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Via Trieste 63, 35133 Padova, Italy

Abstract. We consider the short time behaviour of stochastic systems af-

fected by a stochastic volatility evolving at a faster time scale. We study the
asymptotics of a logarithmic functional of the process by methods of the the-

ory of homogenization and singular perturbations for fully nonlinear PDEs. We

point out three regimes depending on how fast the volatility oscillates relative
to the horizon length. We prove a large deviation principle for each regime and

apply it to the asymptotics of option prices near maturity.

1. Introduction. In this paper we are interested in stochastic differential equa-
tions with two small parameters ε > 0 and δ > 0 of the form{

dXt = εφ(Xt, Yt)dt+
√

2εσ(Xt, Yt)dWt X0 = x ∈ Rn,
dYt = ε

δ b(Yt)dt+
√

2ε
δ τ(Yt)dWt Y0 = y ∈ Rm,

(1.1)

where Wt is a standard r-dimensional Brownian motion, the functions φ(x, y),
σ(x, y), b(y), τ(y) are Zm-periodic with respect to the variable y, and the matrix
τ is non-degenerate. This is a model of systems where the variables Yt evolve at a
much faster time scale s = t

δ than the other variables Xt. The second parameter ε
is added in order to study the small time behavior of the system, in particular the
time has been rescaled in (1.1) as t 7→ εt. Passing to the limit as δ → 0, with ε
fixed, is a classical singular perturbation problem, its solution leads to the elimina-
tion of the state variable Yt and to the definition of an averaged system defined in
Rn only. There is a large literature on the subject, see the monographs [31], [29],
the memoir [3] and the references therein. Here we study the asymptotics as both
parameters go to 0 and we expect different limit behaviors depending on the ratio
ε/δ. Therefore we put

δ = εα, with α > 1,

and consider a functional of the trajectories of (1.1) of the form

vε(t, x, y) := ε logE
[
eh(Xt)/ε|(X., Y.) satisfy (1.1)

]
, (1.2)
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where h is a bounded continuous function. The logarithmic form of this payoff is
motivated by the applications to large deviations that we want to give. It is known
that vε solves the Cauchy problem with initial data vε(0, x, y) = h(x) for a fully
nonlinear parabolic equation. Letting ε→ 0 in this PDE is a regular perturbation
of a singular perturbation problem, for which we can rely on the techniques of
[4], stemming from Evans’ perturbed test function method for homogenization [18]
and its extensions to singular perturbations [1, 2, 3]. We show that under suitable
assumptions the functions vε(t, x, y) converge to a function v(t, x) characterised as
the solution of the Cauchy problem for a first order Hamilton-Jacobi equation

vt − H̄(x,Dv) = 0 in ]0, T [×Rn, v(0, x) = h(x). (1.3)

A significant part of the paper is devoted to the analysis of the effective Hamiltonian
H̄, which is obtained by solving a suitable cell problem. As usual in the theory of
homogenization for fully nonlinear PDEs, this is an additive eigenvalue problem. It
turns out to have different forms in the following three regimes depending on α: α > 2 supercritical case,

α = 2 critical case,
α < 2 subcritical case.

More precisely, in the supercritical case the cell problem involves a linear elliptic
operator and H̄ has the explicit formula

H̄(x, p) =

∫
Tm
|σ(x, y)T p|2 dµ(y)

where µ is the invariant probability measure on the m-dimensional torus Tm of the
stochastic process

dYt = b(Yt)dt+
√

2τ(Yt)dWt.

In the critical case the cell problem is a fully nonlinear elliptic PDE and H̄ can
be represented in various ways based, e.g., on stochastic control. Finally, in the
subcritical case the cell problem is of first order and nonlinear, and a representation
formula for H̄ can be given in terms of deterministic control. In particular, under
the condition τσT = 0 of non-correlations among the components of the white noise
acting on the slow and the fast variables in (1.1), we have

H̄(x, p) = max
y∈Rm

|σT (x, y)p|2.

Let us mention that an important step of the method is the comparison principle for
the limit Cauchy problem (1.3), ensuring that the weak convergence of the relaxed
semilimits is indeed uniform, as well as the uniqueness of the limit.

It is known that this property of the effective Hamiltonian may require additional
conditions [3]. Here we show that no extra assumptions are needed by exploiting a
particular property of H̄ (the inequality (3.15)) and some ideas from [12].

The main application of the convergence results is a large deviations analysis of
(1.1) in the three different regimes. We prove that the measures associated to the
process Xt in (1.1) satisfy a Large Deviation Principle (briefly, LDP) with good
rate function

I(x;x0, t) := inf

[∫ t

0

L̄
(
ξ(s), ξ̇(s)

)
ds
∣∣∣ ξ ∈ AC(0, t), ξ(0) = x0, ξ(t) = x

]
,

where L̄ is the effective Lagrangian associated to H̄ via convex duality. In particular
we get that
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P (Xε
t ∈ B) = e− infx∈B

I(x;x0,t)
ε +o( 1

ε ), as ε→ 0

for any open set B ⊆ Rn. Following [21] we also apply this result to derive an
estimate of option prices near maturity and an asymptotic formula for the implied
volatility.

Our first motivation for the study of systems of the form (1.1) comes from fi-
nancial models with stochastic volatility. In such models the vector Xt represents
the log-prices of n assets (under a risk-neutral probability measure) whose volatil-
ity σ is affected by a process Yt driven by another Brownian motion, which is
often negatively correlated with the one driving the stock prices (this is the empi-
rically observed leverage effect, i.e., asset prices tend to go down as volatility goes
up). Fouque, Papanicolaou, and Sircar argued in [24] that the bursty behaviour
of volatility observed in financial markets can be described by introducing a faster
time scale for a mean-reverting process Yt by means of the small parameter δ in
(1.1). Several extensions, applications to a variety of financial problems, and rigo-
rous justifications of the asymptotics can be found in [25, 26, 9, 10, 27], see also the
references therein. On the other hand, Avellaneda et al. [5] used the theory of large
deviations to give asymptotic estimates for the Black-Scholes implied volatility of
option prices near maturity in models with constant volatility. In the recent paper
[21], Feng, Fouque, and Kumar study the large deviations for system of the form
(1.1) in the one-dimensional case n = m = 1, assuming that Yt is an Ornstein-
Uhlenbeck process and the coefficients in the equation for Xt do not depend on Xt.
In their model ε represents a short maturity for the options, 1/δ is the rate of mean
reversion of Yt, and the asymptotic analysis is performed for δ = εα in the regimes
α = 2 and α = 4. Their methods are based on the approach to large deviations
developed in [22]. A related paper is [20] where the Heston model was studied in
the regime δ = ε2 by methods different from [21].

Although sharing some motivations with [21] our results are quite different: we
treat vector-valued processes with φ and σ depending on Xt in a rather general
way and discuss all the three regimes depending on the parameter α; our methods
are also different, mostly from the theory of viscosity solutions for fully nonlinear
PDEs and from the theory of homogenization and singular perturbations for such
equations. Our assumption of periodicity with respect to the y variables may sound
restrictive for the financial applications. It is made mostly for technical simplicity
and can be relaxed to the ergodicity of the process Yt as in [9, 10]: this will be
treated in a paper in preparation.

Large deviation principles have a large literature for diffusions with vanishing
noise; some of them were extended to two-scale systems with small noise in the
slow variables, see [33], [36], and more recently [32], [17], and [34]. Our methods
can be also applied to this different scaling. The paper by Spiliopoulos [34] also
states some results for the scaling of (1.1) under the assumption of periodicity,
but its methods based on weak convergence are completely different from ours. A
related paper on homogenisation of a fully nonlinear PDE with vanishing viscosity
is [13].

The paper is organized as follows. In Section 2 we give the precise assumptions
and describe the parabolic PDEs satisfied by vε in the different regimes. In sections
3, 4, 5 we analyse the cell problem and the properties of the effective Hamiltonian in
the critical (α = 2), supercritical ( α > 2), and subcritical case (α < 2), respectively.
Section 6 is devoted to the convergence result for each regime of the functions (1.2)
to the unique viscosity solution of the limit problem (1.3) with H̄ identified in
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the previous sections, see Theorems 6.1 and 6.2. In section 7 we prove the Large
Deviation Principle for all the regimes, Theorem 7.1. Finally, in Section 8 we give
some applications to option pricing.

2. The fast stochastic volatility problem.

2.1. The stochastic volatility model. We consider fast-mean reverting stocha-
stic volatility system that can be written in the form{

dXt = φ(Xt, Yt)dt+
√

2σ(Xt, Yt)dWt, X0 = x ∈ Rn
dYt = ε−αb(Yt)dt+

√
2ε−ατ(Yt)dWt, Y0 = y ∈ Rm.

(2.1)

where ε > 0, α > 1 and Wt is a r-dimensional standard Brownian motion. We
assume φ : Rn×Rm → Rn, σ : Rn×Rm →Mn,r are bounded continuous functions,
Lipschitz continuous in (x, y) and periodic in y, where Mn,r denotes the set of n×r
matrices. Moreover b : Rm → Rm, τ : Rm →Mm,r are locally Lipschitz continuous
functions, periodic in y. These assumptions will hold throughout the paper. We
will use the symbol Sk to denote the set of k × k symmetric matrices.

In the following we will assume the uniform nondegeneracy of the diffusion driving
the fast variable Yt, i.e., for some θ > 0

ξT τ(y)τ(y)T ξ = |τT (y)ξ|2 > θ|ξ|2 for every y ∈ R, ξ ∈ Rm. (2.2)

In order to study small time behavior of the system (2.1), we rescale time t→ εt for
0 < ε� 1, so that the typical maturity will be of order of ε. Denoting the rescaled
processes by Xε

t and Y εt we get{
dXε

t = εφ(Xε
t , Y

ε
t )dt+

√
2εσ(Xε

t , Y
ε
t )dWt, Xε

0 = x ∈ Rn

dY εt = ε1−αb(Y εt )dt+
√

2ε1−ατ(Y εt )dWt, Y ε0 = y ∈ Rm.
(2.3)

Next we consider the functional

uε(t, x, y) := E [g(Xε
t ) | (Xε

s , Y
ε
s ) satisfy (2.3) for s ∈ [0, t]] (2.4)

where g ∈ BC(Rn). We denote with BC(Rn) the space of bounded continuous
functions in Rn.

The partial differential equation associated to the functions uε is

ut − εtr(σσTD2
xxu)− εφ ·Dxu− 2ε1−α2 tr(στTD2

xyu)

− ε1−αb ·Dyu− ε1−αtr(ττTD2
yyu) = 0 (2.5)

in (0, T ) × Rn × Rm, where b and τ are computed in y, φ and σ are computed in
(x, y). The equation is complemented with the initial condition:

u(0, x, y) = g(x).

Remark 1. Note that, since we assume the periodicity in y of the coefficients of
the equation b, σ, τ, φ, we have that the solution uε of the equation (2.5) is periodic
in y itself.

2.2. The log-transform and its HJB equation. We introduce the logarithmic
transformation method (see [23]). Assume that

g(x) = eh(x)/ε with h ∈ BC(Rn)

and define
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vε(t, x, y) := ε log uε = ε logE
[
eh(Xεt )/ε | (Xε

s , Y
ε
s ) satisfy (2.3) for s ∈ [0, t]

]
,

(2.6)
where uε is defined in (2.4), x ∈ Rn, y ∈ Rm, and t ≥ 0. By (2.5) and some
computations one sees that the equation associated to vε is

vt = |σTDxv|2 + εtr(σσTD2
xxv) + εφ ·Dxv + 2ε−

α
2 (τσTDxv) ·Dyv+

2ε1−α2 tr(στTD2
xyv) + ε1−αb ·Dyv + ε−α|τTDyv|2 + ε1−αtr(ττTD2

yyv), (2.7)

where b and τ are computed in y, φ and σ are computed in (x, y). In general, the
functions uε are not smooth but one can check that vε is a viscosity solutions of
(2.7) (see in particular Chapter VI and VII of [23]).

In the following proposition we characterize the value function vε as the unique
continuous viscosity solution to a suitable parabolic problem with initial data for
each of the three regimes. A general reference for these issue is [23]. The equation
(2.7) satisfied by vε involves a quadratic nonlinearity in the gradient. This case was
studied by Da Lio and Ley in [14], where the reader can find a proof of the next
result.

Proposition 2.1. i) Let α ≥ 2 and define

Hε(x, y, p, q,X, Y, Z) := |σT p|2 + b · q + tr(ττTY ) + ε
(
tr(σσTX) + φ · p

)
+ 2ε

α
2−1(τσT p) · q + 2ε

1
2 tr(στTZ) + εα−2|τT q|2.

Then vε is the unique bounded continuous viscosity solution of the Cauchy problem∂tvε −Hε
(
x, y,Dxv

ε,
Dyv

ε

εα−1 , D
2
xxv

ε,
D2
yyv

ε

εα−1 ,
D2
xyv

ε

ε
α−1
2

)
= 0 in [0, T ]× Rn × Rm,

vε(0, x, y) = h(x) in Rn × Rm.
(2.8)

ii) Let α < 2 and define

Hε(x, y, p, q,X, Y, Z) := |σT p|2 + |τT q|2 + 2(τσT p) · q + ε
(
tr(σσTX) + φ · p

)
+ ε1−α2 (b · q + tr(ττTY )) + 2ε1−α4 tr(στTZ).

Then vε is the unique bounded continous viscosity solution of the Cauchy problem{
∂tv

ε −Hε

(
x, y,Dxv

ε,
Dyv

ε

ε
α
2
, D2

xxv
ε,
D2
yyv

ε

ε
α
2
,
D2
xyv

ε

ε
α
4

)
= 0 in [0, T ]× Rn × Rm,

vε(0, x, y) = h(x) in Rn × Rm.
(2.9)

Our goal is to study the limit as ε→ 0 of the functions vε described in Proposition
2.1. Following the viscosity solution apoproach to singular perturbation problems
(see [3],[2]), we define a limit or effective Hamiltonian H̄ and we characterize the
limit of vε as the unique solution of an appropriate Cauchy problem with Hamilto-
nian H̄. The first step in the procedure is the identification of the limit Hamiltonian.
In order to define this operator, we make the ansatz that the function vε admits
the formal asymptotic expansion

vε(t, x, y) = v0(t, x) + εα−1w(t, x, y) (2.10)

and plug it into the equation. In the following sections we show that the limit
Hamiltonian is different in the three different regimes: the critical case (α = 2), the
supercritical case (when α > 2), and the subcritical case (when α < 2).
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Numerical experiments in [35] indicate that the first order approximation in the
expansion (2.10) is sufficiently accurate to find option prices in a fast mean-reversion
case of the volatility process.

3. The critical case: α = 2. Equation (2.7) with α = 2 becomes

vt = |σTDxv|2 + εtr(σσTD2
xxv) + εφ ·Dxv +

2

ε
(τσTDxv) ·Dyv (3.1)

−2tr(στTD2
xyv) +

1

ε
b ·Dyv +

1

ε2
|τTDyv|2 +

1

ε
tr(ττTD2

yyv).

3.1. The effective Hamiltonian. We plug in the equation (3.1) the formal asympto-
tic expansion

vε(t, x, y) = v0(t, x) + εw(t, x, y)

and we obtain

v0
t − |σTDxv

0|2 − 2(τσTDxv
0) ·Dyw− b ·Dyw− |τTDyw|2 − tr(ττTD2

yyw) = O(ε).

We want to eliminate the corrector w and the dependence on y in this equation and
remain with a left hand side of the form v0

t −H̄(x,Dxv
0). Therefore we freeze x̄ and

p̄ = Dxv
0(x̄) and define the effective Hamiltonian H̄(x̄, p̄) as the unique constant

such that the following stationary PDE in Rm, called cell problem, has a viscosity
solution w:

H̄(x̄, p̄)−|σT p̄|2−2(τσT p̄)·Dyw(y)−b·Dyw(y)−|τTDyw(y)|2−tr(ττTD2
yyw(y)) = 0,

(3.2)
where σ is computed in (x̄, y) and τ, b in y. This is an additive eigenvalue problem
that arises the theory of ergodic control and has a wide literature. Under our
standing assumptions we have the following result.

Proposition 3.1. For any fixed (x̄, p̄), there exists a unique H̄(x̄, p̄) for which the
equation (3.2) has a periodic viscosity solution w. Moreover w ∈ C2,α for some
0 < α < 1 and satisfies for some C > 0 independent of p̄ and ∀x̄, p̄ ∈ Rn

max
y∈Rm

|Dw(y; x̄, p̄)| ≤ C(1 + |p̄|). (3.3)

To prove Proposition 3.1, we need the following lemma.

Lemma 3.2. Let δ > 0 and wδ(·; x̄, p̄) ∈ C2(Rm) be a periodic solution of

δwδ + F (x̄, y, p̄, Dwδ, D
2wδ)− |σ(x̄, y)p̄|2 = 0, (3.4)

where

F (x̄, y, p̄, q, Y ) := −tr(ττT (y)Y )− |τT (y)q|2 − b(y) · q − 2(τ(y)σT (x̄, y)p̄) · q. (3.5)

Then there exists C > 0 independent of p̄ such that for all x̄, p̄ ∈ Rn it holds

max
y∈Rm

|Dywδ(y; x̄, p̄)| ≤ C(1 + |p̄|). (3.6)

Proof of Lemma 3.2. The proof uses the Bernstein method, following the derivation
of similar estimates in [19]. We carry out the computations in the case τ, σ, b are
C1. When τ, σ, b are Lipschitz the result can be proved by smooth approximation.

Denote by wδ := wδ(y; x̄, p̄) the solution of (3.4). By comparison with constant
sub- and supersolutions we get the uniform bound

|δwδ| ≤ max
y∈Rm

|σT (x̄, y)p̄|2 ∀y ∈ Rm. (3.7)
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Define the function z as follows

z := |Dwδ|2.
Should z attains its maximum at some point y0, then at y0

zi = 2wδkw
δ
ki = 0 i = 1, . . . ,m, (3.8)

where we are adopting the summation convention, and

0 ≤ −(ττT )ijzij = −2(ττT )ijw
δ
kiw

δ
kj − 2wδk(ττT )ijw

δ
ijk. (3.9)

Then at y0

θ|D2wδ|2 ≤ (ττT )ijw
δ
kiw

δ
kj ≤

− wδk(ττT )ijw
δ
ijk = −wδk

(
(ττT )ijw

δ
ij

)
k

+ wδk(ττT )ij,kw
δ
ij ,

where we have used (3.9). Thus at y0

θ|D2wδ|2 ≤

wδk
(
−δwδ + (2τσT p̄+ b) ·Dwδ + |τTDwδ|2 + |σT p̄|2

)
k

+ wδk(ττT )ij,kw
δ
ij ,

where we have used (3.4). Thanks to (3.8)

wδk(|τTDwδ|2)k = wδk((ττT )ijw
δ
iw

δ
j )k =

wδk(ττT )ij,kw
δ
iw

δ
j + wδk(ττT )ijw

δ
ikw

δ
j + wδk(ττT )ijw

δ
iw

δ
jk = wδk(ττT )ij,kw

δ
iw

δ
j .

Moreover

wδk(ττT )ij,kw
δ
ij ≤

θ

2
|D2wδ|2 +

C

2θ
|Dwδ|2.

Then

θ|D2wδ|2 ≤ C(1 + |p̄|)|Dwδ|2 + C|Dwδ|3 +
θ

2
|D2wδ|2 + C|p̄|2|Dwδ| at y0

and C > 0 depends only on the L∞ norm of σ, b, τ and on the derivatives of σ, b
and τ . Therefore

|D2wδ|2 ≤ C(1 + |Dwδ|2 + |p̄||Dwδ|2 + |p̄|2|Dwδ|2 + |Dwδ|3) at y0. (3.10)

Thanks to the uniform ellipticity of τ and using equation (3.4), we have

θ|Dwδ|2 ≤ |τTDwδ|2 = δwδ − tr(ττTD2wδ)− 2τσT p̄ ·Dwδ − b ·Dwδ at y0.

Using (3.7), we get at y0

z2 = |Dwδ|4 ≤ C(|p̄|4 + |D2wδ|2 + |p̄|2|Dwδ|2 + |Dwδ|2 + |p̄||Dwδ|2 + |p̄|2|D2wδ|

+ |p̄|2|Dwδ|+ |p̄|3|Dwδ|+ |D2wδ||p̄||Dwδ|+ |D2wδ||Dwδ|).
(3.11)

Then (3.6) follows by dividing (3.11) by |Dwδ|3 and noticing that the right
member in (3.11) is polynomial of degree 4 in |p̄| and |Dwδ|.

Proof of Proposition 3.1. We use the methods of [6] based on the small discount
approximation

δwδ + F (x̄, y, p̄, Dywδ, D
2
yywδ)− |σT (x̄, y)p̄|2 = 0 in Rm, (3.12)

where F is defined in (3.5). Let wδ := wδ(y, x̄, p̄) be the unique periodic continuous
solution of (3.12). The regularity theory for viscosity solutions of convex uniformly
elliptic equations gives that wδ ∈ C2,γ for some 0 < γ < 1. Using the Lipschitz
estimates proved in Lemma 3.2 and the equiboundness of wδ given by (3.7), we
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obtain that δwδ(y) converges along a subsequence of δ → 0 to the constant H̄(x̄, p̄)
and vδ(y) := wδ(y)− wδ(0) converges to the corrector w.

Then, from (3.12) we get

δvδ + δwδ(0) + F (x̄, y, p̄, Dyvδ, D
2
yyvδ)− |σT (x̄, y)p̄|2 = 0, in Rm.

Since vδ is equibounded δvδ → 0. Then from δwδ → H̄ we get that w is a solution
of (3.2). Finally, by the comparison principle for (3.12), it is standard to see that
H̄ is unique.

Again by the regularity theory w ∈ C2,γ for some 0 < γ < 1.
Finally the corrector inherits the Lipschitz estimate of vδ and satisfies for some

C > 0 independent of p̄ and for all x̄, p̄ ∈ Rn

max
y∈Rm

|Dyw(y; x̄, p̄)| ≤ C(1 + |p̄|).

3.2. Properties and formulas for H̄. The next result lists some elementary
properties of the effective Hamiltonian H̄.

Proposition 3.3. (a) H̄ is continuous on Rn × Rn;

(b) the function p→ H̄(x, p) is convex;

(c)

min
y∈Rm

|σT (x̄, y)p̄|2 ≤ H̄(x̄, p̄) ≤ max
y∈Rm

|σT (x̄, y)p̄|2; (3.13)

(d) there exists C > 0 independent of p such that, for all x, x̄, p ∈ Rn,

|H̄(x, p)− H̄(x̄, p)| ≤ C(1 + |p|2)|x− x̄|; (3.14)

(e) For all 0 < µ < 1 and x, z, q, p ∈ Rn, it holds

µH̄

(
x,
p

µ

)
− H̄(z, q) ≥ 1

µ− 1
sup
y∈Rm

|σT (x, y)p− σT (z, y)q|2. (3.15)

Proof. The results (a), (b), and (c) are obtained by standard methods in the theory
of homogenisation, by means of comparison principles for the approximating equa-
tion (3.12), see, e.g., [18, 1]. Let us show one inequality in (3.14) (the other being
symmetric). Let wδ(y) := wδ(y; x̄, p) ans vδ(y) := wδ(y;x, p). Then vδ satisfies

δvδ + F (x̄, y, p,Dyvδ, D
2
yyvδ)− |σT (x̄, y)p̄|2 = |σT (x, y)p|2 − |σT (x̄, y)p̄|2+

(2τ(y)σT (x, y)p− 2τ(y)σT (x̄, y)p) ·Dvδ. in Rm, (3.16)

Thanks to Lemma 3.2 we estimate Dvδ, and then, using the Lipschitz continuity of
σ, we get for some C > 0

δvδ + F (x̄, y, p,Dyvδ, D
2
yyvδ)− |σT (x̄, y)p̄|2 ≤ C(1 + |p|2)|x− x̄|. in Rm, (3.17)

Then the comparison principle gives

δvδ(y)− δwδ(y) ≤ C(1 + |p|2)|x− x̄| ∀ y ∈ Rm.

By letting δ → 0 we get the inequality for H̄(x, p) − H̄(x̄, p) in (3.14), and by
exchanging x and x̄ we complete the proof.

For the proof of (3.15) we need the inequality

1

µ
|p|2 − |q|2 ≥ − 1

1− µ
|p− q|2 0 < µ < 1, p, q ∈ Rn. (3.18)
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We take wδ solution of

δwδ + F (z, y, q,Dywδ, D
2
yywδ)− |σT (z, y)q|2 = 0 (3.19)

where F is defined in (3.5) and wµδ solution to

δwδ + F (x, y,
p

µ
,Dywδ, D

2
yywδ)− |σT (x, y)

p

µ
|2 = 0. (3.20)

We write (3.19) as follows

δwδ − b(y) ·Dwδ − tr(ττT (y)D2wδ)− |τT (y)Dwδ + σT (z, y)q|2 = 0 (3.21)

and similarly we write (3.20) as

δwµδ − b(y) ·Dwµδ − tr(ττT (y)D2wµδ )− |τT (y)Dwµδ + σT (x, y)
p

µ
|2 = 0.

Then µwµδ = w̄ satisfies

δw̄ − b(y) ·Dw̄ − tr(ττT (y)D2w̄)− 1

µ
|τT (y)Dw̄ + σT (x, y)p|2 = 0.

We also have
1

µ
|τT (y)Dwµδ + σT (x, y)p|2 − |τT (y)Dwµδ + σT (z, y)q|2

≥ − 1

1− µ
|σT (x, y)p− σT (z, y)q|2,

where we have used (3.18). Coupling the previous inequality with (3.21) we get

δwδ − b(y) ·Dwδ − tr(ττT (y)D2wδ) − 1

µ
|τT (y)Dwµδ + σT (x, y)p|2

≤ 1

1− µ
|σT (x, y)p− σT (z, y)q|2.

Then we have

wδ ≤ µwµδ +
1

1− µ
sup
y∈Rm

|σT (x, y)p− σT (z, y)q|2 ∀y ∈ Rm

from which we easily get (3.15).

Next we give some representation formulas for the effective Hamiltonian H̄.

Proposition 3.4. (i) H̄ satisfies

H̄(x̄, p̄) = lim
δ→0

sup
β(·)

δE

[∫ ∞
0

(
|σ(x̄, Zt)

T p̄|2 − |β(t)|2
)
e−δtdt |Z0 = z

]
(3.22)

and

H̄(x̄, p̄) = lim
t→+∞

sup
β(·)

1

t
E

[∫ t

0

(|σT (x̄, Zs)p̄|2 − |β(s)|2)ds |Z0 = z

]
, (3.23)

where β(·) is an admissible control process taking values in Rr for the stochastic
control system

dZt =
(
b(Zt) + 2τ(Zt)σ

T (x̄, Zt)p̄− 2τ(Zt)β(t)
)
dt+

√
2τ(Zt)dWt; (3.24)

(ii) moreover

H̄(x̄, p̄) =

∫
Tm

(
|σ(x̄, z)T p̄|2 − |τ(z)TDw(z)|2

)
dµ(z), (3.25)
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where w = w(·; x̄, p̄) is the corrector defined in Proposition 3.1 and µ = µ(·; x̄, p̄)
is the invariant probability measure of the process (3.31) with the feedback β(z) =
−τT (z)Dw(z);
(iii) finally

H̄(x̄, p̄) = lim
t→+∞

1

t
logE

[
e
∫ t
0
|σT (x̄,Ys)p̄|2 ds |Y0 = y

]
, (3.26)

where Yt is the stochastic process defined by

dYt =
(
b(Yt) + 2τ(Yt)σ

T (x̄, Yt)p̄
)
dt+

√
2τ(Yt)dWt. (3.27)

Proof. (i) The first formula comes from a control interpretation of the approxima-
ting δ-cell problem (3.4). We write it as the Hamilton-Jacobi-Bellman equation

δwδ+

inf
β∈Rr

{
−tr(τ(y)τ(y)TD2wδ +

(
2τ(y)β − 2τ(y)σ(x̄, y)T p̄− b(y)

)
·Dywδ + |β|2

}
− |σ(x̄, y)T p̄|2 = 0 (3.28)

and we represent wδ as the value function of the infinite horizon discounted stocha-
stic control problem (see, e.g., [23])

wδ(z) = sup
β(·)

E

[∫ ∞
0

(|σT (x̄, Zt)p̄|2 − |β(t)|2)e−δtdt |Z0 = z

]
,

where Zt is defined by (3.24). Then (3.22) follows from the proof of Proposition
3.1.

For the formula (3.23) we consider the t-cell problem
∂v
∂t − tr(ττTD2v)− |τTDv|2 − (b+ 2τσT p̄) ·Dv − |σT p̄|2 = 0

in (0,+∞)× Rm,
v(0, z) = 0 on Rm.

(3.29)
This is also a HJB equation, whose solution is the value function

v(t, z; x̄, p̄) = sup
β(·)

E

[∫ t

0

(|σT (x̄, Zs)p̄|2 − |β(s)|2)ds |Z0 = z

]
,

where Zt is defined by (3.24). Then a generalized Abelian-Tauberian theorem (see
[2] for a general proof based only on the comparison principle for the Hamiltonian)
states that

H̄(x̄, p̄) = lim
t→+∞

v(t, z; x̄, p̄)

t
uniformly in z. (3.30)

(ii) The formula (3.25) is derived from a direct control interpretation of the cell
problem (3.2). In fact, it is the HJB equation of the ergodic control problem of
maximizing

lim
T→∞

1

T
E

[∫ T

0

(|σT (x̄, Zs)p̄|2 − |β(s)|2)ds |Z0 = z

]
,

among admissible controls β(·) taking values in Rr for the system (3.24), as before.
The process Zt associated to each control is ergodic with a unique invariant measure
µ on Tm because it is a nondegenerate diffusion on Tm, see, e.g., [3], so the limit in
the payoff functional exists and it is the space average in dµ of the running payoff.
Since the HJB PDE (3.2) has a smooth solution w, it is known from a classical
verification theorem that the feedback control that achieves the minimum in the
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Hamiltonian, i.e., β(z) = −τT (z)Dw(z), is optimal. Then (3.25) holds with µ the
invariant measure of the process

dZ̃t =
(
b(Z̃t) + 2τ(Z̃t)σ

T (x̄, Z̃t)p̄+ 2τ(Z̃t)τ
T (Z̃t)Dw(Z̃t)

)
dt+

√
2τ(Z̃t)dWt.

(3.31)
(iii) To prove (3.26), take v = v(t, x; x̄, p̄) a periodic solution of the t-cell problem

and define the function f(t, y) = ev(t,y). Then f solves the following equation{
∂f
∂t − f |σ

T p̄|2 − (2τσT p̄+ b) ·Df − tr(ττTD2f) = 0 in (0,∞)× Rm
f(0, z) = 1 in Rm.

By the Feynman-Kac formula, we have

f(t, y) = E
[
e
∫ t
0
|σT (x̄,Ys)p̄|2 ds |Y0 = y

]
,

where Yt is defined by (3.27). Then

v(t, y) = logE
[
e
∫ t
0
|σT (x̄,Ys)p̄|2 ds |Y0 = y

]
and thanks to (3.30) we get (3.26).

Remark 2. For x, p ∈ Rn define the following perturbed generator Lx,p

Lx,pg(y) := Lg(y) + 2(τσ(x, y)T p) ·Dyg(y),

where

L = b ·Dy + tr(ττTD2
yy).

Then the equation (3.2) becomes

H̄ − e−wLx̄,p̄ew − |σT p̄|2 = 0, (3.32)

because e−wLew = Lw + |τTDyw|2 gives

e−wLx̄,p̄ew = e−wLew + 2(τσT p̄) ·Dyw = Lw + |τTDyw|2 + 2(τσT p̄) ·Dyw.

Multiplying (3.32) by ew we get, for g(y) = ew(y),

H̄g(y)− (Lx̄,p̄ + V x̄,p̄)g(y) = 0, (3.33)

where V x̄,p̄(y) = |σT (x̄, y)p̄|2 is a multiplicative potential operator.
We conclude that if w is a solution of (3.2), then H̄ is the first eigenvalue of the

linear operator Lx̄,p̄ + V x̄,p̄, with eigenfunction g = ew.

Remark 3. Equations like (3.2) have been studied in an aperiodic setting by Khaise
and Sheu in [30]. They prove the existence of a constant H̄ such that there is a
unique smooth solution w with prescribed growth of (3.2). Moreover they provide
a representation formula for H̄ as the convex conjugate of a suitable operator over
a space of measures.

3.3. Comparison principle for H̄. The comparison theorem among viscosity
sub- and supersolutions of the limit PDE

vt − H̄(x,Dv) = 0 in (0, T )× Rn (3.34)

will be the crucial tool for proving that the convergence of vε is not only in the
weak sense of semilimits but in fact uniform, and the limit is unique. We observe
that property (e) of Proposition 3.3 is crucial in the proof since it allows us to relate
the regularity in x of H̄ with that of the pseudo-coercive Hamiltonian |σT (x, y)p|2.
With this inequality we can use ideas from the proof of the comparison principle for
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the pseudo-coercive Hamiltonian by Barles and Perthame, see [12] for the stationary
case and [7] for the evolutionary case.

Theorem 3.5. Let u ∈ BUSC([0, T ] × Rn) and v ∈ BLSC([0, T ] × Rn) be, re-
spectively, a bounded upper semicontinuous subsolution and a bounded lower semi-
continuous supersolution to (3.34) such that u(0, x) ≤ v(0, x) for all x ∈ Rn. Then
u(x, t) ≤ v(x, t) for all x ∈ Rn and 0 ≤ t ≤ T .

Proof. We show that for µ < 1, µ sufficiently near to 1, we have the inequality

sup
Rn×[0,T ]

(u− µv) ≤ sup
Rn

(u− µv)(·, 0).

If this is true, then the inequality holds also for µ = 1, proving the Theorem. By
contradiction, we assume that for every µ < 1, there exists (x, t) such that

u(x, t)− µv(x, t) > sup
Rn

(u− µv)(·, 0). (3.35)

Let

Φ(x, z, t, s) = u(x, t)− µv(z, s)− |x− z|
2

ε2
− |t− s|

2

η2
− δ log(1 + |x|2 + |z2|) + αµs.

For ε, η small enough, Φ has a maximum point, that we denote with (x′, z′, t′, s′).

By standard arguments, we get |x
′−z′|2
ε2 , |t

′−s′|2
η2 −→ 0 as ε, η → 0.

If either s′ = 0 or t′ = 0, it is easy to see that we get a contradiction with (3.35)
by means of the inequality u(0, x) ≤ v(0, x). So we consider the case (x′, z′, t′, s′) ∈
Rn × Rn × (0, T )× (0, T ). Let

p = 2
x′ − z′

ε2
, qx =

2x′

1 + |x′|2 + |z′|2
, qz =

−2y′

1 + |x′|2 + |z′|2
, r = 2

t′ − s′

η2
.

Using the fact that u is a subsolution we get

r − H̄(x′, p+ δqx) ≤ 0. (3.36)

Since v is a supersolution, we get

r

µ
− H̄

(
z′,

p+ δqz
µ

)
≥ α (3.37)

So, we multiply (3.37) by −µ and sum up to (3.36) to obtain

µH̄

(
z′,

p+ δqz
µ

)
− H̄(x′, p+ δqx) ≤ −αµ. (3.38)

Using (3.15) we get

µH̄

(
z′,

p+ δqz
µ

)
− H̄(x′, p+ δqx)

≥ − 1

1− µ
sup
y∈Rm

|σT (z′, y)(p+ δqz)− σT (x′, y)(p+ δqx)|2. (3.39)

Now we prove that

|σT (z′, y)(p+ δqz)− σT (x′, y)(p+ δqx)|2 (3.40)

goes to zero uniformly in y as ε, η, δ go to zero, reaching a contradiction.
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In fact we write (3.40) as

|σT (z′, y)(p+ δqz)− σT (x′, y)(p+ δqx)|2

= |((σ(x′, y)− σ(z′, y))T (p+ δqz) + δσT (x′, y)(qx − qz)|2.

Let

∆(y) = ((σ(x′, y)− σ(z′, y))T (p+ δqz), J(y) = δσT (x′, y)(qx − qz).

Then, since ∆(y) goes to zero for ε, η → 0 and for all δ fixed uniformly in y, and
J(y) goes to zero for ε, η, δ → 0 uniformly in y, we conclude that the limit in the
right-hand side of (3.39) is zero, reaching a contradiction.

4. The supercritical case: α > 2. As in Section 3, we prove the existence of an
effective Hamiltonian giving the limit PDE and first we identify the cell problem
that we wish to solve. Plugging the asymptotic expansion

vε(t, x, y) = v0(t, x) + εα−1w(t, x, y)

in the equation (2.7) we get

v0
t = |σTDxv

0|2 + b ·Dyw + tr(ττTD2
yyw) +O(ε).

We consider the δ-cell problem for fixed (x̄, p̄, X̄)

δwδ(y)− |σ(x̄, y)T p̄|2 − b(y) ·Dywδ(y)− tr(τ(y)τ(y)TD2
yywδ(y)) = 0 in Rm, (4.1)

where wδ is the approximate corrector.
The next result states that δwδ converges to H̄ and it is smooth.

Proposition 4.1. For any fixed (x̄, p̄) there exists a constant H̄(x̄, p̄) such that
H̄(x̄, p̄) = limδ→0 δwδ(y) uniformly, where wδ ∈ C2(Rm) is the unique periodic
solution of (4.1). Moreover

H̄(x̄, p̄) :=

∫
Tm
|σ(x̄, y)T p̄|2 dµ(y) uniformly in Tm, (4.2)

where µ is the invariant probability measure on Tm of the stochastic process

dYt = b(Yt)dt+
√

2τ(Yt)dWt,

that is, the periodic solution of

−
∑
i,j

∂2

∂yi∂yj
((ττT )ij(y))µ+

∑
i

∂

∂yi
(bi(y))µ = 0 in Rm, (4.3)

with
∫
Tnµ(y) dy = 1.

Proof. The proof essentially follows the arguments presented in [6, 3] of ergodic
control theory in periodic enviroments.

Remark 4. Note that in dimension n = 1 the effective Hamiltonian assumes the
form

H(x̄, p̄) =

∫
Tm

σ(x̄, y)2dµ(y)p̄2 = (σ̄p̄)2,

where σ̄ =
√∫

Tm σ(x̄, y)2dµ(y).
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We observe that the effective Hamiltonian H̄ satisfies properties (a), (b), (c), (d),
(e) as in Proposition 3.3, which can be proven with similar arguments, and in
addition the homogeneity

H̄(x, λp) = |λ|2H̄(x, p) (4.4)

for every λ ∈ R, x, p ∈ Rn, which follows from (4.2). Then the proof of Theorem
3.5 applies here and we have the next comparison result among viscosity sub- and
supersolutions of the limit PDE

vt −
∫
Tm
|σ(x, y)TDv|2 dµ(y) = 0 in (0, T )× Rn. (4.5)

Theorem 4.2. Let u ∈ BUSC([0, T ]×Rn) and v ∈ BLSC([0, T ]×Rn) be, respec-
tively, a subsolution and a supersolution to (4.5) such that u(0, x) ≤ v(0, x) for all
x ∈ Rn. Then u(x, t) ≤ v(x, t) for all x ∈ Rn and 0 ≤ t ≤ T .

5. The subcritical case: α < 2. In this case we plug into the equation (2.7) the
asymptotic expansion

vε(t, x, y) = v0(t, x) + ε
α
2 w(t, x, y)

and we get

v0
t = |σTDxv

0|2 + 2(τσTDxv
0) ·Dyw + |τTDyw|2 +O(ε).

Therefore the cell problem we want to solve is finding, for any fixed (x̄, p̄), a unique
constant H̄ such that there is a viscosity solution w of the following equation

H̄(x̄, p̄)− 2(τ(y)σ(x̄, y)T p̄) ·Dyw(y)− |τ(y)TDyw(y)|2 − |σ(x̄, y)T p̄|2 = 0. (5.1)

Since
2(τ(y)σT (x̄, y)p̄) ·Dyw = 2(σT (x̄, y)p̄) · (τT (y)Dyw),

we can restate the cell problem as

H̄(x̄, p̄)− |τT (y)Dyw(y) + σT (x̄, y)p̄|2 = 0. (5.2)

The following proposition deals with the existence and uniqueness of H̄.

Proposition 5.1. For any fixed (x̄, p̄), there exists a unique constant H̄(x̄, p̄) such
that the cell problem (5.1) admits a periodic viscosity solution w. Moreover w is
Lipschitz continuous and there exists C > 0 independent of x̄, p̄ such that

max
y
|Dw(y; x̄, p̄)| ≤ C(1 + |p̄|).

Proof. As for the other cases we introduce the following approximant problem, with
δ > 0,

δwδ(y)− |τT (y)Dywδ(y) + σT (x̄, y)p̄|2 = 0 in Rm. (5.3)

Let wδ the unique periodic viscosity solution to (5.3). By standard comparison
principle we get that

|δwδ| ≤ max
y∈Rm

|σT (x̄, y)p̄|2 ≤ C(1 + |p̄|2) ∀y ∈ Rm.

Moreover, using the coercivity of the Hamiltonian (see [8, Prop II.4.1]), we get that
wδ is Lipschitz continuous and there exists a constant C independent of δ and p̄
such that

max
y∈Rm

|Dwδ| ≤ C(1 + |p̄|).

So, we conclude as in the proof of Proposition 3.1.
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We give some representation formulas for the effective Hamiltonian H̄.

Proposition 5.2. (i) H̄ satisfies

H̄(x̄, p̄) = lim
δ→0

sup
β(·)

δ

∫ +∞

0

(
|σ(x̄, y(t))T p̄|2 − |β(t)|2

)
e−δt dt, (5.4)

where β(·) varies over measurable functions taking values in Rr, y(·) is the trajectory
of the control system{

ẏ(t) = 2τ(y(t))σT (x̄, y(t))p̄− 2τ(y(t))β, t > 0,
y(0) = y

and the limit is uniform with respect to the initial position y of the system;
(ii) if, in addition,

τ(y)σT (x, y) = 0 ∀x ∈ Rn, y ∈ Rm, (5.5)

then

H̄(x̄, p̄) = max
y∈Rm

|σT (x̄, y)p̄|2; (5.6)

(iii) if n = m = r = 1, and σ ≥ 0

H̄(x̄, p̄) =

(∫ 1

0

σ(x̄, y)

τ(y)
dy

)2(∫ 1

0

1

τ(y)
dy

)−2

p̄2. (5.7)

Proof. The formula (5.4) can be proved by writing (5.3) as a Bellman equation

δwδ(y) + inf
β∈Rr

{(
2τ(y)β − 2τ(y)σ(x̄, y)T p̄

)
·Dywδ + |β|2

}
−|σ(x̄, y)T p̄|2 = 0. (5.8)

Then wδ is the value function of the infinite horizon discounted deterministic control
problem appearing in (5.4) (see, e.g., [8, 11]).

If τ(y)σT (x, y) = 0 for all x, y, then (5.2) reads

−|τT (y)Dyw(y)|2 = |σT (x̄, y)p̄|2 − H̄(x̄, p̄).

So, this gives immediately the inequality ≥ in (5.6). The other inequality is obtained
by standard comparison principle arguments applied to the approximating problem
(5.3).

Finally, in the case n = m = r = 1, if p̄ ≥ 0 we write explicitly the corrector as

w(y) =

∫ y

0

H̄
1
2 − σ(x̄, s)p̄

τ(s)
ds.

Note that w ∈ C1 is periodic and does the job. A similar construction works for
p̄ < 0.

Remark 5. The meaning of assumption (5.5) is that the components of the Brow-
nian motion Wt influencing the slow variables Xt are not correlated with the com-
ponents acting on the slow variables Yt. In fact the condition is satisfied if the last
m columns of σ and the first n columns of τ are indentically zero.

We observe that H̄ satisfies the properties (a), (b), (c), (d), (e) of Proposition 3.3
and (4.4), as it can be shown by similar arguments.

Then, the proof of Theorem 3.5 applies here and we have the following comparison
result among viscosity sub- and supersolutions of the limit PDE

vt − H̄(x,Dv) = 0 in (0, T )× Rn. (5.9)
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Theorem 5.3. Let u ∈ BUSC([0, T ] × Rn) and v ∈ BLSC([0, T ] × Rn) be, re-
spectively, a bounded upper semicontinuous subsolution and a bounded lower semi-
continuous supersolution to (5.9) such that u(0, x) ≤ v(0, x) for all x ∈ Rn. Then
u(x, t) ≤ v(x, t) for all x ∈ Rn and 0 ≤ t ≤ T .

6. The convergence result. In this Section we state the main result of the paper,
namely, the convergence theorem for the singular perturbation problem. We will
make use of the relaxed semi-limits which we define as follows. For the functions vε
introduced in Section 2.2 the relaxed upper semi-limit v̄ = lim sup∗ε→0 supy v

ε is

v̄(t, x) := lim sup
ε→0,(t′,x′)→(t,x)

sup
y
vε(t′, x′, y), x ∈ Rn, t ≥ 0.

We define analogously the lower semi-limit v = lim inf∗ε→0 infy v
ε by replacing

lim sup with lim inf and sup with inf. Since h is bounded the family vε is equi-
bounded and we have v̄ ∈ BUSC([0, T ]× Rn) and v ∈ BLSC([0, T ]× Rn).

The standing hypotheses of sections 2.1 and 2.2 are assumed in this section.

6.1. The convergence result: Critical and supercritical case, α ≥ 2. Recall
that by Proposition 2.1 i) vε defined by (2.6) is the solution of∂tvε −Hε

(
x, y,Dxv

ε,
Dyv

ε

εα−1 , Dxxv
ε,
D2
yyv

ε

εα−1 ,
Dxyv

ε

ε
α−1
2

)
= 0 (0, T )× Rn × Rm

vε(0, x, y) = h(x) Rn × Rm.

with

Hε(x, y, p, q,X, Y, Z) : = |σT p|2 + b · q + tr(ττTY ) + ε
(
tr(σσTX) + φ · p

)
+ 2ε

α
2−1(τσT p) · q + 2ε

1
2 tr(στTZ) + εα−2|τT q|2.

Theorem 6.1. Assume α ≥ 2. Then
i) The upper limit v̄ (resp., the lower limit v) of vε is a subsolution (resp.,

supersolution) of the effective equation

vt −H(x,Dv) = 0 in (0, T )× Rn v(0, x) = h(x) on Rn (6.1)

where H̄ is given by (4.2) for α > 2, and it is defined by Proposition 3.1 for α = 2
(with the formulas (3.22), (3.23), (3.25), and (3.26));

ii) vε converges uniformly on the compact subsets of [0, T ) × Rn × Rm to the
unique viscosity solution of (6.1).

Proof. i) The inequality v(0, x) ≤ v̄(0, x) follows from the definitions. The problem
of taking the limit in the PDE is a regular perturbation of a singular perturbation
problem, in the terminology of [4]. The result can be proved by the methods
developed in [4] for such problems, with minor modifications.

ii) By the definition of the semilimits v ≤ v̄ in [0, T ) × Rn. The comparison
principle (Theorem 3.5 and Theorem 4.2) for the effective equation (6.1) gives the
inequality ≤ and therefore v̄ = v = v in [0, T ] × Rn. Thanks to the properties of
semilimits, we finally get that vε converges locally uniformly to the unique bounded
solution of (6.1).

6.2. The convergence result: Subcritical case, α < 2. Recall that by Propo-
sition 2.1 ii) vε defined by (2.6) is the solution of
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{
vεt = Hε

(
x, y,Dxv

ε,
Dyv

ε

ε
α
2
, Dxxv

ε,
D2
yyv

ε

ε
α
2
,
Dxyv

ε

ε
α
4

)
(0, T )× Rn × Rm

vε(0, x, y) = h(x) Rn × Rm.

with

Hε(x, y, p, q,X, Y, Z) : = |σT p|2 + 2(τσT p) · q + |τT q|2 + ε
(
tr(σσTX) + φ · p

)
+ 2ε1−α4 tr(στTZ) + ε1−α2 b · q + ε1−α2 tr(ττTY ).

Theorem 6.2. Assume α < 2. Then
i) the upper limit v̄ (resp., the lower limit v) of vε is a subsolution (resp., super-

solution) of the effective equation (6.1) where H̄ is defined by Proposition 5.1 (with
the formula (5.4));

ii) vε converges uniformly on the compact subsets of [0, T ) × Rn × Rm to the
unique viscosity solution of (6.1).

Proof. The proof is the same as that of Theorem 6.1, by using the comparison
principle Theorem 5.3.

Remark 6. In the case α ≤ 2 we can give a convergence result analogous to
Theorem 6.1 and Theorem 6.2 for a terminal cost h = h(x, y) depending also on
the fast variable y, so that the payoffs is

vε(t, x, y) := ε logE
[
e
h(Xt,Yt)

ε |(X., Y.) satisfy (1.1)
]
, (6.2)

In this case we must find a suitable effective initial value h̄ depending only on the
variable x; moreover the convergence cannot be up to time t = 0 but only on the
compact subsets of (0, T )× Rn × Rm to the unique viscosity solution of

vt −H(x,Dv) = 0 in (0, T )× Rn v(0, x) = h̄(x) on Rn.

The proof follows the methods of [2], where an asymptotic problem for finding h̄ is
given and the relaxed semi-limits are modified at t = 0 to deal with the expected
initial layer. For further details and proofs we refer to [28].

6.3. Ordering of the three cases. The convergence theorem stated above and
the formulas for H̄ say that there are three possible limits for vε, depending only on
the position of α with respect to the critical value α = 2. Let us call them vsup, vc
and vsub, if, respectively, α > 2, α = 2, or α < 2. We can compare them in the
uncorrelated case.

Corollary 6.3. If τ(y)σT (x, y) = 0 for all x, y, then

vsup(t, x) ≤ vc(t, x) ≤ vsub(t, x) ∀t ≥ 0, x ∈ Rn. (6.3)

Proof. If τσT = 0 we can easily compare the three effective Hamiltonians H̄sup, H̄c,
and H̄sub, respectively. In fact, (3.13) and (5.6) give

H̄c(x, p) ≤ H̄sub(x, p) ∀x ∈ Rn, p ∈ Rn.

On the other hand, using the control β ≡ 0 in (3.24), we get the diffusion

dYt = b(Yt)dt+
√

2τ(Yt)dWt,

whose invariant measure µ appears in the formula (4.2) for H̄sup. Then (3.23) gives

H̄c(x, p) ≥ lim
t→+∞

1

t
E

[∫ t

0

|σT (x, Ys)p|2 ds
]

=

∫
Tm
|σT (x, y)p|2 dµ(y) = H̄sup(x, p)
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for all initial condition Y0. Now the inequalities (6.3) are obtained by the comparison
principle Theorem 3.5.

7. The large deviation principle. In this section we derive a large deviation
principle for the process Xε

t defined in (2.3). Throughout the section we suppose
that σ is uniformly non degenerate, that is, for some ν > 0 and for all x, p ∈ Rn

|σT (x, y)p|2 > ν|p|2. (7.1)

By (3.13), under (7.1), the effective Hamiltonian is coercive. Let L̄ be the effective
Lagrangian, i.e. for x ∈ Rn

L̄(x, q) = max
p∈Rn
{p · q − H̄(x, p)}. (7.2)

Note that L̄(x, ·) is a convex nonnegative function such that L̄(x, 0) = 0 for all
x ∈ Rn, since H̄(x, ·) is convex nonnegative and H̄(x, 0) = 0 for all x ∈ R.

For each x0 ∈ Rn and t > 0, define

I(x;x0, t) := inf

[∫ t

0

L̄
(
ξ(s), ξ̇(s)

)
ds
∣∣∣ ξ ∈ AC(0, t), ξ(0) = x0, ξ(t) = x

]
. (7.3)

Remark 7. (a) The function I defined in (7.3) is continuous in the variable x (see,
e.g., [15]) and is a nonnegative function such that I(x0;x0, t) = 0.

(b) I satisfies the following growth condition for some C > 0 and all x, x0 ∈ Rn

1

4C

|x− x0|2

t
≤ I(x;x0, t) ≤

1

4ν

|x− x0|2

t
, (7.4)

where ν is defined in (7.1). In fact, thanks to the property (3.13) stated in Propo-
sition 3.3, we get that

1

4C
|p|2 ≤ L̄(x, p) ≤ 1

4ν
|p|2.

Then we have

1

4C
inf

ξ(0)=x0,ξ(t)=x

∫ t

0

|ξ̇(s)|2 ≤ I(x;x0, t) ≤
1

4ν
inf

ξ(0)=x0,ξ(t)=x

∫ t

0

|ξ̇(s)|2,

from which we get (7.4).
(c) If σ does not depend on x, i.e. H̄ = H̄(p), the rate function in (7.3) is

I(x;x0, t) = tL̄

(
x− x0

t

)
.

(d) If σ does not depend of x and n = 1, I is a monotone nondecreasing function
of x when x > x0. Analogously, I is a monotone nonincreasing function of x when
x < x0.

Theorem 7.1. Let (Xε, Y ε) be the process defined in (2.3) with initial position
Xε

0 = x0 and Y ε0 = y0. Then for every t > 0, a large deviation principle holds for
{Xε

t : ε > 0} with speed 1
ε and good rate function I(x;x0, t). In particular, for any

open set B ⊆ Rn
lim
ε→0

ε logP (Xε
t ∈ B) = − inf

x∈B
I(x;x0, t). (7.5)

Remark 8. Thanks to Remark 7, if σ does not depend on x and n = 1, we have
infy>x I(y;x0, t) = I(x;x0, t) for x ≥ x0 and (7.5) can be written in the following
way

lim
ε→0

ε logP (Xε
t > x) = −I(x;x0, t) when x > x0
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and analogously when x < x0

lim
ε→0

ε logP (Xε
t < x) = −I(x;x0, t).

Remark 9. We note that the rate function I defined in (7.3) does not depend on
the drift φ of the log-price Xε

t and it depends only on the volatility σ and on the fast
process Y εt . In fact, this holds for the effective Hamiltonian H̄ by the representation
formulas (3.22) for α = 2, (4.2) for α > 2 and (5.4) for α < 2, and hence it holds
for the Legendre transform L̄.

Proof. We divide the proof in two steps, the first is the proof of the large deviation
principle, while the second is the proof of the representation formula (7.3) for the
good rate function.

Step. 1 (Large deviation principle) The proof of this step is similar to that of
Theorem 2.1 of [21] with some minor changes. The idea is to apply Bryc’s inverse
Varadhan lemma (see Appendix A, Lemma A.1) with µε given by the laws of {Xε

t }
and Λεh given by vε. Recall that, for h ∈ BC(Rn), vε is defined as

vε(t, x, y) := ε logE

[
e
h(Xεt )

ε |(Xε
. , Y

ε
. ) satisfy (2.3)

]
.

We proved in Theorems 6.1, 6.2 that vε converge uniformly to a function vh.
To apply Lemma A.1, we have to prove the exponential tightness of {Xε

t }. Define
the following function

fε(x, y) =

{
f(x) + εα−1ζ(y) if α ≥ 2,
f(x) + ε

α
2 ζ(y) if α < 2,

(7.6)

where
f(x) = log(1 + |x|2)

and ζ(y) is a positive differentiable function with bounded first and second deriva-
tives. Since f(x) is an increasing function of |x| and since ζ(y) ≥ 0, we have that
for any c > 0 there exists a compact set Kc ⊂ Rn such that

fε(x, y) > c when x 6∈ Kc. (7.7)

We observe that ||∂xjf ||∞ + ||∂2
xjxif ||∞ < ∞ for all i = 1 · · ·n, j = 1 · · ·n, and by

our choice of ζ we therefore have that

sup
x∈Rn,y∈Rm

Hε(x, y,Dxfε, Dyfε, D
2
xxfε, D

2
yyfε, D

2
xyfε) = C <∞, (7.8)

where Hε is defined as follows

Hε(x, y, p, q,X, Y, Z) =|σT p|2 + εtr(σσTX) + εφ · p+ 2ε−
α
2 tr(τσT p) · q

+2ε1−α2 tr(στTZ) + ε1−αb · q + ε−α|τT q|2 + ε1−αtr(ττTY ).

We will write Hεfε(x, y) to denote Hε(x, y,Dxfε, Dyfε, D
2
xxfε, D

2
yyfε, D

2
xyfε). The

P and E in the following proof denote probability and expectation conditioned on
(X,Y ) starting at (x, y). Define the process

Mε
t = exp

{
fε(X

ε
t , Y

ε
t )

ε
− fε(x, y)

ε
− 1

ε

∫ t

0

Hεfε(X
ε
s , Y

ε
s ) ds

}
. (7.9)

Then Mε,t is a supermartingale and hence we can apply the optional sampling
theorem (see Appendix A, Theorem A.2), that is

1 ≥ E [Mε
t ] . (7.10)
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Then

1 ≥ E [Mε
t |Xε

t /∈ Kc] ≥ E
[
e

(c−fε(x,y)−tC)
ε |Xε

t /∈ Kc

]
(7.11)

= P (Xε
t 6∈ Kc)e

(c−fε(x,y)−tC)
ε ,

where we have used (7.7) and (7.8) to estimate the first and third term in Mε
t . Then

we get

ε logP (Xε
t 6∈ Kc) ≤ tC + fε(x, y)− c ≤ const − c

and this finally gives us the exponential tightness of Xε
t .

So, by Bryc’s inverse Varadhan lemma (see Appendix A, Lemma A.1), the mea-
sures associated to the process Xε

t satisfy the LDP with the good rate function

I(x;x0, t) = sup
h∈BC(Rn)

{h(x)− vh(t, x0)} (7.12)

and

vh(t, x0) = sup
x∈Rn
{h(x)− I(x;x0, t)}.

Step. 2 (Representation formula for the good rate function) The solution vh to the
effective equation {

vt − H̄(x,Dv) = 0 in (0, T )× Rn
v(0, x) = h(x) in Rn (7.13)

can be represented through the following formula

vh(t, x) =

sup

{
h(y)−

∫ t

0

L̄
(
ξ(s), ξ̇(s)

)
ds | y ∈ Rn, ξ ∈ AC(0, t), ξ(0) = x, ξ(t) = y

}
,

(7.14)

where L̄ is the effective Lagrangian defined in (7.2). We refer to [15] where it is
shown that vh is continuous and is the solution of (7.13). We define

r(x;x0, t) = inf
ξ(0)=x0,ξ(t)=x

∫ t

0

L̄
(
ξ(s), ξ̇(s)

)
ds (7.15)

Thanks to (7.12) and (7.14), we can write

I(x;x0, t) =

r(x;x0, t) + sup
h∈BC(R)

inf

{
h(x)− h(y) +

∫ t

0

L̄
(
ξ(s), ξ̇(s)

)
ds− r(x;x0, t)

}
,

(7.16)

where the infimum is over y ∈ Rn and absolutely continuous functions ξ such that
ξ(0) = x0, ξ(t) = y. Then

I(x;x0, t) = r(x;x0, t) + J(x;x0, t),

where J(x;x0, t) := suph∈BC(R) Jh(x;x0, t) and

Jh(x;x0, t) = inf

{
h(x)− h(y) +

∫ t

0

L̄
(
ξ(s), ξ̇(s)

)
ds− r(x;x0, t)

}
.

Taking y = x, we obtain Jh(x;x0, t) ≤ 0 and therefore J(x;x0, t) ≤ 0. Now we
define a function h∗ ∈ BC(R) as follows:
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h∗(y) = r(y;x0, t) ∧ r(x;x0, t).

We claim that h∗ is continuous. Then Jh∗(x;x0, t) = 0 and therefore J(x;x0, t) = 0.
In conclusion

I(x;x0, t) = inf
ξ(0)=x0,ξ(t)=x

∫ t

0

L̄
(
ξ(s), ξ̇(s)

)
ds.

Finally, the claim follows from the continuity of the function r(y;x0, t) in the variable
y, that can be found, e.g., in [15], Section 4, Proposition 3.1 and Corollary 3.4.

8. Out-of-the-money option pricing and asymptotic implied volatility.

8.1. Option price. In this section, we give some applications of Theorem 7.1 in
dimension 1 to out-of-the-money option pricing. In particular, in Corollary 8.1,
we state an asymptotic estimate for the behaviour of the price of out-of-the-money
European call option with strike price K and short maturity time T = εt.

Let Sεt be the asset price, evolving according to the following stochastic differen-
tial system{

dSεt = εξ(Sεt , Y
ε
t )Sεt dt+

√
2εζ(Sεt , Y

ε
t )Sεt dWt Sε0 = S0 ∈ R+

dY εt = ε1−αb(Y εt )dt+
√

2ε1−ατ(Y εt )dWt Y ε0 = y0 ∈ Rm,
(8.1)

where α > 1, τ, b are as in (2.3) and ξ : R+ × Rm → R, ζ : R+ × Rm → M1,r are
Lipschitz continuous bounded functions, periodic in y. Observe that Sεt > 0 almost
surely if S0 > 0. We define Xε

t = logSεt . Then (Xε
t , Y

ε
t ) satisfies (2.3) with

φ(x, y) = ξ(ex, y)− ζ(ex, y)ζT (ex, y) σ(x, y) = ζ(ex, y).

We consider out-of-the-money call option by taking

S0 < K or x0 < logK. (8.2)

Following the argument used in [21], we can derive an option price estimates stated
in Corollary 8.1. Similarly, by considering out-of-the-money put options, one can
obtain the same formula for S0 > K.

Corollary 8.1. Suppose that S0 < K. Then, for fixed t > 0

lim
ε→0+

ε logE
[
(Sεt −K)

+
]

= − inf
y>logK

I (y;x0, t) . (8.3)

8.2. Implied volatility. We give an asymptotic estimate of the Black-Scholes im-
plied volatility for out-of-the-money European call option, with strike price K,
which we denote by σε(t, logK,x0).

We recall that given an observed European call option price for a contract with
strike price K and expiration date T , the implied volatility σ is defined to be the
value of the volatility parameter that must go into the Black-Scholes formula to
match the observed price.

By arguments similar to those of the ones used in [21], we get the following
asymptotic formula.

Corollary 8.2.

lim
ε→0+

σ2
ε(t, logK,x0) =

(logK − x0)2

2 infy>logK I(y;x0, t)t
. (8.4)

Note that the infimum in the right-hand side of (8.4), is always positive by
assumption (8.2) and by (7.4).
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Remark 10. When ζ(s, y) = ζ(s), then thanks to Remark 8, (8.3) simplifies to

lim
ε→0+

ε logE
[
(Sεt −K)

+
]

= −I (logK;x0, t)

and (8.4) reads

lim
ε→0+

σ2
ε(t, logK,x0) =

(logK − x0)2

2I(logK;x0, t)t
.

Proof. By the definition of implied volatility

E
[
(Sεt −K)+

]
= erεtS0Φ

(
x0 − logK + rεt+ σ2

ε
εt
2

σε
√
εt

)
(8.5)

− KΦ

(
x0 − logK + rεt− σ2

ε
εt
2

σε
√
εt

)
,

where Φ is the Gaussian cumulative distribution function. Then the proof follows
as in [21], using (8.5) and Corollary 8.1.

Appendix A. Large deviation principle. We recall some standard notions from
large deviation theory that we need in section 7. Throughout the section, µε will
denote a family of probability measures defined on Rn with its Borel σ-field B. For
the definitions and theorems in a more general setting and for further details we
refer to [16].

Given a family of probability measures {µε}, a large deviation principle characte-
rizes the limiting behavior, as ε → 0, of {µε} in terms of a rate function through
asymptotic upper and lower exponential bounds on the values that µε assigns to
measurable subsets of Rn.

Definition A.1. A rate function I is a lower semicontinuous map I : Rn → [0,∞],
and it is a good rate function if for all α ∈ [0,∞), the level set ΨI(α) := {x : I(x) ≤
α} is compact.

For any set B ⊆ Rn, we denote by B◦ the interior of B.

Definition A.2. A family of probability measures {µε} satisfies the large deviation
principle with a rate function I if, for all B ∈ B,

− inf
x∈B◦

I(x) ≤ lim inf
ε→0

ε logµε(B) ≤ lim sup
ε→0

ε logµε(B) ≤ − inf
x∈B̄

I(x). (A.1)

The right-and left-hand sides of (A.1) are referred to as the upper and lower
bounds, respectively.

Definition A.3. A family of probability measures {µε} on Rn is exponentially
tight if for every α <∞, there exists a compact set Kα ⊂ Rn such that

lim sup
ε→0

ε logµε(K
c
α) < −α.

Moreover, for each Borel measurable function h : Rn → R, define

Λεh := ε log

∫
Rn
e
h(x)
ε µε(dx).

and

lim
ε→0

ε log

∫
Rn
e
h(x)
ε µε(dx) = Λh (A.2)

provided the limit exists. Then, the so-called Bryc’s inverse Varadhan Lemma
permits to derive the large deviation principle as a consequence of exponential
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tightness of the measures µε and the existence of the limits (A.2) for every h ∈
BC(Rn). The statement is the following.

Lemma A.1. Suppose that the family {µε} is exponentially tight and that the limit
in (A.2) exists for every h ∈ BC(Rn). Then {µε} satisfies the LDP with the good
rate function

I(x) = sup
h∈BC(Rn)

{h(x)− Λh}.

Furthermore, for every h ∈ BC(Rn),

Λh = sup
x∈Rn
{h(x)− I(x)}.

Finally we recall the optional sampling theorem. For further details see [37].

Theorem A.2. Let M = {Mt}t≥0 be a submartingale right-continuos and let τ be
a stopping time, such that one of the following conditions is satisfied

• τ is a.s. bounded, i.e. there exists T ∈ (0,∞) such that τ ≤ T a.s.;
• τ is a.s. finite and Mτ∧t ≤ Y for all t ≥ 0, where Y is an integrable variable

(in particular |Mτ∧n| ≤ K for a constant K ∈ [0,∞))

Then the variable Mτ is integrable and

E(Mτ ) ≥ E(M0). (A.3)

If, instead, M is a supermartingale, then

E(Mτ ) ≤ E(M0).

Acknowledgments. The authors would like to warmly thank Guy Barles for valu-
able comments and suggestions on this work, which allowed to improve the results.

REFERENCES

[1] O. Alvarez and M. Bardi, Viscosity solutions methods for singular perturbations in determin-
istic and stochastic control, SIAM J. Control Optim., 40 (2001/02), 1159–1188.

[2] O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: A

general convergence result, Arch. Ration. Mech. Anal., 170 (2003), 17–61.
[3] O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-

Isaacs equations, Mem. Amer. Math. Soc., 204 (2010), vi+77 pp.

[4] O. Alvarez, M. Bardi and C. Marchi, Multiscale problems and homogenization for second-
order Hamilton-Jacobi equations, J. Differential Equations, 243 (2007), 349–387.

[5] M. Avellaneda, D. Boyer-Olson, J. Busca and P. Friz, Application of large deviation methods

to the pricing of index options in finance, C.R. Math. Acad. Sci. Paris, 336 (2003), 263–266.
[6] M. Arisawa and P.-L. Lions, On ergodic stochastic control, Comm. Partial Differential Equa-

tions, 23 (1998), 2187–2217.
[7] S. Balbinot, Valore Critico Per Hamiltoniane non Coercive e Applicazioni a Problemi di

Omogeneizzazione, Master thesis, University of Padova, 2012.

[8] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
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