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Abstract: A proposal of a general and modular scheme for musical instrument 
synthesis is presented. A complete example is illustrated, showing a model 
of hammer-string interaction in piano sound. 

Sound synthesis by physical models, thought not recent, has gained 
interest during last years in computer music field, for the natural quality 
of sound it exhibits in relation with the decreasing computational cost. 
The different approaches and the great variety of proposed solutions for 
the realization both of specific intruments and of general structures, 
requires the developement of a unifying conceptional framework and a 
coherent metodology. Ye belive that in computer music the main aim of 
physical model synthesis is not the simulation of a specific traditional 
instrument, but the construction of tools, which may allow a great deal of 
timbral choices and a flexible and simple use. Each musician should be able 
to create his own instruments, even new and unheared ones, without loosing 
contact with his acoustical experience and intuition. This requires the 
developement of a descriptive method of great generality and modularity. 

In this work we expose a general approach for modeling musical 
instruments. This method was originally conceived as an aid for the 
realization of a model of the hammer-string interaction in piano sound. The 
pourpose was to find a conceptual structure in order to assemble known 
models of excitators and resonators to obtain new synthesis models, and to 
compare their effectiveness. The main idea is that in every natural musical 
instrument, in the wider extension of this term, it is possible to 
recognize a common basic scheme: an excitator and a resonator which 
interact. This is the framework we start from in order to develop simple 
and complex models. The resulting scheme allows to develop excitator and 
resonator in a fairly independent manner, thus giving the possibility of 
using third-party work in one's own models almost in a "black box" style. 

1. Modular approach to musical instruments modeling. 

As we told above, we always consider a musical instrument as composed of 
an excitator and a resonator. Note that these blocks have a functional 
meaning, and do not necessarily describe physical parts of the instrument. 
In this work we consider the excitator as the element which causes and, 
possibly, sustains the vibrations in the resonator. The resonator describes 
the place in which interesting vibratory phenomena arise. This means that 
we consider as parts of the resonator both the oscillations supports, such 
as strings and acoustic tubes, and the elements which are used to alter the 
produced sound, as soundboards, wind bells and so on. 

In connecting excitator and resonator, several schemes are possible. 
Perhaps the simplest structure is the "feed-forward" scheme, where the 
excitator acts on the resonator without accepting informations from it. An 
example of this connection is given in the "initial condition technique", 
in which the resonator is set by the "excitator" to its initial condition 
and then is left free to evolve, like in the plucked string in [1]. Another 
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example is the model "source-linear filter" used in speech synthesis field. 
A more general and accurate structure is given by the "feedback" scheme 

[2]. In this scheme the excitation takes into account the state of the 
resonator, so that a full interchange of informations between the two 
blocks is accomplished. Lots of applications are possible for this scheme, 
due of its generality and completeness. Anyhow, it should be pointed out 
that, in its original form, this scheme requires the direct connection of 
excitator and resonator. Thus, it is not possible to develop these two 
blocks independently, having each of them to consider input and output 
constraints imposed by the other. In the developement of a synthesis 
structure this can be a serious limitation: a change in the excitator, for 
example, will probably reflect on the whole structure of the model. 
Furthermore it is not possible to build a model, coupling excitator and 
resonator choosen between the ones available in literature. 

The structure we propose to overcome these problems, is based on a three 
block scheme, as illustrated in fig. 1. E and R blocks stand for excitator 
and resonator, respectively. It is not restrictive to assume that E and R 
are time-varying dynamic systems, and it is common practice to assume R as 
linear, while no restrictions are made on E; E and R are so described by 
means of explicit equations. X is the input vector representing the 
excitation actions. Pe and Pr are vectors of parameters representing the 
modulating actions on the instrument. Y is the output vector, representing 
the musical signals. Other vectors are the information exchanged between E 
and R through I. Block I acts as an interface block: its main pourpose is 
to separate block E and R, so that they can be described independently. In 
order to accomplish this, I block performs an input/output variables 
adaptation, e~suring that the output of E is compatible with the input of 
R, and vice-versa. It should be pointed out that this scheme preserves the 
feedback structure, and so it has the same description capability of the 
raw scheme presented above. Furthermore, we note that in this description 
block I makes blocks E and R act as true "black boxes": in fact a 
hypotetical user does not need to know the details of the internal 
structure of E and R, his interest being only in their I/0 relations. 
Finally, many of the problems which interaction description usually brings 
can be collapsed into block I, and conveniently formalized ad resolved 
there. 
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It can be noticed that the interconnection of two discrete systems can 
give rise to a problem of computability: this happens when the resulting 
scheme has loops without delay elements. Sometimes an "ad hoc" manipulation 
of the system equations can eliminate these dependances; generally it is 
necessary to solve a (often non linear) system for each sample period. An 
approximate solution, which is acceptable for sufficently high sampling 
rates, is to insert delay elements in the upmentioned loops; this solution 
preserves the modularity and gives good computational efficiency. Our 
three-blocks scheme, having more exchange variable than the two-blocks one, 
can give rise to these kind of problems more frequently. However, adopting 
the approximated solution, we can easily overcome these problems without 
loosing the independency of the blocks. 
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2. Hammer-string interaction in piano sound synthesis. 

In this part we expose a complete example of application of the general 
scheme exposed above. Model realization is based on a work by G. Garnett 
[3] on piano sound synthesis, in which Waveguide Digital Filters are used 
for the simulation of strings and soundboard. On the other hand, while in 
Garnett's model excitation is obtained by mean of a complex and tricky 
mechanism based on Helmholtz's well known approximation of strucked string, 
in the model here exposed we use a different excitator, which is based on a 
accurate -even if simple- physical description of the hammer, and an 
adeguate interaction mechanism. Moreover, we use a very simplified 
description for the resonator, our main interest being in the study of the 
interaction between hammer and string, and not the production of high 
quality piano tones. We assume that the hammer strikes a single ideal 
string, connected to a perfectly rigid support by one side, and to a 
slightly lossy support by the other; this one represenbthe bridge, and we 
further suppose to pick up the signal at this point, without sending it to 
a soundboard model. 

Our choice for the hammer model have had two objectives: sufficently 
good physical description and low computational cost. From this point of 
view literature reports lots of interesting examples; we choose a proposal 
by H. Suzuki [4], because of its particular simplicity and good physicity 
(see also [5] for a more general model discussion). The model we use has • 
mass, representing the body of the hammer, and a nonlinear spring, with 
zero lenght at rest, which stands for the felt. Following Suzuki 
experimental results we assume that the ~pring characteristic is: 
F(h)-[AhA2+BhA3+ChA4]l(h) where F [N] is the force applied to the spring, 
h [m] is the correspondent displacement, A, B, C are suitable constants and 
l(h) is the Heavyside function. The hammer motion equation is: My"--f 
where f-F(y-u) is the force that hammer exerts on the string, u and y [m] 
are respectively the position of the string at contact point, and the 
position of the hammer. Note that the end of the spring which comes in 
contact with the string has no dynamic by its own, being the spring 
masseless, and so the contact condition between hammer and string is simply 
y<u, and is realized by the Heavyside function. 

Following equations exposed above, the excitator block will provide an 
input for the displacement information u, and an output for the force f. 
Excitator model is then easily obtained as in fig. 2, if derivatives are 
approximated by divided differences. 

Fig. 2 

The resonator model has been realized using Waveguide Filters (WGF) [6]. 
A WGF is a ne.t in which branches are pairs of digital delay lines, and 
nodes are passive junctions. Branches propagate undistorted waves in 
opposite direction$, so describing tracts of losseless transmission lines 
having a constant characteristic impedance. Junctions connect two or more 
branches, and give account of characteristic impedance .. discontinuity. 
Considering the hypothesis given above, the resonator model can be easily 
realized as in fig. 3, where we assume that signal is a transversal 
velocity. In the model one end of the string is connected to a junction 
which operates an almost complete reflection by means of a reflection 
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coefficient K, slightly less than unity. Transmission is given by a 
coefficient 1-K which weights the velocity signal: digital integration 
gives the audible signal. 

Note that the realization of the interaction mechanism requires a 
displacement information from the string at contact position; it is also 
necessary to insert hammer informations in the string. First operation is 
easily accomplished reading the content of the delay cells in the contact 
position. The model being linear, perturbation inserting is obtained adding 
external velocity contributions to the signal already present in the line. 
Moreover, we notice that the force applied at the contact position sees the 
parallel of two line tracts of equal characteristic impedance Z: 
transversal velocity waves are then given by the force signal divided by 
Z/2. (l·k)T 

delay line delay line 

Fig. 3 
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If we consider that the contact condition is completely realized in the 
excitation block, we see that the interaction block has now the only task 
to adapt exchange variables dimensions. This operation is not necessary for 
the excitation signal f, which is directly applied to the resonator, while, 
to obtain the reaction of the resonator, an integration of the velocity 
signal is requested, as we need position information for the hammer. The 
resulting scheme is reported in fig. 4; we observe that the interconnection 
of the blocks does not give computability problems because, even if f is 
instantaneously dependent from u, yet R has been realized so that it has no 
instantaneous dependency from v and f. We observe also that resetting the 
integrator before each hammer hit has no particular consequences, having 
the only effect of introducing a negligible offset in the mean position of 
the string, but it has the advantage of avoiding accumulation of 
integration errors. 
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Fig. 4 

Simulation results, referred to Suzuki parameters [4], are reported in 
fig. 5, which exposes the case of a quite strong hammer hit (v-3.5 m/s). In 
this figure three curves are presented. Curve a represents the hammer 
motion at contact point, curve b the string displacement at contact 
position and curve c the interaction force which is non-zero only during 
interaction. A comparison with [4] shows good agreement with diagrams 
obtained with the same physical parameters, but employing a much more 
complex model. The course of the corresponding acoustic signal is 
illustrated in fig. 6. The spectral evolution of the output signal is given 
for two different hammer velocities in the case of 220 Hz (fig. 7 a,b) and 
880 Hz (fig. 7 c,d) strings. For both strings the spectrum widening due to 
the increase of the h~er velocity is evident. Noisy attack followed by 
the harmonic sound, is more evident in the higher frequency string due to 
the longer interaction time compared with the small oscillation period. 
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