − q|2 ∀ p, q ∈ Rn. (4.1)

Let ei, for i = 1, . . . , r the i-th unit vector. Then it is easy to check for every α ∈ A, tr a(xη,α)X =∑r
i=1(σ(xη ,α)ei)X · (σ(xη ,α)ei). So, by (4.1) applied to p = σ(xη ,α)ei, q = σ(yη,α)ei, we get that for ev-

ery α ∈ A,

tr a(xη,α)X − tr a(yη,α)Y ≤ 1
η

r∑

i=1

n∑

j=1

|σji(xη,α) − σji(yη,α)|2 ≤ B2 |xη − yη|2

η
,

where we used the fact that σ is Lischitz continuous. Using the fact that b is Lipschitz continuous we get

|b(yη,α) − b(xη,α)| |xη − yη|
η

≤ B

(
|xη − yη|2

η

)
·

Using the previous inequalities and the fact that u is a subsolution to F [u] = 0, we get

0 ≥ ε sup
α∈A

(
−b(xη,α) · xη − yη

η
− tr a(xη,α)X

)

≥ ε sup
α∈A

(
−b(yη,α) · xη − yη

η
− tr(a(yη,α)Y )

)
− Bε

|xη − yη|2

η
− εB2

(
|xη − yη|2

η

)
,

which gives, for η sufficiently small, a contradiction to the fact that F [− log d(x)] > 1 in viscosity sense in Ωδ. !

If we strengthen condition (2.5) to condition (2.8), and let F [u] satisfies the Strong Minimum Principle in Ω,
that is −F [−u] satisfies the Strong Maximum Principle in Ω, we also obtain the statement for supersolutions.
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Theorem 4.2. Let conditions (2.3), (2.4), (2.8) hold and let F satisfies the Strong Minimum Principle in Ω.
If v ∈ LSC(Ω) is a viscosity supersolution to F [v] = 0 satisfying

lim inf
x→∂Ω

v(x)
− log d(x)

≥ 0, (4.2)

then v is constant.

Proof. Note that v is a subsolution to −F [−u] = 0. So, we conclude, using the same arguments as in the proof
of Theorem 2.3, by substituting Proposition 3.1 with Proposition 3.2. !

Remark 4.3. Theorems 2.3 and 4.2 can be improved by replacing the growth conditions (2.7) and (4.2) with,
respectively,

lim sup
x→∂Ω

u(x)d(x)κ ≤ 0, and lim inf
x→∂Ω

v(x)d(x)κ ≥ 0

for some κ > 0.
Indeed, observe that for every M > 0 and every κ > 0, there exists δ > 0 such that

F [d(x)−κ] =
κ

d(x)κ
sup
α∈A

(
b(x,α) · Dd(x)

d(x)
+ tr

(
a(x,α)

D2d(x)
d(x)

)
− κ+ 1

d2(x)
|σT (x,α)Dd(x)|2

)

≥ kκdγ−1−κ(x) − B2κ(κ+ 1)d2β−2−κ(x) ≥ M

for every x ∈ Ωδ, by assumption (2.5). Analogoulsy we get that for every M > 0 and every κ > 0 there exists
δ > 0 such that F [−d(x)−κ] ≤ −M for every x ∈ Ωδ.

So, the same arguments of the proofs of Theorems 2.3 and 4.2 can be repeated by simply substituting d(x)−κ

to − log(d(x)).

We state the analogous of Theorem 2.3 in the case of nonsmooth boundary.

Proposition 4.4. Instead of ∂Ω of class C2 assume that any x ∈ ∂Ω has a a neighborhood U such that (3.3)
and (3.4) hold for every α ∈ A and k > 0. Suppose also that b,σ are Lipschitz continuous, i.e., the continuity
modulus in (2.3) is ω(r) = Br for some B > 0 and β = 1 in (2.4), and F satisfies the Strong Minimum
Principle in Ω. If v ∈ LSC(Ω) is a viscosity supersolution to F [v] = 0 satisfying (4.2) then v is constant.

Proof. Observe that −v is a viscosity subsolution to

inf
α∈A

(
−b(x,α) · Du − tr

(
a(x,α)D2u

))
= 0

and satisfies (2.7). Moreover by assumption, the operator

G[u] = inf
α∈A

(
−b(x,α) · Du − tr

(
a(x,α)D2u

))

satisfies the Strong Maximum Principle. So, recalling Remark 3.7, we can repeat the proof of Proposition 4.1
by substituting the operator F [u] with the operator G[u]. !

5. An application to stochastic control problems with exit times

We consider the control system (1.5), where Wt is a r−dimensional standard Brownian motion and the
control α· : R+ → A belongs to the set of admissible controls A, namely, progressively measurable processes,
with respect to the filtration associated to the Brownian motion.
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In order to have existence and uniqueness of solutions to the control system, throughout this section we will
strenghten the regularity assumptions on the coefficients to the following. We assume there exists B > 0 for
which

∀x, y ∈ Ω, α ∈ A, |b(x,α) − b(y,α)| ≤ B|x − y|, |σ(x,α) − σ(y,α)| ≤ B|x − y|. (5.1)

Moreover, to ensure existence of optimal controls for the optimal control problems we are going to consider,
we assume that the set A is compact and

{(b(x,α), a(x,α)) | α ∈ A} is convex for all x ∈ Ω. (5.2)

Define for every x ∈ Ω the exit time from the open set Ω

τα·
x = inf{t ≥ 0 | Xα·

t ̸∈ Ω} ∈ R ∪ {+∞}. (5.3)

It has been proved in [7] that under the previous assumptions, the set Ω is viable or weakly invariant for
the control system (1.5) in the following sense: for every x ∈ Ω there exists an admissible control α· such that
Xα·

t ∈ Ω almost surely for all t ≥ 0. In the next proposition we prove that actually in our case this result can
be improved to get also the viability of the open set Ω. Such a result was obtained in [17] for stochastic systems
without control.

Proposition 5.1. Let (2.5), (5.1), (5.2) hold. Then for every x ∈ Ω there exists an admissible control α· ∈ A
such that Xα·

t ∈ Ω almost surely for all t ≥ 0, i.e. τα·
x = +∞ almost surely.

Proof. Let V be a C2 extension of the function − log(d(x)) to the whole Ω, which coincides with − log d(x) in a
neighborhood of ∂Ω. We can assume that V ≥ 1 in Ω and moreover, by Proposition 3.1, there exists a constant
C ≥ 0 such that

F [V ](x) ≥ −C x ∈ Ω.

Define for every δ > 0, and x ∈ Ω, the exit time

τδ,α·
x = inf{t ≥ 0 | Xα·

t ̸∈ Ω \Ωδ} ∈ R ∪ {+∞}.

By superoptimality principles for viscosity solutions (see [19], Cor. 6), we get for every δ > 0, every x ∈ Ω\Ωδ

and every t ≥ 0, recalling that V ≥ 1,

V (x) ≥ inf
α·∈A

E
[
V (Xα·

τδ,α·
x ∧t

) − C(τδ,α·
x ∧ t)

]
≥ inf

α·∈A

[∫

{ω|τδ,α·
x (ω)≤t}

V (Xα·
τδ,α· (ω))dP(ω) − Ct

]
, (5.4)

where τδ,α·
x ∧ t = min{τδ,α·

x , t}. Take δ > 0 such that V (x) = − log d(x) for x ∈ Ωδ \ ∂Ω. From (5.4) we get that
for every t ≥ 0

inf
α·∈A

P
(
ω | τδ,α·

x (ω) ≤ t
)
≤ V (x) + Ct

− log δ
·

Moreover, since infα· P
(
ω | τδ,α·

x (ω) ≤ t
)

is decreasing as δ → 0, we get that, for all x ∈ Ω,

inf
δ

inf
α·∈A

P
(
ω | τδ,α·

x (ω) ≤ t
)

= 0.

So, for every t ≥ 0,
inf

α·∈A
P (ω | τα·

x (ω) ≤ t) = 0. (5.5)

Finally we claim that (5.5) implies that

inf
α·∈A

P (ω | τα·
x (ω) < +∞) = 0. (5.6)
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Let h be a bounded uniformly continuous function such that h ≡ 0 in Ω and h > 0 in Rn \Ω. Let

w(x) = inf
α·∈A

E
∫ +∞

0
h(Xα·

t )e−νtdt. (5.7)

So 0 ≤ w ≤ ∥h∥∞
ν . Moreover, by standard dynamic programming principle (see [25]) for every t > 0

w(x) = inf
α·∈A

E
(

w(Xα·
t )e−νt +

∫ t

0
h(Xα·

s )e−νsds

)
.

Fix ε > 0 and take t such that ∥h∥∞
ν e−νt ≤ ε. So, for every x ∈ Ω, due to (5.5),

w(x) ≤ inf
α·∈A

E
∫ t

0
h(Xα·

s )e−νsds + ε ≤ ε,

from which we deduce by arbitrariness of ε, w ≡ 0. This implies (5.6), recalling that under assumption (5.2),
for every initial data x ∈ Ω there exists an optimal control for the control problem (5.7) (see [25]). !

Consider a terminal cost φ ∈ C(∂Ω) that the controller pays as the system hits the boundary. We introduce
the cost functional

G(x,α,ω) =

{
φ(Xα·

τα·
x

(ω)) τα·
x (ω) < +∞

0 τα·
x (ω) = +∞,

and define the value function
v(x) = inf

α·∈A
E [G(x,α·,ω)].

We make a non degeneracy assumption on the system at a minimal point for φ which is somehow opposite
to condition (2.5).

{
∃ x ∈ ∂Ω, α ∈ A such that φ(x) = minφ and
either σT (x,α)Dd(x) ̸= 0, or b(x,α) · Dd(x) + tr(a(x,α)D2d(x)) < 0.

(5.8)

Theorem 5.2. Let (2.5), (5.1), (5.2) and (5.8) hold. Then the value function v satisfies

∀x ∈ Ω, v(x) = min{minφ, 0}.

Proof. The value function v is known to satisfy a dynamic programming principle (see [25]). From this it is
possible to deduce (see [10], Thm. 4.4, [11]) that the upper semicontinuous envelope of v, defined as

v∗(x) := lim sup
Ω∋y→x

v(y), x ∈ Ω,

is a viscosity subsolution of the HJB equation F [u] = 0 in Ω and satisfies the Dirichlet boundary condition
u ≤ φ on ∂Ω in viscosity sense (that we will recall later). Then, by Theorem 2.3, v∗ is constant in Ω, say v∗ ≡ c
in Ω.

By Proposition 5.1, for every x ∈ Ω there exists an admissible control α such that Xα
t ∈ Ω almost surely for

all t ≥ 0. So, if minφ > 0, then it is immediate to deduce by the definition of v that v ≡ 0 in Ω.
We assume now that minφ ≤ 0, and we show that in this case v ≡ minφ on Ω. Being upper semicontinuous,

v∗ satisfies v∗(x) ≥ c for x ∈ ∂Ω. Since v∗ ≥ v ≥ minφ =: m, we must prove that m ≥ c. Assumption (5.8)
allows us to build an upper barrier at the point x, namely, a function W ∈ C2(B(x, r)), with r > 0, such that:

(i) W ≥ 0 and LW > 0 in B(x, r) ∩Ω,
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(ii) W (x) = 0, W (x) ≥ µ > 0 for all x ∈ Ω with |x − x| = r.
For k,λ > 0 set

W (x) := 1 − e−k(d(x)+λ|x−x|2).

It is easy to compute

(
− tr(a(x,α)D2W (x)) − b(x,α) · DW (x)

)
ek(d(x)+λ|x−x|2) =

− k tr(a(x,α)D2d(x)) + k2|σ(x,α)Dd(x)|2 − kb(x,α) · Dd(x) − 2kλ tr a(x,α).

Next we choose α = α and assume first the first condition in (5.8) to hold. In this case, since the coefficients
are continuous and d is C2 close to ∂Ω, we can get F [W ] > 0 in a neighborhood of x by taking k large
enough. If, instead, the second condition in (5.8) holds, we choose λ small to reach the same conclusion.
Properties ii) of the barrier are obvious.

Assume by contradiction that m < c and fix m′ ∈ (m, c) and r′ > 0 such that

∀x ∈ B(x, r′) ∩ ∂Ω, φ(x) ≤ m′ < c.

Now call ρ := min(r, r′) and define, for k > 0,

w(x) := kW (x) + m.

Observe that F [w] > 0 in B(x, ρ) ∩ Ω by the homogeneity of the operator F . Choose also k large enough so
that

∀x ∈ Ω, |x − x| = ρ, w(x) ≥ M.

Next take x0 ∈ B(x, ρ) ∩Ω such that

(v∗ − w)(x0) = max
B(x,ρ)∩Ω

(v∗ − w).

There are three possible cases.

1. If x0 ∈ ∂B(x, ρ) ∩ Ω then w(x0) ≥ M ≥ v∗(x0). It follows that v∗(x) ≤ w(x) for x ∈ B(x, ρ) ∩ Ω, which,
taking x in a neighborhood of x, yields the contradiction c ≤ w(x) ≤ m′.

2. If x0 ∈ B(x, ρ) ∩ Ω we use that v∗ is a subsolution of F [u] = 0 to get F [w](x0) ≤ 0, a contradiction with
F [w] > 0.

3. Finally, if x0 ∈ B(x, ρ) ∩ ∂Ω, we use that v∗ is a viscosity subsolution of the boundary condition, namely,
either v∗(x0) ≤ φ(x0) or F [w](x0) ≤ 0. The latter case is impossible because F [w] > 0, whereas the former
contradicts φ(x) < c ≤ v∗(x) in B(x, ρ) ∩ ∂Ω.

In all cases we reach a contradiction and complete the proof. !

Remark 5.3. The conclusion of the last theorem still holds if the C2 regularity of ∂Ω holds only in a neigh-
borhood of x, provided that (2.5) is replaced by (3.3) and (3.4). In fact the Liouville property still holds by
Proposition 4.1.

6. The ergodic HJB equation in invariant bounded domains

In this Section we will assume the stronger condition (2.8) on the behavior of the coefficients at the boundary
of the domain Ω, as well as the strict ellipticity of the operator L in the interior of Ω (2.9). We will see in
Section 6.2 that the assumption (2.8) is related to the invariance of both Ω and Ω for the control system (1.5).
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6.1. Well-posedness of the PDE

This subsection is dedicated to the proof of Theorem 2.5. We set

H(x, p, X) := sup
α∈A

(−b(x,α) · p − tr(a(x,α)X) − l(x,α)) , (6.1)

where l : Ω × A → R is a bounded function satisfying (2.10). In order to find a solution to (1.3), we consider
the approximated problems

λuλ(x) + H(x, Duλ(x), D2uλ(x))) = 0, x ∈ Ω, (6.2)

for λ > 0. We start with showing that this equation admits a unique viscosity solution, without prescribing any
boundary conditions.

We recall the following well-known a priori estimates.

Lemma 6.1 (Krylov−Safonov estimates). Let assumptions (2.4), (2.9) and (2.10) hold and let u ∈ C(Ω) be a
bounded viscosity solution to (6.2) with λ > 0. Then u ∈ C2(Ω), and for every compact set K ⊂ Ω there exists
γ ∈ (0, 1), depending on the space dimension n, the ellipticity constants in K and β from (2.4) such that

∥u∥C1,γ(K) ≤ CK ,

with CK depending on γ, K, Ω, ∥σ∥∞, B from (2.4), ∥b∥∞, ∥l∥∞, ∥u∥∞ and any λ ≥ λ.

Proof. For the proof we refer to [32], Theorem 2.1 and section on further regularity, page 950 (see Sect. 17.4
in [24] and [31]). !

Theorem 6.2. Under the assumptions (2.4), (2.8)−(2.10), for every λ > 0, equation (6.2) admits a unique
bounded solution uλ ∈ C2(Ω). Moreover for every x̃ ∈ Ω and every K ⊂⊂ Ω, the family (uλ − uλ(x̃))λ∈(0,1] is
bounded in C1,γ(K), for some γ ∈ (0, 1). Finally, for all h > 0, there exists δh > 0 such that

∀λ ∈ (0, 1], x ∈ Ωδh , h log(d(x)) + min
Ω\Ωδh

uλ ≤ uλ(x) ≤ −h log(d(x)) + max
Ω\Ωδh

uλ. (6.3)

Proof. The proof is divided into three parts.

Step 1. Existence. The idea is to apply Perron’s method to the Neumann problem for (6.2), namely, under the
boundary condition ∂νu = 0. Notice that the functions ±∥l∥∞/λ are sub and supersolutions for such problem.
However, a technical difficulty in the comparison principle comes from the lack of Lipschitz-continuity of the
terms a, b. Also, the application of Perron’s method to this problem is achieved in [9] under the additional
assumption that Ω is of class W 3,∞. To overcome these difficulties one can proceed as follows. Consider a
sequence of smooth approximations of the a(·,α), b(·,α) and a sequence of smooth domains invading Ω. The
associated Neumann problems admit solution between −∥l∥∞/λ and ∥l∥∞/λ by [9]. Finally, using the estimates
provided by Lemma 6.1 and the stability of viscosity solutions, one can pass to the limit along a subsequence of
such solutions and obtain a solution uλ to (6.2). Notice that the limit is only local in Ω and therefore we lose
the information about the boundary behavior of uλ. We only know that uλ is in C2(Ω) and satisfies

∀x ∈ Ω, −∥l∥∞
λ

≤ uλ(x) ≤ ∥l∥∞
λ

· (6.4)

Step 2. Uniqueness. Consider two bounded viscosity solutions u, v ∈ C(Ω) to (6.2). Then they are both in
C2(Ω) by Lemma 6.1. We first modify v in order to obtain a supersolution blowing up at the boundary. To this
end, we will make use of the Lyapunov function − log(d(x)) for the operator F defined by (1.1). Take δ > 0
from Proposition 3.2, associated with M = 0, and consider the function − log(d(x)) defined for x ∈ Ωδ. Let V
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be a C2 extension of this function to the whole Ω. Up to replacing δ with min(δ, 1), we have that V ≥ 0 in Ωδ.
Then, for ε > 0, define

vε := v + ε2V + ε.

Using the fact that v satisfies (6.2), we find that, for x ∈ Ω,

λvε(x) + H(x, Dvε(x), D2vε(x)) ≥ λε2V (x) + λε

+ ε2 inf
α∈A

(
b(x,α) · DV (x) + tr(a(x,α)D2V (x))

)

= ε2(λV (x) − F [−V ](x)) + ελ.

This last expression is positive if x ∈ Ωδ, because F [−V ] < 0 there. Otherwise, if x ∈ Ω\Ωδ, it is larger than
ε(λ − Cε), where C is a constant only depending on n,λ and the L∞ norms of a, b, V, DV, D2V in Ω \Ωδ. We
deduce that vε is a supersolution to (6.2) provided ε is smaller than some ε0. Now, since (vε − u)(x) → +∞
as x → ∂Ω, the function vε − u attains its minimum on Ω at some point y. By regularity we have that
Dvε(y) = Du(y) and D2vε(y) ≥ D2u(y). Therefore, if ε ∈ (0, ε0), we obtain

0 ≤ λvε(y) + sup
α∈A

(
−b(y,α) · Dvε(y) − tr(a(y,α)D2vε(y)) − l(y,α)

)

≤ λ(vε − u)(y) + λu(y) + sup
α∈A

(
−b(y,α) · Du(y) − tr(a(y,α)D2u(y)) − l(y,α)

)

= λ(vε − u)(y).

It follows that vε ≥ u in Ω and thus v ≥ u in Ω by the arbitrariness of ε ∈ (0, ε0). Reversing the roles of u, v
we eventually derive u ≡ v.

Step 3. A priori bounds. We start with deriving (6.3). Fix h > 0 and let δh be the δ given by Proposition 3.1
with M = 2∥l∥∞/h. Set

V (x) := −h log(d(x)) + max
Ω\Ωδh

uλ.

It is not restrictive to assume that δh ≤ 1, so that V (x) ≥ uλ(x) if d(x) = δh. On the other hand, there
exists δ′ ∈ (0, δh) small enough, depending on λ, such that V (x) > ∥l∥∞/λ ≥ uλ(x) if d(x) < δ′. Finally, since
uλ ≥ −∥l∥∞/λ and F [V ] > hM = 2∥l∥∞, for x ∈ Ωδh we get

λV (x) + sup
α∈A

(
−b(x,α) · DV (x) − tr(a(x,α)D2V (x)) − l(x,α)

)
≥ λ max

Ω\Ωδh

uλ + F [V ] − ∥l∥∞ > 0.

It follows from the fact that uλ is a (sub) solution to (6.2) that

∀δ ∈ (0, δ′), max
Ωδh

\Ωδ

(uλ − V ) = max
∂(Ωδh

\Ωδ)
(uλ − V ) ≤ 0.

Namely, uλ ≤ V in Ωδh , which is the second inequality in (6.3). The first inequality is obtained in analogous
way, by using Proposition 3.2 in place of 3.1 and considering the subsolution V (x) := minΩ\Ωδh

uλ +h log(d(x)).
We now fix x̃ ∈ Ω and we claim that the functions (vλ)λ∈(0,1] defined by

vλ(x) := uλ(x) − uλ(x̃)

are equibounded in any K ⊂⊂ Ω. Assume by way of contradiction that there exists K ⊂⊂ Ω such that

ε−1
λ := ∥vλ∥L∞(K) → +∞ as λ→ 0+.

Up to enlarging K if needed, we can suppose that x̃ ∈ K and that, for δ1 from (6.3), Ω\Ωδ1 ⊂ K. The function
ψλ(x) := ελvλ(x) satisfies ∥ψλ∥L∞(K) = 1, ψλ(x̃) = 0 and

λψλ + λελuλ(x̃) + sup
α∈A

(
−b(x,α) · Dψλ(x) − tr(a(x,α)D2ψλ(x)) − ελl(x,α)

)
= 0, x ∈ Ω.
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Note that |λελuλ(x̃)| ≤ ελ∥l∥∞ → 0 as λ→ 0. Furthermore, by (6.3), for x ∈ Ω\K,

ψλ(x) =
uλ(x) − uλ(x̃)

∥uλ − uλ(x̃)∥L∞(K)
≤

maxΩ\Ωδ1
uλ − log(d(x)) − uλ(x̃)

∥uλ − uλ(x̃)∥L∞(K)
≤ 1 − ελ log(d(x)),

and

ψλ(x) ≥
minΩ\Ωδ1

uλ + log(d(x)) − uλ(x̃)
∥uλ − uλ(x̃)∥L∞(K)

≥ −1 + ελ log(d(x)).

A first consequence of these estimates is that, in any compact subset of Ω, the ψλ are equibounded, whence
equibounded in C1,γ by Lemma 6.1. Using a diagonal procedure, we can then find a sequence λ→ 0 for which
the ψλ converge locally uniformly in Ω to some function ψ ∈ C(Ω). By stability property of viscosity solutions,
ψ solves

sup
α∈A

(
−b(x,α) · Dψ(x) − tr(a(x,α)D2ψ(x))

)
= 0, x ∈ Ω.

We further know that ∥ψ∥L∞(K) = 1, and, for x ∈ Ω\K, |ψ(x)| ≤ 1 because |ψλ(x)| ≤ 1 − ελ log(d(x)). This
means that ψ attains either the global maximum 1 or minimum −1 in K, and therefore it is constantly equal
to 1 or −1 by the Strong Maximum or Minimum Principle, which holds by (2.9). This is impossible because
ψ(x̃) = 0.

We have shown that the vλ are equibounded in any K ⊂⊂ Ω. Since they satisfy (6.2) with l replaced by
l + λuλ(x̃), and |λuλ(x̃)| ≤ ∥l∥∞, Lemma 6.1 eventually yields that they are equibounded in C1,γ(K). !

We are now in the position to prove our main result.

Proof of Theorem 2.5. First of all we prove that there exists c ∈ R such that (1.3) admits a solution. Consider
the solutions (uλ)λ∈(0,1] to (6.2). Fix x̃ ∈ Ω. By (6.4), λuλ(x̃) converges (up to subsequences) to some value −c
as λ→ 0. Define vλ = uλ−uλ(x̃). Theorem 6.2 gives that the vλ are equibounded in C1,γ(K), for any K ⊂⊂ Ω.
Thus, using a diagonalization procedure, we can extract a subsequence of vλ converging locally uniformly to
χ ∈ C(Ω), which, by stability, is a viscosity solution to (1.3). We know from Lemma 6.1 that χ ∈ C2(Ω).
Moreover, χ satisfies the same bounds (6.3) as the uλ (and the vλ). Using the fact that such bounds hold true
for arbitrary h > 0, we eventually find that χ fulfils (2.11). Uniqueness of c and χ (up to constants) follows by
the following stronger uniqueness result. !
Proposition 6.3. Let χ1 and χ2 be viscosity solutions of (1.3) with, respectively, c = c1 and c = c2. Assume
moreover there exist κ > 0 such that

lim
x→∂Ω

χ1(x)d(x)κ = 0 = lim
x→∂Ω

χ2(x)d(x)κ.

Then c1 = c2 and there exists a constant k ∈ R such that χ1 ≡ χ2 + k.

Proof. First of all, observe that by Lemma 6.1, χ1,χ2 ∈ C2(Ω). Without loss of generality we can assume
c1 ≥ c2. So,

sup
α∈A

(
−b(x,α) · D(χ1 − χ2) − tr(a(x,α)D2(χ1 − χ2))

)
≥ c1 − c2 ≥ 0. (6.5)

By Theorem 4.2 and Remark 4.3, χ1 − χ2 is a constant, and therefore c1 = c2. !
Remark 6.4. If we weaken the Hölder regularity (2.10) on the coefficients b, l of equation (6.2) to the uniform
continuity as stated in (2.3), Krylov Safonov estimates stated in Lemma 6.1 still hold, but we just expect that
any bounded continuous viscosity solution to (6.2) is C1,α(Ω) for every α ∈ (0, 1), not in C2(Ω).

This implies that in Theorem 6.2 and in Theorem 2.5 the solutions uλ to (6.2) and χ to (1.3) are of class
C1,α(Ω) for every α ∈ (0, 1). So, in the step Uniqueness of the proof of Theorem 6.2 the argument has to be
modified by using the by now standard doubling variables argument in the theory of viscosity solutions (see
e.g. [21]). Moreover, also in the proof of Theorem 2.5, the argument to prove that χ1 − χ2 solves (6.5) has to
be modified appropriately.
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6.2. A stochastic control interpretation

We show an application of the previous results to an ergodic control problem in Ω with state constraints.
Throughout this subsection, we will assume the stronger regularity assumptions on the coefficients (5.1) to hold.
It is known from [5,7] that, under the assumption (2.8) on the behavior of the coefficients near ∂Ω, the set Ω is
invariant for the control system (1.5) in the following sense: for every x ∈ Ω and any admissible control α· ∈ A,
the trajectory of (1.5) satisfies Xα·

t ∈ Ω almost surely for all t ≥ 0.
Therefore no restrictions on the controls are needed to keep the system forever in Ω, and we can define the

value function of the infinite horizon discounted control problem with state constraint Ω

vλ(x) := inf
α·∈A

E
[∫ ∞

0
e−λtl(Xα·

t ,αt)dt

]
, x ∈ Ω (6.6)

where l : Ω × A → R is a bounded function satisfying (2.3) and λ > 0. The next result states that vλ is the
solution of the PDE (6.2).

Proposition 6.5. Let (2.8) and (5.1) hold. Then vλ is continuous in Ω and it is a viscosity solution of (6.2).
If, in addition, (2.9) holds, then vλ(x) = uλ(x) for all x ∈ Ω, where uλ is the smooth solution of (6.2) given

by Theorem 6.2.

Proof. Fix ϵ > 0 and T large enough so that
∫ ∞

T e−λtl(Xα·
t ,αt)dt < ϵ for all x and α·. Pick x, y ∈ Ω and a

control α· ∈ A ϵ−optimal for the initial point y. Then, denoting with Y α·
t the trajectory starting form y and

using such control,

vλ(x) − vλ(y) ≤ E
[∫ T

0
e−λt|l(Xα·

t ,αt) − l(Y α·
t ,αt)|dt

]
+ 3ϵ.

Now we use the standard estimate E [|Xα·
t − Y α·

t |] ≤ eBt|x−y| and the assumption |l(X,α)−l(Y,α)| ≤ ω|X−Y |,
where the modulus ω can be assumed to be concave w.l.o.g., to get

vλ(x) − vλ(y) ≤
∫ T

0
e−λtω(eBt|x − y|)dt + 3ϵ

and the right hand side can be made smaller than 4ϵ by choosing |x − y| small enough. Then the continuity
of vλ is obtained by repeating the argument with the roles of x and y reversed. Once this is established the
Dynamic Programming Principle is a standard result, as well as deducing from it that vλ solves the equation
in Ω in viscosity sense, see, e.g., [23].

The last statement follows from Theorem 6.2. !

Next we show that under the conditions (5.1) and (2.8) of this section also the open set Ω is invariant for
the control system (1.5), in analogy with Proposition 5.1.

Proposition 6.6. Assume (2.8) and (5.1). Then, for every x ∈ Ω and every admissible control α·, Xα·
t ∈ Ω

almost surely for all t ≥ 0, i.e. τα·
x = +∞ almost surely, where τα·

x is defined in (5.3).

Proof. The proof follows the same arguments as in the proof of Proposition 5.1. Let U be a C2 extension of the
function log(d(x)) to the whole Ω, which coincides with log d(x) in a neighborhood of ∂Ω. We can assume that
U ≤ −1 in Ω and moreover, by Proposition 3.6, there exists a constant C ≥ 0 such that

F [U ](x) ≤ C x ∈ Ω.

By suboptimality principles for viscosity solutions (see [19]), we get for every δ > 0, every x ∈ Ω \ Ωδ and
every t ≥ 0, recalling that V ≤ −1,

U(x) ≤ inf
α·∈A

E
[
U

(
Xα·

τδ,α·
x ∧t

)
+ C

(
τδ,α·
x ∧ t

)]
,
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and then for all x ∈ Ω, and all δ > 0

sup
α·∈A

P
(
ω | τδ,α·

x (ω) ≤ t
)
≤ Ct − U(x)

− log δ
·

So, for every t ≥ 0,
sup

α·∈A
P (ω | τα·

x (ω) ≤ t) = 0.

From this we conclude as in the proof of Proposition 5.1 that P (ω | τα·
x (ω) < +∞) = 0 for every α· ∈ A. !

This result allows us to interpret uλ(x) = vλ(x) with x ∈ Ω also as the value of the discounted infinite horizon
problem with state constraint the open set Ω. We can also give a representation of uλ that is more consistent
with the method of construction by means of Neumann boundary conditions used in Theorem 6.2. In fact, the
condition ∂νu = 0 on ∂Ω is related with the optimal control of systems for the state equation

{
dXα·

t = b(Xα·
t ,αt)dt +

√
2σ(Xα·

t ,αt)dWt − ν(Xα·
t )dkt, Xα·

0 = x ∈ Ω

kt =
∫ t
0 ∂Ω(Xα·

s )dks is nondecreasing,
(6.7)

where Xα·
t and kt are adapted continuous processes, ν is the unit outward normal to ∂Ω, and ∂Ω is the

indicator function of ∂Ω. This is a controlled diffusion process with normal reflection at the boundary (see,
e.g., [3]). By Proposition 6.6, if x ∈ Ω, the trajectory of (6.7) corresponding to a given control α· ∈ A coincides
a.s. with the trajectory of (1.5) associated with the same control. Therefore the solution uλ of the PDE (6.2) is
also the value function of the discounted infinite horizon problem for the system (6.7) with trajectories reflected
at the boundary.

In conclusion we obtain a stochastic representation formula for the solution pair c,χ of the ergodic Bellman
equation (1.3).

Corollary 6.7. Let (2.8), (2.9), (5.1), hold and let vλ be defined by (6.6) with Xα·
t solving either (1.5) or (6.7).

Then the constant c of Theorem 2.5 satisfies

c = lim
λ→0+

λvλ(x) ∀x ∈ Ω, (6.8)

and for any x̃ ∈ Ω, a solution of (1.3) corresponding to c is

χ(x) = lim
λ→0+

(vλ(x) − vλ(x̃)) , x ∈ Ω,

where the convergence is locally uniform in Ω in both limits.

The formula (6.8) shows a connection with ergodic control, since the limits

lim
λ→0+

λE
[∫ ∞

0
e−λtl(Xα·

t ,αt)dt

]
, lim

T→+∞

1
T

E
[∫ T

0
l(Xα·

t ,αt)dt

]

coincide if either one exists, by classical Abelian−Tauberian theorems.
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