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Abstract

We show that, for a sheet or a Lusztig stratum S containing spherical
conjugacy classes in a connected reductive algebraic group G over an alge-
braically closed field in good characteristic, the orbit space S/G is isomor-
phic to the quotient of an affine subvariety of G modulo the action of a finite
abelian 2-group. The affine subvariety is a closed subset of a Bruhat double
coset and the abelian group is a finite subgroup of a maximal torus of G. We
show that sheets of spherical conjugacy classes in a simple group are always
smooth and we list which strata containing spherical classes are smooth.

1 Introduction
In [17], it is shown that the orbit space of a sheet S of adjoint orbits in a complex
Lie algebra has the structure of a geometric quotient which is isomorphic to an
affine variety modulo the action of a finite group. The affine variety is the inter-
section of S with the Slodowy slice of a nilpotent element e in S, and the finite
group is the component group of the centralizer of e. An algebraic proof of this
result was obtained by Im Hof [16], who proved that sheets in complex Lie alge-
bras of classical type are all smooth, by showing that S is smoothly equivalent to
its intersection with the Slodowy slice. Katsylo’s theorem has also been applied to
the study of one-dimensional representations of finite W -algebras [18, 23], which
is related to the problem of determining the minimal dimensional modules for
restricted Lie algebras. In this context, it has been shown in [24] that the space
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of 1-dimensional representations of the finite W -algebra associated with a nilpo-
tent element e in a classical Lie algebra is isomorphic to an affine space if and
only if e lies in a single sheet. The latter condition is equivalent to say that the
union of the sheets passing through e is a smooth variety. Our goal is to provide
an analogue of Katsylo’s theorem for sheets of conjugacy classes in a reductive
algebraic group G over an algebraically closed field of good characteristic. Since
sheets are the irreducible components of the parts in Lusztig’s partition [20] called
strata, the theorem will give an analogue for strata as well. As strata should be
seen as the group analogue of the union of sheets passing through a nilpotent
element e, used in [24], we expect that their geometry will have relevance in rep-
resentation theory of quantum groups at the roots of unity. Evidence of this is
visible in Sevostyanov’s proof of the De Concini, Kac and Procesi conjecture on
irreducible representations of quantized enveloping algebras at the roots of unity
[26]. A conjugacy class in the corresponding simply-connected group is attached
to each irreducible representation and the conjecture relates their dimensions. In
the proof conjugacy classes lying in the same stratum are handled by using the
same combinatorial data.

We prove a Katsylo theorem in the case that the sheet (or stratum) in question
contains (hence consists of) spherical conjugacy classes, that is, classes having a
dense orbit for a Borel subgroupB ofG. Strata, and therefore sheets, of conjugacy
classes in a reductive algebraic group do not necessarily contain unipotent classes,
so the analogue of Katsylo’s theorem cannot be straightforward. A group analogue
for Slodowy slices has been introduced in [25]. In analogy to Steinberg’s cross
section, these slices depend on a conjugacy class in the Weyl group W of G.
The construction of these slices requires a suitable choice of positive roots in the
root system of G which depends on the class of the element in W . Although
the transversality result in [25] is stated in characteristic zero, the proof holds
in arbitrary characteristic. When w ∈ W acts without fixed points, a section
analogous to the one in [25] was given in [15], which contains a generalization of
Steinberg cross section theorem in this case.

To our aim, we exploit Sevostyanov’s result together with the well-understood
behaviour of spherical conjugacy classes with respect to the Bruhat decomposi-
tion. We replace the Slodowy slice by a suitable subset Sw of a Bruhat double
coset BwB, depending on the stratum, such that its intersection with each given
sheet in the stratum coincides (up to conjugation) with the intersection of the sheet
with Sevostyanov’s slice. Since for spherical conjugacy classes the intersection
with this double coset is precisely the dense B-orbit, we show that the intersec-
tion of Sw with each conjugacy class is a single orbit for a finite 2-subgroup of a
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fixed maximal torus T .
Thanks to Sevostyanov’s transversality result, a sheet S of spherical classes is

smooth if and only if S∩Sw is so, and similarly for strata. This result is applied in
Section 4 where we obtain the second main result of this paper: sheets containing
a spherical class in simple groups are all smooth. As a consequence, we classify
smooth strata of spherical classes in simple groups.

2 Notation
Unless otherwise stated, G is a connected, reductive algebraic group over an alge-
braically closed field k of good characteristic, i.e., not bad for any simple compo-
nent of [G,G].

Let T be a fixed maximal torus of G and let Φ be the associated root sys-
tem. The root subgroup of G associated with α ∈ Φ will be denoted by Xα and
xα : k → Xα will indicate a parametrization of Xα.

The Weyl group of G will be denoted by W . The centralizer of an element
x ∈ G in a subgroup H of G will be denoted by Hx. The identity component of
any subgroup H of G will be denoted by H◦.

Let G act regularly on an irreducible variety X . For n ≥ 0, we shall denote
by X(n) the locally closed subset X(n) = {x ∈ X | dimG · x = n}. For a
subset Y ⊂ X , if m is the maximum integer n for which Y ∩X(n) 6= ∅, the open
subset X(m) ∩ Y will be denoted by Y reg. A sheet for the action of G on X is
an irreducible component of some X(n). We will investigate the case in which
X = G and the action is by conjugation. Sheets in this situation are related to
Jordan classes (or decomposition classes) in G.

Recall that a Jordan class is an equivalence class for the following equivalence
relation. Let g = su be the Jordan decomposition of g ∈ G. Then g is equivalent
to all elements h ∈ G with Jordan decomposition h = rv satisfying Gs◦ = Gr◦,
r ∈ Z(Gs◦)◦s and v ∈ Gs◦ · u, and to any conjugate of any such h. In particular,
Jordan classes consist of elements whose connected centralizers are all conjugate.
As a set, the Jordan class J(g) of g is J(g) = J(su) = G · ((Z(Gs◦)◦s)regu).

It has been shown in [8] that for any sheet S there is a unique Jordan class
J = J(su) such that S = J

reg
. As a set,

S =
⋃

z∈Z(Gs◦)◦

G · (zsIndG
zs◦

Gs◦ G
s◦ · u) (2.1)

where s and u are as above and Ind denotes Lusztig-Spaltenstein induction [21]:
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for L a Levi subgroup of a parabolic subgroup P = LP u of a reductive group H
and L · u a unipotent conjugacy class in L, IndHL (L · u) is the unique unipotent
class of H intersecting uP u in a dense set. We observe here that although Gs◦ as
in (2.1) might not be a Levi subgroup of a parabolic subgroup of G, it is always a
Levi subgroup of a parabolic subgroup of Gzs◦.

Sheets are related to the parts, called strata, of a partition defined in [20].
Strata are constructed as the non-empty fibers of a map f from G to the set of
isomorphism classes of complex irreducible representations of W which is given
as follows. For g = su, we have: f(gu) = jWWs

ρWs
u , where ρWs

u is the irre-
ducible Springer representation of the Weyl group Ws of Gs◦ associated with the
unipotent class Gs◦ · u and trivial local system and jWWs

is Lusztig-Spaltenstein’s
truncated induction [21]. It was shown in [6] that, due to the compatibility of
Lusztig-Spaltenstein truncated induction with induction of unipotent classes, f is
constant along sheets, strata are locally closed, and sheets of conjugacy classes
are their irreducible components. For this reason we will work with sheets and
strata simultaneously.

For a Borel subgroupB ⊃ T and a conjugacy classO (a sheet S, respectively)
in G, let wO (wS , respectively) be the unique element in W such that O ∩BwOB
is dense in O (S ∩ BwSB is dense in S, respectively). If a sheet S contains
a spherical conjugacy class then wS = wO for every O ⊂ S, [6, Proposition
5.3]. In addition, it follows from [6, Theorem 5.8] that wS is constant along strata
containing spherical classes. The element wO is always an involution and it is
maximum in its conjugacy class with respect to the Bruhat ordering ([9, 7]).

The conjugacy classes of wO and wS in W are independent of the choice of a
Borel subgroup containing T . Thus, the map O 7→ wO determines a map ϕ from
the set of conjugacy classes in G to the set of conjugacy classes of involutions in
W .

For w an involution in W , let Tw := {t ∈ T | w(t) = t}, and Tw := {t ∈
T | w(t) = t−1}. Then T = (Tw)◦(Tw)◦ and Rw := Tw ∩ Tw is an elementary
abelian 2-group. For any choice of a Borel subgroup B containing T a longest
element w0 ∈ W is determined. Let U be the unipotent radical of B. We set
Uw := U ∩ w−1w0Uw

−1
0 w and Uw := U ∩ w−1Uw.

3 Spherical classes and Bruhat decomposition
In this Section we prove a Katsylo Theorem for sheets containing spherical con-
jugacy classes. We will make use of the following general results.
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Lemma 3.1 ([16, Lemma 2.13]) Let A,B,C be varieties, let η : A → B be a
smooth and surjective morphism and let θ : B → C be a set-theoretic map such
that θη : A→ C is a morphism. Then θ is a morphism.

�

Lemma 3.2 LetX be aG-variety and assume that there is an affine closed subset
Σ ⊂ X with an action of a finite group Γ such that the following properties hold:

1. for every G-orbit O of X the set Σ ∩ O is a Γ-orbit;

2. the natural map µ : G× Σ→ X is smooth and surjective.

Then, X/G exists and it is isomorphic to Σ/Γ.

Proof. Define the map ψ : X → Σ/Γ set theoretically sending an element x ∈
X to G · x ∩ Σ. We note that ψµ : G × Σ → Σ/Γ is the composition of the
natural projection on the second factor followed by the projection to the quotient.
Therefore Lemma 3.1 applies with A = G × Σ, B = X , C = Σ/Γ η = µ
and θ = ψ, so ψ is a morphism. Since µ is surjective Σ meets all the G-orbits
in X . The map ψ is universally submersive because its restriction to Σ is the
canonical universal quotient map π which is universally submersive [22, Theorem
1.1]. We now prove that for any open subset V ⊂ Σ/Γ we have OΣ/Γ(V ) '
OX(ψ−1(V ))G. It is enough to prove it for V affine. For f a morphism, let
f# be the map induced by f on regular functions. Note that ψ# embeds k[V ]
into k[ψ−1(V )]G. Furthermore, if ι is the inclusion of Σ in X , then ι# induces
an embedding of k[ψ−1(V )]G into k[π−1(V )]Γ. Since π# = ι# ◦ ψ# induces an
isomorphism k[V ] ' k[π−1(V )]Γ, also ι# induces an isomorphism k[ψ−1(V )]G '
k[π−1(V )]Γ, hence ψ# induces an isomorphism k[V ] ' k[ψ−1(V )]G. �

Let ẇ be a representative of w ∈ W in N(T ), B be a Borel subgroup contain-
ing T and U be the unipotent radical of B. We define Sw := ẇTwUw. Although
Tw and Uw depend only on w and not on its representative ẇ, the closed set Sw
depends on the choice of the element ẇ or, more precisely, on its coset ẇTw in
T/Tw. To keep notation simple, we omit reference to the specific representative
in the symbol Sw as it will be clear from the context.

Lemma 3.3 Let S be either a sheet or a stratum consisting of spherical conjugacy
classes. Then S ∩ SwS is a closed subset of G.
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Proof. We show that S ∩ SwS = S ∩ SwS . Let O be a conjugacy class in S.
Then, dimO = `(wO) + rk(1 − wO) by [3, 4, 19, 10, 6]. Since wO = wS , we
have S ⊂ G(M) where M = `(wS) + rk(1 − wS) and S \ S ⊂

⋃
m<M G(m), [8,

Proposition 5.1],[6, Theorem 2.1]. If for some class O′ in G and some w ∈ W
there holds O′ ∩ BwB 6= ∅, then dimO′ ≥ `(w) + rk(1 − w), [3, Theorem 5].
Hence, if O ⊂ S \ S then O′ ∩ SwS ⊂ O′ ∩BwSB = ∅. �

Let us briefly recall the construction of the closed subset Σw of G defined in
[25, p.1890], in the case in which w ∈ W is an involution. Let hR be the real
span of the co-roots in the Cartan subalgebra h, let {v1, . . . , vr} be a basis of
the (−1)-eigenspace of w in hR, let hwR be the 1-eigenspace of w in hR and let
Ψ = Φ∩ hwR . A set of positive roots Φ+ can be defined according to the following
rules: we choose a set of positive roots Ψ+ in the root system Ψ and for β ∈ Ψ
we set β ∈ Φ+ if and only if β ∈ Ψ+. For β ∈ Φ \ Ψ, as w is an orthogonal
involution, there will be a j such that (β, vj) 6= 0. Let us take i maximal with this
property. Then we have β ∈ Φ+ if and only if β(vi) > 0.

Since w(vi) = −vi for every i, there holds Φ+ \ Ψ = {α ∈ Φ+ | w(α) ∈
−Φ+}. In other words, with respect to the constructed choice of positive roots, w
has maximal possible length. In addition, w(Φ+ \Ψ) = (−Φ+) \Ψ. Let U be the
subgroup generated by the root subgroups corresponding to roots in Φ+ and let
B := TU.

Let w be the unique representative of w such that wxα(1)w−1 = xwα(1) ([12,
Theorem 5.4.2]), let L be the Levi subgroup of a parabolic subgroup of G con-
taining T and with root system Ψ, and let P u be the unipotent radical of the
parabolic subgroup of G containing all root subgroups associated with roots in
(−Φ+) \Ψ. Observe that P u is Sevostyanov’s Ns because w is an involution and
that wP uw−1 = Uw. Sevostyanov’s slice in this case is the closed subset

Σw := P uLww = P uwLw = wUwLw = wLwUw.

Lemma 3.4 Let w ∈ W with w2 = 1 and let ẇ be a representative in N(T ). IfO
is a conjugacy class in G such that O ∩BwB 6= ∅ then O ∩ ẇ(Tw)◦U 6= ∅.

Proof. ClearlyO∩ ẇTU 6= ∅. Let x = ẇtwt
wu ∈ (Tw)◦(Tw)◦U . Conjugation by

s ∈ (Tw)◦ yields ẇs−2twt
wu′ ∈ O. Since the square map on (Tw)◦ is onto, there

exists s ∈ (Tw)◦ such that s−2 = tw, whence the statement. �

Lemma 3.5 Let S be a stratum or a sheet containing a spherical conjugacy class
O. Let w ∈ ϕ(O). For Φ+, B, U, w and L as in the construction of Sevostyanov’s
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slice and Sw = wTwUw, Σw = wLwUw we have

O′ ∩ Sw = O′ ∩ Σw 6= ∅

for every class O′ ⊂ S.

Proof. Let ∆+ be the set of simple roots associated with Φ+ and let Π := ∆+∩hwR .
With respect to the given choice of Φ+ the element w is of maximal length in
ϕ(O). Hence, it is equal towS with respect to the choice of B. ThereforeO′∩wB 6=
∅ for every O′ ⊂ S and, by Lemma 3.4, O′ ∩ wTwU 6= ∅. By [4], we have
w = w0wΠ, for wΠ the longest element in the parabolic subgroup WΠ of W .
Then, L is the standard Levi subgroup of the standard parabolic subgroup PΠ

associated with Π, Uw = UL = U ∩ L and Uw = P u
Π.

We have Sw := wTwUw ⊂ wLwUw = Σw so S ∩ Sw ⊂ S ∩ Σw. Conversely,
let x = wlu ∈ S ∩ wLwUw. Then l ∈ BσB for some σ ∈ WΠ. Since `(w0wΠσ) =
`(w0wΠ)+`(σ) for every σ ∈ WΠ, we have x ∈ BwσB∩S. Maximality ofwS = w
among all τ in W such that S∩BτB 6= ∅ forces σ = 1. Hence, l ∈ B∩Lw = TwUw
and S ∩ Σw ⊂ wTwU. Let O′ ⊂ S and let y = wtu ∈ wTU ∩ O′. By [4,
Lemmata 4.6, 4.7, 4.8] the only root subgroups occurring in the expression of u
are orthogonal to Π. Hence they lie in Uw and ∅ 6= O′ ∩ wTwU = O′ ∩ wTwUw =
O′ ∩ Σw = O′ ∩ Sw. �

Remark 3.6 The results contained in [4] and needed in the proof of Lemma 3.3
refer to characteristic zero or odd and good. However the proofs of Lemmata 4.6,
4.7, 4.8 and Theorems 2.7 and 4.4 therein are still valid for groups of type An in
characteristic 2 because also in this case spherical conjugacy classes meet only
Bruhat cells corresponding to involutions in the Weyl group. This follows from
[10, Theorem 3.4] and [11, Theorems 4.6,4.7].

Let, for an involution w ∈ W

Γw := {t ∈ (Tw)◦ | t2 ∈ Tw} = {t ∈ Tw | t2 ∈ Rw}.

Theorem 3.7 Let S be a stratum or a sheet containing a spherical conjugacy
class O. Let w ∈ ϕ(O). Then S/G ' (S ∩ Σw)/Γw.

Proof. We apply Lemma 3.2 with X = S, Σ = S ∩ Σw and Γ = Γw.
By Lemmata 3.3 and 3.5 the set Σ is affine and closed in S. The action of Γw

by conjugation preserves Σw, hence it preserves Σ.
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Let O be a conjugacy class in S. We consider O ∩ Σ = O ∩ wTwU ⊂ BwB.
Since O is spherical and w = wS = wO, the set ∅ 6= O ∩ BwB is the dense B-orbit
in O by [3, Theorem 5]. Therefore, for any x = wtxux, y = wtyuy ∈ O ∩ Σ
there is b = uvs0s1 ∈ UwUw(Tw)◦(Tw)◦ such that uvs0s1wtxux = wtyuyuvs0s1.
Since vs0s1w ∈ wTU, uniqueness of the Bruhat decomposition UwwTU forces
u = 1, so b = vs0s1 ∈ Uw(Tw)◦(Tw)◦. In addition, (Tw)◦Uw centralizes all
elements in S ∩ wTwUw, [4, Lemmata 4.6, 4.7, 4.9] so y = bxb−1 = s1xs

−1
1 , that

is, ws−1
1 txux = wtys1(s−1

1 uys1). This implies that s2
1 = txt

−1
y ∈ Tw so s1 ∈ Γw.

The map G × Σw → G is smooth by [25, Proposition 2.3]. The pull-back of
this map along the inclusion S → G is the map µ, and [14, Theorem III 10.1]
applies. �

Theorem 3.8 Let S be a stratum or a sheet containing a spherical conjugacy
class O. Let B = TU be a Borel subgroup of G, corresponding to a system of
positive roots Φ+ and a set of simple roots ∆. Then, for any representative ẇS of
wS we have

S/G ' (S ∩ SwS)/ΓwS .

Proof. If B = B, and ẇS = w as in the construction of Sevostyanov’s slice, this is
Theorem 3.7 in force of Lemma 3.5.

Let us assume that ∆+ 6= ∆ and let σ ∈ W such that σ∆ = ∆+. Then,
w′S := σwSσ

−1 is the maximum with respect to the Bruhat ordering determined
by ∆+, i.e., Bw′SB∩S is dense in S. Let σ̇ ∈ N(T ) be a representative of σ. Then
σ̇TwS σ̇−1 = Tw

′
S and σ̇UwS σ̇−1 = Uw

′
S . In addition σ̇ẇSσ̇−1 ∈ w′S(TwS)◦(TwS)◦,

where w′S is the representative needed for Sevostyanov’s construction. Up to mul-
tiplying σ̇ by a suitable element in (TwS)◦, we can make sure that σ̇ẇSσ̇−1 ∈
w′S(TwS)◦ so σ̇ẇST

wSUwS σ̇−1 = w′S(TwS)◦Uw
′
S . So, conjugation by σ̇ maps

S ∩ SwS isomorphically onto S ∩ w′ST
w′SUw

′
S = S ∩ Σw′S

by Lemma 3.5. A di-
rect verification shows that σ̇ΓwS σ̇

−1 = Γw′S , whence the statement follows from
Theorem 3.7. �

4 Smoothness of sheets of spherical classes
In this section we detect when S is smooth, for S a sheet or a stratum of spherical
classes in a simple group G. By [8, Remark 3.4, Proposition 5.1] it is enough to
consider a representative for each isogeny class of G. For G of classical type we
will consider matrix groups, whereas for G of exceptional type we shall consider
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the simply-connected group. We will use the classification of spherical conjugacy
classes in [5].

Arguing as in [16], see also [1, Proposition 3.9 (iii)], we conclude that S is
smooth if and only if S ∩ Sw is so. We analyze smoothness of the latter. In order
to do so, we recall some information contained in [4, Lemmata 4.6, 4.7, 4.8] and
Remark 3.6 about this intersection.

Let wS be the Weyl group element associated with S. We recall that it has
always the form wS = w0wΠ for some Π ⊂ ∆ and that wS(α) = α for every
α ∈ Π, see Lemma 3.5. Let ẇS be a representative ofwS such that ẇSxα(ξ)ẇ−1

S =
xα(ξ) for every ξ ∈ k and every α ∈ Φ ∩ ZΠ. Let O be a class in S. If ẇStv ∈
O∩ẇSTU then v lies in VS :=

∏
β∈Φ+, wSβ=−βXβ , whereXβ is the root subgroup

associated with β. We observe that, due to Chevalley commutator formula the
product of subgroups can be taken in arbitrary order and that VS is a subgroup of
U . In addition, ẇSt commutes with Xα for every α ∈ ZΠ ∩ Φ. Therefore

S ∩ SwS ⊂ ẇS(Z(LΠ) ∩ TwS)VS.

We will make use of the following observation.

Proposition 4.1 Let G be a simple algebraic group and let S = J(su)
reg

for
some s, u ∈ G be a sheet of spherical conjugacy classes in G. Then either u = 1
or S = G · su and, if S 6= G · su, then S contains a semisimple and a unipotent
element.

Proof. By the classification of spherical conjugacy classes in [3, 5], if G · rv is
spherical and v 6= 1, then Gr◦ is semisimple. Therefore, either G · rv is a single
sheet, or it lies in S = J(s)

reg
, for some semisimple element s. In addition, if

S = J(s)
reg

is non-trivial, then Gs◦ is a Levi subgroup, so S contains a unipotent
class by [8, Theorem 5.6(b)]. �

We can state the main result of this Section.

Theorem 4.2 Let G be a simple algebraic group over k.

1. All sheets of spherical conjugacy classes are smooth.

2. Let S be a stratum of spherical conjugacy classes. Then S is smooth with
the following exceptions:
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• G is of type B2 and S is the stratum containing the unipotent class
with partition (3, 12), or, equivalently, G is of type C2 and S is the
stratum containing the unipotent class with partition (22);

• G is of type D2h+1 and S is the stratum containing the unipotent class
with partition (22h, 12).

Proof. By Proposition 4.1 it is enough to look at sheets containing a semisimple,
element whose connected centralizer is not semisimple. Their description follows
from (2.1) and the classification in [3, 5]. For each simple group we will com-
pute the set theoretical intersection of every non-trivial spherical sheet S with the
corresponding SwS and we will use the following remark.

Remark 4.3 The intersection of S ∩ SwS is reduced. This is proved through the
following steps:

1. S is reduced.

2. The map G× (SwS ∩ S)→ S is smooth and surjective, which follows from
[25, Proposition 2.3] and [14, III, Theorem 10.1].

3. G× (SwS ∩ S) is reduced; which follows from the previous facts using [13,
éxp. II, prop.3.1].

4. G× (SwS ∩ S) is reduced implies that (SwS ∩ S) is reduced.

4.1 Type An

Let us first consider H = GLn+1(k). We choose B to be the subgroup of upper
triangular matrices, and T to be the subgroup of diagonal matrices. In this case
sheets and strata coincide, spherical sheets are parametrized by m = 0, . . . ,

[
n+1

2

]
and they are as follows: Sm = Z(H)Om ∪

⋃
λ,µ∈k∗; λ 6=µOm(λ, µ), where Om

is the unipotent class corresponding to the partition (2m, 1n+1−2m) and Om(λ, µ)
is the semisimple class with eigenvalues λ with multiplicity n + 1 − 2m and µ
with multiplicity 2m, the case m = 0 being trivial. The Weyl group element
associated to Sm is w0wΠ where Π = {αm+1, αm+2, . . . , αn+1−m}. We choose

ẇSm =
( 0 0 Jm

0 In+1−2m 0
−Jm 0 0

)
where Jm is the m×m matrix with 1 on the antidiag-
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onal and 0 elsewhere. Then

ẇSm(Z(LΠ) ∩ TwSm )VSm

=




a1
a2

...
am

bIn+1−2m

−am −amζm
... ...

−a2 −a2ζ2
−a1 −a1ζ1

 , ai, b ∈ k∗; ζi ∈ k

 .

A matrix in ẇSm(Z(LΠ) ∩ TwSm )VSm lies in Sm if either all its eigenvalues are
equal or else it has two eigenvalues and it is semisimple. This happens if and only
if

Tr
(

0 ai
−ai −aiζi

)
= Tr

(
0 aj
−aj −ajζj

)
∀i, j,

det
(

0 ai
−ai −aiζi

)
= det

(
0 aj
−aj −ajζj

)
∀i, j,

det
( −b a1
−a1 −a1ζ1−b

)
= 0,

that is, if and only if there exist ε2, . . . , εm ∈ {0, 1} such that ai = εia1, ζi = εiζ1

and ζi = −a2
1b
−1−b2a−1

1 . The set theoretic intersection Sm∩SẇSm is then a union
of (m − 1) disjoint irreducible components each isomorphic to the image of the
morphism

f : k∗ × k∗ → k∗ × k∗ × k
(a, b) 7→ (a, b, a2b−1 + b).

Being a graph, this intersection is smooth for every field k and every m. By
Remark 4.3, this intersection coincides with the scheme theoretic one.

Let us now consider G = SLn(k). Set theoretically, every sheet of spherical
classes S is contained in the intersection of some Sm with G. If char(k) = p does
not divide n+1, then S∩SwSm is contained in the image through f of the disjoint
smooth curves C±1 of equation a2mbn+1−2m − ±1 = 0. By Remark 4.3, this set
theoretic inclusion is scheme theoretic hence S ∩ SwSm is smooth.

Let us now assume that p|n + 1. Then, for every m coprime with p, the
argument above applies. If, instead, p|m then we still have the set-theoretical
inclusion S ∩SwS ⊂ f(C1∪C−1) but the curves C±1 are not reduced. The reduced
scheme of f(C1 ∪ C−1) is smooth and the above argument applies.

4.2 Type Bn

Let G = SO2n+1(k) with n ≥ 2. We realize it as the subgroup of matrices in
SL2n+1(k) leaving invariant the symmetric bilinear form whose associated matrix
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with respect to the canonical basis of kn is
(

1 0 0
0 0 In
0 In 0

)
. We choose T to be its

subgroup of diagonal matrices and B to be the subgroup of matrices of the form(
1 0 tv
−Av A AM

0 0 tA−1

)
where: A is an upper-triangular matrix in GLn(k), v is a column

vector in kn, M = (−1/2)v tv + Σ, Σ is a skew-symmetric matrix of size n and
tX denotes the transpose of X , for any matrix X .

The non-trivial sheets of spherical conjugacy classes are given by S and S ′,
with

S = (∪λ 6=0,±1Oλ) ∪ O(3,2) ∪G · ρnu
where Oλ is the semisimple class with eigenvalues 1, λ, λ−1 with multiplicity
1, n, n respectively; O(3,2) is the unipotent conjugacy class corresponding to the
partition (3, 2n−1), for n odd and (3, 2n−2, 12) for n even; the element ρn is the di-
agonal matrix diag(1,−I2n) and u is a representative of any unipotent conjugacy
class in Gρn◦ ∼= SO2n(k) associated with the partition (2n) when n is even, and
(2n−1, 12) when n is odd; and

S ′ = (∪λ 6=0,1Oλ,1) ∪ O(3,12n−2),

where Oλ,1 is the class of a semisimple matrix with eigenvalues 1, λ, λ−1 with
multiplicity 2n − 1, 1, 1, respectively and O(3,12n−2) is the unipotent conjugacy
class with associated partition (3, 12n−2).

We have S ∩ S ′ = ∅ unless n = 2, so the stratum containing S is not smooth
for n = 2 whereas for n ≥ 3 the strata containing S and S ′ are smooth if and only
if S and S ′ are so.

Let us analyze S. Here, wS = w0. If we choose ẇS =

(
(−1)n 0 0

0 0 In
0 In 0

)
, then

SwS = ẇST
wSU consists of matrices of the form

X = X(E,M,Q, v) =

(
(−1)n 0 (−1)n tv

0 0 E tQ−1

−EQv EQ EQM

)
where E ∈ {±1}n, v =t (v1, . . . , vn) ∈ kn, Q is a unipotent upper triangular
matrix in GLn(k), and M = (−1/2)v tv + A, where A is skew-symmetric.

Now, if X lies in S then there exists λ ∈ k∗ such that rk(X − λI) ≤ n+ 1.
Assume first that X = X(E,M,Q, v) satisfies rk(X − λI) ≤ n+ 1 for some

λ 6= (−1)n. Then we have

M − λQ−1E + λ−1EtQ−1 +
(−1)n

(−1)n − λ
v tv = 0. (4.2)
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Let ϕλ,n := (−1)n+λ
2((−1)n−λ)

. Taking symmetric and skew-symmetric parts in (4.2) we
obtain the following equations:

ϕλ,nv
tv = (1/2)(λ− λ−1)(Q−1E + E

t

Q−1) (4.3)

and
A = (1/2)(λ+ λ−1)(Q−1E − Et

Q−1). (4.4)

The diagonal terms in (4.2) give

ϕλ,neiv
2
i = (λ− λ−1). (4.5)

Hence, if in addition λ 6= (−1)n+1, then eiv2
i = e1v

2
1 for every i. We fix, for

i = 1, . . . , n, elements ζi ∈ k such that ζ2
i = ei and we set aλ := ζ1v1, so

ϕλ,na
2
λ = (λ − λ−1). Therefore, for every j ≥ 1 there is ηj = ±1, with η1 = 1,

such that ζjvj = ηjaλ. Thus, we have

λ2 − (2(−1)n − a2
λ/2)λ+ 1 = 0 (4.6)

which gives
(λ+ λ−1) = (2(−1)n − a2

λ/2). (4.7)

Making use of (4.5) and (4.7), for 2 ≤ i < j ≤ n, the (i, j) entries of (4.3)
and (4.4) give

(Q−1)ij = 2ζ−1
i ζjηiηj, aij =

(
2(−1)n − a2

λ/2
)
ζ−1
i ζ−1

j ηiηj. (4.8)

So, for λ 6= ±1 and for every choice of ηi, ζi, the matrix Q is completely
determined, the vector v depends linearly on aλ and M depends on a2

λ, giving a
dense subset of a line. Conversely, if λ 6= ±1, the condition rk(X − λI) ≤ n+ 1
also implies that X is semisimple, and it ensures X ∈ S.

Let us now assume λ = (−1)n+1. Then, (4.4) gives aij = (−1)n+1(Q−1)ijej
for every i < j. X lies in S only if rk(X − (−1)n+1)2 = 1. Looking at the
(2, 2)-block in this matrix we get rk(tQ−1E + EQ−1) ≤ 1, which yields

(Q−1)ij = 2ζ−1
i ζjηiηj, and aij = 2(−1)n+1ζ−1

i ζ−1
j ηiηj.

Let N = (X − (−1)n+1)2diag(1, Q−1E, In). Every row in N must be a multiple
of the first one, which is nonzero. Thus, every row in the block (2, 2) must be a
multiple of the (1, 2)-block. This gives eiv2

i = e1v
2
1 6= 0 for every i ≥ 0. We set

a = ζ1v1, so for every i ≥ 2 we have vi = aζ−1
i ηi. A direct computation shows
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that tvEQv = 0 and −E tQ−1EQv = v. The condition that the principal minor
of size 2 must be 0 gives a2 = 8(−1)n, i.e., a satisfies condition (4.6) so (4.8) is
verified also in this case. Thus, for the Jordan class J of diag(1, λIn, λ

−1In), the
set-theoretical intersection J ∩Sw0 is a disjoint union of 22n−1 copies of k∗, given
by the values of aλ, one for each choice of each ej’s and of the ηj’s.

Let us now consider λ = (−1)n. Then X must satisfy the condition rk(X −
(−1)n) = n, which forces aλ = 0. Moreover,X lies in S only if rk(X−(−1)n) =
1, which, combined with (4.4) gives the condition rk(tQ−1E+EQ−1) ≤ 1, which
yields (4.8) with aλ = 0. The dimensional argument used in the proof of Lemma
3.3 for the G-conjugacy class of X shows that X ∈ S. Hence the set theoretical
intersection S ∩ SwS is a disjoint union of 22n−1 copies of k. By Remark 4.3, this
is also the scheme theoretic intersection so S is smooth.

Let us now consider S ′. In this casewS′ = sβs1 = w0wΠ for Π = {α3, . . . , αn}

and β = ε1 + ε2 the highest long root. We choose ẇS′ =

( 1 0 0 0 0
0 0 0 I2 0
0 0 In−2 0 0
0 I2 0 0 0
0 0 0 0 In−2

)
so

ẇS′(Z(LΠ) ∩ TwS′ )VS′

=
⋃
ε,η=±1




1 0 0 0 a b 0
0 0 0 0 ε 0 0
0 0 1 0 −ηx η 0
0 0 0 cIn−2 0 0 0

−ε(a+bx) ε εx 0 εl εm 0

−ηb 0 η 0 ηm′ − 1
2
ηb2 0

0 0 0 0 0 0 c−1In−2

 a, b, x, l,m,∈ k; c ∈ k∗,
m′ = −m− ab−−1

2
ηb2

 .

Then an elementX ∈ ẇS′(Z(LΠ)∩TwS′ )VS′ lies in S ′ if and only if rk(X−I) =
2: this is clear if the eigenvalues different from 1 are distinct. If the eigenvalues
different from 1 are equal to −1, then this follows from the fact that the unipotent
part must lie in the connected centralizer of the semisimple part. If the eigenvalues
are all equal to 1, then there are only two unipotent classes for which rk(X−I) =
2, namely the one associated with (22, 12n−3) and O(3,12n−3). By dimensional
reasons, the former does not intersect Sws′ .

Assume rk(X − I) = 2. For such an X we have

c = 1, a = b = 0, l = ηx2, m = −ηx.

By Remark 4.3 the variety S ′ ∩ SwS′ is isomorphic to a disjoint union of 4 affine
lines, one for each value of η and ε.
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4.3 Type Cn

Let us consider G = Sp2n(k) with n ≥ 3. We realize it as the subgroup of
matrices in SL2n(k) leaving invariant the skew-symmetric bilinear form whose
associated matrix with respect to the canonical basis of kn is

(
0 In
−In 0

)
. We choose

T to be its subgroup of diagonal matrices and B to be the subgroup of matrices
of the form

(
A AΣ
0 tA−1

)
where A is an upper-triangular matrix in GLn(k) and Σ is a

symmetric matrix of size n.

There are, up to a central element, two non-trivial sheets of spherical classes,
±S1 and S2 where

S1 =
(
∪λ 6=0,±1O(λ,1)

)
∪ O(22,12n−4) ∪G · σ1xβ(1)

where O(λ,1) is the semisimple class with eigenvalues λ, λ−1 and 1, with multi-
plicity 1, 1, 2n − 2 respectively, O(22,12n−4) is the unipotent conjugacy class cor-
responding to the partition (22, 12n−4), the element σ1 is the diagonal matrix
diag(−1, In−1,−1, In−1) and β = ε1 + ε2 is the highest root; and

S2 = (∪λ 6=0,±1Oλ) ∪ ±O(2n)

where Oλ is the semisimple class with eigenvalues λ±1 and O(2n) is the unipotent
conjugacy class corresponding to the partition (2n).

Since n > 2, we always have S1 ∩ S2 = S2 ∩ (−S1) = ∅, hence the strata
containing these sheets are smooth if and only if the sheets are so.

The Weyl group element corresponding to S1 is wS1 = w0wΠ1 , for Π1 =

{α3, . . . , αn}, so wS1 = sα1sβ . We choose ẇS1 =

(
I2

In−2

−I2
In−2

)
so

ẇS1(Z(LΠ1) ∩ TwS1 )VS1

=
⋃
ε,η=±1




ε 0
−ξη η

bIn−2

−ε −εξ −ε(x+ξy) −ε(y+ξz)
0 −η −ηy −ηz

b−1In−2

 , b ∈ k∗;x, y, z, ξ ∈ k

 .

Then X ∈ ẇS1(Z(LΠ1)∩TwS1 )VS1 lies in S1 if and only if rk(X− I) = 2, which
holds if and only if

b = 1, x = −2ε, y = ηξ, z = −2η.
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By Remark 4.3 the variety S1 ∩ SwS1 is isomorphic to a disjoint union of affine
lines.

The Weyl group element corresponding to S2 is w0 and we choose the rep-
resentative ẇ0 =

(
0 In
−In 0

)
. Then the matrices in ẇ0T

w0VS2 are all matrices of
the form x(E, V,X) =

(
0 EtV −1

−EV −EV X
)
, where E = diag(ε1, . . . , εn), εi = ±1 for

every i, V is an upper triangular unipotent matrix, and X is a symmetric matrix.
If x(E, V,X) lies in S2, then there is a λ ∈ k∗ for which rk(x(E, V,X) −

λI) = n. This forces λX + λ2(V −1E) +t(V −1E) = 0. If λ2 6= 1 this can happen
only if V = I and X = −(λ + λ−1)E and x(E, V,−(λ + λ−1)E) ∈ Oλ. If
instead λ2 = 1, then x(E, V,X) lies in S2 only if (x(E, V,X) − λI)2 = 0. A
direct computation shows that this is possible only if V = I , so X = −2λ−1E =
−(λ + λ−1)E. If this is the case, x(E, I,−2λ−1E) ∈ λO(2n). Therefore, set
theoretically, S2 ∩ Sw0 is a disjoint union of affine lines with coordinate λ+ λ−1.
We apply Remark 4.3.

4.4 Type Dn

LetG = SO2n(k), for n ≥ 4. We realize it as the subgroup of matrices in SL2n(k)
leaving invariant the symmetric bilinear form whose associated matrix with re-
spect to the canonical basis of kn is

(
0 In
In 0

)
. We choose T to be its subgroup

of diagonal matrices and B to be the subgroup of matrices of the form
(
A AΣ
0 tA−1

)
where A is an upper-triangular matrix in GLn(k) and Σ is a skew-symmetric ma-
trix of size n.

It is convenient to separate the cases of n even and odd.

4.4.1 Dn for n even

Let n = 2h. Let θ be an automorphism of G induced by the non-trivial automor-
phism of its Dynkin diagram interchanging the last two simple roots. The only
non-trivial sheets of spherical conjugacy classes are given by S, θ(S) and S ′ as
follows:

S = ∪λ 6=0,±1

(
G ·
(
λIn

λ−1In

))
∪ ±O(2n)

and of type

θ(S) = ∪λ6=0,±1

G ·
λIn−1

λ−1In
λ

 ∪ ±O′(2n)
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where O(2n) and O′(2n) are the two distinct unipotent conjugacy class correspond-
ing to the partition (2n) and

S ′ = (∪λ 6=0,1Oλ,1) ∪ O(3,12n−3)

where Oλ,1 is the class of a semisimple matrix with eigenvalues 1, λ, λ−1 with
multiplicity 2n − 2, 1, 1, respectively and O(3,12n−3) is the unipotent conjugacy
class with associated partition (3, 12n−3).

If n = 4, then for any automorphism ϑ of G induced by a Dynkin diagram
automorphism corresponding to the cyclic permutation of the simple roots α1 7→
α3 7→ α4 7→ α1, we have ϑ(S) = S ′. This can be seen by comparing the Jordan
normal forms of xα1(ξ)xα3(η) ∈ O(24) and ϑ(xα1(ξ)xα3(η)) = xα3(ξ

′)xα4(η
′),

for ξ, ξ′, η, η′ ∈ k∗ and observing that any sheet of spherical classes is necessarily
mapped to a sheet of spherical classes by ϑ. So, for n = 4, the sheets S, θ(S)
and S ′ are all isomorphic. However, for n > 4, the sheets S and S ′ have different
dimension and are therefore not isomorphic as varieties. The intersection of any
pair of distinct sheets is trivial, and the stratum is smooth if and only if the sheets
it contains are so. It is enough to deal with S and S ′.

For the sheet S we have wS = sε1+ε2sε3+ε4 · · · sεn−1+εn = w0wΠ for Π =
{α1, α3, . . . , αn−1}. In this case θ(wS) 6= wS . We choose the representative
ẇS = ( 0 L

L 0 ) where L = diag(J, J, . . . , J) and J = ( 0 1
−1 0 ).

Then, for i = 1, . . . , h and εi = ±1, ẇS(Z(LΠ)∩TwS)VS is the disjoint union
of the sets of matrices of the form x(E,D) = ( 0 E

E D ) with xi ∈ k for i = 1, . . . , h
and

E = diag(E1, . . . , Eh), Ei =
(

0 εi
−εi 0

)
, D = diag(−ε1x1I2, . . . ,−εhxhI2).

Then x(E,D) lies in S only if there exists λ ∈ k∗ such that rk(x(E,D)− λI) =
n. This is possible only if D = (λ + λ−1)I . Conversely, if this is the case, a
direct verification shows that x(E,D) is either semisimple with eigenvalues λ±1

or unipotent up to a sign. In addition, as wθ(S) 6= wS have the same length, and
wθ(S) is maximal among the elements τ ∈ W such that θ(S) ∩ BτB 6= ∅, we
see that O ∩ BwSB = ∅ for every O ⊂ θ(S). Thus, any x(E,D) satisfying
rk(x(E,D)− λI) = n lies in S. So, set theoretically, S ∩ SwS is a disjoint union
of 2h affine lines. We conclude as in the previous cases.

For the sheet S ′ we have wS′ = sβs1 = w0wΠ for Π = {α3, . . . , αn} and
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β = ε1 + ε2 the highest root. We choose ẇS′ =

(
I2

In−2

I2
In−2

)
so

ẇS′(Z(LΠ) ∩ TwS′ )VS′

=
⋃
ε,η=±1




0 0 0 ε 0 0
0 1 0 −ηx η 0
0 0 cIn−2 0 0 0
ε εx 0 εl εm 0
0 η 0 η−m 0 0
0 0 0 0 0 c−1In−2

 , x, l,m ∈ k; c ∈ k∗,

 .

If X ∈ ẇS′(Z(LΠ) ∩ TwS′ )VS′ lies in S ′ then rk(X − I) = 2. All elements
satisfying this condition lie in S ′. Indeed, the centralizer of the representatives
of the classes in S ′ in O2n(k) is not contained in SO2n(k) so elements that are
GL2n(k)-conjugate, are also SO2n(k)-conjugate. Therefore, the argument used
for the sheet S ′ in type Bn applies. For such an X we have

c = 1, l = ηx2, m = −ηx.

Hence the variety S ′ ∩ SwS′ is isomorphic to a disjoint union of 4 affine lines.

4.4.2 Dn for n odd

Let n = 2h+ 1. The only non-trivial sheets of spherical conjugacy classes are R,
θ(R) and S ′ as follows:

R = ∪λ 6=0,±1

(
G ·
(
λIn

λ−1In

))
∪ ±O(2n−1,12);

whereO(2n−1,12) is the unique unipotent conjugacy class corresponding to the par-
tition (2n−1, 12); and S ′ is the same as for n even and can be dealt with in the same
way.

The sheet S ′ does not intersect R nor θ(R). On the other hand, R and θ(R)
intersect in ±O(2n−1,12), hence the stratum containing them is not smooth.

Let us deal with R. The Weyl group element associated with it is wR =
sε1+ε2sε3+ε4 · · · sεn−2+εn−1 = w0wΠ for Π = {α1, α3, . . . , αn−2}. In this case
θ(wR) = wR. Let us consider the injective morphism ι : SO2h(k) → SOn(k)

given by ( A B
C D ) 7→

(
A B

1
C D

1

)
. Then, for ẇS as for n = 2h, we choose ẇR :=

ι(ẇS) and we get VR = ι(VS).
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Thus, for i = 1, . . . , h and εi = ±1, ẇR(Z(LΠ) ∩ TwR)VR is the disjoint

union of the sets of matrices of the form x(E,D, ζ) =

( 0 E
ζ

E D
ζ−1

)
with xi ∈ k

for i = 1, . . . , h, ζ ∈ k∗ and E, D as for n = 2h. A matrix x(E,D, ζ) lies in
S only if there exists λ ∈ k∗ such that rk(x(E,D) − λI) ≤ n. This is possible
only if D = (λ + λ−1)I and ζ = λ±1. Conversely, if this is the case, a direct
verification, making use of the computations for n = 2h and the sheet S, shows
that x(E, (λ+ λ−1)I, ζ) lies in R if ζ = λ and it lies in θ(R) otherwise. Thus, set
theoretically, R ∩ SwR is a disjoint union of 2h affine lines. We conclude as in the
previous cases.

4.5 Exceptional groups
There are no non-trivial sheets of spherical conjugacy classes in types E8, F4,
and G2, so strata of spherical conjugacy classes consists of finitely many classes,
hence they are smooth. Let us analyse the cases for G simply-connected of type
E6 or E7. For every β ∈ Φ, we set hβ : k∗ → T to be the co-character satisfying

χ(hβ(ζ)) = ζ2
(χ,β)
(β,β) for every character χ of T . It is well-known that every t ∈ T

has a unique expression as a product t =
∏

α∈∆ hα(ζα), for ζα ∈ k∗. The simple
roots in E6 and E7 will be enumerated as in [2].

4.5.1 The group of type E6

Let ω ∈ k be a primitive fourth root of 1 and let ζ be a primitive third root of 1.
For a ∈ k∗, let p2,a = hα1(a

2)hα2(a
3)hα3(a

4)hα4(a
6)hα5(a

5)hα6(a
4) and let O2A1

be the unipotent conjugacy class in G with Bala-Carter label 2A1. Then the only
non-trivial sheet containing spherical classes is

S = (∪a∈k, a3 6=0, 1G · p2,a) ∪
(
∪z∈Z(G)zO2A1

)
.

By [5, Theorem 3.6], if a 6= b then p2,a is not conjugate to p2,b.
In this case, wS = w0wΠ for Π = {α3, α4, α5}, so wS = sβsγ where β =

α1 +2α2 +2α3 +3α4 +2α5 +α6 is the highest root and γ = α1 +α3 +α4 +α5 +α6

is the highest root in Φ ∩ β⊥ = Φ ∩ Z{α1, α3, α4, α5, α6}.

We compute the set theoretical intersection S ∩ SwS by detecting O ∩SwS for
each orbit in S.
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Let us use a parametrization x±α(ξ) of the root subgroupsX±α, for α ∈ {β, γ}
and ξ ∈ k, satisfying xα(1)x−α(−1)xα(1) = nα, with nα commuting with the root
subgroups associated with roots in ±Π. We choose ẇS := nβnγ .

We first consider Oa = G · p2,a for a3 6= 0, 1. Since β(p2,a) = γ(p2,a) = a3

we have, for ξ = 1
a−3−1

:

x−β(ξ)x−γ(ξ)p2,ax−γ(−ξ)x−β(−ξ) = x−β(−1)x−γ(−1)p2,a

and
za := xγ(1)xβ(1)x−β(−1)x−γ(−1)p2,axβ(−1)xγ(−1)
= ẇSp2,axβ(−a−3 − 1)xγ(−a−3 − 1) ∈ wSTUwS ∩ Oa.

For a ∈ k∗ let b, c ∈ k satify b4 = c4 = a3.
Conjugation of za by hβ(b)hγ(c) gives:

ya,b2,c2 := hβ(b)hγ(c)zahγ(c)
−1hβ(b)−1 =

ẇShα1(a
2(bc)−2)hα3(ac

−2)hα4(c
2b−2)hα5(a

2c−2)hα6(ab
2c−2)·

xβ(−b2(a−3 + 1))xγ(−c2(a−3 + 1)) ∈ Oa ∩ SwS
which depends on a, b2, c2, for c2 = ±b2. Since Oa ∩ SwS is a single ΓwS -orbit
and ΓwS is generated by hβ(ω) and hγ(ω), we have ⋃

a3 6=0,1

Oa

 ∩ SwS =
⋃
ε=±1

 ⋃
a3 6=0,1; a3=d2

ya,d,εd

 .

We analyze now the orbits in Z(G)O2A1 . We recall that Z(G) is generated by
p2,ζ . A representative of O2A1 is u = x−β(−1)x−γ(−1), so for 0 ≤ l ≤ 2, the
element

yl := xγ(1)xβ(1)p2,ζluxβ(−1)xγ(−1) = ẇSp2,ζlxβ(−2)xγ(−2)

lies in p2,ζlO2A1 ∩ SwS . All other elements in this set are obtained by ΓwS -
conjugation:

yζl,i,j := hβ(ωi)hγ(ω
j)ylhγ(ω

−j)hβ(ω−i)
= ẇShα1(ζ

−l(−1)i+j)hα3(ζ
l(−1)j)hα4((−1)i+j)hα5((−1)jζ−l)hα6((−1)i+jζ l)·

xβ(−2(−1)i)xγ(−2(−1)j)

hence  ⋃
z∈Z(G)

zO2A1

 ∩ SwS =
⋃
ε=±1

 ⋃
a3=1; 1=d2

ya,d,εd

 .
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By Remark 4.3, S ∩ Sw is the union of two disjoint irreducible components, each
isomorphic to the image of the curve x3 = y2, for x, y 6= 0, through the morphism
(x, y) 7→ (x−1, xy−1, x2y−1, x, y(x−3 + 1)).

4.5.2 The group of type E7

For a ∈ k∗, let q3,a = hα1(a
2)hα2(a

3)hα3(a
4)hα4(a

6)hα5(a
5)hα6(a

4)hα7(a
3) and

let ω be a fourth primitive root of 1. Let O3A′′1
be the unipotent conjugacy class in

G with Bala-Carter label 3A′′1. Then

S = (∪a∈k, a6=0,±1G · q3,a) ∪
(
∪z∈Z(G)zO3A′′1

)
is the only non-trivial sheet containing spherical classes. Here, wS = w0wΠ for
Π = {α2, α3, α4, α5} so wS = sβsγsα7 for β = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 +
2α6 + α7 the highest root and γ = α2 + α3 + 2α4 + 2α5 + 2α6 + α7 the highest
root in Φ ∩ β⊥.

Let us use a parametrization x±α(ξ) of the root subgroups X±α, for α ∈
{β, γ, α7} and ξ ∈ k, satisfying xα(1)x−α(−1)xα(1) = nα, with nα commut-
ing with root subgroups associated with roots in ±Π. We choose ẇS := nβnγnα7 .
We will argue as we did for E6.

Let us first consider Oa = G · q3,a for a2 6= 0, 1. Since β(q3,a) = γ(q3,a) =
α7(q3,a) = a2 we have, for ξ = 1

a−2−1
:

x−β(ξ)x−γ(ξ)x−α7(ξ)q3,ax−α7(−ξ)x−γ(−ξ)x−β(−ξ)
= x−β(−1)x−γ(−1)x−α7(−1)q3,a

and

za := xγ(1)xβ(1)xα7(1)x−β(−1)x−γ(−1)x−α7(−1)q3,axα7(−1)xβ(−1)xγ(−1)
= ẇSq3,axβ(−a−2 − 1)xγ(−a−2 − 1)xα7(−a−2 − 1) ∈ wSTUwS ∩ Oa.

For a ∈ k∗, let b, c, d ∈ k satify b4 = c4 = d4 = a2.
Conjugation of za by hβ(b)hγ(c)hα7(d) gives:

ya,b2,c2,d2 := hβ(b)hγ(c)hα7(d)zahα7(d)−1hγ(c)
−1hβ(b)−1

= ẇShα2(ac
−2)hα3(a

2b−2c−2)hα5(ab
−2)hα7(a

3b−2c−2d−2)·
xβ(−b2(a−2 + 1))xγ(−c2(a−2 + 1))xα7(−d2(a−2 + 1)) ∈ Oa ∩ SwS
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which depends on a, b2, c2, d2, for c2 = ±b2 = ±d2 = ±a. As all elements in
wST

wSUwS ∩ Oa form a single orbit for the group ΓwS , which is generated by
hβ(ω), hγ(ω) and hα7(ω), we have ⋃

a2 6=0,1

Oa

 ∩ SwS =
⋃

ε,η,θ=±1

 ⋃
a2 6=0,1

ya,εa,ηa,θa


and, for b2 = εa, c2 = ηa, d2 = θa we have

ya,εa,ηa,θa = ẇShα2(η)hα3(εη)hα5(ε)hα7(εηθ)·
xβ(−ε(a−1 + a))xγ(−η(a−1 + a))xα7(−θ(a−1 + a)).

Let us now consider the orbits in Z(G)O3A′′1
. We recall that Z(G) is generated

by q3,−1. The class O3A1 is represented by u = x−β(−1)x−γ(−1)x−α7(−1), so,
for ξ = ±1, the element

yξ := xγ(1)xβ(1)xα7(1)q3,ξuxα7(−1)xβ(−1)xγ(−1)
= ẇSq3,ξxβ(−2)xγ(−2)xα7(−2) ∈ q3,ξO3A′′1

∩ SwS .

All other elements in this set are obtained by ΓwS -conjugation:

hβ(ωi)hγ(ω
j)hα7(ω

l)yξhα7(ω
−l)hγ(ω

−j)hβ(ω−i)
= ẇShα2(ξ(−1)j)hα3((−1)i+j)hα5(ξ(−1)i)hα7(ξ(−1)i+j+l)·
xβ(−2(−1)i)xγ(−2(−1)j)xα7(−2(−1)l)

.

We conclude that

S ∩ SwS =
⋃

ε,η,θ=±1

⋃
a2 6=0

ya,εa,ηa,θa

 ,

which, by Remark 4.3 is isomorphic to a disjoint union of 8 copies of an affine
line, with coordinate ring k[a+ a−1].
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