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Comparison of Pleiades and LiDAR Digital Elevation
Models for Terraces Detection in Farmlands
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Abstract—Among the most evident anthropogenic modifications
of the landscape, terraces related to agricultural activities
are ubiquitous structures that constitute important investments
worldwide, and they recently acquired a new relevance to mod-
ern concerns about land-use management and erosion control.
Conservation agriculture and terraces management are an appli-
cation with great potentialities for Satellite Earth observation and
the derived high-resolution topography. Due to its high agility,
the Pleiades satellite constellation provides new, high-resolution
digital elevation models (DEMs) with a submetric resolution that
could be potentially useful for this task, and their application
in a farmland context is nowadays an open research line. This
work provides a first analysis, performing an automatic terrace
mapping from DEMs obtained from Pleiades images, as com-
pared to LiDAR DEMs. Two existing methods are considered:
1) the fast line segment detector (LSD) algorithm and 2) a geomor-
phometric method based on surface curvature. Despite the lower
performances of Pleiades DEMs with respect to that of the LiDAR
models, the results indicate that the Pleiades models can be used to
automatically detect terrace slopes greater than 2 m with a detec-
tion rate of more than 80% of the total length of the terraces. In
addition, the results showed that when using noisy DEMs, the geo-
morphometric method is more robust, and it slightly outperforms
the LSD algorithm. These results provide a first analysis on how
effective Pleiades DEMs can be as an alternative to LiDAR DEMs,
also highlighting the future challenges for monitoring large extents
in a farmland context.

Index Terms—Accuracy, cultivated landscapes, LiDAR, line
detection, stereo-photogrammetry.

I. INTRODUCTION

I N the past few decades, environmental research has become
aware of the extent of the human impact on ecologic and

geomorphic systems [1]–[5].
Among the most evident human-induced landscape modifi-

cations, terraces related to agricultural activities are ubiquitous
features, and they constitute important capital investments
in a range of landscapes worldwide [4], typically enduring
over many human generations [6]. The importance of terraced
landscapes has been underlined from different point of views,
ranging from cultural and environmental (e.g., the World
Cultural Heritage Sites by UNESCO and [7]), to sustainable
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land use [6], [8], [9], ecosystem importance [10], [11], erosion
control, runoff, and water management [4], [12], [13], [19],
[21]. In recent times, terraced areas acquired a new relevance
to modern concerns about land-use management and erosion
control [15]–[18], being the agricultural land mostly threatened
by abandonment [4], or, on the other hand, intensification and
specialization of agriculture resulting in heavy land levelling
and/or construction of more landslide-prone bench terraces
[14]. Giving the terraces obvious relevance public authorities,
land managers and researchers have called for the development
of cost-effective and flexible methods for the identification
and monitoring of these features [20], as a basis for a correct
management and to diagnose erosion and hydrological risks at
the catchment or hillslope scale [4]. Despite their importance,
only few terraces have been delineated and are available in
national geographical databases [4], [22]. Thus, most of the
recent literature dealing with terraces approached to their
identification through field survey, interviews with the local
population, or interpretation of aerial photographs and succes-
sive digitalization (e.g., [6], [23], [24]). Currently, only few
automatic methods have been presented to map agricultural
terraces [4], [20], [25], [26].

Pleiades is the most recent satellite mission providing opti-
cal images at any point of the Earth surface [27]. Due to
the agility of the sensor, the Pleiades constellation allows
the acquisition of stereo pairs and triplets for highly coher-
ent conditions [28], [29]. The agility of the satellite and the
availability of this dataset have risen questions about what is
feasible and what is efficient, regarding 3-D mapping from
multi-angle image sequences [27]. While the effectiveness of
high-resolution datasets in anthropogenic environments has
already been proven (see [30] for a full review), the feasibil-
ity of Pleiades datasets in the form of digital surface models
(DSMs) has been proven for building extractions, e.g., [27],
but no work in literature has proven so far the effectiveness
of Pleiades DEM for agricultural landscapes. Precision farming
and agricultural control are application with great potentialities
for Earth observation if efficient methodologies could be used
to extract useful and accurate end users’ information [31], and
the use of Pleiades DEMs as an alternative to LiDAR DEMs
for monitoring large extents and surface changes has yet to be
proven and operationally implemented.

Three questions are still unanswered: 1) Are Pleiades derived
DEMs accurate and detailed enough for mapping farmland
terraces? 2) Given the same resolution, are the mapping perfor-
mances comparable with LiDAR DEMs? 3) Is there a signifi-
cant difference in terrace mapping performances when using a
digital terrain model (DTM) or a DSM?
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Fig. 1. Location of the study site and view of the area in (a) 2002 and (b) 2013.
Images as seen on Google Earth.

The objective of this paper is to assess the performances of
automatic terrace mapping from DEMs obtained from a stereo
pair of Pleiades images compare to LiDAR DEMs. The dataset
used for the performance assessment covers a 4-km2 region
of gentle, hilly Mediterranean vegetated farmland in southern
France. First, this paper presents the datasets and some pre-
liminary analysis results from the DEM comparison. The DEM
processing methods, including DEM smoothing, feature extrac-
tion, and vector postprocessing, are discussed next. Then, the
performances of both methods and the reliability of the Pleiades
DEM for delineating terraces are discussed.

II. DATASETS

Reference terrace data, Pleiades images, and a LIDAR 1-m
DSM and DTM were acquired for a portion of the Peyne catch-
ment (southern France) (Fig. 1). The area is mainly covered
by vineyards, with small areas of cereal fields and shrubs.
The elevation for the study site ranges between 50 m a.s.l.
to about 125 m a.s.l. The climate in this region is subhu-
mid Mediterranean, with 600 mm year−1 of precipitation. Two
short rainy seasons, one in the autumn and one in the spring,
occur with intense rainfall. The climate and intensive vine
cultivation make this area sensitive to flash flooding and ero-
sion. Consequently, settlements from Roman times built several
structures to limit floods and soil erosion, including ditches,
embankments and terraces (e.g., [32]). The study site has
been intensively surveyed for a long time, having been a part
of an environmental observatory since 1992 (ORE OMERE:
http://www.obs-omere.org/). In the study area, terraces have
heights ranging from approximately 0.3 to 10 m. Their location
and shape have not changed during the period of the different

Fig. 2. Ground truth dataset overlapped to the Pleiades DSM.

data acquisition dates: there were no significant modification
in between 2002 (time of the LiDAR collection) and 2013
(Pleiades survey) (Fig. 1).

A. Ground Truth Data

A systematic field survey was conducted in 2010, with a
survey rate of 1.5–3 km2 day−1 per person, depending on
the accessibility of the terrain. The terraces were delineated
with an elevation accuracy of 0.1 m for heights lower than
3 m and 0.5 m for elevations higher than 3 m. Regarding the
terraces height, the considered reference field survey was in
some instances limited by the accessibility of the area, thus a
higher accuracy cannot be expected. Because of this, in this
study ground height data are used to group the field-surveyed
terraces in different height classes, to project the detection
results regarding the terrace height. The overall survey qual-
ity is comparable to the official information generally avail-
able about terraces locations. The surveyed features, including
their location and height, were further verified and digital-
ized using a 0.5-m resolution aerial photo (BD-Ortho ©IGN)
(Fig. 2).

B. Pleiades DEMs

A DSM was built from a stereo pair of Pleiades images
acquired during the leaves-off period of vegetation (January
2013) at a high global incidence angle (30◦) leading to a base-
to-height (B/H) ratio of ∼ 1/1.6 which is a usual ratio for
stereo pair of satellite images. The DSM was produced by
using the open source MicMac (Multi-Image Matches for Auto
Correlation Methods) tool developed at the French Mapping
Agency (IGN) [33], [34].

MicMac is based on the minimization of a global energy that
combines a data term which is the image matching score and a
regularization term

Eα(Z) = 1− corr(x, y, Z(x, y)) + αF (
−→
G(Z)) (1)

where corr is the normalized cross-correlation score at the
image projections of point (x, y, Z), F (

−→
G(Z)) (2) is a positive

function that depends on the variations of Z, and it is a regular-
ization term that expresses the a priori knowledge of the surface
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regularity. α is a weighting parameter for the regularization
term

F (
−→
G(Z)) = |(Z(x+ 1, y)− Z(x, y))|

+ |(Z(x, y + 1)− Z(x, y))|. (2)

The regularization term is well suited for high-spatial resolu-
tion images since it varies with the terrain discontinuities [35].
In this study, the α parameter was set to be very low to main-
tain the terrace slopes. To deal with large areas, the MicMac
method has a multiresolution pyramidal approach that consists
in starting the computation at a coarse resolution to reduce
the height-search space and improving recursively the match-
ing process at each resolution, similar to [36]. The final DSM
was resampled at a resolution of 1 m, to be comparable with the
resolution of the LiDAR DEMs.

From this DSM, a DTM was generated. Terrace walls present
a high local slope, and many DTM filters aim to smooth DSMs
(i.e., remove slopes). Consequently, instead of using the usual
slope-based filtering algorithm [37], we applied a normal clos-
ing filter with circular structural elements of 10 m followed by
a Gaussian smoothing filter with a width of 5 m. In mathemat-
ical morphology, the closing tends to enlarge the boundaries
of foreground (bright) regions in an image (and shrink back-
ground color holes in such regions). The effect of the operator
is to preserve background regions that have a similar shape to its
structuring element, or that can completely contain the structur-
ing element, while eliminating all other regions of background
pixels. The choice of the structural element size was governed
by the size of the removed object (i.e., vine lines, isolated trees,
and hedgerows). A Gaussian-smoothing filter was then applied
to reduce noise on the resulting map while preserving edges on
the image. Consequently (Fig. 3), the obtained DTM looks less
noisy than the initial DSM and the terraces are preserved in the
landscape.

The final datasets (Pleiades DSM and DTM) show no sys-
tematic error over permanent terrain structures (1.8e−06 m),
while presenting an overall standard deviation of errors of
0.51 m with respect to centimetric DGPS points.

C. Multi-echo LiDAR DEMs

LiDAR data were acquired over the study area in June
2002 with a Falcon II Toposys LiDAR system mounted on a
helicopter (flight elevation: 900 m; laser pulse emission rate:
83 MHz; 3-D points spatial sampling rate: 10 pts m−2 [38]).
The 3-D point cloud allowed the creation of a 1-m DTM and
DSM.

The DSM was computed using bilinear interpolation of the
first pulse points at the regular grid DTM node locations.
The DTM was computed using the same process from the
last pulse scatter of points. From the latter pulse, an addi-
tive erosion filter with an adaptive structural element size
was applied to remove some residual surface objects (houses,
dense forests, and hedgerows). The postsurvey accuracy on the
LiDAR last-pulses topographic points on flat and nonvegetated
areas exhibited a Gaussian noise, with a standard deviation of
approximately 0.06 m [38] with respect to centimetric DGPS
points.

Fig. 3. Pleiades DSM to DTM process. (a) Initial DSM. (b) DTM after opening
and Gaussian filters on a hillslope of the study area.

D. LiDAR and Pleiades DEMs Comparison

Because the Pleiades DSM was acquired 12 years later than
the LiDAR DSM and the aim of this work is to extract the
man-made structures in the landscape, the elevation of the two
datasets was compared only for permanent structures (roads,
ways, terraces). Due to the non-Gaussian deviation distribution
with short tails, robust statistics were computed by comparing
the elevations at the remaining 87 000 grid nodes. The absolute
median deviation between the Pleiades and LiDAR elevations
was estimated to be 0.35 m. Overall, 90% of the deviations
belong to [−1.4 m, +1.1 m], and 50% of the deviations belong
to [−0.17 m, +0.42 m]. As pointed out by [39], the feasibil-
ity of Pleiades datasets and the quality of the derived DEMs
in relation to the incidence angle depend on the context: in
open landscapes without severe occlusions, the use of a single
stereo pair can provide optimal results also with a fairly wide
stereo angle. Giving the initial incidence angle of the consid-
ered dataset (30◦), despite being more noisy, the overall quality
of the Pleiades derived elevation surfaces is close to that derived
from the airborne DEMs. As well, despite the local scale rough-
ness, the Pleiades DSM shows an elevation disruption for every
terrace location, as shown in Fig. 4.

III. METHODS

A. Terrace Slope Detection Using the Fast Line Segment
Detection (LSD) Image Processing Algorithm

This detection method relies on two steps: a DTM or DSM
local contrast enhancement step providing a gray-level image
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Fig. 4. Pleiades and LiDAR DSM comparison. (a) 2002 Lidar DSM is com-
pared to (b) 2013 Pleiades DSM. The figure also shows an elevation profile of
a hill slope and the terrace locations (c).

Fig. 5. LSD method. (a) Original DEM. (b) DEM local contrast enhancing
from a Gaussian filter. (c) Gradient magnitude image. (d) Detected line segment
in red.

from which a final feature extraction step (LSD) is performed
(Fig. 5).

The LSD aims at detecting locally straight contours on
images, with a contour being an area where the gray level is
changing fast enough from dark to light or the opposite [41].
To obtain a monochromatic image and enhance terrraces as
contours, the elevation contrast of the DEM was increased by
subtracting a regularized DEM after Gaussian smoothing with
a radius of 10 pixels to the initial DEM [Fig. 5(c)].

Next, the image is processed using the fast LSD algo-
rithm [40]. The following paragraphs will expose its main

Fig. 6. Examples of a (a) synthetic image of (b) gradient (blue) vectors, direc-
tion and magnitude and a (c) region with aligned (green) pixels on an image
edge that was approximated by a rectangle. Images modified from [40].

characteristics and parameters, despite its presentation as a
parameterless method [41].

Given an image gradient [Fig. 5(c)], the method computes
a level-line field, where level lines are created at each pixels
as vectors orthogonal to the gradient direction. The level-line
field is then segmented into connected regions of pixels that
have the same level-line orientation, up to a certain toleration
angle τ (Fig. 6). Each region is considered as a possible line
candidate. The acceptation–rejection of a region as a line seg-
ment follows the Helmholtz principle, which states that no line
segment should be detected in an image of pure noise.

The acceptation–rejection relies on the following processes:
1) a rectangle entirely covering each region is delineated
(Fig. 6); 2) the center of mass of the region is used to select
the center of the rectangle, and the first inertia axis is consid-
ered to select the rectangle orientation; 3) for each rectangle,
the total number of pixels in the rectangle n and its number of
aligned points (level lines having their orientation within the
τ tollerance) k are counted; 4) for each rectangle, the score k

n
is calculated; 5) this score is compared with a binomial k dis-
tribution under an hypothesis H0 of pure random angle fields
(noise) with a distribution angle of [0, π]; and 6) the region is
accepted as a line segment when the score is rare in the H0 dis-
tribution (low probability). This latter test is also referred to as
a a contrario approach [41].

In a final step, a vectorized line segment list is produced from
the rectangular properties of the image coordinates.

Six parameters are required in the LSD algorithm:
τ, S, q, e, d, c. The tolerance angle τ is the first of parameter and
is expressed in degrees with a default value of 22.5 as supported
by tests on numerous images [40].

The scale factor S controls the image size reduction and
avoids some artifacts in the computation. S is expected to range
from 0.8 (no scaling) up to ∞. The c parameter controls the
Gaussian kernel width (standard deviation) and is equal to c

S
with a default c value of 0.6.

The q parameter controls the gradient threshold ρ = q
sin(τ) .

Pixels with gradient magnitudes smaller than ρ are excluded
when a region grows. q is generally fixed to 2 and should
change when the image intensity range differs from the [0, 255]
interval.

The e parameter denotes the acceptation probability thresh-
old of the k distribution under H0. However, the LSD algorithm
is hardly sensitive to this parameter [41].

The last control parameter is the minimal density d of the
region of aligned pixels in the rectangle to be accepted. This
parameter is considered in addition to the a contrario test and
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TABLE I
LSD PARAMETER VALUES

LSD
parameters q e
LiDAR DTM 3 20
LiDAR DSM 8 20
Pleiades DTM 3 80
Pleiades DSM 3 80

is expected to range from 0 to 1. The default d value was fixed
to 0.5.

The retained optimized parameter values for this study case
are exposed in Table I. Only the q and e parameters were opti-
mized, the other parameters were fixed with values of τ = 22.5,
c = 0.6, d = 0.5, and S = 3. In this study case, we generally
selected q = 3 in order to minimize the effect of local noise
(local bumps). A higher value for q was used for the LiDAR
DSM. This dataset was acquired during the vines vegetative
period, thus the vine rows gave high linear local gradient on
the map: this high gradient was compensated by selecting the
higher q. This was not needed for the Pleiades DSM, acquired
at the nonvegetative period.

B. Terrace Slope Detection Using a Geomorphometric
Algorithm

Physical processes and anthropic elements leave important
topographic signatures that can be studied using distribution
analysis. In addition, recent literature has underlined how sta-
tistical analyses along with LiDAR-derived topographic param-
eters facilitate the objective recognition of different types of
landscape features and processes (e.g., [42], [43]). For this
study, we applied the feature extraction technique proposed
by [44] and effectively tested by [4] for identifying terrace
walls. According to this approach, the surface morphology is
approximated by the following quadratic function:

z = ax2 + by2 + cxy + dx+ ey + f (3)

where x, y, z are local coordinates, and a through f are
quadratic coefficients.

Any terrace wall represents a ridge on the side of the hill;
therefore, the maximum curvature Cmax (4) can be consid-
ered as an optimal parameter. Cmax is derived by solving and
differentiating (3) within a local moving window as follows
[45]:

Cmax = kg(−a− b+
√

(a− b)2 + c2) (4)

where k denotes the size of the moving window and g denotes
the DEM resolution.

Anthropogenic elements such as terrace slopes present
clearly defined boundaries with much sharper shapes than
natural terrain features. Consequently, these elements can be
identified as outliers in the positive tail of the Cmax distribu-
tion [44]. Considering a robust statistic approach [46], these
elements can be identified as outliers of a whisker plot, as the
points verify the following:

Cmax > Q3 + 1.5IQ (5)

where Q3 and IQ, respectively, denote the third quartile and
inter-quartile distance of the Cmax distribution.

The thresholding approach (5) produces a raster map of the
potential terraces. To calculate the vector map of the terraces
that correspond to the raster centerline, we use a method that
is similar to the one proposed by [47]. This approach is based
on the Marr–Hildreth technique [48] and is less computation-
ally intensive than other methods [49]. The algorithm divides
the raster into subsets of 100× 100 pixels that are processed
simultaneously and in parallel. For each subset, the algorithm
focuses on each extracted region of pixels and processes it using
the following steps.

1) Determining the Euclidean distance from each feature
pixel to the nearest background pixel.

2) The distance map is convolved with a bidirectional
Laplacian filter in a manner similar to that of the Marr–
Hildreth edge detection algorithm [48].

3) To obtain the centerline, [47] suggests using a thresh-
old between 0.7 and 0.9 to apply to the output of the
Laplacian convolution. Anything below this threshold is
considered part of the centerline. The authors noted that
the threshold value has little impact on the final line.
However, the threshold is important for ensuring the con-
tinuity of the centerline, with a higher value resulting
in a more robust centerline calculation. After the differ-
ent trials in this study, we considered 0.5 as the optimal
threshold.

4) The final centerline can be more than one pixel wide;
therefore, the produced output is further thinned to reduce
the centerline to a width of one pixel and the final
centerline is converted into a vector line.

C. Detection Performance Analysis

Quantitative assessments of the terrace slope detection meth-
ods were performed using the buffer method, initially proposed
by [50] to quantify road detection performances. This method
matches the overlapping of the detected and reference vec-
torized network, with performance metrics based on network
lengths. In addition, this method can be applied to either a
connected or unconnected network, which is the case for a ter-
race slope network. More specifically, this method measures the
length of the detected network included (TP1) or not included
in the reference domain and the length of the reference network
included (TP2) or not included in the detected domain. The
domains are defined as buffers around the two networks. The
width of the buffer is the only required parameter, which was
fixed to 10 m to account for the planimetric accuracies of each
dataset.

First, three usual performance metrics are computed from the
matching: 1) the true positive metric (TP ), which is the average
between TP1 and TP2; 2) the true negative TN (omission),
which is the length of the reference not included in the detected
network domain; and 3) the false positive FP (commission),
which is the length of the extracted network not included in
the reference domain. These metrics are normalized to the total
length of the reference network to a range of [0,1].
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TABLE II
DETECTION PERFORMANCES OF THE LIDAR DATASETS

Method DEM TP TN FP FP QI
Type 1 2 (1)

LSD DTM 0.95 0.05 0.20 0.33 0.79
LSD DSM 0.75 0.25 0.40 0.61 0.54
Curv DTM 0.98 0.02 0.36 0.68 0.72
Curv DSM 0.76 0.24 0.31 0.70 0.58

An additive performance metric stemming from the previ-
ous metrics provide a quantitative assessment of the terrace
detection, which makes an objective comparison between sev-
eral detection methods possible [51]. This metric, also named
quality index QI ranges from 0 (lowest quality) to 1 (highest
quality)

QI =
TP

TP + TN + FP
=

TP

1 + FP
. (6)

Finally, because terrace slopes are exclusively located at the
borders of agricultural fields and because plot databases are fre-
quently available, performance metrics were computed from the
raw terrace segment lists out of the detection methods and from
reduced lists, excluding the terrace segments that were located
far away (10 m) from the plot border lattice. This considera-
tion only changes the FP statistic computation. Furthermore,
FP1 denotes the FP metric computed for reduced lists and
FP2 denotes the FP metric computed for the raw complete
list.

IV. RESULTS

A. Detection Performance Results: LiDAR DEMs

The performance metrics of the terraces delineation from
LiDAR DSM and DTM are exposed in Table II. The results
showed that at least 95%–98% of the terrace slopes were
detected on DTM, regardless of the method. The LSD method
is producing fewer commissions and is providing the highest
quality index value. Fig. 7 shows that TN occurs in the LiDAR
DTM when using the LSD method on flat areas where the ter-
races slopes have low heights. Similarly, FP occurs on the
LiDAR DTM using the LSD method on 1) the steepest slopes,
where bushes and hedgerows can perturb the accuracy of the
DTM, and 2) along the main roads and down to the streams in
areas where river or ditch banks can be confused with terrace
slopes. Similar behavior can be observed when using the geo-
morphometric method. The results in Table II show similar and
high raw commissions when using the LSD and geomorphome-
tric methods. However, commissions are highly reduced thanks
to the plot-border filter postprocessing.

When applying the methods to the LIDAR DSM, the detec-
tion performances were reduced with true positive rates of
approximately 75% for both methods. However, the geomor-
phometric method slightly outperforms the LSD method when
applied to LiDAR DSM. This result suggests that the geomor-
phometric method may be more robust when applied to noisy
DEM.

Fig. 7. Maps of the terraces detected using (a) the LiDAR DTM and the
geomorphometric method or (b) the LDS method. Resulting TP elements in
black, TN elements in red, filtered FP elements in blue, and nonfiltered FP
elements in light blue.

TABLE III
DETECTION PERFORMANCES OF THE PLEIADES DATASETS

Method DEM TP TN FP FP QI
Type 1 2 (1)

0.50
0.37
0.52

LSD DTM 0.62 0.38 0.23 0.68
LSD DSM 0.44 0.56 0.20 0.58
Curv DTM 0.65 0.35 0.26 0.79
Curv DSM 0.50 0.50 0.22 0.87 0.41

B. Detection Performance Results: Pleiades DEMs

Table III shows the performance metrics of terrace slope
delineation from the Pleiades DSM and DTM.

The results show that only 65% of the terrace slopes are
detected on the Pleiades DTM when using the geomorpho-
metric method. The LSD method is producing slightly fewer
commissions if compared with the geomorphometric method,
but at the same time it provides less TP values. In gen-
eral, the detection performance is systematically lower (−15%)
using the Pleiades DSM. Commissions are numerous, but the
results are, however, improved using the plot-border filter post-
processing. Results on the Pleiades DTM show quite similar
performances using the LSD or the geomorphometric method.
The geomorphometric method, however, outperforms the LSD
method when applied on the Peiades DSM: for this dataset,
the LSD seems very sensitive to DEM noise. Similar to the
LiDAR results, Fig. 8 shows that TP occurs in the Pleiades
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Fig. 8. Maps of the terraces detected using (a) the Pleiades DSM and the
geomorphometric method or (b) the LDS method. Resulting TP elements in
black, TN elements in red, filtered FP elements in blue, and nonfiltered FP
elements in light blue.

DTM when using the geomorphometric method on the steepest
slopes where terrace slopes are tall. FP s occur in the Pleiades
DTM when using the geomorphometric method on areas where
bushes and hedgerows can perturb terrace slope representation,
especially along plot borders.

However, except when using the LSD method in the Pleiades
DSM, the detection rate is always higher than 70% when the
terrace height is greater than 3 m (Fig. 9). The detection rate of
the terrace heights is greater than 3 m and is at least 80% when
using LiDAR or the Pleiades DTM. Fig. 9 also clearly shows
that the LSD method fails in terrace slope detection when using
the Pleiades DSM, regardless of the slope height.

V. DISCUSSION

A. Pleiades Versus LiDAR Performances

The effectiveness of Pleiades for extracting anthropogenic
features has been proved in other studies, mainly for building
detection [27]. However, this study shows that the very high
spatial resolution of the datasets allows the detection of smaller
features on the Earth’s surface, such as terraces with heights
comparable to the DEM resolution (1 m). Pleiades DTMs pro-
vide results that are comparable with the analyses performed
with LiDAR DSMs. On the other hand, Pleiades DSMs have a

Fig. 9. Detection rate (TP ) as a function of the terrace height.

slightly lower performance that is, however, comparable with
other referenced LiDAR DTM analyses of more complex fea-
tures under vegetation cover in mountainous areas [52]. This
latter point can be explained by the roughness of the models.
In the Pleiades DSM, being derived from satellite images, the
morphology of specific features can be masked by the pres-
ence of objects on the ground as well as by their shadows. In
addition, the incidence angle of the satellite might have influ-
enced the quality of the dataset: even if the overall median
difference between the LiDAR and the Pleiades datasets is low
(35 cm), locally, there might be a local loss of resolution as
well as some spatial artifacts induced by the incidence angle,
causing the lower accuracy of the extraction mainly due to a
lower completeness of the extracted features (higher number
of TNs and lower number of TPs if compared to the average
values of LiDAR DSMs). The size of the analyzed features
(height) is only slightly important when considering LiDAR
DTMs and the effectiveness of detections (TPs): both the geo-
morphometric and the LSD algorithm quality converge when
the features tend to increase in size. By contrast, when using
noisy datasets (LiDAR DSM or Pleiades DEMs) the feature
size is important for determining the effectiveness of the extrac-
tions, especially when using the geomorphometric approach.
Specifically, when features are greater than approximately 3 m,
the rate of TPs is similar for the LiDAR and Pleiades datasets.
In our case, for local slope discontinuities (terraces), their ver-
tical position in the Pleiades dataset may be underestimated
due to a lower correlation scores especially with a high-B/H
ratio; however, the terraces are well localized in the image and
this is sufficient for the proposed application: overall, the per-
formances of the Pleiades DSMs are comparable with those
of the LiDAR DSMs. However, the Pleiades system allows
wider coverage of approximately 100× 100 km2, which can be
acquired by the satellite from the same orbit, and offers a new
tool for large-scale applications when compared with LiDAR
DEMs.
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B. Automatic Mapping of Terraces

Previous research regarding the extraction of features using
curvature on LiDAR DTMs highlights how curvature can pro-
duce results with high branching (higher number of FP), which
corresponds with greater extraction completeness [44]. Similar
conclusions can be drawn when considering LiDAR DTMs
and the proposed geomorphometric method, which produces a
higher number of TPs and lower TN values when compared
with the LSD method. When using the same topographic infor-
mation, the geomorphometric method performs better when the
terraces are less than 3-m tall and produces a slightly lower
number of omissions. This result corresponds with the findings
of [44], which underline how using curvature could be better for
identifying smaller features. The use of algorithms based on the
linearity of features (LSD) rather than on their convexity (geo-
morphometric) appears to work in the presence of more clean
datasets (DTMs), independently of the considered remote sen-
sor (LiDAR vs. Pleiades). Linear detection provides a slightly
higher reliability for neat datasets from LiDAR (DTMs).

C. Future Challenges: DSM or DTM, Filtering Problems,
Additional Required Processing, Dataset Resolution

Considering the results in Tables II and III and the perfor-
mances displayed in Fig. 8, the use of DTMs seems more
appropriate when using LiDAR surveys and photogrammetry
from Pleiades. Generally, DSMs are too noisy for comparable
feature detection, but they produce good results if compared
to other works in literature based on different sources and
landscapes (e.g., DTMs from LiDAR [52], [53]). However, if
features are large enough (generally higher than 3 m), the use
of the geomorphometric approach gives good and compara-
ble results using DSMs and DTMs. For this work, the only
postprocessing procedure considered was a filter based on the
plot border. Further improvements could be obtained, espe-
cially when using the geomorphometric approach. For example,
the skeletonization process could be improved and the looping
and branching of the vector map could be reduced. In addi-
tion, using a preprocessing filter on the DSMs (median filter
or Gaussian filter) could reduce the noise improving the per-
formance of the algorithms. Further, to test the full Pleiades
performances, it will be interesting to evaluate terraces extrac-
tion using the full-resolution DSMs (smaller than 1 m, in some
areas), to investigate the effect of noises (due to errors or sur-
face roughness) on higher resolution DEMs (similar to what
has been done in [53]–[55]) when comparing extracted features
with the ground truth datasets. These points are still open for
future research.

VI. CONCLUSION

Three major results were obtained from this study. From
the algorithm point of view, the analysis underlined that the
geomorphometric algorithm is generally more robust than the
LSD algorithm when applied to noisy DEMs. This informa-
tion could be useful in general also for other researches dealing
with feature extractions from DEMs from multiple sources.
Considering the topographic information, the automatic map-
ping of terraces from Pleiades DEMs is reliable for terraces that

are higher than 2 m, also thanks to a postprocess filter to avoid
commissions far away from the plot boundaries. LiDAR detec-
tion performances are systematically higher than the Pleiades
performances, especially when using a DTM. However, the fil-
tering of the Pleiades DSMs and the successive creation of
DTMs seems to give promising results, especially consider-
ing the wider coverage that can be obtained by this dataset
compared to the LiDAR coverage.
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