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Abstract

We show that, for a sheet or a Lusztig stratum .S containing spherical
conjugacy classes in a connected reductive algebraic group G over an alge-
braically closed field in good characteristic, the orbit space S/G is isomor-
phic to the quotient of an affine subvariety of G modulo the action of a finite
abelian 2-group. The affine subvariety is a closed subset of a Bruhat double
coset and the abelian group is a finite subgroup of a maximal torus of G. We
show that sheets of spherical conjugacy classes in a simple group are always
smooth and we list which strata containing spherical classes are smooth.

1 Introduction

In [17], it is shown that the orbit space of a sheet S of adjoint orbits in a complex
Lie algebra has the structure of a geometric quotient which is isomorphic to an
affine variety modulo the action of a finite group. The affine variety is the inter-
section of S with the Slodowy slice of a nilpotent element e in .S, and the finite
group is the component group of the centralizer of e. An algebraic proof of this
result was obtained by Im Hof [16], who proved that sheets in complex Lie alge-
bras of classical type are all smooth, by showing that S is smoothly equivalent to
its intersection with the Slodowy slice. Katsylo’s theorem has also been applied to
the study of one-dimensional representations of finite 1 -algebras [18, 23], which
is related to the problem of determining the minimal dimensional modules for
restricted Lie algebras. In this context, it has been shown in [24] that the space



of 1-dimensional representations of the finite 11/-algebra associated with a nilpo-
tent element e in a classical Lie algebra is isomorphic to an affine space if and
only if e lies in a single sheet. The latter condition is equivalent to say that the
union of the sheets passing through e is a smooth variety. Our goal is to provide
an analogue of Katsylo’s theorem for sheets of conjugacy classes in a reductive
algebraic group GG over an algebraically closed field of good characteristic. Since
sheets are the irreducible components of the parts in Lusztig’s partition [20] called
strata, the theorem will give an analogue for strata as well. As strata should be
seen as the group analogue of the union of sheets passing through a nilpotent
element e, used in [24], we expect that their geometry will have relevance in rep-
resentation theory of quantum groups at the roots of unity. Evidence of this is
visible in Sevostyanov’s proof of the De Concini, Kac and Procesi conjecture on
irreducible representations of quantized enveloping algebras at the roots of unity
[26]. A conjugacy class in the corresponding simply-connected group is attached
to each irreducible representation and the conjecture relates their dimensions. In
the proof conjugacy classes lying in the same stratum are handled by using the
same combinatorial data.

We prove a Katsylo theorem in the case that the sheet (or stratum) in question
contains (hence consists of) spherical conjugacy classes, that is, classes having a
dense orbit for a Borel subgroup B of (. Strata, and therefore sheets, of conjugacy
classes in a reductive algebraic group do not necessarily contain unipotent classes,
so the analogue of Katsylo’s theorem cannot be straightforward. A group analogue
for Slodowy slices has been introduced in [25]. In analogy to Steinberg’s cross
section, these slices depend on a conjugacy class in the Weyl group W of G.
The construction of these slices requires a suitable choice of positive roots in the
root system of G which depends on the class of the element in WW. Although
the transversality result in [25] is stated in characteristic zero, the proof holds
in arbitrary characteristic. When w € W acts without fixed points, a section
analogous to the one in [25] was given in [15], which contains a generalization of
Steinberg cross section theorem in this case.

To our aim, we exploit Sevostyanov’s result together with the well-understood
behaviour of spherical conjugacy classes with respect to the Bruhat decomposi-
tion. We replace the Slodowy slice by a suitable subset S,, of a Bruhat double
coset Bw B, depending on the stratum, such that its intersection with each given
sheet in the stratum coincides (up to conjugation) with the intersection of the sheet
with Sevostyanov’s slice. Since for spherical conjugacy classes the intersection
with this double coset is precisely the dense B-orbit, we show that the intersec-
tion of S,, with each conjugacy class is a single orbit for a finite 2-subgroup of a
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fixed maximal torus 7.

Thanks to Sevostyanov’s transversality result, a sheet S' of spherical classes is
smooth if and only if SNS,, is so, and similarly for strata. This result is applied in
Section 4 where we obtain the second main result of this paper: sheets containing
a spherical class in simple groups are all smooth. As a consequence, we classify
smooth strata of spherical classes in simple groups.

2 Notation

Unless otherwise stated, (G is a connected, reductive algebraic group over an alge-
braically closed field k of good characteristic, i.e., not bad for any simple compo-
nent of |G, G].

Let T be a fixed maximal torus of GG and let ® be the associated root sys-
tem. The root subgroup of GG associated with o € ® will be denoted by X, and
Zo: k — X, will indicate a parametrization of X,,.

The Weyl group of GG will be denoted by 1. The centralizer of an element
x € (G in a subgroup H of GG will be denoted by H*. The identity component of
any subgroup H of G will be denoted by H°.

Let G act regularly on an irreducible variety X. For n > 0, we shall denote
by X(,) the locally closed subset X, = {z € X | dimG -z = n}. Fora
subset Y C X, if m is the maximum integer n for which Y N X,y # 0, the open
subset X(,,,y N'Y will be denoted by Y. A sheet for the action of G on X is
an irreducible component of some X(,). We will investigate the case in which
X = @ and the action is by conjugation. Sheets in this situation are related to
Jordan classes (or decomposition classes) in G.

Recall that a Jordan class is an equivalence class for the following equivalence
relation. Let g = su be the Jordan decomposition of g € GG. Then g is equivalent
to all elements h € G with Jordan decomposition A = rv satisfying G*° = G"°,
r € Z(G*°)°s and v € G*° - u, and to any conjugate of any such h. In particular,
Jordan classes consist of elements whose connected centralizers are all conjugate.
As a set, the Jordan class J(g) of gis J(g) = J(su) = G - ((Z(G*°)°s) ).

It has been shown in [8] that for any sheet S there is a unique Jordan class
J = J(su) suchthat S = J 7. As a set,

S= | G-(zsnd@G* - u) 2.1)
z€Z(Gs°)°

where s and u are as above and Ind denotes Lusztig-Spaltenstein induction [21]:
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for L a Levi subgroup of a parabolic subgroup P = LP" of a reductive group H
and L - u a unipotent conjugacy class in L, Ind¥ (L - ) is the unique unipotent
class of H intersecting uP" in a dense set. We observe here that although G*° as
in (2.1) might not be a Levi subgroup of a parabolic subgroup of G, it is always a
Levi subgroup of a parabolic subgroup of G**°.

Sheets are related to the parts, called strata, of a partition defined in [20].
Strata are constructed as the non-empty fibers of a map f from G to the set of
isomorphism classes of complex irreducible representations of W which is given

as follows. For g = su, we have: f(gu) = jjy p./*, where p,* is the irre-

ducible Springer representation of the Weyl group W of G*° associated with the
unipotent class G*° - u and trivial local system and jV”V’S is Lusztig-Spaltenstein’s
truncated induction [21]. It was shown in [6] that, due to the compatibility of
Lusztig-Spaltenstein truncated induction with induction of unipotent classes, f is
constant along sheets, strata are locally closed, and sheets of conjugacy classes
are their irreducible components. For this reason we will work with sheets and
strata simultaneously.

For a Borel subgroup B D T and a conjugacy class O (a sheet S, respectively)
in G, let wo (wg, respectively) be the unique element in W such that O N Bwe B
is dense in O (S N BwgB is dense in S, respectively). If a sheet S contains
a spherical conjugacy class then wg = wep for every O C S, [6, Proposition
5.3]. In addition, it follows from [6, Theorem 5.8] that wg is constant along strata
containing spherical classes. The element we is always an involution and it is
maximum in its conjugacy class with respect to the Bruhat ordering ([9, 7]).

The conjugacy classes of wep and wg in W are independent of the choice of a
Borel subgroup containing 7. Thus, the map O — we determines a map ¢ from
the set of conjugacy classes in G to the set of conjugacy classes of involutions in
W.

For w an involution in W, let 7% := {t € T | w(t) = t},and T, := {t €
T | w(t) =t"'}. ThenT = (T*)°(T,)° and R,, := T,, N T" is an elementary
abelian 2-group. For any choice of a Borel subgroup B containing 7" a longest
element wy € W is determined. Let U be the unipotent radical of B. We set
Uv:.=UnN wilonwo_lw and U, := U Nw Uw.

3 Spherical classes and Bruhat decomposition

In this Section we prove a Katsylo Theorem for sheets containing spherical con-
jugacy classes. We will make use of the following general results.



Lemma 3.1 ([16, Lemma 2.13]) Let A, B, C be varieties, let n: A — B be a
smooth and surjective morphism and let 0: B — C' be a set-theoretic map such
that On: A — C'is a morphism. Then 0 is a morphism.

O

Lemma 3.2 Let X be a G-variety and assume that there is an affine closed subset
> C X with an action of a finite group 1’ such that the following properties hold:

1. for every G-orbit O of X the set ¥ N O is a I'-orbit;

2. the natural map jv: G x ¥ — X is smooth and surjective.

Then, X /G exists and it is isomorphic to ¥ /T.

Proof. Define the map ¢): X — ¥ /T set theoretically sending an element = €
X to G-z NX. Wenote that yu: G x ¥ — 3 /T is the composition of the
natural projection on the second factor followed by the projection to the quotient.
Therefore Lemma 3.1 applies with A = G x 3, B = X, C = X/T'n = pu
and 0 = 1, so ¢ is a morphism. Since p is surjective > meets all the G-orbits
in X. The map v is universally submersive because its restriction to . is the
canonical universal quotient map 7 which is universally submersive [22, Theorem
1.1]. We now prove that for any open subset V' C X/I" we have Oy (V) ~
Ox(yp~1(V)). Tt is enough to prove it for V affine. For f a morphism, let
f# be the map induced by f on regular functions. Note that ¢)# embeds k[V]
into k[y~*(V)]¢. Furthermore, if ¢ is the inclusion of ¥ in X, then (# induces
an embedding of k[¢)~1(V)]¢ into k[m~1(V)]'. Since 7% = # o )# induces an
isomorphism k[V] ~ k[7~(V)]", also t* induces an isomorphism k[y)~(V)]¢ ~
k[m=1(V)]', hence ¥* induces an isomorphism k[V] ~ k[p~1(V)]€. O

Let w be a representative of w € W in N(T'), B be a Borel subgroup contain-
ing 7" and U be the unipotent radical of B. We define §,, := wT™U™. Although
T and U" depend only on w and not on its representative w, the closed set S,,
depends on the choice of the element w or, more precisely, on its coset w71™ in
T/T*. To keep notation simple, we omit reference to the specific representative
in the symbol S,, as it will be clear from the context.

Lemma 3.3 Let S be either a sheet or a stratum consisting of spherical conjugacy
classes. Then S N S, is a closed subset of G.



Proof. We show that S N S,,, = SN Sug- Let O be a conjugacy class in S.
Then, dim O = l(we) + rk(1 — we) by [3, 4, 19, 10, 6]. Since wp = wg, we
have S C Gy where M = ((wg) + k(1 — wg) and S\ S C U, s Gim)» [8,
Proposition 5.1],[6, Theorem 2.1]. If for some class @' in G and some w € W
there holds O’ N BwB # (), then dim O" > ¢(w) + rk(1 — w), [3, Theorem 5].
Hence, if O C S\ S then O'NS,,; C O' N BwsB = 0. O

Let us briefly recall the construction of the closed subset 3, of G defined in
[25, p.1890], in the case in which w € W is an involution. Let hr be the real
span of the co-roots in the Cartan subalgebra b, let {vy, ..., v,} be a basis of
the (—1)-eigenspace of w in hg, let hi¥ be the 1-eigenspace of w in hg and let
¥ = &N bhg. A set of positive roots ¢ can be defined according to the following
rules: we choose a set of positive roots W, in the root system ¥ and for 5 € ¥
weset § € &, ifandonly if 5 € W . For § € &\ ¥, as w is an orthogonal
involution, there will be a j such that (3, v;) # 0. Let us take ¢ maximal with this
property. Then we have § € ®, if and only if (v;) > 0.

Since w(v;) = —w; for every i, there holds @, \ ¥ = {a € &, | w(a) €
—&_ }. In other words, with respect to the constructed choice of positive roots, w
has maximal possible length. In addition, w(®, \ V) = (=P, ) \ V. Let U be the
subgroup generated by the root subgroups corresponding to roots in ¢, and let
B:=TT.

Let w be the unique representative of w such that wz,(1)w™! = z,,(1) ([12,
Theorem 5.4.2]), let L be the Levi subgroup of a parabolic subgroup of GG con-
taining 7" and with root system W, and let P* be the unipotent radical of the
parabolic subgroup of G containing all root subgroups associated with roots in
(—®,) \ V. Observe that P" is Sevostyanov’s N because w is an involution and
that wP“w~! = U“. Sevostyanov’s slice in this case is the closed subset

Y = P'L¥w = P*wL¥ = wU"L" = wL"U".

Lemma 3.4 Let w € W with w? = 1 and let w be a representative in N(T). If O
is a conjugacy class in G such that O N BwB # () then O Nw(T")°U # ().

Proof. Clearly O NwTU # (). Let x = wt,t“u € (T,,)°(T")°U. Conjugation by
s € (T,)° yields ws?t,t“u’ € O. Since the square map on (7},)° is onto, there

exists s € (T,,)° such that s2 = t,,, whence the statement. O

Lemma 3.5 Let S be a stratum or a sheet containing a spherical conjugacy class
O. Let w € p(O). For 4, B, U, w and L as in the construction of Sevostyanov’s
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slice and S,, = wIT™U"%, ¥, = wL"U" we have
O'NS,=0'NT, #0
for every class O' C S.

Proof. Let A be the set of simple roots associated with ¢ and let IT := A Nhg.
With respect to the given choice of ¢, the element w is of maximal length in
©(O). Hence, it is equal to wg with respect to the choice of B. Therefore O'NwB #
() for every @' C S and, by Lemma 3.4, O' N wT%U # (. By [4], we have
w = wowr, for wy the longest element in the parabolic subgroup Wy of W.
Then, L is the standard Levi subgroup of the standard parabolic subgroup P
associated with II, U, = U, =UN L and U* = Fj.

We have S, := wT™U¥ C wL'U" = ¥,s05NS, C SN, Conversely,
let + = wlu € SNwL*U". Then [ € BoB for some o € Wi. Since {(wowyo) =
l(wown)+{(0) forevery o € Wy, we have x € BwoBNS. Maximality of wg = w
among all 7 in W such that S NB7B # () forces 0 = 1. Hence, [ € BN L¥ = T*U,,
and SN Y, C wI“U. Let O C S andlety = wiu € wIUN O'. By [4,
Lemmata 4.6, 4.7, 4.8] the only root subgroups occurring in the expression of u
are orthogonal to IT. Hence they lie in U” and () # O’ NwT¥U = O’ NwT™U" =
ON3,=0'NS8,. O

Remark 3.6 The results contained in [4] and needed in the proof of Lemma 3.3
refer to characteristic zero or odd and good. However the proofs of Lemmata 4.6,
4.7, 4.8 and Theorems 2.7 and 4.4 therein are still valid for groups of type A,, in
characteristic 2 because also in this case spherical conjugacy classes meet only

Bruhat cells corresponding to involutions in the Weyl group. This follows from
[10, Theorem 3.4] and [11, Theorems 4.6,4.7].

Let, for an involution w € W
[pi={te (T, |t* €T "} ={tcT,|t* € Ry}

Theorem 3.7 Let S be a stratum or a sheet containing a spherical conjugacy
class O. Let w € p(O). Then S/G ~ (SN X,)/T .

Proof. We apply Lemma 3.2 with X =S, X =5NYX, and ' =1T,.
By Lemmata 3.3 and 3.5 the set X is affine and closed in S. The action of I,
by conjugation preserves Y.,,, hence it preserves ..
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Let O be a conjugacy class in S. We consider O N ¥ = O NwI™U C BwB.
Since O is spherical and w = wg = we, the set ) # O N BwB is the dense B-orbit
in O by [3, Theorem 5]. Therefore, for any x = wt,u,, y = wtyu, € ONX
there is b = wwvsgs; € U"U,(T")°(T,)° such that uvsysiwt,u, = wt,u,uvses;.
Since vspsiw € wl'U, uniqueness of the Bruhat decomposition U“w71'U forces
u = 1,80b = vsps; € U,(T")°(T,)°. In addition, (7")°U,, centralizes all
elements in S N wI™UY, [4, Lemmata 4.6, 4.7, 4.9] so y = bwb™! = s;xs]", that
is, wsy 'tyu, = wysi (s 'uysy). This implies that s = t,t,1 € T% s0 51 € Ty,

The map G x ¥, — G is smooth by [25, Proposition 2.3]. The pull-back of
this map along the inclusion S — G is the map p, and [14, Theorem III 10.1]
applies. U

Theorem 3.8 Let S be a stratum or a sheet containing a spherical conjugacy
class O. Let B = TU be a Borel subgroup of G, corresponding to a system of
positive roots @+ and a set of simple roots A. Then, for any representative g of
wg we have

S/G = (SN Swy)/Tws.

Proof. If B = B, and wg = w as in the construction of Sevostyanov’s slice, this is
Theorem 3.7 in force of Lemma 3.5.

Let us assume that A, # A and let ¢ € W such that cA = A,. Then,
wy 1= owgo ™! is the maximum with respect to the Bruhat ordering determined
by Ay, ie., BusBNSisdensein S. Let & € N(T') be a representative of 0. Then
cTwsg=1 = T and U™s¢~! = U¥s. In addition Gigo™! € wy(T)°(Tys ),
where w is the representative needed for Sevostyanov’s construction. Up to mul-
tiplying & by a suitable element in (7,,,)°, we can make sure that Gugs ™ €
W (TV5)° so GuigTVsUYs¢~! = wg(T™s)°U%. So, conjugation by & maps
S NS, isomorphically onto S N wyT%sU%s = SN Yy, by Lemma 3.5. A di-
rect verification shows that deSd” = Fw%, whence the statement follows from
Theorem 3.7. U

4 Smoothness of sheets of spherical classes

In this section we detect when S’ is smooth, for .S a sheet or a stratum of spherical
classes in a simple group GG. By [8, Remark 3.4, Proposition 5.1] it is enough to
consider a representative for each isogeny class of GG. For G of classical type we
will consider matrix groups, whereas for GG of exceptional type we shall consider



the simply-connected group. We will use the classification of spherical conjugacy
classes in [5].

Arguing as in [16], see also [1, Proposition 3.9 (iii)], we conclude that S is
smooth if and only if S N S,, is so. We analyze smoothness of the latter. In order
to do so, we recall some information contained in [4, Lemmata 4.6, 4.7, 4.8] and
Remark 3.6 about this intersection.

Let wg be the Weyl group element associated with S. We recall that it has
always the form wg = wowy for some I C A and that wg(a) = « for every
a € T1, see Lemma 3.5. Let ws be a representative of wg such that gz, (§)ig' =
x4(§) for every £ € k and every v € & N ZII. Let O be aclass in S. If wgtv €
ONwgTU thenv liesin Vg := Hﬁe<1>+,ws/3:—6 Xg, where X is the root subgroup
associated with 3. We observe that, due to Chevalley commutator formula the
product of subgroups can be taken in arbitrary order and that Vg is a subgroup of
U. In addition, wgst commutes with X, for every a € ZII N ®. Therefore

SNSy, Cws(Z(Ly)NTYs)Vs.
We will make use of the following observation.

Proposition 4.1 Let G be a simple algebraic group and let S = J (Su)mg for
some s,u € G be a sheet of spherical conjugacy classes in G. Then either u = 1
or S =G -suand, if S # G - su, then S contains a semisimple and a unipotent
element.

Proof. By the classification of spherical conjugacy classes in [3, 5], if G - rv is
spherical and v # 1, then G"° is semisimple. Therefore, either G - rv is a single
sheet, or it lies in S = meg, for some semisimple element s. In addition, if
S = ng is non-trivial, then G*° is a Levi subgroup, so .S contains a unipotent
class by [8, Theorem 5.6(b)]. [

We can state the main result of this Section.

Theorem 4.2 Let G be a simple algebraic group over k.
1. All sheets of spherical conjugacy classes are smooth.

2. Let S be a stratum of spherical conjugacy classes. Then S is smooth with
the following exceptions:



o (G is of type By and S is the stratum containing the unipotent class
with partition (3,1?), or, equivalently, G is of type Cy and S is the
stratum containing the unipotent class with partition (2%);

o G isoftype Doy 1 and S is the stratum containing the unipotent class
with partition (22" 12).

Proof. By Proposition 4.1 it is enough to look at sheets containing a semisimple,
element whose connected centralizer is not semisimple. Their description follows
from (2.1) and the classification in [3, 5]. For each simple group we will com-
pute the set theoretical intersection of every non-trivial spherical sheet S with the
corresponding S,,; and we will use the following remark.

Remark 4.3 The intersection of S N S,
following steps:

is reduced. This is proved through the

S

1. S is reduced.

2. The map G X (Sygq NS) — S is smooth and surjective, which follows from
[25, Proposition 2.3] and [14, III, Theorem 10.1].

3. G X (Syg NS) is reduced; which follows from the previous facts using [13,
éxp. 11, prop.3.1].

4. G x (Swy N S) is reduced implies that (S, N S) is reduced.

4.1 Type A,

Let us first consider H = G L, (k). We choose B to be the subgroup of upper
triangular matrices, and 7" to be the subgroup of diagonal matrices. In this case
sheets and strata coincide, spherical sheets are parametrized by m =0, .. ., [”T“}
and they are as follows: S, = Z(H)Op U U, cpr. azy Om(A, 1), where Oy,
is the unipotent class corresponding to the partition (2™, 1""1=2™) and O,,(\, i)
is the semisimple class with eigenvalues A with multiplicity n + 1 — 2m and u

with multiplicity 2m, the case m = 0 being trivial. The Weyl group element

associated to Sy, is wowy where IT = {11, ¥mi2, -+, Qntr1-m}. We choose
0 0 Jm . . . .1
ws,, = ( 0 Inti1-2m O ) where J,,, is the m X m matrix with 1 on the antidiag-
—Jm 0 0
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onal and 0 elsewhere. Then

ws, (Z(Ly) N T%sn )V,

ai
az

am

_ bIni1_om cai,bek* G ek

—am —amCm
—ay C —axe

—ax —a1(1
A matrix in wg,, (Z (L) N T%sm )V, lies in S, if either all its eigenvalues are
equal or else it has two eigenvalues and it is semisimple. This happens if and only
if

0 a; - 0 a; ..

Tr (—tli —aiCi) =Tr (*aj *ajCj> vz’j’

a; 0 a; . .
det (f;i 7%@) = det < ! ) Vi, 7,

det(_b o ):0,

—a; —ai1g1—b

—aj —a;G;

that is, if and only if there exist €y, ..., €, € {0, 1} such that a; = €;a1, (; = €(;
and ¢; = —ab~' —b%a; . The set theoretic intersection S, NS, is then a union
of (m — 1) disjoint irreducible components each isomorphic to the image of the
morphism
frE* Xk =k xEkE*xk
(a,b) + (a,b,a*b! +10).

Being a graph, this intersection is smooth for every field £ and every m. By
Remark 4.3, this intersection coincides with the scheme theoretic one.

Let us now consider G = SL, (k). Set theoretically, every sheet of spherical
classes S is contained in the intersection of some S, with G. If char(k) = p does
not divide n + 1, then SN S, is contained in the image through f of the disjoint
smooth curves C; of equation a®*™p"*1=2™ — +1 = (. By Remark 4.3, this set
theoretic inclusion is scheme theoretic hence SN S,  is smooth.

Let us now assume that p|n + 1. Then, for every m coprime with p, the
argument above applies. If, instead, p|m then we still have the set-theoretical
inclusion SNS,,, C f(C1UC_1) but the curves C; are not reduced. The reduced
scheme of f(C; UC_1) is smooth and the above argument applies.

4.2 Type B,

Let G = SOq,11(k) with n > 2. We realize it as the subgroup of matrices in
S Loy (k) leaving invariant the symmetric bilinear form whose associated matrix
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. . . . (100 )
with respect to the canonical basis of £" is (0 0 In ) We choose T' to be its

n

subgroup of diagonal matrices and B to be the subgroup of matrices of the form

1 0 * . . N .

<—Av A tAle ) where: A is an upper-triangular matrix in G L, (k), v is a column
0 0'A-

vector in k", M = (—=1/2)vv + X, ¥ is a skew-symmetric matrix of size n and

X denotes the transpose of X, for any matrix X.

The non-trivial sheets of spherical conjugacy classes are given by S and 5’,
with
S = (Urz0,£10x) UO32) UG - pru

where O, is the semisimple class with eigenvalues 1, A\, \~! with multiplicity
1,n,n respectively; O3 9 is the unipotent conjugacy class corresponding to the
partition (3,2" 1), for n odd and (3, 2”2, 1?) for n even; the element p, is the di-
agonal matrix diag(1, —I5,) and u is a representative of any unipotent conjugacy
class in GP*° = SO,, (k) associated with the partition (2") when n is even, and
(2n=1,12) when n is odd; and

S — (U)\;éo,lO,\,l) U O(3y12n—2),

where O, ; is the class of a semisimple matrix with eigenvalues 1, A\, \"! with
multiplicity 2n — 1,1, 1, respectively and O3 12»-2) is the unipotent conjugacy
class with associated partition (3, 12"72).

We have S NS’ = () unless n = 2, so the stratum containing S is not smooth
for n = 2 whereas for n > 3 the strata containing S and S’ are smooth if and only
if S'and S’ are so.

1™ 0 0
Let us analyze S. Here, wg = wy. If we choose wg = (( 0) 0 In>, then
0 I, 0
Sug = WsT™sU consists of matrices of the form
(-H™ 0 (=)W
X:X(E,M,Q,'U>I 0 0 EtQ71
—EQu EQ EQM
where F € {£1}", v =' (v1, ..., v,) € k™, @ is a unipotent upper triangular

matrix in GL,(k), and M = (—1/2)vv + A, where A is skew-symmetric.
Now, if X lies in S then there exists A\ € k* such that rk(X — A\) <n + 1.
Assume first that X = X (E, M, Q, v) satisfies rk(X — A\I) < n + 1 for some
A # (—1)™. Then we have

M—=-)Q'E+\EQ + (_(1_)—?_”{ v=0 “2)

12



(SN

Let oy = T(ESIESVE Taking symmetric and skew-symmetric parts in (4.2) we
obtain the following equations:
At = (1/2)A=A)Q'E+EQ™) 4.3)
and
A=(1/2)A+ A NQE-EQ™M), (4.4)

The diagonal terms in (4.2) give
OaneiV; = (A — A7), 4.5)

Hence, if in addition A # (—1)""!, then e;v? = ejv? for every i. We fix, for
1 = 1,...,n, elements (; € k such that Cl? = ¢; and we set a) := (jvy, SO
©anas = (A — A1) Therefore, for every j > 1 there is n; = +1, withn; = 1,
such that (jv; = n;ay. Thus, we have

M= (2(=1)"—a3/2)A+1=0 (4.6)

which gives
A+ A =(2(-1)" —a3/2). (4.7)
Making use of (4.5) and (4.7), for 2 < i < j < n, the (7, j) entries of (4.3)
and (4.4) give

(Q@ Ny =2¢ "Gy, a; = (2(=1)" — a3 /2) C[lcj‘lnmj- (4.8)

So, for A # =+1 and for every choice of n;, (;, the matrix ) is completely
determined, the vector v depends linearly on a, and M depends on a3, giving a
dense subset of a line. Conversely, if A # +1, the condition rk(X — A\I) <n +1
also implies that X is semisimple, and it ensures X € S.

Let us now assume A = (—1)"*1. Then, (4.4) gives a;; = (—1)"™(Q7 1) ¢,
for every i < j. X lies in S only if rk(X — (—1)"*1)? = 1. Looking at the
(2,2)-block in this matrix we get tk(‘(Q~'F + EQ~!') < 1, which yields

(Q1)ij = 2¢ " ¢mimy, and az; = 2(—1)n+1C;1C;177¢77j-

Let N = (X — (—1)""')2diag(1, Q' E, I,,). Every row in N must be a multiple
of the first one, which is nonzero. Thus, every row in the block (2,2) must be a
multiple of the (1,2)-block. This gives e;v? = ejv} # 0 for every i > 0. We set
a = (yv1, so for every ¢ > 2 we have v; = aCi_lm. A direct computation shows

13



that WEQu = 0 and —FE Q' EQu = v. The condition that the principal minor
of size 2 must be 0 gives > = 8(—1)", i.e., a satisfies condition (4.6) so (4.8) is
verified also in this case. Thus, for the Jordan class J of diag(1, \[,, \™'1,,), the
set-theoretical intersection J N S, is a disjoint union of 22"~ copies of k*, given
by the values of ay, one for each choice of each e;’s and of the 7);’s.

Let us now consider A = (—1)". Then X must satisfy the condition rk(X —
(—1)™) = n, which forces a, = 0. Moreover, X lies in S only if rk(X —(—1)") =
1, which, combined with (4.4) gives the condition tk('Q~'E+ EQ~!) < 1, which
yields (4.8) with a), = 0. The dimensional argument used in the proof of Lemma
3.3 for the G-conjugacy class of X shows that X € S. Hence the set theoretical
intersection S N S, is a disjoint union of 22"~! copies of k. By Remark 4.3, this
is also the scheme theoretic intersection so S is smooth.

Let us now consider S’. In this case wgr = sgs1 = wowp forIl = {as, ..., a,}
10 0 0 0
' . 00 0 I, 0
and § = &1 + &5 the highest long root. We choose wg = 8 ;3 lno—z 8 8 SO
2
00 0 0 I,
wg/(Z(LH) N Tws’)VS,
1 00 0 a b 0
L B IR
—nx n
U 0 00cho 0 0 0 a, b,x,l,m,€ k;c e k*,
e,n==1 —c(a+bz) e ex 0 el em 0 m' = —m — ab — _%7762
-nb 0n 0 nm —%an 0
0 00 0 0 0 c o

Then an element X € wg (Z (L) NT"s")Vy liesin S’ if and only if rk(X —1) =
2: this is clear if the eigenvalues different from 1 are distinct. If the eigenvalues
different from 1 are equal to —1, then this follows from the fact that the unipotent
part must lie in the connected centralizer of the semisimple part. If the eigenvalues
are all equal to 1, then there are only two unipotent classes for which rk(X —I) =
2, namely the one associated with (2%,1%"7%) and O(312.-s). By dimensional
reasons, the former does not intersect Sws,.
Assume rk(X — I) = 2. For such an X we have

By Remark 4.3 the variety S’ N S, is isomorphic to a disjoint union of 4 affine
lines, one for each value of 7 and e.
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4.3 Type C,

Let us consider G = Spy,(k) with n > 3. We realize it as the subgroup of
matrices in S Lo, (k) leaving invariant the skew-symmetric bilinear form whose
associated matrix with respect to the canonical basis of k™ is (_} ¢ ). We choose
T to be its subgroup of diagonal matrices and B to be the subgroup of matrices
of the form (’8 tj_xl ) where A is an upper-triangular matrix in GL, (k) and ¥ is a
symmetric matrix of size n.

There are, up to a central element, two non-trivial sheets of spherical classes,

4.5 and S, where
S| = (U)\#O;tlo(,\’l)) U 0(227127174) UG- 011135(1)

where O, 1) is the semisimple class with eigenvalues A, A~ ! and 1, with multi-
plicity 1,1,2n — 2 respectively, O (2 12n-4) is the unipotent conjugacy class cor-
responding to the partition (22, 12"~%), the element o, is the diagonal matrix
diag(—1,1,1,—1,I, 1) and B = &1 + &5 is the highest root; and

Sy = (Unz0410x) U £0(am
where O, is the semisimple class with eigenvalues A\*! and O(2n) is the unipotent

conjugacy class corresponding to the partition (2").

Since n > 2, we always have S; NSy = Sy N (—S1) = (), hence the strata
containing these sheets are smooth if and only if the sheets are so.

The Weyl group element corresponding to S; is wg, = wowr,, for I} =
Iz

{as, ..., an}, s0 ws, = s4,53. We choose wg, = 1 In—2 SO
In—2
wsl (Z(Lnl) N1 )V51
€ 0
—&n n
b1n72 %,
=Ucpesr § | —e—ee 7 —caren) —eyrea) bektny, 2, E€k
0 —n —ny —nz

b1, o

Then X € wg, (Z(Ln,) NT™51)Vg, lies in Sy if and only if k(X — I) = 2, which
holds if and only if

b=1 x=-2 y=n& z=-2n.
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By Remark 4.3 the variety 51 N Sy, is isomorphic to a disjoint union of affine
lines.

The Weyl group element corresponding to Ss is wy and we choose the rep-
resentative wy = (_5 {). Then the matrices in wy7™° Vs, are all matrices of
the form x(E,V, X) = (—gv ’_52(/}), where F = diag(eq, ..., €,), ¢ = *1 for
every ¢, V' is an upper triangular unipotent matrix, and X is a symmetric matrix.

If x(E,V,X) lies in Sy, then there is a A € k* for which rk(z(E,V, X) —
AI) = n. This forces AX + A\2(V'E) +/(V='E) = 0. If A # 1 this can happen
onlyif V=Tand X = —-A+ X YHYE and z(E,V,—(A + X"H)E) € Oy. If
instead A\? = 1, then z(E,V, X) lies in Sy only if (z(E,V,X) — AI[)? = 0. A
direct computation shows that this is possible only if V = I, s0 X = —2\"1F =
—(A + ATHE. If this is the case, z(E,I, —2A\"'E) € AO(ny. Therefore, set
theoretically, Sy N S, is a disjoint union of affine lines with coordinate A + A ~*.
We apply Remark 4.3.

44 Type D,

Let G = SOs,(k), for n > 4. We realize it as the subgroup of matrices in S Lo, (k)
leaving invariant the symmetric bilinear form whose associated matrix with re-
spect to the canonical basis of k™ is () 7). We choose T to be its subgroup
of diagonal matrices and B to be the subgroup of matrices of the form (6‘ tAf‘_El )
where A is an upper-triangular matrix in GL,,(k) and X is a skew-symmetric ma-

trix of size n.

It is convenient to separate the cases of n even and odd.

44.1 D, for n even

Let n = 2h. Let 6 be an automorphism of G induced by the non-trivial automor-
phism of its Dynkin diagram interchanging the last two simple roots. The only
non-trivial sheets of spherical conjugacy classes are given by S, 6(S) and S’ as

follows:
M,
S = Ux£0,+1 (G ( 1T )) U :i:O(Qn)

)\In—l
9(5) = Ux£0,41 G- )\_1]n \ U ﬂ:OEQn)

and of type
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where O(yny and 062”) are the two distinct unipotent conjugacy class correspond-
ing to the partition (2") and

S'= (Uazo10x1) U O3,12n-3)

where O, is the class of a semisimple matrix with eigenvalues 1, A\, \™! with
multiplicity 2n — 2,1, 1, respectively and O3 12--3) is the unipotent conjugacy
class with associated partition (3, 12"73).

If n = 4, then for any automorphism ¢ of G induced by a Dynkin diagram
automorphism corresponding to the cyclic permutation of the simple roots o >
a3 — ay — oy, we have 9(S) = S’. This can be seen by comparing the Jordan
normal forms of 24, (§)2as(n) € 0(24) and 9 (za, (§)Tay (1) = Tay(§)Tas (1),
for &, &' n, ' € k* and observing that any sheet of spherical classes is necessarily
mapped to a sheet of spherical classes by ). So, for n = 4, the sheets S, 6(.5)
and S’ are all isomorphic. However, for n > 4, the sheets S and S’ have different
dimension and are therefore not isomorphic as varieties. The intersection of any
pair of distinct sheets is trivial, and the stratum is smooth if and only if the sheets
it contains are so. It is enough to deal with S and 5’.

For the sheet S we have ws = S.,4+c,Sc5424 * " Se, 146, = Wowp for I =
{a1,as,...,a,—1}. In this case #(ws) # wg. We choose the representative
ws = (9 &) where L = diag(J, J,...,J)and J = (% §).

Then, fori =1, ..., hande; = 1, wg(Z (L) NT"9)Vs is the disjoint union
of the sets of matrices of the form z(F, D) = (% 5) witha; € kfori =1,...,h
and

E =diag(Ey,....Ey), E=(0C), D=dag(—ezils,...,—eapl).

Then z(E, D) lies in S only if there exists A € k* such that rk(z(E, D) — \I) =
n. This is possible only if D = (A + A™!)I. Conversely, if this is the case, a
direct verification shows that x(E, D) is either semisimple with eigenvalues A\*!
or unipotent up to a sign. In addition, as wy(s) # ws have the same length, and
wg(s) is maximal among the elements 7 € W such that §(S) N BrB # (), we
see that O N BwgB = () for every O C 6(S). Thus, any z(F, D) satisfying
rk(z(E, D) — A) = nliesin S. So, set theoretically, S N S, is a disjoint union
of 2" affine lines. We conclude as in the previous cases.

For the sheet S” we have wg = sgs; = wowy for II = {as,...,q,} and
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P
[ = €1 + &5 the highest root. We choose wg = (12 S ) SO
In_2

u')S/(Z(LH) N TwS/)V

S/
00 0 € 0 0
01 0 —nr n 0
o 00clpb—2 0 O 0 . *
_Uem:j:l eex O el em 0 ,IL‘,l,mEkJ,CEk} )
0n 0 n—m O 0
00 0 0 0 c ', o

If X € we(Z(Ln) NT"s")Vg lies in S then rk(X — I) = 2. All elements
satisfying this condition lie in S’. Indeed, the centralizer of the representatives
of the classes in S’ in Oy, (k) is not contained in SOs, (k) so elements that are
G Loy, (k)-conjugate, are also SOy, (k)-conjugate. Therefore, the argument used
for the sheet S’ in type B,, applies. For such an X we have

c=1, l=mnz?, m=—n.

Hence the variety S’ N S, is isomorphic to a disjoint union of 4 affine lines.

44.2 D, for n odd

Let n = 2h + 1. The only non-trivial sheets of spherical conjugacy classes are R,
0(R) and S’ as follows:

A,
R = U)\#O,il <G . ( )\71] )) U :EO(Qn—1712);

where O(gn-1 12) is the unique unipotent conjugacy class corresponding to the par-
tition (2”71, 1%); and S’ is the same as for n even and can be dealt with in the same
way.

The sheet S” does not intersect R nor #(R). On the other hand, R and 0(R)

intersect in =091 12, hence the stratum containing them is not smooth.

Let us deal with R. The Weyl group element associated with it is wg =
SeytesSestes *** Sen_gten = wown for II = {aq,as,...,a,_2}. In this case

f(wr) = wg. Let us consider the injective morphism ¢: SOy (k) — SO, (k)
A B
givenby (A8)— | o' ) Then, for g as for n = 2h, we choose wg =
1

(wg) and we get Vi = (V).
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Thus, fori = 1, ..., h and ¢, = *1, wr(Z (L) N T"WR)Vy is the disjoint
0 E

union of the sets of matrices of the form z(E, D, () = ( 550 ) with z; € k

—1

fori =1,...,h,( € k* and E, D as for n = 2h. A matrix x(FE, D, () lies in
S only if there exists A € k* such that rk(z(E, D) — AI) < n. This is possible
only if D = (A + A"1I and ¢ = A*!. Conversely, if this is the case, a direct
verification, making use of the computations for n = 2h and the sheet S, shows
that z(E, (A + A1), () lies in R if ( = X and it lies in §( R) otherwise. Thus, set
theoretically, RN S,,;, is a disjoint union of 2" affine lines. We conclude as in the
previous cases.

4.5 Exceptional groups

There are no non-trivial sheets of spherical conjugacy classes in types Fjg, Fy,
and (39, so strata of spherical conjugacy classes consists of finitely many classes,
hence they are smooth. Let us analyse the cases for G simply-connected of type
Es or E;. For every B € @, we set hg: k* — T' to be the co-character satisfying

(x.8)
x(hs(€)) = ¢ 259 for every character y of 7. It is well-known that every t € T
has a unique expression as a product t = [] . Pa(Ca), for ¢, € k*. The simple
roots in £ and E; will be enumerated as in [2].

4.5.1 The group of type Ejg

Let w € k be a primitive fourth root of 1 and let ( be a primitive third root of 1.
For a € k*, let pag = hay (%) oy (a3) oy (a*) Ry (%) Py (a%) hog (a) and let Og g,
be the unipotent conjugacy class in G with Bala-Carter label 2A,. Then the only
non-trivial sheet containing spherical classes is

S = (Uaek, a3£0,1G * P2,a) U (UzeZ(G)ZOQAl) .

By [5, Theorem 3.6], if a # b then p, , is not conjugate to pa .

In this case, wg = wowy for II = {as, a4, a5}, so wg = sgs, where § =
a1+ 200 4203+ 3y + 25 + g 1s the highest root and v = v + a3+ oy + a5+
is the highest root in ® N B+ = ® N Z{ay, a3, ay, as, ag}.

We compute the set theoretical intersection S N S, by detecting O N S, for
each orbitin S.
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Let us use a parametrization () of the root subgroups X, fora € {3, 7}
and £ € k, satisfying 2, (1)x_o(—1)z4(1) = nq, with n, commuting with the root
subgroups associated with roots in =II. We choose wg := ngn,.

We first consider O, = G - py, for a® # 0, 1. Since B(p2.a) = V(p2.a) = @
we have, for £ = ﬁ:

2387 (E)P2,at (=67 5(=§) = 2 (=17 (=1)p2a

and

zq = Ty(1)z () —s(— 1)$—w( D)p2ars(—1)z,(—1)
= Wspaarg(—a® — 1)a,(—a™? — 1) € wsTU™S N O,.

Fora € k* let b, ¢ € k satify b* = ¢* = a3
Conjugation of z, by hz(b)h,(c) gives:

(b
Yap2,c2 = hp(b ) ho(c)zahy(c) " thp(b) ™t =
s, (A2(5) ) oy (AC2) ey (€202) s (0202 P (abPc2)-
2a(—b(a=® + 1))z (—(a™? + 1)) € Of N Sy

which depends on a, b?, ¢?, for ¢* = +b?. Since O, N S, is a single T, ,-orbit
and I, is generated by hg(w) and h.(w), we have

U Ou | NSy = U U Ya,d,ed

a3#0,1 e=%1 \ a3#£0,1; a3=d?

We analyze now the orbits in Z(G)O24,. We recall that Z(G) is generated by
pac. A representative of Oga, is u = x_g(—1)z_(—1), so for 0 < [ < 2, the
element

=y (Vag(pagurg(=1)zy (=1) = wspy,aas(=2)a,(=2)

lies in py 1Oaa, N Syg. All other elements in this set are obtained by I, -
conjugation:

Yoy = ha(W)hy (W )yhy (W) hg(w™) , -
= thsha, ((”'(— )”J)ha (CH(=1)) oy (= 1))y (= 1) (= 1)+ C1)-
7p(=2(=1)")z,(=2(=1)7)

hence

U ZOQAI ﬂSwS = U U Ya,d,ed

z€Z(Q) e=+1 \ a3=1;1=d?
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By Remark 4.3, S N S, is the union of two disjoint irreducible components, each
isomorphic to the image of the curve x® = y2, for x, iy # 0, through the morphism

(‘1.7 y) = (x_lv :Cy_lu ny_lu z, y(l'_3 + 1))

4.5.2 The group of type -

For a € k*, let 3.4 = hay (0*) oy (a®) hay (a*) ha, (08) has (0 ) hog (a*) ha, (@®) and
let w be a fourth primitive root of 1. Let O34/ be the unipotent conjugacy class in
G with Bala-Carter label 3AY. Then

S = (Uaek, a20,41G - g3.4) U (UzeZ(G)ZO3A/1/)

is the only non-trivial sheet containing spherical classes. Here, wg = wowy for
IT = {a, as, oy, a5} 80 Wg = $5,Sa, for B = 204 + 205 + 33 + 4oy + 35 +
204 + a7 the highest root and v = as + a3 + 204 + 2a5 + 204 + a7 the highest
root in ® N 3.

Let us use a parametrization x,(§) of the root subgroups X, for a €
{B,7,a7} and £ € k, satisfying z,(1)x_o(—1)zo(1) = ng, with n, commut-
ing with root subgroups associated with roots in =II. We choose wg := ngnnq,.
We will argue as we did for Eg.

Let us ﬁrst consider O, = G - g3, for a® # 0,1. Since B(q3,.) = Y(g30) =

a7(gs.q) = a® we have, for { = —

_1'

17_5(f)l'_y(f)l'_a7(§)q?,7a$_a7(—f)x_ﬂf(—f)l‘_ﬁ(—g)
=z_g(—D)z_(—1)z_0,(—1)g3,4

and

Za = Ty (D) 2(1)0; (D)7 5(= 1)z (=1)2 07 (=1)g3.0%0; (=1 zs(—=1) 25 (1)
= Wsq3ar5(—a? — Day(—a? — V)xg,(—a™? — 1) € wgTU s N O,.

For a € k*,let b, c,d € k satify b* = ¢* = d* = a?.
Conjugation of z, by hs(b)h.(c)ha,(d) gives:

Y202 a2 = ha( )h'y(c>h +(d)zaha; (d )_ hw(cg hs(b)”

—wgha2(ac Ry (a?b™2c7?) Oég(ab Nhe, (aP0™2c72d7?)-
2(=b* (a7 + 1)), (= 02(a2 1))za, (—d*(a™ + 1)) € Oa N Sus
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which depends on a, b?, ¢?, d?, for ¢*> = £b* = £d* = da. As all elements in
wgT*sU™s N O, form a single orbit for the group I',,,, which is generated by
hs(w), h(w) and h,, (w), we have

U Oa mSws: U U ya,ea,naﬁa

a?+#£0,1 enf0==%1 \ a2#0,1
and, for b? = ea, ¢ = na, d*> = Oa we have

Ya,eana,ba = wShocz (n)hocs (677>h045 <€>ha7 (6776)'
zg(—ela™ +a))z,(—n(a™' + a))za. (—0(a™ + a)).

Let us now consider the orbits in Z(G)O3 7. We recall that Z(G) is generated
by g3 1. The class O3y, is represented by u = x_g(—1)z_,(—1)z_,,(—1), so,
for ¢ = +1, the element

Ye = I,Y(l)l‘g(l)xa7(1)(]3751&[‘&7(—1):135(—1)5(77(_1)
= Wsqs,e26(—2)21(—=2)%a; (—2) € ¢3,605a7 N Sug.

All other elements in this set are obtained by I',, -conjugation:

hﬂ(wi)hv(wj)hm(wl)yghm('wfl)hv(w—j)hﬁ(w—i) -
= tshas(€(=1) Yoy (1)) (€(= 1) hor (§(=1)9H)- .
Iﬁ(_Q(_l)l)xW(_2<_1)J)xo¢7(_2(_1)l)

We conclude that
SN Sws = U U Ya,eama,ba | »
en0==%1 \ a2#£0
which, by Remark 4.3 is isomorphic to a disjoint union of 8 copies of an affine
line, with coordinate ring k[a + a™!].
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