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ABSTRACT:

In recent years, Unmanned Aerial Vehicles (UAVs) are attracting more and more attention in both the research and industrial com-
munities: indeed, the possibility to use them in a wide range of remote sensing applications makes them a very flexible and attractive
solution in both civil and commercial cases (e.g. precision agriculture, security and control, monitoring of sites, exploration of areas
difficult to reach).
Most of the existing UAV positioning systems rely on the use of the GPS signal. Despite this can be a satisfactory solution in open
environments where the GPS signal is available, there are several operating conditions of interest where it is unavailable or unreliable
(e.g. close to high buildings, or mountains, in indoor environments). Consequently, a different approach has to be adopted in these
cases.
This paper considers the use of WiFi measurements in order to obtain position estimations of the device of interest. More specifically, to
limit the costs for the devices involved in the positioning operations, an approach based on radio signal strengths (RSS) measurements
is considered.
Thanks to the use of a Kalman filter, the proposed approach takes advantage of the temporal dynamic of the device of interest in order
to improve the positioning results initially provided by means of maximum likelihood estimations.
The considered UAVs are assumed to be provided with communication devices, which can allow them to communicate with each other
in order to improve their cooperation abilities. In particular, the collision avoidance problem is examined in this work.

1. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) is becoming more
and more frequent in both research and industrial applications:
indeed, their possibility to be used in a wide range of remote
sensing applications makes them a very flexible and attractive
solution in both civil and commercial cases (e.g. precision agri-
culture, security and control, monitoring of sites, exploration of
areas difficult to reach (Zhang and Kovacs, 2012, Maza et al.,
2011, Casbeer et al., 2006, Guarnieri et al., 2010)).

UAV positioning system is usually based on the use of the GPS
signal: despite being a quite general solution to the positioning
problem, positioning system based on the GPS signal actually
have some issues in certain operating conditions. More specifi-
cally, this positioning approach cannot be applied where the GPS
signal is not available or not reliable, and for applications where
the positioning precision required to the device is higher than that
ensured by the GPS positioning in that environment.

Furthermore, when more than one UAV is simultaneously in ac-
tion, the strategies initially adopted in the literature were based
on a centralized approach (Boivin et al., 2008, Wang et al., 2007),
where the computational load is concentrated on a single central
computational unit. However, this strategy becomes inefficient
when dealing with a large number of devices. Despite in most
of the applications of interested the number of UAVs is typically
quite limited, it is worth to consider a strategy that efficiently
scales with the number of devices, e.g. a distributed approach.

The above considerations motivate the search for alternative op-
tions in order to substitute or improve the positioning based on the
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GPS signal and, if possible, to make the adopted approach com-
putationally efficient even when dealing with a (possibly) large
scale network of UAVs.

Recently, (Luo et al., 2013) proposed to consider a positioning
approach based on the use of the radio signal strength: (Luo et
al., 2013) considered the use of an extended Kalman filter in or-
der to reduce the bad influence of colored noise on the position
estimation algorithm. Then, a cooperative strategy was adopted
to ensure collision avoidance between UAVs: each UAV com-
putes estimates of the distance from its neighbors by means of
RSS measurements, and, if needed, applies a simple procedure
in order to avoid collisions. The risk of collision is determined
by checking if the distance between the two UAVs is lower then
a safety distance, where the safety distance is determined tak-
ing into account of the velocities of the UAVs (velocity informa-
tion is sent between UAVs by means of WiFi communications),
of their distance and of the error on the distance measurement
achieved by means of RSS measurements. The adopted collision
avoidance procedure is designed to avoid collisions between two
UAVs, however it does not allow to deal with a generic number
of vehicles.

Similarly to (Luo et al., 2013), this paper considers an approach
for position estimation based on the use of the radio signal strength
and on the cooperation between devices to avoid collisions. How-
ever, differently from (Luo et al., 2013), in order to reduce the
computational complexity of the approach, the positioning algo-
rithm is based on the use a linear Kalman filter. Nevertheless,
maximum likelihood measurements are used to ensure good per-
formance of the linear Kalman filter.

The rationale is that of exploiting maximum likelihood estima-
tions in order to compute the most probable position based on the
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radio measurements (Patwari et al., 2001, Patwari et al., 2003).
The maximum likelihood approach is compared with other posi-
tioning approaches based on radio measurements in terms of both
accuracy and computational burden.

Depending on the number of radio transmitters used for position-
ing (and available at certain instant at the UAV receiver) the ra-
dio based position estimation can be more or less reliable. Then,
Kalman filter is used in order to exploit vehicle dynamics to im-
prove the estimation of its position.

Properly avoid collisions during the flight is of fundamental im-
portance in practical applications, in particular when flying over
urban areas. Similarly to (Luo et al., 2013), the goal of the ap-
proach considered here is to provide a simple strategy for col-
lision avoidance: simplicity (and consequently requiring a low
computational effort) plays a key role in order to make it possible
to be run in real time in each UAV. Nevertheless, the strategy pro-
posed in this paper significantly reduces the volume of the region
forbidden for the manoeuvres of the UAVs at each time instant
with respect to (Luo et al., 2013), while dealing even with the
multiple device collision case (e.g. more than two UAVs involved
in the possible collision).

It is worth to notice that the simplicity requirement on the colli-
sion avoidance strategy allows us to consider possible collision
only in a very short future time interval. Longer intervals can
be useful in order to obtain less restrictive trajectory changes,
however at the cost of a significant increase in the computational
complexity of the algorithm. When the operating conditions al-
low to consider a centralized approach, then strategies based on
considering possible collisions in longer time intervals and model
predictive control (MPC) can be considered (Boivin et al., 2008,
Wang et al., 2007).

2. SYSTEM DESCRIPTION

Despite most of the positioning strategies for UAVs are typically
based on the use of GPS signal, other approaches have previ-
ously considered proposed in the literature in order to reduce the
positioning error (Coppa et al., 2009), or to obtain positioning
when GPS signal is not available. In particular, a positioning ap-
proach based on the RSS of the WiFi signal has been considered
in (Luo et al., 2013). Despite the use of RSS typically does not
allow to obtain very high accurate positioning, it has the main
advantage of not requiring (possibly expensive) specific ranging
devices other than the WiFi receiver.

Hence, similarly to (Luo et al., 2013), this work investigates the
use of WiFi RSS for positioning of UAVs. The approach pre-
sented here can be considered as evolution of that in (Luo et al.,
2013) in order to improve the performance of the system.

The system is assumed to be composed by n UAVs (e.g. Fig. 1)
and m WiFi stations typically positioned on the ground. The po-
sition of the WiFi stations is assumed to be known with an accu-
racy higher than that expected for the positioning of the UAVs.

Each UAV is assumed to pursue a task, independently of the oth-
ers. In spite of their independent tasks, communications between
UAVs are allowed in order to avoid collisions: hence this aim is
achieved in a cooperative fashion. Consequently, UAVs are as-
sumed to be provided of a computational unit and of a WiFi com-
munication device, which will be exploited in order to enhance
cooperation between different vehicles.

The adopted strategy is assumed to be decentralized, i.e. each
UAV uses its computational unit to modify in real time its tra-
jectory according to collision avoidance needs and to limit the

Figure 1: Example of UAV: IRIS 3D Robotics quadricopter.

error with respect to its reference trajectory (that is assumed to be
known during the flight, the design of the reference trajectory is
out of the scope of this paper). More specifically, all the UAVs are
assumed to run the same algorithm, but with different reference
trajectories, which are determined by their specific aims. Since
the computational power available in mobile devices is quite lim-
ited, then the algorithm used by the each UAV for positioning and
collision avoidance (e.g. to properly adapt their trajectories in or-
der to avoid collisions with other UAVs) has to be sufficiently
simple (i.e. with low computational requirements).

Each UAV is assumed to be identifiable by a unique integer num-
ber, that is associated to the priority of the task pursued by such
UAV: the higher the identity number, the higher the priority of the
task pursued by the UAV. When modifications of the UAV trajec-
tories are necessary to avoid collisions, priority numbers will be
used to reduce the trajectory changes (with respect to their refer-
ence trajectories) of UAVs with higher priority.

Furthermore, all the devices involved in the system are assumed
to be synchronized: the synchronization process is assumed to
have been already performed at the time of flight. This can be
achieved quite easily by synchronizing all the device clocks to
one used as reference if delays due to signal propagation can be
assumed to be negligible.

3. PRELIMINARIES

Ranging by means of WiFi RSS is obtained by taking into ac-
count of the following model of RSS measurements (Patwari et
al., 2003):

P = PR0 + γ log
d0
d

+ e (1)

where P is the measured signal strength (in decibel), PR0 is the
received signal strength at a reference distance d0, d is the real
distance between WiFi emitter and receiver, γ is the signal atten-
uation coefficient (that depends on the specific environment, in
outdoor applications (mostly in free space) it is (approximately)
20), and e is the measurement noise. The above equation can be
easily re-arranged as follows:

P = P0 − γ log d+ e (2)

where P0 is obtained combining PR0 and log d0.

Fig. 2 shows the results of a set of RSS measurements obtained
by means of smartphones used as WiFi receivers (the specific val-
ues of the RSS can change depending on the considered devices,
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however even with different devices the results will be similar
to those illustrated here with respect to the ranging goal, as de-
scribed in the following). The figure shows the median RSS val-
ues at each considered distance (x-marks), whereas error-bars are
used in order to show the whole range of measured RSS values.
Similar results have been previously reported in the literature by
other authors as well (Whitehouse et al., 2007, Stoep, 2009).

Figure 2: RSS measurements.

Accordingly to the results shown in Fig. 2 and in (Whitehouse
et al., 2007, Stoep, 2009), the strength of the error d can vary
depending on several factors. Nevertheless, in most of the cases
it can be sufficiently well approximated by means of a strength
value constant over all the values of d. Motivated by the above
considerations, hereafter the RSS noise is assumed to be modeled
as follows: e ∼ N (0, σ2).

Once an RSS measurement P is available, the corresponding dis-
tance can be computed from (2):

d = exp((P0 − P + e)/γ) , (3)

where, since the value of e in real applications is unknown the
estimated distance is computed as follows:

d̂ = exp((P0 − P )/γ) . (4)

Since the dependence of d from e is nonlinear, it is clear that
the effect of noise changes depending on the considered distance.
More specifically, the same error value e leads to a much larger
distance estimation error for small values of the measured RSS
(large values of the real distance) than when dealing with large
RSS values (small values of the real distance). Then, rewriting (4)
explicitly showing the distance error ed, it follows that d̂ = d +
ed, where the statistical characteristics of ed (its mean strength)
depends on the real distance d.

The strength of the error of the positioning system is clearly strongly
related with that of ranging error ed: consequently, a desirable
working condition is to use a sufficient number of WiFi stations
in order to have that in each spatial point of interest at least m̄ of
them have ranging error ed smaller than the desired positioning
error.

It is worth to notice that at least four ranging measurements are
needed in order to solve the positioning problem in a three dimen-
sional Euclidian space. Hence m̄ is expected to be larger or equal

then four. Nevertheless, as shown in Section 4., the proposed ap-
proach allows to partially compensate missing measurements by
exploiting the estimated dynamic of the vehicle.

4. POSITIONING APPROACH

In this work the estimation of the positions of the UAVs is ob-
tained by means of a statistical filtering (i.e. linear Kalman filter
approach). Let the UAVs be synchronized, and let T be the period
of the position estimation updates. At the beginning of each time
period T the UAVs broadcast information on their state (current
and expected future position). Similarly, at each time period the
UAVs evaluate the RSS values of the WiFi signals from the WiFi
ground stations and from the other UAVs. Then, each UAV up-
dates its own estimated position by taking into account of both the
RSS measurements from WiFi stations and from the other UAVs
in their neighborhood.

In order to simplify the notation, let T = 1s in the following (it
is worth to notice that T can be set to smaller values in practical
applications). Hence, hereafter without loss of generalization T
will be omitted from the equations (e.g. (t + 1) will be used
instead of (t + 1)T ). Then, the temporal dynamic of each UAV
is modeled by means of the following dynamic model (random
walk model for the velocity):

[
x(t+ 1)
v(t+ 1)

]
= A

[
x(t)
v(t)

]
+

[
wx(t)
wv(t)

]
, (5)

where x(t) is the spatial position of the vehicle at time step t, v(t)
is its velocity vector, and the matrix A (modeling the temporal
dynamic of the system) is defined as follows

A =

[
I T
0 I

]
, (6)

and [wx wv]> are assumed to be zero-mean Gaussian random
noises, where wx and wv are assumed to be independent, and
their variances are σ2

xI and σ2
vI . Since the dynamic model to

compute the position update is directly derived from the physics
law of motion, then σx is typically assumed to be quite small
(values different from zero shall be considered in order to avoid
problems related to the singularity of the Kalman gain along the
corresponding directions (Soderstrom, 1994)).

Instead, the following equation will be assumed to model the
measurement process of the position of each UAV (the same equa-
tion can be independently written for all the UAVs):

y(t) =
[
I 0

]
x(t) + wy(t) , (7)

where wy(t) is the measurement noise at time t. More details on
the measurement process will be provided in the following.

Using (5) and (7), the position estimation problem can be solved
by means of a linear Kalman filter, as usual.

4.1 Measurement process: least squares

Collecting the measurements from all the stations, then the esti-
mation of a UAV position y at time t can be formulated as the
following optimization problem:

y = arg min
y

(∑
k

(
||qk − y|| − d̂k

)2)
(8)
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where qk is the position of the k-th station, and the distance d̂k of
the UAV with respect to the k-th station is obtained by means of
(4).

Actually, since (8) is a nonlinear problem and the system has to
work in real time (i.e. it has to be as fast as possible), then an
approximated (linear) version of problem (8) can be considered
in order to make it simpler to solve (Li et al., 2005, Bertinato et
al., 2008). In the case of perfect measurements, (8) is equivalent
to the following set of equations:

||q1 − y||2 = d̂21 (9)

||q2 − y||2 = d̂22 (10)
...

||qm − y||2 = d̂2m (11)

Then, by subtracting (for instance) from the first equation all the
other ones (Bertinato et al., 2008) (or by subtracting from the
above equations their average (Li et al., 2005)) it is possible to
formulate the problem as a linear equation (that can be solved (in
least squares sense) by using the Moore-Penrose pseudo-inverse,
as usual):

Ây = b ⇒ y = Â†b (12)

where the matrices Â and b can be easily computed following the
above considerations (Li et al., 2005, Bertinato et al., 2008), and
Â† is the Moore-Penrose pseudo-inverse of A.

Notice that the solution of (12) is not exactly equivalent to that of
(8), however in non-singular systems the two solutions are typical
quite close to each other.

4.2 Measurement process: maximum likelihood

The maximum likelihood estimator for the positioning problem
described above can be easily expressed as follows (Bertinato et
al., 2008, Patwari et al., 2001, Patwari et al., 2003):

y = arg min
y

∑
k

(
log
||qk − y||2

d̂2k

)2

(13)

Since the maximum likelihood estimator (13) is nonlinear its min-
imum has to be computed iteratively. The UAV position predicted
with (5) or the linear least squares estimation can be used to ini-
tialize the iterative algorithm to compute the solution of (13). In
this paper a Gauss-Newton like algorithm has been implemented
in order to compute the solution of (13).

Thanks to the asymptotic efficiency of the maximum likelihood
method, the variance of the estimator (13) can be approximated
(i.e. lower bounded) by means of the Cramér-Rao lower bound
(and the Fisher information matrix). Unfortunately, this lower
bound can be quite optimistic when dealing with a finite (not so
large) number of measurements. Instead, bootstrap can be used
in order to overcome with issue, enabling the computation of the
error covariance for the measurement y to be used in the Kalman
filter (5), (7). Notice that to speed up the computation only few
samples shall be considered, hence the estimated covariance will
be a rough estimation of the real one (it is also possible to mag-
nify it by means of a scaling factor in order to reduce the risk of
underestimating the uncertainty of the estimated position).

4.3 Dealing with missing measurements

In real applications, especially when using a not so large number
of stations m, it can occasionally occur that UAV i receive RSS

measurements from mi stations, where mi < 4. When these
conditions occur the 3D position of the UAV cannot be uniquely
computed by using only the RSS measurements. Missing the RSS
position measurement y(t), its position can be inferred by using
the Kalman filter prediction x̂(t|t − 1), provided by taking into
account of the temporal dynamic expressed in (5). However, the
information provided by the mi measurements can still be useful
to improve the prediction x̂(t|t − 1). The UAV position can be
computed by using a maximum likelihood approach (similar to
that already considered above), but combining the mi measure-
ments with the Kalman prediction x̂(t|t− 1) with its uncertainty
(that is assumed to be normally distributed).

5. COLLISION AVOIDANCE

The problem of collision avoidance has been previously consid-
ered in the literature. In particular, (Wang et al., 2007, Boivin et
al., 2008) proposed approaches based on model predictive con-
trol. Despite these approaches allow to effectively deal with the
collision problem, they assume the use of a cooperation strategy
in a centralized fashion, that can be inefficient in certain cases,
e.g. when dealing with a large number of vehicles.

Instead, (Luo et al., 2013) proposed a distributed approach, where
each UAV determines its own future trajectory based on its mea-
surements and on the information sent by the vehicles in its spa-
tial neighborhood. Interestingly, (Luo et al., 2013) proposed the
use of a very simple rule to be followed in order to avoid colli-
sions. The use of a simple collision avoidance algorithm makes it
possible to execute it directly on the computational unit of the ve-
hicle. Furthermore, the approach in (Luo et al., 2013) considers
the use of direct distance measurements between different UAVs,
based on RSS ranging.

In this Section, first the so called “orthogonal rule” (for collision
avoidance) proposed in (Luo et al., 2013) is summarized. Then,
it is properly modified in order to make a more efficient use of
the available space.

The orthogonal rule in (Luo et al., 2013) makes use of a spheri-
cal safety zone centered in the current estimated position of the
vehicle. Let the considered vehicle be the i-th one, then the
safety zone for vehicle i is computed for all the others UAVs (i.e.
∀j 6= i). For each j 6= i the ray Sij of the safety zone of vehicle i
is defined taking into account of the imperfect distance informa-
tion of RSS ranging techniques. When vehicle j is at a measured
distance lower than Sij from i, then both UAVs i and j run the
orthogonal rule algorithm (that will be described in the follow-
ing) in order to avoid collision, otherwise the trajectories of the
two UAVs will not be modified.

Let δ be a threshold for the RSS ranging error and let P (δ) be
the probability that the ranging error is lower or equal than δ. As-
sume that the considered algorithm for collision avoidance works
properly (i.e. it allows to change the UAV trajectories in such
a way to avoid collision) when the risk of collision is correctly
detected. Then, one can reduce the risk of collisions by repeat-
ing nd independent measurements of the distance between two
UAVs: the collision probability will be lower or equal to the prob-
ability that in all the nd measurements the error is greater than δ,
i.e. (1 − P (δ))nd . These considerations can be used to com-
pute the number of measurements nd to be used in order to upper
bound the collision probability to a specific value. For instance,
if δ = 4m, P (δ) = 0.8, then nd = 8 to upper bound the collision
probability to 10−5.

Motivated by the above considerations, in (Luo et al., 2013) the
ray S has been defined as follows:
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S =

(
δ

P (δ)
+ ||vijtr||

)
nd , (14)

where the first additional term considers uncertainty in the rang-
ing measurement, while the second additional term takes into ac-
count of expected position change of the two vehicles due to their
velocities (vij is the maximum relative velocity between the two
vehicles). tr is defined as the time necessary to run the orthogonal
rule algorithm and to apply the consequent trajectory changes, if
necessary.

The orthogonal rule is actually a simple procedure to avoid colli-
sions between two UAVs: let a potential collision be detected and
let j be the UAV with lowest priority, then the trajectory of j is
changed in such a way that:

• at the next considered time instant t+ 1 it is on the edge of
the safety zone (at time t) of i,

• the direction from xj(t) to xj(t + 1) is orthogonal to vi(t)
(subscript indexes indicate the UAV to which variables are
referred to),

• among all the possible spatial positions which satisfy the
above conditions it is chosen the one that minimize the dis-
tance from xj(t).

Despite the above approach has the advantage of being very sim-
ple, it can have certain issues:

• it typically leads to very large safety zones, restricting the
UAV manoeuvering space probably more then necessary.
For instance, with |vij | = 10m/s, tr = 1s, nd = 8 as in
(Luo et al., 2013), then S = 120m.

• as shown in the previous section, the error statistical charac-
teristics change with the value of the real distance, hence the
considerations on the measurement error probability are par-
tially inconsistent (to improve the performance of the sys-
tem one should consider the error distribution as a function
of the measurement value, this however makes the whole
approach much more complex).

• despite repeating the distance measurement between two UAVs
allow to reduce the error probability, it can lead to a sig-
nificant delay (since measurements have to be independent,
they have to be separated by at least the channel coherence
time (e.g. 25ms)).

• the orthogonal rule is defined for a potential collision be-
tween two UAVs. Even if this is clearly the most obvious
potential collision case, in certain applications more UAVs
can be involved in a more articulated potential collision,
hence the collision avoidance strategy shall be formulated
in a more general case.

Taking into account of the above considerations, a different col-
lision avoidance approach is presented in the following.

The sampling period used in this section in the collision avoid-
ance algorithm can be set to a different value with respect to the
T used in the positioning algorithm (e.g. it can be a multiple of
T ). Nevertheless, the notation will be similar to that used in the
previous section, T will be omitted from equations and time t
will be used instead of tT .

Uncertainty in the position xi(t) of the i-th UAV is expressed as
a covariance matrix Σi(t) as shown in Section 4.. Three princi-
pal directions can be extracted from the covariance matrix, where
typically the strength of the positioning error along each of such
directions is different: σ2

1 , σ
2
2 , σ

2
3 . In order to simplify the

collision avoidance algorithm the strength of the error (e.g. its
variance) along each of such directions is set to the maximum
value (i.e. σ̄2 = maxi(σ

2
i )). Let nd be such that the probability

of having a positioning error larger than ndσ̄ is very small (e.g.
nd = 4).

Let x̄i(t + 1) be the expected position for the UAV at time t +
1 according to the trajectory designed to achieve its task. The
expected UAV future position at time t + 1 (up to the algorithm
knowledge until time t) is assumed to be x̄i(t + 1). If the time
interval between t and t + 1 is sufficiently small, and the UAV
control system appropriately works, then the uncertainty on the
UAV position x̄i(t+ 1) is quite similar to that of xi(t), hence the
probability of having an error larger than σ̄ shall be small.

Then, in this case the safety zone for UAV i is defined as the cylin-
der with hemispherical ends obtained by linking the two spheres
corresponding to σ̄ errors at time t and t+ 1, as shown in Fig. 3.

(a) (b)

(c)

Figure 3: UAV safety zone, shown in 2D to ease the readability
of the figure. (a) uncertainty on the xi(t) position. (b) spherical
upper bound of the uncertainty on the xi(t) position. (c) UAV
safety zone between position at time t and expected position at
time t+ 1.

For each UAV a safety zone (similar to Fig. 3) can be computed
as described above. Each UAV sends to its neighbors the charac-
teristics of its current safety zone, its estimated position and its
priority number.

Then a potential collision is detected if there is a nonempty in-
tersection between the safety zones of UAV i and j, for certain
values of i and j with i 6= j. Despite using spherical safety zones
as in (Luo et al., 2013) the detection of potential collisions is ex-
tremely easy, the use of cylinders with hemispherical ends can
allow to reduce the size of the UAV safety zones (hence increas-
ing the UAV manoeuvering space) while making the detection of
potential collision only few more complex.

All the UAVs run the same collision detection and avoidance al-
gorithm. Hence, assuming that all the UAVs involved in a po-
tential collision receive the same information from each other (if
they are involved in a potential collision, they are supposed to be
quite close to each other, and hence it is quite realistic to assume
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the absence of communication packet loss). Once a potential col-
lision is detected (by all the UAVs involved in the potential colli-
sion), then the UAV trajectories are modified as described in the
following.

Let nc be the number of UAVs involved in the potential colli-
sion, then assume that enough space is available along the verti-
cal direction (free of obstacles) in order to distribute the UAVs at
different altitudes. The increasing order of altitudes will be dis-
tributed according to the current order of UAV altitudes (e.g. the
UAV that is currently at the highest altitude will be at the highest
altitude even after the trajectory modifications): if two (or more)
UAVs are at the same altitude their identification number is used
in order to decide how to modify their altitudes. The minimum
altitude will be the minimum admissible one according to the a
priori information on the environment available to the UAVs.

6. SIMULATION RESULTS

The results of this section has been obtained by means of the
simulation on Matlab of a system with a system with 7 WiFi
ground stations (positioned as the red x-marks in Fig. 5), and ran-
dom UAV trajectories simulated in order to ensure quite smooth
movements (blue line in Fig. 5 shows an example of simulated
trajectory). The area of interest (because of the presence of WiFi
stations or because close to the UAV trajectory) is assumed to be
relatively small: in accordance with this assumption the whole
system is represented in a 3D Euclidian space, whose coordinate
system is (u, v, z), where the space spanned by (u, v, 0) is the
(ground) horizontal plane. The noise on the RSS measurements
is assumed to be gaussian, with standard deviation 2 m indepen-
dent of the distance.

Figure 4: Positions of WiFi stations (red x-marks) on the (u, v)
plane, and example of simulated UAV trajectory (blue line).

According with our simulations of the above described system on
more than 10000 time samples, the root mean square (RMS) posi-
tioning error obtained by means of the linear least squares method
(12) is approximately 20 m, the RMS error obtained by means of
likelihood measurements (13) is 5.8 m, whereas that obtained by
means of the combination of maximum likelihood measurements
and Kalman filtering (13),(5),(7) is 4.3 m. Hence, the linear least
squares method performs much worse than the other methods,
and combining Kalman filtering with ML measurements allows
to improve the estimates obtained by using only the ML mea-
surements of 26%, approximately. Fig. 5 shows a comparison
of maximum likelihood and Kalman filter positioning errors in a
time interval of 120 time samples.

It is worth to notice that the numerical results reported above are
strictly related to the specific characteristics of the considered
system: changing the values of certain parameter can change the
numerical results. Nevertheless, the considerations derived above
hold for a wide range of system conditions: maximum likelihood
estimations are typically much better than linear least squares
ones, and exploiting the temporal dynamic of the system allows
to obtain a further estimation improvement.

Figure 5: Positioning error: maximum likelihood (blue line) and
Kalman (red dashed line) estimations.

Despite the RMS error obtained combining ML measurements
and Kalman filtering is approximately 4.3 m, Fig. 5 shows that
maximum error values can be significantly larger than their aver-
age value. Accordingly with this observation and with the con-
siderations made in the previous section, the ray of the spheri-
cal boundary in Fig. 3(b) is set to ndσ̄, where nd = 4, while σ̄
is set accordingly to the current UAV position uncertainty. For
instance, let σ̄ = 4.5 m and let the velocity of the vehicle be
10 m per time period, approximately. Then, the size of the cylin-
der with hemispherical ends (Fig. 3(c)) along its principal axis
is given by 2ndσ̄ added to the vehicle velocity, i.e. 46 m. The
size of cylinder along the other two directions is equal to the di-
ameter of each of the two spheres in Fig. 3(c) is 36 m. Hence,
despite the simulation conditions are quite similar to those previ-
ously considered for (Luo et al., 2013), the cylinder with hemi-
spherical ends (Fig. 3(c)) defines a clearly smaller safety zone.
Nevertheless, in hundreds of simulations the adopted strategy al-
lows to properly detect potential collisions, and, consequently,
avoid them.

Since the average positioning error obtained in the simulations
presented in this section, 4 m approximately, can be too large
for certain applications, different operating conditions and further
improvements on the positioning algorithm can be necessary. It
is worth to notice that if the UAV can fly at quite high altitudes,
increasing the density of ground WiFi stations may not lead to
significant improvements in the positioning error. Instead, better
results can be obtained in environments where the measurement
noise has a lower strength (i.e. when the UAV flight area is quite
large and mostly free).

Further improvements and experimental validations of the method
will be considered in our future investigations.

7. CONCLUSIONS

This paper considers the problem of positioning UAVs by means
of WiFi RSS measurements. Different positioning methods have
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been compared: according to the considered simulations the com-
bination of maximum likelihood positioning estimations and Kalman
filtering allow to obtain definitely much lower positioning errors
with respect to linear least squares and maximum likelihood esti-
mators.

The approach proposed for collision avoidance allows to reduce
the size of the safety zone with respect to the case presented
in (Luo et al., 2013), thus increasing the usable space for the
UAVs, while ensuring good performance. Furthermore, if there is
enough free space for the UAVs to freely change their trajectories,
the considered strategy allows to deal with the case of multiple
UAVs potential collisions. Instead, when the trajectories of the
UAVs are limited by other constraints, a more complex strategy
shall be considered. This will be object of our future investiga-
tion.
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